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SUBCONVEXITY OF SHINTANI’S ZETA FUNCTION

ROBERT D. HOUGH AND EUN HYE LEE

Abstract. Enumerating integral orbits in prehomogeneous vector spaces
plays an important role in arithmetic statistics. We describe a method of
proving subconvexity of the zeta function enumerating the integral orbits, il-
lustrated by proving a subconvex estimate for the Shintani ζ function enumer-
ating class numbers of binary cubic forms.

1. Introduction

The subconvexity problem is one of the important problems in the theory of
zeta and L-functions. The problem asks for a power saving estimate for the zeta
or L-function on the critical line, compared to the bound obtained by interpola-
tion between the regions of absolute convergence of the Dirichlet series using the
functional equation. The end goal of the subconvexity problem is the Lindelöf Hy-
pothesis, a consequence of the Riemann Hypothesis which has powerful analytic
applications, see [20] and references therein. An important class of zeta functions
in modern analytic number theory are the zeta functions developed by M. Sato and
Shintani enumerating integral orbits in prehomogeneous vector spaces ordered by
invariants. These include zeta functions important in arithmetic statistics enumer-
ating low rank rings [35], [36], Epstein zeta functions and functions enumerating
representation numbers of rational and irrational quadratic forms, multiple Dirich-
let series enumerating several invariants [24] and Eisenstein series of Selberg and
others [25], see, for instance [2], [3], [8], [4], [5], [6], [7], [9] for applications of orbit
counting to arithmetic statistics. The purpose of this article is to introduce a new
method of proving subconvexity of prehomogeneous vector space zeta functions,
illustrated by proving t-aspect subconvexity for the Shintani zeta function enumer-
ating class numbers of binary cubic forms, thus solving a problem of Thorne [34].
Moreover, the method is general, and we plan to return to prove subconvexity es-
timates for a general class of prehomogeneous vector space zeta functions in t and
q aspects and for some zeta functions with an automorphic twist [26], [19], [14].

Let VZ = {f(x, y) = ax3 + bx2y + cxy2 + dy3 : a, b, c, d ∈ Z} be the space of
integral binary cubic forms. The group SL2(Z) acts by integral change of variable.
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Shintani introduced zeta functions [28]

(1) ξ±(s) :=
∑

f∈SL2(Z)\VZ

±Disc(f)>0

1

| Stab(f)|
1

|Disc(f)|s , Re(s) > 1.

In their study of the adelization of the zeta functions Datskovsky-Wright [11] and
Ohno [22] (see Thorne [32]) describe the diagonalization

(2) ξadd(s) = 3
1
2 ξ+(s) + ξ−(s), ξsub(s) = 3

1
2 ξ+(s)− ξ−(s)

and completed zeta functions

Λadd(s) =

(
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π4

) s
2

Γ
(s
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)
Γ
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2

)
Γ

(
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6

2

)
Γ

(
s− 1

6

2

)
ξadd(s),(3)

Λsub(s) =

(
432

π4

) s
2

Γ
(s
2

)
Γ

(
s+ 1

2

)
Γ

(
s+ 5

6

2

)
Γ

(
s+ 7

6

2

)
ξsub(s),

which satisfy the self-dual functional equations Λ(s) = Λ(1 − s). These zeta func-
tions are degree 4, with analytic conductor C ( 12+iτ ) = τ4 as τ → ∞. The convexity

bound states
∣∣ξ ( 12 + iτ

)∣∣ �ε τ
1+ε. While it is known that these functions do not

satisfy the Riemann Hypothesis [32], it may be conjectured that they still satisfy
the Lindelöf Hypothesis

∣∣ξ ( 12 + iτ
)∣∣�ε τ

ε. In this direction we prove the following
subconvexity estimate.

Theorem 1. The Shintani zeta functions satisfy the sub-convex bound, for any
ε > 0,

(4) ξadd
(
1

2
+ iτ

)
, ξsub

(
1

2
+ iτ

)
�ε τ

98
99+ε

as τ → ∞.

Let φ be a Hecke-eigen cusp form for SL2(Z). The first author [14] introduced
the automorphic twisted zeta functions

(5) L ±(s, φ) :=
∑

f∈SL2(Z)\VZ

±Disc(f)>0

φ(f)

| Stab(f)|
1

|Disc(f)|s .

Our method is capable of proving the t-aspect subconvexity of these functions
without significant modification, but we confine ourselves to the untwisted case in
this paper for ease of presentation, see our preprint [16] for a proof in the twisted
case.

1.1. Discussion of method. As usual in the theory of zeta functions, the proof
of Theorem 1 begins by expressing the zeta function in the critical strip via an
approximate functional equation which expresses the zeta function as the sum of
two Dirichlet polynomials, each of length square root of the conductor. The theory
of such functional equations for prehomogeneous vector space zeta functions was
first developed by Sato and Shintani [27], with extensions to larger classes of zeta
functions in works of Yukie [36] and Saito [23]. The coefficients in these Dirichlet
polynomials are expressed as a sum over binary cubic forms restricted to a funda-
mental domain for the action of SL2(Z)\SL2(R). Bhargava’s averaging trick [2] is
used to average over many fundamental domains in order to bound the contribu-
tion of the lattice points in the cusp. Having trimmed away the cusps, the points
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now lie essentially within a compact neighborhood of the identity; van der Corput’s
inequality is used to obtain cancellation in exponential sums in which the phase
has controlled partial derivatives.

