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Abstract

The main goal of this journal is to study random walks. The first part of this
journal reports the crucial statements of group representation and character
theory, Fourier analysis, and Markov chain, which are preliminary when
studying random walks. The second part of the journal studies random walks
by proving upper bound Lemma and studying the spectrum of a graph. Lastly,
we present research done on sandpile dynamics on tiling graphs. In this
journal, we focus on sandpile dynamics on the triangular lattice. Readers
who are interested in sandpile dynamics on various tiling graphs may refer
to the research journal[HS19].

In chapter one, we start by defining a representation. Representation theory is
useful when studying a group because it often simplifies problems on groups
into known problems in linear algebra. We prove every representation of a
finite group G on a complex vector space is completely reducible. Later, we
will see the set of irreducible characters form an orthonormal basis for the
space of class functions on G. We note that regular representation contains
all the irreducible representations; this is a key when proving Schur’s second
orthogonality relations which shows that columns of the character table are
orthogonal, and thus, the character table is invertible. At the end of this
section, we construct the character table for S3 as an application of chapter
one.

Having studied relevant statements in representation theory, we introduce
the Fourier transform in Chapter two. We begin by proving a finite group G
is isomorphic to its dual. Then we present the definition of Fourier transform
and show how to invert it. We highlight the convolution identity which
leads to Corollary 2.2.4; this corollary shows that Fourier transform is a ring
isomorphism from CG to C pG.

In chapter three, we move to topics in the Markov chain. In the first section,
we review the basics of probability theory such as linearity of expectation
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and Markov inequality, the properties that are needed in a later section.
In the remaining sections, we aim to prove the existence and uniqueness
of the stationary distribution of a finite Markov chain. We assume that
readers have no prior knowledge on the Markov chain, and hence, we start
by studying Markov property, which sometimes referred to as memoryless
property. Several definitions related to the Markov chain, including period,
aperiodic, and irreducible have been introduced to see the behavior of the
chain in depth. In the next section, we see the difference between recurrent
and transient states and prove any state of finite Markov chain is either
recurrent or transient (Corollary 3.3.4). Finally, in the last section, we prove
the existence and uniqueness of the stationary distribution; we prove it by
constructing a stationary distribution.

Chapter four consists of examples of random walks and a collection of
remarkable results on the random walk. Random walks have full applications
in various fields of studies such as economy, computer science, chemistry,
and physics. A simple example of a random walk is a random walk on Z. At
each time step, a random walker move one step left or right from the current
position with equal probability. Questions like, what is the expected position
at time t can be answered by studying the walk. We conclude the chapter by
giving a proof of upper bound Lemma by Diaconis and Shahshahani [D88],
and studying a convolution operator.

Chapter five leads us to topics in the abelian sandpile model. In a 1987
paper by Bak, Tang, and Wisenfield, the sandpile model was first introduced.
This model was represented as an example of a dynamic system with a
self-organized criticality; it was one of the milestone discoveries in statistical
physics in the 20th century. Since then, the model has been widely studied
in physics and mathematics; there are more than 1800 returns in Google
Scholar search under "abelian sandpile."

Let G = {V,E} be a graph with a set of vertices and a set of edges. In the
abelian sandpile model, chips are distributed on each vertex v ∈ V . We call a
vertex v is stable if it has a fewer number of chips than it is degree; otherwise,
we call the vertex v is unstable. Assume that we have one unstable vertex.
We topple chips from one unstable vertex by sending out one chip to each
neighboring vertex while setting one vertex as a sink, where passed chips to
the sink are removed. Observe that toppling may cause other stable vertices



to become unstable. We repeat toppling until we have no unstable vertex
in the graph G; sandpile without unstable vertex is called a stable sandpile.
We conclude chapter five by showing the existence and uniqueness of the
stabilization of a sandpile.

In chapter six, we investigate sandpile dynamics on the triangular lattice with
periodic and open boundary conditions. We define spectral parameters and
state the theorem that gives the spectral parameter of the triangular tiling.
We conclude the chapter six by giving optimization problems to determine
spectral gap and spectral factors. For periodic tilings, there is no difference in
the asymptotic mixing time between periodic and open boundary conditions.
However, we discovered that for D4 lattice in dimension 4, there is a choice of
a boundary with the open boundary mixing controlled by the 3-dimensional
boundary. Readers who are interested in further information other than
triangular lattice may want to take a look at the research journal by the
author of this journal and Professor Robert Hough [HS19].
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Group Representation
and Character Theory

1

When analyzing a group, studying its action on vector space reveals valuable
information, and it is often easier than studying a group itself. Representation
is a great tool that breaks down problems regarding abstract groups into
linear algebra. In this section, we prove Maschke’s theorem, which tells us
that every finite group is a direct sum of irreducible representations. However,
we need to note that this theorem does not guarantee that we have unique
decomposition into irreducibles. We will give a proof of uniqueness in the
following section.

1.1 Maschke’s theorem

Definition 1.1.1. (Representation). A representation ϕ of group G is a
homomorphism from G to GL(V ) where V is a vector space.

Remark. The symbol deg(ϕ) denotes the dimension of V . Note that V is
called a representation space of ϕ.

We say a representation ϕ of a group G is trivial when ϕ(g) = 1 for all g in
G.

Definition 1.1.2. (G-invariant Subspace). Given a representation ϕ of a
group G on a vector space V , G-invariant subspace W is a subspace of V if
for all w ∈ W , ϕgw ∈ W for all g ∈ G.

Remark. We call ϕ|W : G→ GL(V ) is a subrepresentation of ϕ when W is a
G-invariant subspace of V .
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Note that when a group is trivial, G-invariant subspaces are equivalent to
subspaces of V . It is because ϕ(g) = I for all and unique element g ∈ G.
Thus if W is a subspace of V , then ϕgw = Iw ∈ W which implies W is a
G-invariant subspace. Hence, when a group is trivial, W being a subspace of
V automatically means that W is a G-invariant subspace.

Definition 1.1.3. (Equivalence). Given two representations ϕ and ψ of a
group G on vector spaces V and W respectively, two representations are
equivalent when there exists an isomorphism T from V to W such that
ψg = TϕgT

−1 for all g ∈ G.

There is a more relaxed version of definition than equivalence:

Definition 1.1.4. (Morphism). Given two representations ϕ and ψ of a finite
group G on complex vector spaces V and W respectively, a morphism from
ϕ to ψ is a linear map T from V to W such that below diagram commutes
for all g ∈ G.

V V

W W

T

ϕg

ψg

T

Note that a linear map T does not need to be an isomorphism. A set of mor-
phisms are denoted as HomG(ϕ, ψ). We note that HomG(ϕ, ψ) is a subspace
of Hom(V,W ).

We may ask ourselves whether ker(T ) and Im(T ) are G-invariant subspaces
of V and W, similar to other cases when we have homomorphism. Assume
throughout Lemma 1.1.1 and 1.1.2 that two representations ϕ and ψ of a
group G are given and T is a morphism between those representation spaces
V and W respectively.

Lemma 1.1.1. ker(T ) is a G-invariant subspace of V .

