MAT 126: PRACTICE FOR THE FINAL

SOLUTIONS

Chapter 6 Review Exercises

2. Intersection points: between $y=0$ and $y=x^{2}$: at $(0,0)$;
between $y=1 / x$ and $y=x^{2}: 1 / x=x^{2}$ implies that $x^{3}=1$, that is, $x=1$.

The bottom of the region is the line $y=0$; the top is made up of two curves, $y=x^{2}$ and $y=1 / x$. Hence the area splits into two (each having a different "top"):

$$
\int_{0}^{1} x^{2} d x+\int_{1}^{e} \frac{1}{x} d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1}+\left.\ln x\right|_{1} ^{e}=\frac{1}{2}-0+(\ln e-\ln 1)=\frac{1}{2}+1=\frac{3}{2}
$$

4. First, find the intersection points of $x=-y, x=y^{2}+3 y$:

$$
\begin{aligned}
& -y=y^{2}+3 y \\
& y^{2}+4 y=0
\end{aligned}
$$

$$
y=0,-4
$$

$$
\text { For }-4<y<0,-y>y^{2}+3 y \text { (check, e.g. the values at } y=-1 \text {). So, we }
$$

$$
\text { integrate } \int_{-4}^{0}-y-\left(y^{2}+3 y\right) d y=\left.\left(-\frac{y^{3}}{3}-4 \frac{y^{2}}{2}\right)\right|_{-4} ^{0}=-\left(-\frac{(-4)^{3}}{3}-4 \frac{(-4)^{2}}{2}\right)=\frac{4^{3}}{6}=\frac{32}{3}
$$

6. Note that the curves $y=1+x$ and $y=e^{-2 x}$ intersect at the point $(0,1)$ $\left(e^{-2 * 0}=1=1+0\right)$.

On the interval $[0,1], 1+x>e^{-2 x}$ (because $e^{-2 x}<1$).
Hence, the volume is $\int_{0}^{1} \pi(1+x)^{2}-\pi\left(e^{-2 x}\right)^{2} d x=\pi \int_{0}^{1} 1+2 x+x^{2}-e^{-4 x} d x=$ $\left.\pi\left(x+x^{2}+\frac{x^{3}}{3}+\frac{1}{4} e^{-4 x}\right)\right|_{0} ^{1}=\pi\left(1+1+\frac{1}{3}+\frac{e^{-4}}{4}-\frac{1}{4}\right)=\frac{\left(29-3 e^{-4}\right) \pi}{12}$
(The antiderivative of $e^{-4 x}$, i.e. $\int e^{-4 x} d x$, can be computed by taking the substitution $u=-4 x, d u=-4 d x$ and $d x=-(1 / 4) d u$. Then $\int e^{-4 x} d x=$ $(-1 / 4) \int e^{u} d u=-e^{u} / 4+C=-e^{-4 x} / 4+C$.
8. Points of intersection are:

$$
\begin{aligned}
& x^{3}=2 x-x^{2} \\
& x^{3}+x^{2}-2 x=0 \\
& x\left(x^{2}+x-2\right)=0 \\
& x=0,1,-2
\end{aligned}
$$

Since the region is taken in the first quadrant, we consider only the region between $x=0$ and $x=1$.

