PERCENTAGES UNDER THE NORMAL DISTRIBUTION

AMS102

Notations. $N(\mu, \sigma)$ is the normal distribution with the mean μ and standard deviation σ.

The percentage of data lying between values a and b is denoted $P(a<x<b)$ (" P " stands for percentage or proportion).

The percentage of data lying above a is denoted $P(x>a)$; below $b, P(x<b)$.
z-score. Under the normal $N(\mu, \sigma)$, the z-score of the value x is $z=\frac{x-\mu}{\sigma}$. The process of computing the z-score is called standartization.
Example. Consider the distribution $N(100,10)$. The z-score of 100 is $\frac{100-100}{10}=0$. The z-score of 105.3 is $\frac{105.3-100}{10}=0.53$.

Finding the percentage. In order to compute percentages under a normal distribution, you need to standartize every given value. For example, to find $P(x<b)$ under the normal distribution $N(\mu, \sigma)$, you first standartize b to $\frac{b-\mu}{\sigma}$. Then you need to find $P\left(z<\frac{b-\mu}{\sigma}\right)$. Look up the value of $\frac{b-\mu}{\sigma}$ in table A ("Standard normal probabilities"). The corresponding number in the table is the required proportion. To convert to percentages, multiply by 100%.
Example, continued. Consider the normal distribution $N(100,10)$. To find the percentage of data below 105.3, that is $P(x<105.3)$, standartize first:

$$
P(x<105.3)=P\left(z<\frac{105.3-100}{10}\right)=P(z<0.53)
$$

Then find the proportion corresponding to 0.53 in Table A: look for the intersection of the row labeled 0.5 and the column labeled .03. The number is .7019 . Thus $P(x<105.3)=.7019$ or 70.19%.

Table A gives only proportions of the kind $P(z<b)$. To find other proportions, we use geometric facts that $P(a<z<b)=P(z<b)-P(z<a)$ (see the picture) and $P(z>a)=1-P(z<a)$.

Example, CONtinued. Consider the normal distribution $N(100,10)$. To find $P(97.1<x<105.3)$, standartize first:
$P(97.1<x<105.3)=P\left(\frac{97.1-100}{10}<z<\frac{105.3-100}{10}\right)=P(-0.29<z<0.53)$.

Then

$$
P(-0.29<z<0.53)=P(z<0.53)-P(z<-0.29)
$$

The last two proportions can be found in Table A: $P(z<0.53)=.7019$ and $P(z<-0.29)=.3859$ (row -0.2 , column 0.09). Thus

$$
P(97.1<x<105.3)=.7019-.3859=.3160 \text { or } 31.6 \%
$$

From percentages to values. There is another kind of problems: given a percentage, find the corresponding boundary value. For example, given the percentage $P(x<b)=P$, what is b ? Here to find b, we look up P or the value closest to P in the table and find the corresponding z-score. Then, we need to solve $z=\frac{b-\mu}{\sigma}$ for b. Algebra shows that $b=z \sigma+\mu$.

Example, Continued. Consider the normal distribution $N(100,10)$. What values lie in the lower 80% of the data?

We need to find b such $P(x<b)=80 \%$. First we find the z-score Z such that $P(z<Z)=80 \%$. The table does not contain 0.8 ; the closest number is 0.7995 . It lies in the row 0.8 and column 0.04 . Thus the z-score of b is approximately 0.84 :

$$
0.84=\frac{b-100}{10}
$$

Hence $b-100=0.84 \times 10=8.4$ and $b=100+8.4=108.4$. We conclude that the lower 80% of this distribution is formed by values below 108.4