Proof. We show that given v ∈ ker(T ), ϕg(v) is also in ker(T ). Since T ∈
HomG(ϕ, ψ),

Tϕg(v) = ψgT (v). (1.1)
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Hence, ψgT (v) also equals to 0 because T (v) = 0. From (1.1), Tϕg(v) = 0.
This concludes that ker(T ) is a G-invariant subspace.

Lemma 1.1.2. Im(T ) is a G-invariant subspace of W .

Proof. Given w ∈ Im(T ), we show ψg(w) is also an image of T . Suppose
T (v) = w. Then ψg(w) equals to ψgT (v). Applying the fact that T is a
morphism, we get

ψgT (v) = Tϕg(v).

Hence, ψgT (v) is an image of T . Thus, ψg(w) ∈ Im(T ). This concludes that
Im(T ) is a G-invariant subspace of W .

Definition 1.1.5. (Irreducible Representation). Given a representation ϕ of
a group G on a vector space V, a group G is called irreducible if V and {0}
are only G-invariant subspaces of V .

Definition 1.1.6. (Decomposable Representation). Given a representation ϕ
of a group G on a vector space V, ϕ is decomposable if V can be decomposed
into two nonzero G-invariant subspaces.

Definition 1.1.7. (Completely Reducible). A representation ϕ of a group G
on a vector space V is completely reducible if ϕ can be decomposed into
direct sums of irreducible representations.

Observe that decomposition of decomposable representation into two G-
invariant subspaces is not unique. Suppose the set {V1, V2, · · · , Vn} is a
complete set of G-invariant subspaces of V with V = V1 ⊕ V2 ⊕ · · · ⊕ Vn.
Recalling that direct sums of subspaces is a subspace, a representation space
V can be decomposed into two G-invariant subspaces in various ways. For
example, first, V is a direct sum of V1 and V2 ⊕ V3 ⊕ · · · ⊕ Vn. Alternately, a
direct sum of V1 ⊕ V2 and V3 ⊕ V4 ⊕ · · · ⊕ Vn is V . However, the decomposi-
tion of completely reducible representation into direct sums of irreducible
representations is unique up to isomorphism. We prove the uniqueness in
the later chapter.

Irreducibility, decomposability, and completely reducibility are shared prop-
erties among equivalent representations; this is useful because when ϕ ∼ ψ,
if ψ is irreducible, then it automatically implies ϕ is also irreducible.

1.1 Maschke’s theorem 3



Throughout Lemma 1.1.3, 1.1.4, 1.1.5 and 1.1.6, we assume that ϕ and ψ
are two representations of a group G on vector spaces V and W respectively.
Also assume that ϕ is equivalent to ψ, and let T be an isomorphism such that
below diagram commutes.

V V

W W

T

ϕg

ψg

T

Lemma 1.1.3. If ψ is an irreducible representation, then ϕ is also irreducible.

Proof. Let ψ be an irreducible representation. Assume, for the sake of contra-
diction, ϕ is not irreducible. Then there exists a nonzero proper G-invariant
subspace V ′. Then since ϕ is equivalent to ψ, for v′ ∈ V ′

ϕgv
′ = T−1ψgTv

′. (1.2)

Because of our assumption that V ′ is a G-invariant space, ϕgv′ is in V ′. Thus
by (1.2), we have

T−1ψgTv
′ ∈ V ′. (1.3)

Applying T on the both sides of (1.3) gives ψgTv′ ∈ T (V ′). Since the choice
of v′ was arbitrary, ψgTv′ ∈ T (V ′) implies T (V ′) is a G-invariant subspace
of W . However, we do not have G-invariant subspace of W because we
assumed that ψ is an irreducible representation. Thus, we have reached
a contradiction, and hence our assumption was wrong. Therefore, ϕ is
irreducible, and this completes the proof.

Lemma 1.1.4. If ψ is a decomposable representation, then ϕ is also decompos-
able.

Proof. Let W = W1 ⊕W2 where W1 and W2 are G-invariant subspaces of W .
Suppose T−1(Wi) = Vi for i = 1, 2. We show V = V1 ⊕ V2 where V1 and V2

are G-invariant subspaces.

We first show V1 and V2 are G-invariant subspaces. We know ϕg(v1) equals
to T−1ψgT (v1) and T (v1) ∈ W1. Recalling that W1 is a G-invariant subspace
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gives us that ϕg(v1) = T−1ψgT (v1) ∈ T−1(W1) = V1. Thus, V1 is a G-invariant
subspace. A dual argument verifies V2 is a G-invariant subspace.

We now show V1 ∩ V2 = {0}. Suppose v ∈ V1 ∩ V2. Then applying T on both
sides yields T (v) ∈ T (V1) ∩ T (V2) and this equals to T (v) ∈ W1 ∩W2 by the
definition. Since W1 ∩W2 = {0} and T is an isomorphism, we arrive at v
equals to 0.

Lastly, we prove V = V1 + V2. Since ϕ is equivalent to ψ, ϕg(v) = T−1ψgT (v).
Observe that T (v) ∈ W . Thus, T (v) = w1 + w2 for some w1 ∈ W1 and
w2 ∈ W2. Hence, ϕg(v) = T−1ψg(w1 + w2). Recalling that W1 and W2 are
G-invariant subspace yields ϕg(v) = T−1ψg(w1 + w2) ∈ T−1(W1 + W2) ∈
T−1(W1) + T−1(W2) = V1 + V2. Since V1 and V2 are G-invariant subspaces,
ϕg(v) ∈ V1 + V2 implies that v ∈ V1 + V2, and this completes the proof.

Lemma 1.1.5. If ψ is a completely reducible representation, then ϕ is also
completely reducible.

Proof. Let ψ be a completely reducible representation. Then a representa-
tion space W of ψ can be decomposed into the direct sums of G-invariant
subspaces of W :

W = W1 ⊕W2 ⊕ · · · ⊕Wn (1.4)

where Wi is a nonzero G-invariant subspace and ψ|Wi
is a irreducible rep-

resentation for all i. Suppose T−1(Wi) = Vi for all i. We claim that
V = V1 ⊕ V2 ⊕ · · · ⊕ Vn where Vi is nonzero G-invariant subspace and ϕ|Vi

is
a irreducible representation for all i.

We first show V is a direct sum of Vi’s. In order to do so, we need to show that
Vi ∩

∑
i 6=j Vj = {0} for all 1 ≤ i, j ≤ n. Suppose v ∈ Vi ∩

∑
i 6=j Vj. Applying T

on the both sides yields

T (v) ∈ T (Vi) ∩ T (
∑
i 6=j

Vj).

Since T is an isomorphism, we get

T (v) ∈ T (Vi) ∩
´

T (V1) + T (V2) + · · ·+ T (Vi−1) + T (Vi+1) + · · ·+ T (Vn)
¯

.
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Equivalently,

T (v) ∈ Wi ∩
´

W1 +W2 + · · ·+Wi−1 +Wi+1 + · · ·+Wn

¯

.