Also, note that in this region $x^{3}<2 x-x^{2}$
(a) $\int_{0}^{1} 2 x-x^{2}-x^{3} d x=\left.\left(x^{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)\right|_{0} ^{1}=1-\frac{1}{3}-\frac{1}{4}=\frac{5}{12}$
(b) $\int_{0}^{1} \pi\left(2 x-x^{2}\right)^{2}-\pi\left(x^{3}\right)^{2} d x=\pi \int_{0}^{1} 4 x^{2}-4 x^{3}+x^{4}-x^{6} d x=\left.\pi\left(\frac{4 x^{3}}{3}-x^{4}+\frac{x^{5}}{5}-\frac{x^{7}}{7}\right)\right|_{0} ^{1}=$ $\pi\left(\frac{4}{3}-1+\frac{1}{5}-\frac{1}{7}\right)=\frac{41 \pi}{105}$
9. Points of intersection: $x=x^{2}$, hence $x=0,1$.
(a) $\int_{0}^{1} \pi(x)^{2}-\pi\left(x^{2}\right)^{2} d x=\pi \int_{0}^{1} x^{2}-x^{4} d x=\left.\pi\left(\frac{x^{3}}{3}-\frac{x^{5}}{5}\right)\right|_{0} ^{1}=\pi\left(\frac{1}{3}-\frac{1}{5}\right)=\frac{2 \pi}{15}$
(b) If $y=x^{2}$, then $x=\sqrt{y}$. Also note that for $0 \leq y \leq 1, \sqrt{y} \geq y$.
$\int_{0}^{1} \pi(\sqrt{y})^{2}-\pi(y)^{2} d y=\pi \int_{0}^{1} y-y^{2} d y=\left.\pi\left(\frac{y^{2}}{2}-\frac{y^{3}}{3}\right)\right|_{0} ^{1}=\pi\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{\pi}{6}$
(c) $\int_{0}^{1} \pi\left(x^{2}-2\right)^{2}-\pi(x-2)^{2} d x=\pi \int_{0}^{1} x^{4}-4 x^{2}+4-x^{2}+4 x-4 d x=$
$\pi \int_{0}^{1} x^{4}-5 x^{2}+4 x d x=\left.\pi\left(\frac{x^{5}}{5}-\frac{5 x^{3}}{3}+2 x^{2}\right)\right|_{0} ^{1}=\pi\left(\frac{1}{5}-\frac{5}{3}+2\right)=\frac{8 \pi}{15}$
21. The area of a triangle with sides a and b and an angle θ between them is $\frac{1}{2} a b \sin \theta$. Thus, the area of the cross-section if $\frac{1}{2} \frac{x}{4} \frac{x}{4} \sin \frac{\pi}{3}=\frac{\sqrt{3} x^{2}}{64}$.

The volume is $\int_{0}^{20} \frac{\sqrt{3} x^{2}}{64} d x=\left.\frac{\sqrt{3} x^{3}}{64 * 3}\right|_{0} ^{20}=\frac{125 \sqrt{3}}{3} m^{3}$
23. $\frac{d x}{d t}=6 t ; \frac{d y}{d t}=6 t^{2}$.
$L=\int_{0}^{2} \sqrt{(6 t)^{2}+\left(6 t^{2}\right)^{2}} d t=6 \int_{0}^{2} \sqrt{t^{2}+t^{4}} d t=6 \int_{0}^{2} t \sqrt{1+t^{2}} d t=6 \frac{1}{2} \int_{1}^{5} \sqrt{u} d u=$
$\left.3 \frac{2}{3} u^{3 / 2}\right|_{1} ^{5}=2(5 \sqrt{5}-1)$
using the substition $u=1+x^{2}, d u=2 x d x$ (hence $x d x=\frac{1}{2} d u$), and $u=1$ when $x=0, u=5$ when $x=2$.
25. $\frac{d y}{d x}=\frac{1}{6} \frac{3}{2}\left(x^{2}+4\right)^{1 / 2}(2 x)=\frac{1}{2} x\left(x^{2}+4\right)^{1 / 2}$
$L=\int_{0}^{3} \sqrt{1+\frac{1}{4} x^{2}\left(x^{2}+4\right)} d x=\int_{0}^{3} \sqrt{\frac{4+x^{4}+4 x^{2}}{4}} d x=\int_{0}^{3} \sqrt{\frac{\left(x^{2}+2\right)^{2}}{4}} d x=$
$\int_{0}^{3} \frac{x^{2}+2}{2} d x=\frac{1}{2} \int_{0}^{3} x^{2}+2 d x=\left.\frac{1}{2}\left(\frac{x^{3}}{3}+2 x\right)\right|_{0} ^{3}=\frac{15}{2}$
28. To move the elevator up 30 ft , the work of $1600 \times 30=48,000 \mathrm{lb}-\mathrm{ft}$ is required.

Since we are raising a 200 ft cable only $30 \mathrm{ft} \mathrm{up}, 170 \mathrm{ft}$ of it will be raised all the way. The work required is $170 \times 10 \times 30=51,000 \mathrm{lb}-\mathrm{ft}$.

To compute the work required to lift the remaining 30 ft of cable, we split it into pieces. To lift a segment of the cable of length Δx up x feet, the work of $\Delta x \times 10 \times x$ is required. Hence, the total work is $\int_{0}^{30} 10 x d x=\left.5 x^{2}\right|_{0} ^{30}=4,500$ lb-ft.

Added up, the work is $48,000+51,000+4,500=103,500 \mathrm{lb}-\mathrm{ft}$.
29a. First, determine what kind of a parabola is rotated to obtain the tank's shape. We can assume that the parabola's vertex is at the origin, i.e. that it is of the form $y=a x^{2}$. Since when $x=4, y=4$ (at the top), we see that $4=a 4^{2}$, i.e. $a=1 / 4$.