1.2. Related work. The zeta function of a prehomogeneous vector space was in-
troduced by Sato and Shintani [27] in the 70s, with the case of binary cubic forms
studied in detail by Shintani [28] who determined poles and residues along with
the meromorphic continuation. The class of functions has been extended over
time. F. Sato introduced series in multiple complex variables [24], [25], treating
Eisenstein series associated to irrational indefinite quadratic forms. Later he in-
troduced a twisting automorphic form and showed a wide class of familiar number
theoretic objects can be constructed in this way [26] including Langlands standard
L-functions, and Dirichlet series of Maass constructed from systems of quadratic
forms. Datskovsky, Wright and Yukie developed the adelization with applications
to low degree number fields [11], [35], [36]. Saito completed part of Yukie’s work
[23] by establishing criteria which guarantee the convergence and meromorphic con-
tinuation of the zeta functions. Taniguchi and Thorne developed the local theory of
the binary cubic form case more carefully [31], using this to prove a secondary main
term in the Davenport-Heilbronn Theorem counting cubic number fields ordered by
discriminant. Recently Wen-Wei Li has further developed the automorphic twisted
zeta functions [19] proving local functional equations and giving an indication of
the size of the class of objects considered.

The theory of subconvexity of zeta and L-functions is a very active current area
of number theory. After pioneering work of Duke, Friedlander and Iwaniec [13]
subconvexity has frequently been established by the amplification method, which
calculates a moment of the zeta or L-function in a family multiplied by a Dirichlet
polynomial that selects for the function of interest. In particular, we draw the
reader’s attention to a powerful new subconvexity theorem of Nelson [21]. Due
to the high degree of the prehomogeneous vector space zeta functions, calculating
moments is not quickly available and so the proof here uses a truncation method,
together with an approach similar to the classical approach to the Riemann zeta
function using van der Corput’s method. An interesting parallel result has been
proved by Blomer recently for Epstein zeta functions [10], which are prehomoge-
neous zeta functions. In principle, similar bounds to Blomer’s can be obtained from
methods for PVS zeta functions, we intend to return to this issue in a forthcoming
publication.

Notation

We use the shorthand e(x) = e2πix, c(x) = cos(2πx), s(x) = sin(2πx). On R/Z
we use the distance

(6) ‖x‖R/Z = min
n∈Z

|x− n|.

In VR = {f(x, y) = ax3 + bx2y + cxy2 + dy3 : a, b, c, d ∈ R} define the infinity ball
at f of radius R to be

BR(f) = {a′x3 + b′x2y + c′xy2 + d′y3 : a′, b′, c′, d′ ∈ R,(7)

max(|a− a′|, |b− b′|, |c− c′|, |d− d′|) ≤ R}.
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The averaging operator Es∈Sf(s) indicates 1
|S|
∑

s∈S f(s). We use the following

asymptotic notation. For positive quantities A,B which may depend on the pa-
rameter τ , A = O(B) means there is a constant C > 0 such that A ≤ CB.
This has the same meaning as A � B. We write A � B if A � B � A
and A = o(B) if limτ→∞

A
B = 0. For a function f on R

+, the Mellin trans-

form is f̃(s) =
∫∞
0

f(x)xs−1dx. For differential operators with multi-indices α,

Dα = ∂α1
x1

. . . ∂αk
xk

, |α| = α1 + · · ·+ αk. We use the Cj norms on R
n,

(8) ‖f‖Cj =
∑
|α|≤j

sup
x∈Rn

‖Dαf(x)‖.

Our arguments use a smooth partition of unity on the positive reals. Let σ ≥ 0
be smooth and supported in

[
1
2 , 2

]
and satisfy

∑
n∈Z

σ(2nx) ≡ 1 for x ∈ R
+.

2. Background

As in the usual treatment of the subconvexity problem, we start from an ap-
proximate functional equation.

2.1. The approximate functional equation. Iwaniec and Kowalski [17] Chap-
ter 5 outlines a general framework for representing zeta functions with a functional
equation inside the critical strip, called the approximate functional equation. This
framework applies to the Shintani zeta functions with a slight modification due to
the pole at 5

6 of ξadd. Inside the domain of absolute convergence, write

(9) ξadd(s) =
∑
n

aadd(n)

ns
, ξsub(s) =

∑
n

asub(n)

ns
.

The general framework takes the following data:

• Gamma factor γ(s) = π− ds
2

∏d
j=1 Γ

(
s+κj

2

)
, κj ≥ −1.

• Conductor q.
• Sign of functional equation ε.

• Analytic conductor q(s) = q
∏d

j=1(|s+ κj |+ 3).

• Completed zeta function Λ(s) = q
s
2 γ(s)ζ(s).

• Functional equation Λ(s) = εΛ(1− s).

The zeta functions ξadd and ξsub fit into these frameworks with d = 4, ε = 1,
conductor q = 432 and gamma factors

γadd(s) = π−2sΓ
(s
2

)
Γ

(
s+ 1

2

)
Γ

(
s+ 1

6

2

)
Γ

(
s− 1

6

2

)
(10)

γsub(s) = π−2sΓ
(s
2

)
Γ

(
s+ 1

2

)
Γ

(
s+ 5

6

2

)
Γ

(
s+ 7

6

2

)
.

The proof of [17] Theorem 5.3 yields the following representation.
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Theorem 2. Let G(u) be any function which is holomorphic and bounded in
|Re(u)| < 4, even, with G(0) = 1. For 0 < Re(s) < 1,

ξadd(s) =
∑
n

aadd(n)

ns
V add
s

(
n√
432

)
+ εadd(s)

∑
n

aadd(n)

n1−s
V add
1−s

(
n√
432

)
+Radd(s)

(11)

ξsub(s) =
∑
n

asub(n)

ns
V sub
s

(
n√
432

)
+ εsub(s)

∑
n

asub(n)

n1−s
V sub
1−s

(
n√
432

)
+Rsub(s)

where ε∗(s) = 432
1
2−s γ∗(1−s)

γ∗(s) ,

(12) V ∗
s (y) =

1

2πi

∫
Reu=3

y−uG(u)
γ∗(s+ u)

γ∗(s)

du

u

and

Radd(s) =
(
Resu=1−s +Resu= 5

6−s +Resu= 1
6−s +Resu=−s

) Λadd(s+ u)

432
s
2 γadd(s)

G(u)

u

(13)

Rsub(s) = (Resu=1−s +Resu=−s)
Λsub(s+ u)

432
s
2 γsub(s)

G(u)

u
.