However, we know Wi ∩
∑
i 6=jWj = {0} for all 1 ≤ i, j ≤ n because W is a

direct sums of Wi’s. Thus,
T (v) = 0

and this implies v = 0 because T is an isomorphism. The choice of i was
arbitrary, so we conclude that Vi ∩

∑
i 6=j Vj = {0} for all 1 ≤ i, j ≤ n.

Now let us to prove that each Vi is a G-invariant subspace. Since ϕ and ψ

are equivalent to each other, for vi ∈ Vi

ϕgvi = T−1ψgTvi.

Observe that T (vi) ∈ Wi. Since Wi is a G-invariant subspace, ψgT (vi) ∈ Wi.
Recalling that T−1(Wi) = Vi yields T−1ψgT (vi) ∈ Vi. Thus, Vi is G-invariant
subspace. Lastly, we show ϕ|Vi

is a irreducible representation. Observe
that ϕ|Vi

is equivalent to irreducible representation ψ|Wi
. From our previous

Lemma 1.1.3, we get ϕ|Vi
is also an irreducible representation. This completes

the proof.

Definition 1.1.8. (Unitary Representation). Let ϕ be a representation of a
group G. Suppose a representation space V of ϕ is equipped with an inner
product 〈·, ·〉. A representation ϕ is unitary if

〈ϕg(v), ϕg(w)〉 = 〈v, w〉

for all g ∈ G and v, w ∈ V .

In the next proposition, we prove that every representation of a finite group
is equivalent to unitary representation. This proposition comes in handy
when combined with lemmas that we established previously. Proving a
unitary representation of a finite group is decomposable shows that every
representation of a finite group is also decomposable from Lemma 1.1.3
and Lemma 1.1.4. We will see indeed this is true, and it is a key idea when
proving Maschke’s theorem.
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Proposition 1.1.1. Every representation of a finite group is equivalent to
unitary representation.

Proof. Let ϕ be a representation of a group G = {g1, g2, . . . , gn} on a vector
space V . We create a bijective map T from V to C|V |. Let 〈·, ·〉1 be an arbitrary
inner product on C|V |. Define a new representation ψ in a following way:

ψ := TϕgT
−1

Note that we have an equivalence relation between ϕ and ψ.

We define a new inner product 〈·, ·〉2 on W : for v, w ∈ W ,

〈v, w〉2 :=
n∑
i=1
〈ψgi

(v), ψgi
(w)〉1. (1.5)

We first prove 〈v, w〉2 is an inner product on W . Given an arbitrary element
gi in G, suppose ψgi

v = vi and ψgi
w = wi. We show the inner product 〈·, ·〉2

satisfies the inner product axioms for all vectors v, w, u ∈ W and for all
scalars c1, c2 ∈ C. We first see conjugate symmetry holds:

〈v, w〉2 =
n∑
i=1
〈ψgi

(v), ψgi
(w)〉1

=
n∑
i=n
〈vi, wi〉1

= 〈v1, w1〉1 + 〈v2, w2〉1 + · · ·+ 〈vn, wn〉1.

Since 〈·, ·〉1 is an inner product, we know 〈vi, wi〉1 equals to 〈wi, vi〉1. Hence

〈v, w〉2 = 〈w1, v1〉1 + 〈w2, v2〉1 + · · ·+ 〈wn, vn〉1

=
n∑
i=n
〈wi, vi〉1

= 〈w, v〉2.

1.1 Maschke’s theorem 7



We next check positive definiteness of the inner product; by (1.5) and recall-
ing that 〈·, ·〉1 is an inner product, we get

〈v, v〉2 =
n∑
i=1
〈ψgi

v, ψgi
v〉1

=
n∑
i=1
〈vi, vi〉1

≥ 0,

as desired.

We also observe that 〈v, v〉2 equals to 0 if and only if v = 0. When v = 0, it is
obvious that 〈v, v〉2 = 0. It is easy to see the opposite direction also works.
Suppose 〈v, v〉2 = ∑n

i=1〈ψgi
v, ψgi

v〉1 = 0. This implies 〈ψev, ψev〉1, where e is
an element identity of G, must equal to 0. Since ϕ2v = v, we get 〈v, v〉1 = 0
and this happens if and only if v = 0.

We finally show the linearity of the inner product:

〈c1v + c2u,w〉2 =
n∑
i=1
〈ψgi

(c1v + c2u), ψgi
(w)〉1

=
n∑
i=1
〈ψgi

(c1v) + ψgi
(c1u), ψgi

(w)〉1

=
n∑
i=1

´

c1〈ψgi
(v), ψgi

(w)〉1 + c2〈ψgi
(u), ψgi

(w)〉1
¯

= c1〈v, w〉2 + c2〈u,w〉2.

Hence 〈·, ·〉2 is an inner product. It remains for us to show that ψ is a unitary
representation. For an arbitrary element gj in G,

〈ψgj
v, ψgj

w〉2 =
n∑
i=1
〈ψgi

(ψgj
v), ψgi

(ψgj
w)〉1

=
n∑
i=1
〈ψgij

v, ψgij
w〉1.

Since gij sums over all the elements of G as i ranges over 1 to n,

〈ψgj
v, ψgj

w〉2 = 〈v, w〉2.
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This shows that ψ is a unitary representation with the inner product 〈·, ·〉2.
Therefore, ϕ is equivalent to a unitary representation ψ.

Lemma 1.1.6. If ϕ is a unitary representation of a group G and ϕ is not
irreducible, then ϕ is decomposable.

Proof. Let W be a G-invariant subspace, and let V be a representation space.
Let us denote the orthogonal complement of W as W⊥. Then V = W ⊕W⊥.
It only remains for us to show that W⊥ is a G-invariant subspace in order to
prove ϕ is a decomposable representation. Since ϕ is a unitary representation,
for w ∈ W , w′ ∈ W⊥,

〈w,ϕg(w′)〉 = 〈ϕg−1(w), ϕg−1g(w′)〉
= 〈ϕg−1(w), ϕe(w′)〉
= 〈ϕg−1(w), w′〉.

Because W is a G-invariant subspace and w is in W, ϕg−1(w) is in W. Hence
〈ϕg−1(w), w′〉 = 0, and therefore

〈w,ϕg(w′)〉 = 0. (1.6)

As a result, ϕg(w′) ∈ W⊥. This shows W⊥ is also a G-invariant subspace, and
this completes the proof.

We know from Proposition 1.1.1, that any representation ϕ of a finite group
G is equivalent to a unitary representation ψ. There are two cases to consider:
case 1 is when ψ is irreducible; case 2 is when ψ is not irreducible. In case 1,
we are done. In case 2, applying Lemma 1.1.6 yields that ψ is decomposable.
Since irreducibility and decomposability are shared properties among a class
of equivalence representations, we conclude that a representation ϕ of a
finite group is either irreducible or decomposable.

Now we are ready to prove Maschke’s theorem. Maschke’s theorem requires
a representation space V to be a vector space over fields of characteristic
zero; recall that field of C is characteristic zero.

Theorem 1.1.7. (Maschke’s theorem). Every representation of a finite group
G on a complex vector space V is completely reducible.