At the distance of $y \mathrm{ft}$ from the bottom, the horizontal cross-section is a circle with radius $x=2 \sqrt{y}$ (because the tank's shape is determined by the graph of $\left.y=x^{2} / 4\right)$. Hence, its area is $\pi x^{2}=4 \pi y$. The cross-section can be thought of as a thin layer of volume $4 \pi y \Delta y$. Its weight is $62.5(4 \pi y \Delta y)$. The distance to the top is $4-y$, hence the work required to lift the layer to the top is $62.4(4 \pi y \Delta y)(4-y)$.

$$
W=\int_{0}^{4} 250 \pi y(4-y) d y=250 \int_{0}^{4} 4 y-y^{2} d y=\left.250\left(2 y^{2}-\frac{y^{3}}{3}\right)\right|_{0} ^{4}=\frac{8000 \pi}{3}
$$

lb-ft.
31. Assume that the gate is made of strips with height Δx. If the area of the strip at the depth of x feet is $A(x)$, then the hydrostatic force acting on the strip is $62.5 A(x) x \mathrm{lb}$.
$A(x)$ is the area of a rectangle with width Δx and length $3+2 a$ (see below):

To determine, consider the triangle on the right. The smaller and the larger triangles are similar, hence $\frac{a}{1}=\frac{2-x}{2}$. Thus $a=(2-x) / 2$. Therefore, $A(x)=(3+2 a) \Delta x=(3+(2-x)) \Delta x=(5-x) \Delta x$.

The hydrostatic force acting on the strip is then $62.5(5-x) x \Delta x$. Summing up the forces and passing to the limit, we have

$$
\begin{aligned}
& F=\int_{0}^{2} 62.5(5-x) x d x=62.5 \int_{0}^{2}\left(5 x-x^{2}\right) d x=\left.62.5\left(\frac{5 x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{2}= \\
& 62.5\left(10-\frac{8}{3}\right)=\frac{1375}{3}=458 \frac{1}{3} \mathrm{lb}
\end{aligned}
$$

37. (a) The function $f(x)$ is never negative. The only other condition to check is $\int_{-\infty}^{\infty} f(x) d x=1$:

$$
\begin{aligned}
& \quad \int_{-\infty}^{\infty} f(x) d x=\int_{0}^{10} \frac{\pi}{20} \sin \left(\frac{\pi x}{10}\right) d x=\int_{0}^{\pi} \frac{1}{2} \sin u d u=\left.\frac{1}{2}(-\cos u)\right|_{0} ^{\pi}=\frac{1}{2}(-\cos \pi-(-\cos 0))= \\
& \frac{1}{2}(-(-1)-(-1))=1
\end{aligned}
$$

using the substitution $u=\frac{\pi}{10} x, d u=\frac{\pi}{10} d x$, and $u=0$ when $x=0, u=\pi$ when $x=10$.
(b) $P(X<4)=\int_{-\infty}^{4} f(x) d x=\int_{0}^{4} \frac{\pi}{20} \sin \left(\frac{\pi x}{10}\right) d x=\int_{0}^{2 \pi / 5} \frac{1}{2} \sin u d u=\left.\frac{1}{2}(-\cos u)\right|_{0} ^{2 \pi / 5}=$ $\frac{1-\cos (2 \pi / 5)}{2}$
using same substitution as in (a)
(c) The mean is $\mu=\int_{0}^{10} x \frac{\pi}{20} \sin \left(\frac{\pi x}{10}\right) d x=-\left.\frac{1}{2} x \cos \left(\frac{\pi x}{10}\right)\right|_{0} ^{1} 0+\frac{1}{2} \int_{0}^{10} \cos \left(\frac{\pi x}{10}\right) d x=$ $-\left.\frac{1}{2} x \cos \left(\frac{\pi x}{10}\right)\right|_{0} ^{10}+\left.\frac{1}{2} \frac{10}{\pi} \sin \left(\frac{\pi x}{10}\right)\right|_{0} ^{10}=-\frac{1}{2}(10 \cos \pi)=5$
(using integration by parts with $x=u, d u=d x, v=-\frac{1}{2} \cos \left(\frac{\pi x}{10}\right), d v=$ $\left.\frac{\pi}{20} \sin \left(\frac{\pi x}{10}\right) d x\right)$

That $\mu=5$ is to be expected since $f(x)$ is symmetric about $x=5$, hence this is where the mean value lies.