For the choice of test function G(u) =
(
cos πu

4A

)−4dA
, [17] Lemma 5.4 states the

following.

Lemma 3. Suppose Re(s + κj) ≥ 3α > 0 for 1 ≤ j ≤ d. Then the derivatives
Vs(y) satisfy

yaV (a)
s (y) �

(
1 +

y

τ2

)−A

, yaV (a)
s (y) = δa +O

(( y

τ2

)α)
(14)

where δ0 = 1, δa = 0 if a > 0, and the implied constants depend only on α, a,A and
d.

The Lemma can be applied for either V add
s and V sub

s with Re(s) = 1
2 and α = 1

9 .
Note that, with this choice of test function, the residue terms are o(1) as t → ∞
by Stirling’s approximation, so may be ignored. Also, |ε∗(s)| = 1.

By forming linear combinations, to prove Theorem 1 it will suffice to prove a
pair of estimates.

Proposition 4. We have the pair of estimates

∑
f∈Γ\V+

1

| Stab(f)|
1

Disc(f)
1
2+iτ

V 1
2+iτ

(
Disc(f)√

432

)
�ε τ

98
99+ε(15)

∑
f∈Γ\V−

1

|Disc(f)| 12+iτ
V 1

2+iτ

(
|Disc(f)|√

432

)
�ε τ

98
99+ε.
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2.2. Background regarding GL2(R). We use the conventions of [8] regarding Lie
groups and Bhargava’s averaging trick. Let Γ = SL2(Z), and

G+ = {g ∈ GL2(R) : det(g) > 0}(16)

K = SO2(R), kθ =

(
c(θ) s(θ)
−s(θ) c(θ)

)

A+ = {at : t ∈ R+} , at =

(
1
t 0
0 t

)

N = {nu : u ∈ R} , nu =

(
1 0
u 1

)

Λ = {dλ : λ ∈ R+} , dλ =

(
λ 0
0 λ

)
.

The Iwasawa decomposition of SL2(R) expresses g = nuatkθ. Then for g ∈ G+,
g = nuatkθdλ and Haar measure on G+ is given by dg = dudt

t3 dθ
dλ
λ . Let F denote

the standard fundamental domain for SL2(Z)\SL2(R),

F = {nuatkθ : nu ∈ N ′(a), at ∈ A′, kθ ∈ K}(17)

A′ =

{(
1
t 0
0 t

)
: t ≥ 3

1
4

√
2

}

N ′(a) =

{(
1 0
u 1

)
: u ∈ ν(a)

}

where ν(a) is the union of two subintervals of
[
− 1

2 ,
1
2

]
and is the whole interval if

a ≥ 1. For constants A,B > 0, the Siegel set S (A,B) is

(18) S (A,B) = {nuatkθ : |u| ≤ A, t ≥ B, kθ ∈ K} .
We assume that F is a smooth function, right K-invariant, supported on a Siegel set
S (A,B) with bounded derivatives and such that

∑
γ∈Γ F (γg) = 1. This may be

constructed by letting F0(nuatkθ) = f(u)h(t) where f, h ≥ 0 are smooth functions,
f is supported in |u| ≤ A, h in t ≥ B with h ≡ 1 for t ≥ B+1 and f(u)h(t) > 0 on a

fundamental domain F . Then F (g) = F0(g)∑
γ∈Γ F0(γg)

. Notice that for all t sufficiently

large, only γ ∈ N satisfy F0(γg) �= 0, since the Siegel set meets only finitely many
fundamental domains, and those that are not unipotent translates are covered by
g for which t is bounded. This implies that the derivative in t of F vanishes in the
cusp. Extend F to G+ by F (dλg) = F (g) for all λ ∈ R

+.

2.3. The prehomogeneous vector space of binary cubic forms. The space
of real binary cubic forms is

(19) VR = {f(x, y) = ax3 + bx2y + cxy2 + dy3 : a, b, c, d ∈ R}
with integral forms VZ having a, b, c, d ∈ Z. The discriminant is

(20) Disc(f) = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd.

There is a bilinear pairing on VR which identifies it with its dual space,

(21) 〈f, g〉 = f1g4 −
1

3
f2g3 +

1

3
f3g2 − f4g1.

The Fourier transform on VR is given by F̂ (ξ) =
∫
VR

F (x)e−2πi〈x,ξ〉dx.
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The space has a left GL2(R) action,

(22) γ · f(x, y) = f((x, y)γ)

| det γ| ,

and Disc(γ · f) = det(γ)2 Disc(f). Under this action there are two open orbits
V± = {f : ±Disc(f) > 0} and a singular set S = {f : Disc(f) = 0}. The spaces
have base points f±,

(23) f+ =
1

(108)
1
4

(0, 3, 0,−1) , f− =
1√
2
(0, 1, 0, 1) .

Both V± can be identified as homogeneous spaces for G+. The mappings

V+ =

{
nuatkθdλ · f+ : u ∈ R, t ∈ R

+, θ ∈
[
0,

1

3

)
, λ ∈ R

+

}
,(24)

V− =
{
nuatkθdλ · f− : u ∈ R, t ∈ R

+, θ ∈ [0, 1) , λ ∈ R
+
}

are bijections between V± and subsets of G+. The stabilizer of f− is trivial and
the stabilizer of f+ is the rotation group generated by rotation by 2π

3 . The bilinear
pairing satisfies 〈x, y〉 = 〈g · x, gι · y〉.

The rotation kθ maps

kθ · f− =
1√
2
(s(θ), c(θ), s(θ), c(θ))(25)

kθ · f+ =
1

(108)
1
4

(s(3θ), 3c(3θ),−3s(3θ),−c(3θ)) .