1.1 Maschke’s theorem 9



Proof. We use mathematical induction on the dimension of a degree of rep-
resentation to prove Maschke’s theorem. When the degree of representation
is 1, the representation is necessarily irreducible, and hence, completely
reducible. For the inductive step, assume that Maschke’s theorem holds for
any representation with a degree less than n. Now suppose the degree of ϕ is
n. If ϕ is an irreducible representation of G, then we are done. So suppose ϕ
is not an irreducible representation, then there exists a G-invariant subspace
W of V . We want to prove the existence of a G-invariant subspace W ′ such
that V = W ⊕W ′. From our inductive hypothesis, we know that subrepre-
sentations ϕ|W and ϕ|

W
′ are completely reducible. Because their direct sums

are completely reducible, we conclude that ϕ is completely reducible.

Remark. Since we are working on complex vector spaces, we can place |G|
in the denominator when defining a map T . If the characteristic of a field F
divides the order of G, then Maschke’s theorem does not hold.

Observe that all degree 1 representations are irreducible representation
because it is not possible to have a proper nonzero subspace with a degree
less than its representation space, which is 1.

For degree 2 or 3 representations, there is an easy way to check whether
the representation is irreducible or not. The idea is simple; we use the
fact that if a degree 2 representation is not irreducible, then there exists
a one-dimensional G-invariant subspace. Suppose there exists a common
eigenvector v, then Cv, a degree one subspace, forms a G-invariant subspace.
Hence, the representation is not irreducible. For degree 3 representation ϕ of
a group G, we may apply Maschke’s theorem. Suppose there exists a common
eigenvector v of ϕg for all g ∈ G. If ϕ is irreducible, then there exists either
one-dimensional or two-dimensional G-invariant subspace. In case we have
one-dimensional G-invariant subspace, we can apply the same logic we used
in degree 2 representations. In case we have two-dimensional G-invariant
subspace, from Maschke’s theorem, we know every representation of a finite
group is completely irreducible; hence there exists a complementary one-
dimensional G-invariant subspace. Then again, we can apply the same logic
again. As a result, we have following proposition:

Proposition 1.1.2. Let ϕ be a degree 2 representation of a group G. Then ϕ is
irreducible if and only if there exists no common eigenvector of ϕg for all g ∈ G.
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Proof. Let V be a representation space.
(⇒): We give a proof of contraposition; if there exists a common eigenvector
among ϕg for all g ∈ G, then ϕ is not irreducible. Let w be a common
eigenvector of all ϕg for all g ∈ G. Hence ϕgw = λgw for all g ∈ G, where
λg ∈ C; here the value of λg is dependent on the choice of g. Let W be a
subspace of V formed by a basis {w}. It follows that a subspace W is a proper
nonzero subspace because ϕgw = λgw ∈ W ⊆ V for all w ∈ W . Hence we
conclude that ϕ is not irreducible.

(⇐): We also give a proof of contraposition to prove; if ϕ is not irreducible,
then there exists a common eigenvector of ϕg for all g ∈ G. Assume ϕ is
not an irreducible representation. Then there exists a proper subspace W
of V such that ϕgw ∈ W for all w ∈ W and g ∈ G. Since W is a proper
subspace of V , the G-invariant subspace W must be one-dimensional. Then it
follows that {w} forms a basis for W , and ϕgw ∈ W ; this implies ϕgw = λgw

where λg ∈ C. This shows that w is a common eigenvector of all ϕg, and this
completes the proof.

In general, there is an easy way to check the irreducibility of representations
with some help of character theory, which will be introduced in a later
chapter.

1.2 Schur’s Lemma

We are now ready to prove Schur’s lemma which is an essential statement in
representation theory. It tells us that given two irreducible representations
and a linear transformation T between them, the linear transformation
T must be invertible; otherwise T is trivial. In case we have identical
representations, the map T between them is some scalar multiple of an
identity map.

Lemma 1.2.1. (Schur’s Lemma). Let ϕ and ψ be two irreducible finite-
dimensional representations of a group G on complex vector spaces V and
W respectively, and let T be in HomG(ϕ, ψ). Then following holds;
(1) If ϕ  ψ, then there exists no nontrivial linear map T between V and W ;
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(2) If ϕ = ψ, then any linear map T between V and W is a some scalar multiple
of the identity map.

Proof. (1): We give a proof by contraposition: if there exists a nontrivial
linear transformation T from V to W , then ϕ is equivalent to ψ. We observe
that T must be invertible with given conditions. Recall from Lemma 1.1.1 and
1.1.2, T ∈ HomG(ϕ, ψ) implies ker(T ) and Im(T ) are G-invariant subspaces.
Since ϕ and ψ are irreducible representations, they have no proper subrep-
resentation. Hence, ker(T ) is either 0 or V, and Im(T ) is either 0 or W . If
ker(T ) = V , then T = 0; however, we assumed T 6= 0. Hence ker(T ) = 0 and
similarly we can verify Im(T ) = W . Therefore, T is an isomorphism. Then T
is an invertible linear map such that T ∈ HomG(ϕ, ψ), and this implies that ϕ
is equivalent to ψ.

(2): Suppose ϕ = ψ. Recall that the representation space V is a complex
vector space. Due to the fundamental theorem of algebra, we can assume
that there exists an eigenvalue λ of T . Note that T −λI, where I denotes the
identity map, is not invertible according to the definition of an eigenvalue.
Observe that the identity map I commutes with the action of the group.
Since HomG(ϕ, ψ) is a subspace of Hom(V,W ) and T, I ∈ HomG(ϕ, ψ), their
linear combination, T − λI is in HomG(ϕ, ψ). However, from the previous
part of the proof, we know that any nonzero linear map is invertible. Since
T − λI is not invertible, T − λI must be equal to 0. Hence, T = λI, and this
completes the proof.

We prove a corollary followed after Schur’s lemma. Before proving it, observe
an immediate consequence of Schur’s lemma. Suppose ϕ and ψ are two
finite-dimensional irreducible representations of G on complex vector spaces
V and W respectively, and ϕ is equivalent to ψ. Also, suppose there are two
invertible maps T1, T2 in HomG(ϕ, ψ). Then T1◦T−1

2 is an invertible map from
W to W and T1 ◦ T−1

2 ∈ HomG(ϕ, ψ). We can apply the second statement
of Schur’s lemma in this situation. After applying, we get T1 ◦ T−1

2 = λI
for some scalar λ. Multiplying T2 to the both sides of the equation gives
T1 = λT2. Therefore, we conclude that dim HomG(ϕ, ψ) = 1.

By applying Schur’s lemma to representations of an abelian group, we get
interesting results as below:

12 Chapter 1 Group Representation and Character Theory



Corollary 1.2.2. The degree of any irreducible finite-dimensional representation
of an abelian group on a complex vector space V is one.