Meanwhile at · (a, b, c, d) =
(

a
t3 ,

b
t , tc, t

3d
)
and nu · (a, b, c, d) = (a, 3au + b, 3au2 +

2bu+ c, au3 + bu2 + cu+ d), dλ · (a, b, c, d) = (λa, λb, λc, λd).
Putting these formulas together gives the change of coordinates to homogeneous

coordinates.

nuatkθdλ · f− =
λ√
2

(
t−3s(θ), 3t−3s(θ)u+ t−1c(θ), 3t−3s(θ)u2 + 2t−1c(θ)u+ ts(θ),

(26)

t−3s(θ)u3 + t−1c(θ)u2 + ts(θ)u+ t3c(θ)
)

nuatkθdλ · f+ =
λ

(108)
1
4

(
t−3s(3θ), 3t−3s(θ)u+ 3t−1c(3θ), 3t−3s(θ)u2

+ 6t−1c(3θ)u− 3ts(3θ),

t−3s(3θ)u3 + 3t−1c(3θ)u2 − 3ts(3θ)u− t3c(3θ)
)
.

Set B = B(C) = {f = (a, b, c, d) ∈ VR : 3a2 + b2 + c2 + 3d2 ≤ C, |Disc(f)| ≥ 1},
which is a set which is K-invariant. Define

(27) B±(u, t, λ,X) = nuatdλB ∩ {v ∈ V± : |Disc(v)| ≤ X}.
Given f ∈ V+, let nuatkθdλ · f+ = f , u ∈ R, t ∈ R

+, θ ∈
[
0, 1

3

)
, λ ∈ R

+ and
set gf = nuatkθdλ. Given f ∈ V−, let nuatkθdλ · f− = f with u ∈ R, t ∈ R

+, θ ∈
[0, 1), λ ∈ R

+ and set gf = nuatkθdλ. In these expressions let u = u(f), t =
t(f), θ = θ(f).

Lemma 5. Suppose for some v ∈ B that f = nuat · v then log t = log tf +O(1).
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Proof. Write v = nu′at′kθ′dλ′ ·f±. Then f = nu+t2u′att′kθ′dλ′ ·f±. Since t(f) = tt′,
the lemma follows. �

Integrals over V± may be expressed, for f ∈ C0(V±),∫
V+

f(v)
dv

Disc(v)
= 2π

∫ ∞

−∞

∫ ∞

0

∫ 1
3

0

∫ ∞

0

f(nuatkθdλ · f+)
dλ

λ
dθ

dt

t3
du(28)

∫
V−

f(v)
dv

|Disc(v)| = 2π

∫ ∞

−∞

∫ ∞

0

∫ 1

0

∫ ∞

0

f(nuatkθdλ · f−)
dλ

λ
dθ

dt

t3
du.

Thus |da ∧ db ∧ dc ∧ dd| = 2π λ3

t3 |dλ ∧ dθ ∧ dt ∧ du|.
Let ω be a smooth, non-negative K-invariant function supported in B. Let

M+ =

∫
B∩V+

ω(v)dv

Disc(v)
, M− =

∫
B∩V−

ω(v)dv

|Disc(v)| .(29)

The following lemma estimates the dependence in switching between rectangular
and homogeneous coordinates.

Lemma 6. When u, t, θ vary in a Siegel set and λ ≥ 1, and v ∈ B the change of
coordinates (a, b, c, d) = nuatkθdλ · v satisfies

∂(a, b, c, d)

∂(u, t, θ, λ)
=

⎛
⎜⎜⎝

0 O(λt−3) O(λt−1) O(λt)
O(λt−4) O(λt−2) O(λ) O(λt2)
O(λt−3) O(λt−1) O(λt) O(λt3)
O(t−3) O(t−1) O(t) O(t3)

⎞
⎟⎟⎠(30)

∂(u, t, θ, λ)

∂(a, b, c, d)
=

⎛
⎜⎜⎝

O(λ−1t5) O(λ−1t4) O(λ−1t3) O(t3)
O(λ−1t3) O(λ−1t2) O(λ−1t) O(t)
O(λ−1t) O(λ−1) O(λ−1t−1) O(t−1)

O(λ−1t−1) O(λ−1t−2) O(λ−1t−3) O(t−3)

⎞
⎟⎟⎠ .

Proof. The first Jacobian follows directly from the expression in homogeneous co-
ordinates. The second follows from combining the estimate for the adjugate matrix
with the factor of integration λ3t−3. �

The proof of the theorems rely on estimates for the derivatives and logarithmic
derivatives of the discriminant which are uniform in the cuspidal parameter t.

For a multi-index α = (α1, α2, α3, α4) let |α| = α1 + α2 + α3 + α4 and let
Dα = Dα1

a Dα2

b Dα3
c Dα4

d .

Lemma 7. Let C > 0 be a constant. Let f0 be such that |Disc(f0)| ≥ 1 and
3a2 + b2 + c2 + 3d2 ≤ C. Let f = nuatdλ · f0 with u = O(1) and t, λ � 1. Then,
with implicit constants depending on C,

(31) Dα Disc(f) = O
(
λ4−|α|t3|α|

)
and

(32) Dα log |Disc(f)| = O
(
λ−|α|t3|α|

)
while

(33) max
D∈{D3

a,D
3
b ,D

3
c ,D

3
d}
|D log |Disc(f)|| � 1

t9λ3
.
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Proof. Use nuat = atn u
t2

to write f = atn u
t2
dλf0, and let u0 = u

t2 = O(1). When

u0 is held fixed and t and λ vary, Dα Disc(f) is homogeneous in λ and in t. For
instance, the discriminant itself is a function of λ only, and each coordinate is
homogeneous under the action of at. Differentiating in a given coordinate changes
the homogeneous degree in λ and t. The degree in λ is 4− |α| and the degree in t
ranges between t−3|α| and t3|α|. This proves the first bound.

We have Dα log |Disc(f)| is the sum of monomials, each of which is the product

of terms of type Dβ Disc(f)
Disc(f) , with the total degree of the monomial equal to |α|. The

claimed bound now follows from the first part.
By the homogeneity in t and λ, for the last part it suffices to check that if

f1 = nu0
f then

(34) max
D∈{D3

a,D
3
b ,D

3
c ,D

3
d}
|D log |Disc(f1)|| � 1.

The estimate now is taken over f1 in a compact set, and the lower bound can be
established, for instance, in Mathematica. �

Lemma 8. Let f = (a, b, c, d) ∈ R
4 be a form with λf ≥ 1 and tf � 1. For every

constant C1 > 1 there is a constant C2 > 0 so that if ‖f̃ − f‖2 ≤ C2
λf

t3f
then

(35)
λf

C1
≤ λf̃ ≤ C1λf .

Proof. We prove this for λ4
f and λ4

f̃
instead, which is the magnitude of the discrim-

inant, and hence given by a degree 4 polynomial in the coefficients of the form. Let
R = ‖f̃ − f‖2. Since the degree 4 Taylor expansion of the discriminant is exact,

with α =
Rt3f
λf

,

(36) λ4
f̃
− λ4

f = O
(
λ4
f (α+ α2 + α3 + α4)

)
which suffices for the proof. �

A similar claim now holds for tf .

Lemma 9. Let f = (a, b, c, d) ∈ R
4 be a form with λf ≥ 1 and tf � 1. For every

constant C1 > 1 there is a constant C2 > 0 so that if ‖f̃ − f‖2 ≤ C2
λf

t3f
then

(37)
tf
C1

≤ tf̃ ≤ C1tf .

Proof. By applying the previous lemma, we may restrict to a ball about f so that
λ is within constants of λf throughout the ball. Now integrate in one direction
at a time the partial derivative bounds of Lemma 6. For instance, the bound
∂t
∂a

t4 = O(λ−1) obtains the estimate

(38)

∣∣∣∣ tf (a1)3tf (a2)3
− 1

∣∣∣∣ ≤ c|a2 − a1|tf (a1)3
λ

which is of the correct shape. The remaining coordinates are similar, but obtain
better bounds. �

The previous lemmas permit the pointwise bound of Lemma 6 to hold as a sup
bound in balls of radius � λ

t3 about a form f .
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Let h(n) denote the number of classes of integral binary cubic forms of dis-
criminant n. We recall an easy consequence of the Davenport-Heilbronn Theorem
[12],

(39)
∑

0<|n|≤X

h(n) � X

as X → ∞.

2.4. Bhargava’s averaging technique. Bhargava’s averaging trick counts lattice
points by averaging over many fundamental domains. This is useful in bounding
the number of points appearing in a cusp, as the following lemmas show.

Lemma 10. Let u = O(1) and t � 1. The number of lattice points (a, b, c, d) in
B(u, t, λ,X) with a �= 0 is

(40)

{
0 Cλ

t3 < 1
vol(B(u, t, λ,X)) +O(max(C3t3λ3, 1)) otherwise

.

The number of lattice points with a = 0 is

(41)

{
0 Cλ

t < 1
O(max(C3t3λ3, 1)) otherwise

.

Proof. The first part is Lemma 25 of [8]. For the second part, if a = 0 and Disc(f) �=
0 then b �= 0, which imposes the constraint Cλ

t ≥ 1. The number of choices for b, c, d

are now O
(
Cλ
t

)
, O(Cλt) and O(Cλt3), which proves the remaining claim. �

Lemma 11. When v is chosen at random from B according to the probability

measure proportional to ω(v)dv
|Disc(v)| , where ω is a smooth non-negative function, the

expected number of lattice points of discriminant of size at most X with t(f) > T

and a �= 0 is O
(
X
T

)
+O

(
X

5
6

)
.

The expected number of lattice points of discriminant of size at most X with

t(f) ≤ T and a = 0 is O
(
X

3
4T
)
.

Proof. This follows on integrating the bounds from the previous lemma together
with the integration formulae in (28), keeping in mind |Disc(v)| = λ4 in the for-
mulae. �
2.5. Bounds for exponential sums. Our theorems exhibit cancellation in expo-
nential sums using van der Corput’s inequality [29], p. 216.

Lemma 12 (van der Corput’s inequality). Let c1, c2, . . . , cN be complex numbers
and let 1 ≤ H < N . Then∣∣∣∣∣

N∑
n=1

cn

∣∣∣∣∣
2

≤ N +H

H + 1

N∑
n=1

|cn|2(42)

+
2(N +H)

H + 1

H∑
h=1

(
1− h

H + 1

) ∣∣∣∣∣
N−h∑
n=1

cn+hcn

∣∣∣∣∣ .
We also use the simple bound for a linear phase, for α ∈ R \ Z,

(43)
N∑
j=1

e2πiαj � min

(
N,

1

‖α‖R/Z

)
.
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The following estimates for exponential sums are used in the proofs. Let |Disc(f)|
� Y , tf � T1 and BR(f) be the ∞-ball of radius R about f .

Lemma 13. Let τ
4
3T 12

1 � Y � τO(1) and T1 = o
(
Y

1
84

)
. With the choice R =

Y
1
4

τ
7
27 T

7
3
1

, we have the bound

(44) Ey∈BR

[
|Disc(f + y)|−iτ

]
� T

8
3
1

τ
1
27

(log τ )
4
9 .

Proof. The proof uses the following parameters.

• R, radius of averaging ball
• R1 < R, a spacing parameter necessary to obtain cancellation in exponen-
tial sums after differencing

• N = 2 R
R1

+ O(1), the length of the exponential sum over which we find
cancellation

• H1 = O(N), first van der Corput parameter
• H2 = O(N), second van der Corput parameter
• α = maxD∈{D3

a,D
3
b ,D

3
c ,D

3
d} |Dτ log |Disc(f + y)|y=0|. This satisfies

(45)
τ

T 9
1 Y

3
4

� α � τT 9
1

Y
3
4

.

• δ =
τT 12

1

Y , a bound up to constants for fourth derivatives Dβτ log |Disc(f +
y)|, |β| = 4.

The argument will require δR4 = o(1) and αR3 � 1, which imposes the con-

straint T1 = o(Y
1
84 ).