Proof. Let G be an abelian group. Then ϕhϕg = ϕgϕh for all g, h ∈ G.
Therefore, ϕh ∈ HomG(ϕ, ϕ). It follows from Schur’s lemma that ϕh = λhI
where λh is dependent on the choice of h. Then for v ∈ V and c ∈ C,
ϕh(cv) = λhv ∈ Cv, and this implies Cv is a G-invariant subspace. Since ϕ is
irreducible representation, we conclude that the G-invariant subspace Cv is
V . Hence the representation space V is one-dimensional and this completes
the proof.

Remark. Given a representation of a finite abelian group, we know from the
Maschke’s theorem, the representation is completely reducible. Then from
this Corollary, the degree of any irreducible representation of a finite abelian
group is one. Hence, the matrix representation of a finite abelian group is
diagonalizable.

1.3 Schur’s Orthogonality Relations

Having proven Schur’s lemma, now we are ready to prove Schur’s orthogo-
nality relations. When we talk about representation in this section, we refer
to a matrix representation of it. Given a degree n representation ϕ, Schur’s
orthogonality relations tells us that {ϕij | 1 ≤ i, j ≤ n} forms an orthogonal
set. The proof uses "averaging trick." Like previous sections of this journal,
we work on a representation of a finite group on a complex vector space.

Proposition 1.3.1. Let ϕ and ψ be two finite-dimensional irreducible represen-
tations of a group G on complex vector spaces V and W respectively, and let T
be any linear map from V to W . Then following holds;
(1) If ϕ  ψ, then 1

|G|
∑
g∈G ψg−1Tϕg = 0;

(2) If ϕ = ψ, then 1
|G|
∑
g∈G ψg−1Tϕg = tr(T )

dimV
I.

Proof. Let us define a new map by using "averaging trick":

T := 1
|G|

∑
h∈G

ψh−1Tϕh.
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We first show T ∈ HomG(ϕ, ψ). From the definition of T , for g ∈ G,

Tϕg = 1
|G|

∑
h∈G

ψh−1Tϕhϕg

= 1
|G|

∑
h∈G

ψh−1Tϕhg.

After the change of variables hg → g′, we are left with

Tϕg = 1
|G|

∑
g′∈G

ψgg′−1Tϕg′

= ψg
1
|G|

∑
g′∈G

ψg′−1Tϕg′

= ψgT .

Note that
∑
g′∈G ψg′−1Tϕg′ is same as

∑
h∈G ψhTϕh−1 because both sum over

all the finite elements of G. Hence Tϕg = ψgT for all g ∈ G. Thus, T ∈
HomG(ϕ, ψ). Now we apply Schur’s lemma to finish the proof.

(1): Suppose ϕ  ψ. Then by Schur’s lemma, we know there is no nontrivial
map. Thus, we must have T = 0.

(2): Suppose ϕ = ψ. Then T ∈ HomG(ϕ, ϕ). After applying Schur’s lemma,
we see that

T = λI (1.7)

where λ ∈ C. We can calculate the value of λ. The equation 1.7 implies

λ dim V = 1
|G|

∑
h∈G

tr(ϕh−1Tϕh).

Since tr(AB) = tr(BA),

λ dim V = 1
|G|

∑
h∈G

tr(Tϕhϕh−1)

= 1
|G|

∑
h∈G

tr(Tϕhh−1)

= 1
|G|

∑
h∈G

tr(T )

= |G|
|G|

tr(T ) = tr(T ).
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Upon dividing both sides by dim V , we get λ = tr(T )
dimV

. Thus, T = tr(T )
dimV

I and
this completes the proof.

Having proven the previous proposition, we are now ready give a proof of
Schur’s Orthogonality Relations.

Theorem 1.3.1. (Schur’s Orthogonality Relations). Let ϕ and ψ be irreducible
representations of a finite group G on complex vector spaces V and W respec-
tively. Then
(1) If ϕ  ψ, then 〈ϕij, ψkl〉 = 0;

(2) If ϕ = ψ, then 〈ϕij, ϕkl〉 =


1

dimV
if i = k and k = l,

0 others.

Proof. Let T be any linear map from V to W . In the proof of Proposition
1.3.1, we showed that T = 1

|G|
∑
h∈G ψh−1Tϕh ∈ HomG(ϕ, ψ). There are two

cases to consider: case 1 is when ϕ  ψ; case 2 is when ϕ = ψ. In case 1, by
the Schur’s lemma T = 0. Hence

(T )lj = 1
|G|

∑
h∈G

∑
k,i

(ψh−1)lkTki(ϕh)ij

= 1
|G|

∑
k,i

Tki

´∑
h∈G

(ψh−1)lk(ϕh)ij
¯

= 0.
(1.8)

Recall that T is an arbitrary linear map from V to W . To make (1.8)
always holds, we must have

∑
h∈G(ψh−1)lk(ϕh)ij equal to 0. From Propo-

sition 1.1.1, we know every representation of a finite group is unitary.
Hence, we may assume ϕ and ψ are unitary representations, and therefore
(ψh−1)lk = (ψh)∗lk = (ψh)kl. Thus,

∑
h∈G

(ϕh)ij(ψh−1)lk =
∑
h∈G

(ϕh)ij(ψh)kl = 0. (1.9)

We now can calculate 〈ϕij, ψkl〉:

〈ϕij, ψkl〉 = 1
|G|

∑
g∈G

ϕij(g)ψkl(g)

The equation 1.9 implies
〈ϕij, ψkl〉 = 0
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as desired.

In case 2, when ϕ = ψ, by the Schur’s lemma,

T = 1
|G|

∑
h∈G

(ϕh−1Tϕh) = λI (1.10)

Recalling from Proposition 1.3.1 that λ = tr (T )
dimV

and substituting λ for tr (T )
dimV

in (1.10) yields

tr (T )
dim V

Ilj = 1
|G|

∑
h∈G

(ϕh−1)lkTki(ϕh)ij, (1.11)

which is equivalently rewritten as∑
ki Tkiδikδjl
dim V

= 1
|G|

∑
k,i

Tki
∑
h∈G

(ϕh−1)lk(ϕh)ij (1.12)

where δ is a Kronecker delta function. Rearranging (1.13) gives

∑
ki

Tki

´ δikδjl
dim V

− 1
|G|

∑
h∈G

(ϕh)ij(ϕh−1)lk
¯

= 0. (1.13)

Recall that T is an arbitrary map from V to W . Thus, to make (1.13) always
hold, we need

δkiδlj
dim V

= 1
|G|

∑
h∈G

(ϕh)ij(ϕh−1)lk. (1.14)

Observe that we get 1
|G|
∑
h∈G(ϕh)ij(ϕh−1)lk equals to 1

dimV
when k = i and

l = j, and 0 otherwise. Again, by Proposition 1.1.1, we can assume ϕ

is unitary and this implies that (ϕh−1)lk = (ϕh)∗lk = (ϕh)kl. Applying our
observation to (1.14), we finally arrive at

1
|G|

∑
h∈G

(ϕh)ij(ϕh)kl =


1

dimV
if i = k and k = l,

0 others.
(1.15)

Note that 〈ϕij, ϕkl〉 = 1
|G|
∑
g∈G ϕij(g)ϕkl(g), and this completes the proof.
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1.4 Schur’s First Orthogonality Relations

Definition 1.4.1. (Discrete Convolution). Given complex valued functions a
and b, the discrete convolution of a and b is given by

a ∗ b(x) =
∑
y

a(xy−1)b(y).