Taylor expand to degree 4 to express

1

|Disc(f + y)|iτ(46)

= exp

⎛
⎝−iτ log |Disc(f)| − iτ

∑
0<|β|≤3

Dβ log |Disc(f)|
β!

yβ +O
(
δR4

)⎞⎠ .

Subject to the condition

(47) δR4 = o(1),

the error contributes O
(
δR4

)
to the average.

By Lemma 7, one of D3
a, D

3
b , D

3
c , D

3
d applied to log |Disc(f)| is � 1

T 9
1 |Disc(f)|

3
4
,

say without loss of generality thatD3
a satisfies this bound. The third derivatives also

satisfy the upper bound � T 9
1

|Disc(f)|
3
4
. Let z = f + y and F (z) = −τ log |Disc(f)|−

τ
∑

0<|α|≤3
Dα log |Disc(f)|

α! yα and let for some parameter 1 ≤ R1 ≤ R, zn = z +

(nR1, 0, 0, 0),

(48) Sz =
∑
n

1(zn ∈ f +BR)e
iF (zn)

which is a sum of length N = 2 R
R1

+ O(1) by the definition of zn and the support
of the indicator function.
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We bound Sz by applying van der Corput’s inequality twice. Let H1, H2 � N
be parameters, and define ΔhG(n) = G(n+ h) − G(n). Applying van der Corput
once

|Sz|2 ≤ (N +H1)N

H1

(49)

+
2(N +H1)

H1 + 1

H1∑
h1=1

(
1− h1

H1 + 1

) ∣∣∣∣∣
∑
n

e−iΔh1
F (zn)1 (zn, zn+h1

∈ f +BR)

∣∣∣∣∣ .
Let Sz,h1

=
∑

n e
−iΔh1

F (zn)1 (zn, zn+h1
∈ f +BR) and bound

|Sz,h1
|2 ≤ (N − h1 +H2)N

H2
+

2(N − h1 +H2)

H2 + 1

H2∑
h2=1

(
1− h2

H2 + 1

)
(50)

×
∣∣∣∣∣
∑
n

e−iΔh1
Δh2

F (zn)1 (zn, zn+h1+h2
∈ f +BR)

∣∣∣∣∣ .
The phase in the exponent is now a linear function of n with leading coefficient of
order αR3

1h1h2. Make the constraint that this is ≤ 1
2 . Let

(51) Sz,h1,h2
=
∑
n

e−iΔh1
Δh2

F (zn)1 (zn, zn+h1+h2
∈ f +BR) .

Thus

(52) |Sz,h1,h2
| � 1

αR3
1h1h2

.

Combining the above estimates with Cauchy-Schwarz obtains

|Sz|4 � N4

H2
1

+
N2

H2
1

(
H1

H1∑
h1=1

|Sz,h1
|2
)

(53)

� N4

H2
1

+
N2

H1

(
H1∑

h1=1

(
N2

H2
+

N

H2

H2∑
h2=1

|Sz,h1,h2
|
))

� N4

H2
1

+
N4

H2
+

N3

H1H2

H1∑
h1=1

H2∑
h2=1

1

αR3
1h1h2

.

It follows that

|Sz|
N

� 1

H
1
2
1

+
1

H
1
4
2

+
1

N
1
4

(
logH1 logH2

H1H2

) 1
4
(

1

αR3
1

) 1
4

.(54)

Now choose H2 = H2
1 , H1H2 = H3

1 = c
αR3

1
, and impose the restriction H2 � N, to

obtain

|Sz|
N

� 1

H
1
2
1

+
1

H
1
4
2

+
(logH1 logH2)

1
4

N
1
4

.(55)

This leads to
(

R
R1

) 3
2

R3
1α � 1 or R1 � 1

Rα
2
3
. Thus N = R2α

2
3 . Note that N is

bounded by a power of τ so that logH1, logH2 � log τ . Combining our estimates
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thus far, and averaging over z

(56) Ey∈BR

[
1

|Disc(f + y)|iτ

]
� δR4 +

(log τ )
1
2

α
1
6R

1
2

.

Now apply δ =
τT 12

1

Y , α � τ

T 9
1 Y

3
4
to bound

(57) Ey∈BR

[
1

|Disc(f + y)|iτ

]
� τT 12

1

Y
R4 +

T
3
2
1 Y

1
8

τ
1
6R

1
2

(log τ )
1
2 .

Setting the two error terms equal leads to

(58) R =
Y

1
4

τ
7
27T

7
3
1

(log τ )
1
9

and the bound � T
8
3
1

τ
1
27
(log τ )

4
9 . �

For forms f with a = 0, set fd = f + (0, 0, 0, d). For |Disc(f)| � Y and tf � T2

we have the following estimate.

Lemma 14. Assume that τ is bounded by a sufficiently small constant times T 3
2 Y

1
4 .

With the choice R =
T 2
2 Y

1
2

τ
2
3

, we have the bound

(59) E|d|≤R

[
|Disc(fd)|−iτ

]
� Y

1
2

τ
1
3T 2

2

.

Proof. We may assume that Y
1
2

τ
1
3 T 2

2

� 1 since otherwise the claim is trivial.

Recall that at a = 0, Disc(f) = b2c2 − 4b3d. Thus ∂
∂d log |Disc(f)| � b3

Y . Notice

that by the homogeneity in λ and t, b � Y
1
4

T2
. Also,

(60)
∂2

∂d2
log |Disc(f)| = O

(
b6

Y 2

)
= O

(
1

T 6
2 Y

1
2

)
.