Definition 1.4.2. (CG). Given a group G, CG is a set of all functions from G

to C. Suppose a, b ∈ CG. The operation of addition is given by

(a+ b)(g) = a(g) + b(g).

The scalar multiplication is given by

k(a(g)) = k · a(g)

for k in C. The operation of convolution as a multiplication is given by

a ∗ b(g) =
∑
y∈G

a(gy−1)b(y).

Lastly, the inner product is given by

〈a, b〉 = 1
|G|

∑
g∈G

a(g)b(g).

Theorem 1.4.1. CG is a ring with two binary operations (+, ∗).

Proof. Suppose a, b, c ∈ CG. We prove the multiplication is associative. From
the definition of convolution, we get

(a ∗ b) ∗ c(g) =
∑
y∈G

(a ∗ b)(gy−1)c(y)

=
∑
y∈G

∑
x∈G

a(gy−1x−1)b(x)c(y).
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The change of variable xy → z leaves,

(a ∗ b) ∗ c(g) =
∑
y∈G

∑
z∈G

a(gz−1)b(zy−1)c(y)

=
∑
z∈G

a(gz−1)
∑
y∈G

b(zy−1)c(y)

=
∑
z∈G

a(gz−1)(b ∗ c)(z)

= a ∗ (b ∗ c)(g).

Hence the multiplication is associative. We skip the rest of the part of the
proof because it is a straight forward to check CG is a ring.

Remark. The Kronecker delta function δe is a multiplicative identity. To
see this, we calculate a ∗ δe(g): a ∗ δe(g) = ∑

y∈G a(gy−1)δe(y). Note that
the Kronecker delta function δe(y) is not zero if and only if y = e. Then∑
y∈G a(gy−1)δe(y) = a(ge−1) · 1. Therefore, a ∗ δe(g) equals to a(g). The same

logic works to see δe ∗ a(g) = a(g).

Definition 1.4.3. (Character of a Representation). Given a representation ϕ
of a finite group G, the character χ of ϕ(g) is

χϕ(g) = tr (ϕ(g)).

Remark. By recalling that tr (AB) = tr (BA), we see that χϕ(hgh−1) =
χϕ(gh−1h) = χϕ(g). Therefore, χ is constant on conjugacy class. Hence,
χ is a class function.

Remark. When we talk about characters, we assume that representation is a
matrix representation; in this way, we can calculate the trace of ϕ.

Definition 1.4.4. (Linear Character). A linear character is a homomorphism
χ : G→ C×.

Remark. A linear character is a special kind of character of a representation;
it is a character of a degree one representation. Observe that tr (ϕ(g)) = ϕ(g)
when the degree of ϕ is one.

For the convenience of notation, a linear character is referred to as a charac-
ter.
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Let (G,+) be a finite group with a binary operation +. Note that linear
characters χ of G form a finite abelian group. For x, y in G,

χ(x+ y) = χ(x) · χ(y) = χ(y) · χ(x).

Since G is a finite group, for every x ∈ G, xn = 1 for some n, where 1 is the
identity element of G. Then χ(xn) = χ(x)n = 1. Thus, we can think of χ(x)
as a n-th root of unity. In the case when G = Z/pZ, the characters are p-th
root of unity.

χn(x) = e2πixn/p.

Observe that the image of χ is the unit circle.

We also note that the product of the two characters is a character:

χn(x) · χn(y) = e2πixn/p · e2πiyn/p

= e2πi(x+y)n/p

= χn(x+ y).

Having made this observation, we can see the set of characters form an
abelian group. Before giving a formal proof, we define a set of all characters
of a group G.

Definition 1.4.5. (Dual Group). Let G be a finite abelian group. A dual
group pG is a set of all irreducible characters of G with multiplication as an
operator. The multiplication is given by

(χ · η)(g) = χ(g)η(g)

where χ and η are characters of G and g ∈ G.

Remark. Recall, from Corollary 1.2.2, that the degree of an irreducible
representation of a finite abelian group is one. Hence, an irreducible character
of an irreducible representation of a finite abelian group is a linear character.

Lemma 1.4.2. If G is a finite abelian group, then the dual group pG is an
abelian group.

Proof. We first prove pG is a group. The identity element is χ1, a character of
a trivial irreducible representation. Given an element χ ∈ pG, the inverse is

1.4 Schur’s First Orthogonality Relations 19



χ(g−1). The associativity law holds trivially. It remains for us to show pG is
abelian. For χ, ψ ∈ pG and g1, g2 ∈ G,

χ · ψ(g1g2) = χ(g1g2)ψ(g1g2)
= χ(g1)χ(g2)ψ(g1)ψ(g2)
= χ(g2)χ(g1)ψ(g2)ψ(g1)
= χ(g2g1)ψ(g2g1)
= χ · ψ(g2g1).

Thus pG is an abelian group.

Observe that Z(CG), the center of CG, is a subspace of CG. Let a, b ∈ Z(CG).
For c ∈ CG, (a + b) ∗ c(g) equals to a ∗ c(g) + b ∗ c(g) which is equivalently
rewritten as c ∗ a(g) + c ∗ b(g) because a and b are in the center of CG. Hence,
(a+ b) ∗ c(g) = c ∗ (a+ b)(g), and this shows Z(CG) is a subspace. A similar
argument shows that the space of class functions of CG is a subspace.

Previously, we showed that characters are class functions. We will see class
functions are Z(CG), and vice versa.

Theorem 1.4.3. Given a function a ∈ CG, a is a class function if and only if a
is in the center of CG

Proof. (⇒): Suppose a ∈ CG is a class function. For b ∈ CG and x, y ∈ G

b ∗ a(x) =
∑
y∈G

b(xy−1)a(y).

Since a is a class function, a is constant on the conjugate classes of G. Thus

b ∗ a(x) =
∑
y∈G

b(xy−1)a(xyx−1)

which is equivalently rewritten as,

b ∗ a(x) =
∑
y∈G

a(x(xy−1)−1)b(xy−1).
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Note that xy−1 sums over all the elements in the finite group G. Hence,

b ∗ a(x) = a ∗ b(x)

as desired.

(⇐): Now suppose a ∈ CG is in Z(CG). Note that for x, y ∈ G,

a(yxy−1) =
∑
z∈G

a(yz−1)δyx−1(z)

= a ∗ δyx−1(y).

Because we assumed a ∈ Z(CG), a ∗ δyx−1(y) equals to δyx−1 ∗ a(y). Hence,

a(yxy−1) = δyx−1 ∗ a(y)
=
∑
z∈G

δyx−1(yz−1)a(z).

The Kronecker delta function δyx−1(yz−1) equals to 1 if and only if yx−1 = yz−1

which happens if and only if when z = x. Therefore,

a(yxy−1) =
∑
z∈G

δyx−1(yz−1)a(z) = a(x)

as desired.