Impose the constraint R2 = o

(
T 6
2 Y

1
2

τ

)
and Taylor expand the exponent to degree

2 in the average. With α = ∂
∂d log |Disc(f)|, 1

Y � α � 1

T 3
2 Y

1
4
,

∣∣E|d|≤R

[
|Disc(fd)|−iτ

]∣∣ = ∣∣E|d|≤Re
−iταd

∣∣+ O

(
τR2

T 6
2 Y

1
2

)
.(61)

Since ατ � 1 by the constraint of the Lemma, using the bound for the sum of a
linear phase we obtain

∣∣E|d|≤R

[
|Disc(fd)|−iτ

]∣∣� 1

Rατ
+

τR2

T 6
2 Y

1
2

.(62)

Choose optimally, R3 =
T 6
2 Y

1
2

ατ2 . The worst bound occurs by minimizing α, which

obtains R =
T 2
2 Y

1
2

τ
2
3

and an estimate for the exponential sum of � Y
1
2

τ
1
3 T 2

2

. �
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3. Proof of Theorem 1

We begin the proof of Proposition 4 by introducing the averaging technique of
[8]. Let n− = 1, n+ = 3 be the multiplicity with which G+ · f± covers V±. Let
F be the smooth partition of unity function on SL2(R), supported on a Siegel set,
right K-invariant, such that

∑
γ∈Γ F (γg) = 1. Let H± be a maximal subset of G+

so that H± · f± = B ∩ V±. Define

(63) Σ =
∑

f∈Γ\V±

1

| Stab(f)|
1

|Disc(f)| 12+iτ
V 1

2+iτ

(
|Disc(f)|√

432

)
.

Then as in [8], p. 458 eqn. (19),

Σ =
1

n±M±

∫
v∈B∩V±

ω(v)dv

|Disc(v)|
∑

f∈VZ∩V±

V 1
2+iτ

(
|Disc(f)|√

432

)
|Disc(f)| 12+iτ

∑
g·v=f

F (g)(64)

=
2π

n±M±

∑
f∈VZ∩V±

V 1
2+iτ

(
|Disc(f)|√

432

)
|Disc(f)| 12+iτ

×
∫
g∈SL2(R)

∫ ∞

0

∑
h∈H±:f=dλgh·f±

ω(h · f±)F (g)dg
dλ

λ

where M± =
∫
B∩V±

ω(v)dv
|Disc(v)| .

Next introduce a smooth partition of unity to control the size of the discriminant.
Let σ ∈ C∞

c (R+) satisfy σ ≥ 0 and

(65)
∑
n≥A

σ
( x

2n

)
= 1, x ≥ 1.

Thus

Σ =
2π

n±M±

∑
f∈VZ∩V±

∑
n≥A

σ

(
|Disc(f)|

2n

) V 1
2+iτ

(
|Disc(f)|√

432

)
|Disc(f)| 12+iτ

(66)

×
∫
g∈SL2(R)

∫ ∞

0

∑
h∈H±:f=dλgh·f±

ω(h · f±)F (g)dg
dλ

λ
.

We may assume Y > τ2−
2
99 , bounding the initial part of the sum trivially, with

acceptable error. Also, we may assume Y < τ2+ε by using the easy consequence of
the Davenport-Heilbronn Theorem and the estimates for V 1

2+iτ .

Next truncate in t. Let T1 = T1(Y ) and T2 = T2(Y ) be parameters. Recall that
f = nuatkθ · f±. By Lemma 11 the expected number of classes of forms f with

a �= 0 and t > T1, |Disc(f)| � Y is O
(

Y
T1

+ Y
5
6

)
, while the number of forms with

a = 0 and t < T2 is O
(
Y

3
4T2

)
. Let Σ1(Y ) indicate the sum over forms with a �= 0

and t ≤ T1 and Σ2(Y ) the sum over a = 0 with t ≥ T2. Thus

(67) Σ(Y ) = Σ1(Y ) + Σ2(Y ) +O

((√
Y

T1
+ Y

1
3 + Y

1
4T2

)(
1 +

Y

τ2

)−A
)
.
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In Σ1(Y ), introduce a space average. Let R = R(Y ) be a parameter satisfying

R � Y
1
4

T 3
1

and let BR = {y ∈ VZ : ‖y‖∞ ≤ R}. Note that by Lemmas 8 and 9,

for y ∈ BR, |Disc(f + y)| � |Disc(f)| and tf+y � tf . The averaged sum is, with ′

indicating a �= 0 and t ≤ T1,

Σ′
1(Y ) =

2π

n±M±

∑
f∈VZ∩V±

′
Ey∈BR(Y )

σ

(
|Disc(f + y)|

Y

) V 1
2+iτ

(
|Disc(f+y)|√

432

)
|Disc(f + y)| 12+iτ

(68)

×
∫
g∈SL2(R)

∫ ∞

0

∑
h∈H±:f+y=dλgh·f±

ω(h · f±)F (g)dg
dλ

λ
.

Notice that in Σ′
1(Y ), the sum over f is restricted to forms f with t ≤ T1, which is

different than the condition tf+y ≤ T1. This introduces a difference between Σ1(Y )

and Σ′
1(Y ). We have, |Σ1(Y ) − Σ′

1(Y )| = O
((√

Y
T1

+ Y
1
3

) (
1 + Y

τ2

)−A
)
, since the

forms where the two sums differ have |Disc(f)| � Y and tf � T1.
Let

(69) W (f) =

∫
g∈SL2(R)

∫ ∞

0

∑
h∈H±:f=dλgh·f±

ω(h · f±)F (g)dg
dλ

λ
.

Lemma 15. Let v ∈ R
4 be a unit vector. For f = dλnuatkθ · f± with λ ≥ 1 and

t � 1, we have the bound for partial derivatives,

(70) ∂v
V 1

2+iτ

(
|Disc(f)|√

432

)
σ
(

|Disc(f)|
Y

)
W (f)

|Disc(f)| 12
� t5

λ3

(
1 +

|Disc(f)|
τ2

)−A

.

Proof. Since we can write W (f) as a group convolution, we can pass the derivative
inside the integral, and thus we bound

∂vW (f) = lim
t→0

∫
h∈H±

dλgh·f±=f
d′
λg

′h·f±=f+tv

ω(h · f±)
1

t
(F (g)− F (g′))(71)

=

∫
h∈H±,dλgh·f±=f

ω(h · f±)∂vF (g)dh.

Notice that H± is K-invariant, so we can eliminate the dependence on θ. Also,
F is independent of λ, so the derivative depends only on u and t. Thus write

∂vF = ∂F
∂u ∂vu + ∂F

∂t ∂vt and bound ∂vu � t5

λ , ∂vt �
t4

λ to bound ∂vW � t5

λ . The
remainder of the claim follows from the estimate for the derivatives of V in Lemma
3, together with the bound for the partial derivatives of the discriminant. �

Let

(72) Σ′′
1(Y )

=
2π

n±M±

∑
f

′
σ

(
|Disc(f)|

Y

) V 1
2+iτ

(
|Disc(f)|√

432

)
W (f)

|Disc(f)| 12
Ey∈BR(Y )

[
|Disc(f + y)|−iτ

]
.

Applying the derivative bound,

(73) |Σ′
1(Y )− Σ′′

1(Y )| � Y
1
4T 5

1R

(
1 +

Y

τ2

)−A

.
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By the bound for exponential sums in Lemma 13, with R = Y
1
4

τ
7
27 T

7
3
1

,

(74) |Σ′′
1(Y )| � T

8
3
1

√
Y

τ
1
27−ε

(
1 +

Y

τ2

)−A

.

Notice that, for the choice of R, this dominates the error in (73).
It follows that

Σ1(Y ) = O

((√
Y

T1
+ Y

1
3 +

T
8
3
1

√
Y

τ
1
27−ε

)(
1 +

Y

τ2

)−A
)
.(75)

Choose, optimally, T1 = τ
1
99 . Summed over Y = 2n obtains a bound of Σ1 =

O
(
τ

98
99+ε

)
.

We next bound Σ2. Let R = o(Y
1
4T 3

2 ) be a parameter to be chosen. Write
fd = f + (0, 0, 0, d). Using the Jacobian estimates for change of coordinates,

(76)
∂t

∂d
= O

(
1

λt2

)
,

∂λ

∂d
= O

(
1

t3

)
,

and hence for |d| ≤ R,

(77) |Disc(fd)−Disc(f)| = O(RY
3
4T−3

2 ) = o(Y )

so |Disc(fd)| � |Disc(f)| and similarly tfd � tf . Let
(78)

Σ′
2(Y ) =

1

n±M±

∑
f∈VZ∩V±
a=0,t≥T2

E|d|≤R

⎡
⎣σ( |Disc(fd)|

Y

) V 1
2+iτ

(
|Disc(fd)|√

432

)
W (fd)

|Disc(fd)|
1
2+iτ

⎤
⎦ .

Then |Σ′
2(Y ) − Σ2(Y )| = O

(
Y

1
4T2

(
1 + Y

τ2

)−A
)
, since the forms where the two

sums differ have tf � T2 and |Disc(f)| � Y .
We next estimate the derivative of the weight function with respect to d.

Lemma 16. For f = dλnuatkθ · f± with λ ≥ 1 and t � 1, and a = 0. We have
the bound for partial derivatives,

(79) ∂d
V 1

2+iτ

(
|Disc(f)|√

432

)
σ
(

|Disc(f)|
Y

)
W (f)

|Disc(f)| 12
� 1

λ3T 3
2

(
1 +

|Disc(f)|
τ2

)−A

.

Proof. We have ∂
∂d |Disc(f)| = 4b3 = O

((
λ
T2

)3)
. Meanwhile,

(80)
∂

∂d
W (f) =

∂

∂d

∫
g·v=f

F (g)ω(v)
dv

|Disc(v)| .

If dλnuat ·v = f then ∂
∂dv = O

(
1

λt3

)
. Pass this estimate for the derivative under the

integral to obtain the same estimate for the derivative of the integral. Combining
these estimates proves the claim. �
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Let

Σ′′
2(Y ) =

1

n±M±

∑
f∈VZ∩V±a=0,t≥T2

× σ

(
|Disc(f)|

Y

) V 1
2+iτ

(
|Disc(f)|√

432

)
W (f)

|Disc(f)| 12
E|d|≤R

[
|Disc(fd)|−iτ

]
.

By the estimate for the derivative of the weight function,

(81) |Σ′
2(Y )− Σ′′

2(Y )| � Y
1
4R

T 3
2

(
1 +

Y

τ2

)−A

.

By the estimate for exponential sums in Lemma 14, with the choice R =
T 2
2 Y

1
2

τ
2
3

,

which is o(Y
1
4T 3

2 ), subject to the constraint τ = o(T 3
2 Y

1
4 )

(82) |Σ′′
2(Y )| � Y

τ
1
3T 2

2

(
1 +

Y

τ2

)−A

.

Collecting together the error terms, it follows that Σ2(Y ) has the bound

(83) Σ2(Y ) �
(
Y

1
4T2 +

Y
3
4

τ
2
3T2

+
Y

τ
1
3T 2

2

)(
1 +

Y

τ2

)−A

.

Choose T2 = Y
1
4

τ
1
9
. In the constraint τ = o(T 3

2 Y
1
4 ) this entails τ

4
3 = o(Y ), which is

satisfied. We thus obtain

(84) Σ2(Y ) � Y
1
2

τ
1
9

(
1 +

Y

τ2

)−A

.

Summing in Y = 2n obtains Σ2 � τ
8
9 . Combined with the estimate for Σ1, this

proves the Theorem.
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[1] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of integral transforms.
Vol. I, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1954. Based, in part, on
notes left by Harry Bateman. MR0061695

[2] Manjul Bhargava, The density of discriminants of quartic rings and fields, Ann. of Math.

(2) 162 (2005), no. 2, 1031–1063, DOI 10.4007/annals.2005.162.1031. MR2183288
[3] Manjul Bhargava, The density of discriminants of quintic rings and fields, Ann. of Math. (2)

172 (2010), no. 3, 1559–1591, DOI 10.4007/annals.2010.172.1559. MR2745272
[4] Manjul Bhargava and Benedict H. Gross, Arithmetic invariant theory, Symmetry: represen-

tation theory and its applications, Progr. Math., vol. 257, Birkhäuser/Springer, New York,
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