Theorem 1.4.4. Let C1, C2, · · · , Cn be a complete set of distinct conjugacy classes
of a finite group G. Then the set {δCi

|1 ≤ i ≤ n} forms a basis for the space of
class function in CG.

Proof. We first show {δCi
|1 ≤ i ≤ n} spans the space of class functions. Let a

be a class function. Then

a(g) =
∑
i

a(Ci)δCi
(g).

Hence the δCi
spans the space of class functions. Next we show the set

{δCi
|1 ≤ i ≤ n} is orthogonal. Given two Kronecker delta functions δCi

and
δCj

such that i 6= j, their inner product is

〈δCi
, δCj
〉 = 1
|G|

∑
g∈G

δCi
(g)δCj

(g).
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However, δCi
(g)δCj

(g) always equals to 0 when i 6= j. This establishes the
orthogonality. Hence, {δCi

|1 ≤ i ≤ n} form a basis.

Remark. The dimension of the space of class functions of CG equals to the
class number of a group, the number of conjugacy classes in a group.

We showed the set {δCi
|1 ≤ i ≤ n} forms a basis for the space of class function

in CG. In Theorem 1.4.3, we have shown the class function is the center of
CG. Therefore, combined with Theorem 1.4.3, the set {δCi

|1 ≤ i ≤ n} also
forms a basis for the center of CG.

Lemma 1.4.5. Let G be a finite abelian group and let χ ∈ pG. Then

∑
x∈G

χ(x) =

|G| if χ = 1,
0 otherwise.

Proof. Let S(χ) = ∑
x∈G χ(x). The key idea of the proof is observing S(χ) =

χ(y)S(χ) for all h ∈ G:

χ(y) · S(χ) = χ(y)
∑
x∈G

χ(x)

=
∑
x∈G

χ(xy).

After the change of variables z → xy, we get

χ(y) · S(χ) =
∑
z∈G

χ(z)

= S(χ).
(1.16)

Hence,
S(χ)

´

1− χ(y)
¯

= 0.

If χ is trivial, then χ(y) = 1 for all y ∈ G. Therefore S(χ) = ∑
x∈G χ(x) equals

to |G|. In case when χ is not trivial character, choose y with χ(y) 6= 1. Then
S(χ) must equal to 0, to make equation 1.16 always hold. This completes
the proof.

Before we prove Schur’s first orthogonality relations, we introduce an easy
lemma.
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Lemma 1.4.6. Let ϕ and ψ be representations of a group G. If ϕ is equivalent
to ψ, then χϕ equals to χψ.

Proof. From the definition of a character,

χϕ(g) = tr(ϕ(g)).

Since ϕ is equivalent to ψ, ϕ(g) = T−1ψT (g) where T is an invertible map in
HomG(ϕ, ψ). Then

χϕ(g) = tr (T−1ψT (g)).

Recalling tr (AB) = tr (BA) yields,

χϕ(g) = tr (ψTT−1(g)) = tr(ψ(g)) = χψ(g),

as desired.

We now give the proof of Schur’s first orthogonality relations. This theorem
tells us that irreducible characters form an orthonormal set. In our later
discussion, we will prove the set of irreducible characters form a basis for the
space of class functions. Recall from the Theorem 1.4.3 that given a function
in CG, the function is a class function if and only if the function is in the
center of CG. Hence showing the set of irreducible characters form an basis
for the space of class functions implies that the set also forms a basis for the
center of CG.

Theorem 1.4.7. (Schur’s First Orthogonality Relations). Let ϕ and ψ be two
irreducible representations of G. Then

〈χϕ, χψ〉 =

1 ifϕ ∼ ψ,

0 ifϕ  ψ.
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Proof. Let n and m be the degree of ϕ, ψ respectively. Then

〈χϕ, χψ〉 = 1
|G|

∑
g∈G

χϕχψ

= 1
|G|

∑
g∈G

n∑
i=1

m∑
j=1

ϕii(g)ψjj(g)

=
n∑
i=1

m∑
j=1

1
|G|

∑
g∈G

ϕii(g)ψjj(g)

=
n∑
i=1

m∑
j=1
〈ϕii, ψjj〉.

(1.17)

There are two cases consider: case 1 is when ϕ ∼ ψ; case 2 is when ϕ  ψ.
For the case 1, first recall from Lemma 1.4.6 that when two representations
are equivalent, their character is same. Hence,

χϕ = χψ.

Applying the Schur’s orthogonality relations to the equation 1.17 yields

〈χϕ, χψ〉 = 〈χϕ, χϕ〉 =
n∑
i=1
〈ϕii, ϕii〉 =

n∑
i=1

1
n

= 1.

For the case 2, again applying the Schur’s orthogonality relations to the
equation 1.17 yields

〈χϕ, χψ〉 = 0.

Remark. Since ϕ  ψ implies 〈χϕ, χψ〉 = 0, the set of characters of distinct
irreducible representations is orthogonal.

It remains for us to show that the set of irreducible characters spans the
space of class functions on G.

Definition 1.4.6. (Regular Representation). The (left) regular representation
R of a finite group G is a homomorphism from G to GL(CG) such that
following holds: for ch ∈ C,

Rg

`∑
h∈G

chh
˘

=
∑
h∈G

ch(gh) =
∑
x∈G

cg−1xx.
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Remark. Observe that the dimension of regular representation is |G|.

Theorem 1.4.8. Let χ1, χ2, · · · , χn be a complete set of irreducible characters
of a finite group G. The irreducible characters form an orthonormal basis for
the space of class functions on G.

Proof. Since we showed the set {χ1, χ2, · · · , χn} is orthonormal from the
Schur’s first orthogonality relations, it remains for us to show the set spans
the space of class functions . Let W be a space constructed from a basis
{χ1, χ2, · · · , χn}. Then the direct sum W ⊕W⊥ is the space of class function
on G. Showing W⊥ = 0 proves the set {χ1, χ2, · · · , χn} spans space of class
functions.

Let f be a class function on G such that f is orthogonal to all irreducible
characters. Let ϕ be an irreducible representation of G with a representation
space V . We define a map fϕ from V to V :

fϕ :=
∑
g∈G

f(g)ϕg.

We claim fg ∈ HomG(ϕ, ϕ):

ϕy−1fϕϕy = ϕy−1

´∑
g∈G

f(g)ϕg
¯

ϕy

=
∑
g∈G

f(g)ϕy−1ϕgϕy

=
∑
g∈G

f(g)ϕy−1gy.

Since f is a class function, f(g) equals to f(y−1gy) for all y ∈ G. Hence

ϕy−1fϕϕy =
∑
g∈G

f(y−1gy)ϕy−1gy.

The variable y−1gy sums over all the elements in G as g iterates. Therefore,

ϕy−1fϕϕy = fϕ

and this shows that fϕ ∈ HomG(ϕ, ϕ). Applying Schur’s Lemma gives fϕ = λI.
Then

tr (fϕ) = λ dim V. (1.18)
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Equivalently, the trace tr (fϕ) is

tr (fϕ) =
∑
g∈G

f(g) tr (ϕg)

=
∑
g∈G

f(g)χϕ(g).

Substituting the above equation to equation 1.18 gives

λ = 1
dim V

∑
g∈G

f(g)χϕ(g)

= |G|
dim V

〈f, χϕ〉.

Recalling that the function f is orthogonal to all irreducible characters yields
λ = 0 which proves fϕ = 0.

Now let ψ be a regular representation of the group G with representation
space W . Let {eg|g ∈ G} be a basis for W . Then

fψee =
∑
g∈G

f(g)ψ(g)ee

where e is the identity element in G. Since ψ is the regular representation

fψee =
∑
g∈G

f(g)eg.

Previously, we showed fψ = 0 where ψ is irreducible representation. Hence,

0 =
∑
g∈G

f(g)eg.

Recall that {eg|g ∈ G} form a basis for W . Thus we must have f(g) = 0 for
all g in G. Hence any class function f such that the function f is orthogonal
to all the set of irreducible characters is a zero function. Therefore, W⊥ = 0
and the set of irreducible characters span the space of class functions. This
completes the proof.

Corollary 1.4.9. The number of conjugacy classes of a finite group G equals to
the number of equivalence classes of irreducible representations of G.
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Proof. Let C1, C2, · · · , Cn be a complete set of conjugacy classes of G. From
Theorem 1.4.4, we know the set {δCi

|1 ≤ i ≤ n} forms a basis for the space
of class functions of G. Also from Theorem 1.4.8, we know the complete set
of irreducible characters form a basis for the space of class functions of G.
Since the numbers of elements in both bases are the same, the number of
conjugacy classes equals the number of equivalence classes of irreducible
representations.

Corollary 1.4.10. Decomposition of a representation ϕ of a finite group G into
a direct sums of irreducibles is unique up to isomorphism. If ϕi is an irreducible
representation, then the multiplicity of ϕi in ϕ equals to 〈χϕ, χϕi

〉.

Proof. Let
ϕ ∼ ϕα1

1 ⊕ ϕα2
2 ⊕ · · · ⊕ ϕαn

n

where ϕi is an irreducible representation and αi is a multiplicity of it for each
i. Suppose there is another decomposition of ϕ into irreducibles such that

ϕ ∼ ψβ1
1 ⊕ ψ

β2
2 ⊕ · · · ⊕ ψβn

n .

We construct the map from ϕ to ϕ; note this map is obviously nonzero. We
apply Schur’s Lemma; the map sends ϕαi

i to ψβj

j and ϕi ∼ ψj where αi = βj.
Hence, the decomposition is unique up to isomorphism.

For the second part of the corollary, we use Schur’s First Orthogonality
Relations. Recall that 〈χϕi

, χϕj
〉 = 0 when ϕi  ϕj. Then

〈χϕ, χϕi
〉 = α1〈χϕ1 , χϕi

〉+ α2〈χϕ2 , χϕi
〉+ · · ·+ αn〈χϕn , χϕi

〉
= 0 + 0 + · · ·+ αi · 1 + 0 + · · ·+ 0.

This completes the proof.

Remark. By the Corollary 1.4.10, we can decompose a representation ϕ of a
finite group into distinct irreducible representations ϕ ∼ ϕα1

1 ⊕ϕα2
2 ⊕· · ·⊕ϕαn

n .
Then 〈χϕ, χϕ〉 = α2

1 + α2
2 + · · · + α2

n. We note that 〈χϕ, χϕ〉 is 1 if and only
if only one of αi equals to 1 and others are all 0; this happens if and only
if when ϕ is an irreducible representation. Hence, we conclude that ϕ is
irreducible if and only if 〈χϕ, χϕ〉 = 1.
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1.5 Schur’s Second Orthogonality Relations

We briefly introduced a regular representation in the previous section. Reg-
ular representation is constructed from a multiplication table of a group.
Studying regular representation gives us insight when decomposing represen-
tations into irreducibles. We will see that the regular representation contains
all the irreducible representations and will also prove some fundamental
statements related to it. At the end of this section, we give a proof of Schur’s
second orthogonality relations. These relations show that the columns of the
character table are orthogonal, and therefore the character table is invertible.
We will also see we can construct the character table even if we do not know
all the irreducible characters.

Definition 1.5.1. (CG). Given a group G, CG is a set of all linear combina-
tions of G with coefficients in C. Suppose a = ∑

g∈G agg and b = ∑
g∈G bgg.

The operation of addition is given by

a+ b =
∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g.

The scalar multiplication is given by

ka =
∑
g∈G

kagg.

for k in C. Lastly, the inner product is given by

〈
∑
g∈G

agg,
∑
g∈G

bgg〉 =
∑
g∈G

agbg.

Definition 1.5.2. (Regular Representation). The (left) regular representation
R of a finite group G is a homomorphism from G to GL(CG) such that
following holds: for ch ∈ C

Rg

`∑
h∈G

chh
˘

=
∑
h∈G

ch(gh).

As previously mentioned, the regular representation is constructed from the
multiplication table of group. For example, let G be a symmetric group S3.
The multiplication table is given below.
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· () (1, 2) (2, 3) (1, 3) (1, 2, 3) (1, 3, 2)
() () (1, 2) (2, 3) (1, 3) (1, 2, 3) (1, 3, 2)

(1, 2) = (1, 2)−1 (1, 2) () (1, 2, 3) (1, 3, 2) (2, 3) (1, 3)
(2, 3) = (2, 3)−1 (2, 3) (1, 3, 2) () (1, 2, 3) (1, 3) (1, 2)
(1, 3) = (1, 3)−1 (1, 3) (1, 2, 3) (1, 3, 2) () (1, 2) (2, 3)

(1, 3, 2) = (1, 2, 3)−1 (1, 3, 2) (2, 3) (1, 3) (1, 2) () (1, 2, 3)
(1, 2, 3) = (1, 3, 2)−1 (1, 2, 3) (1, 3) (1, 2) (2, 3) (1, 3, 2) ()

Observe that the multiplication table above is constructed in a way that the
identity element () is located on the diagonal. Suppose the i-th element on
the colunm is g. Then we place g−1 on the i-th row.

The associated regular representation Rg is |G|×|G| matrix with 1 where
the element g presents in the multiplication table, and 0 otherwise. For
example,

R(1,2,3) =

»

—

—

—

—

—

—

—

—

–

0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Proposition 1.5.1. Regular representation is a representation.

Proof. LetG be a group with n elements, and letR be a regular representation
of G such that gi denotes the i-th element of the column. Then i-th element
of the row is the inverse of gi. We want to show

Rgigj
= Rgi

Rgj
.

Observe that (Rgigj
)
xy

= 1 if and only if g−1
x gy = gigj. For Rgi

Rgj
,

(Rgi
Rgj

)
xy

=
∑
z

(Rgi
)xz(Rgj

)
zy

.

Then (Rgi
Rgj

)
xy

= 1 if and only if g−1
x = gig

−1
z and gy = gzgj. Hence,

g−1
x gy = gig

−1
z gzgj = gigj
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which implies Rgigj
= Rgi

Rgj
. This shows the regular representation is a

representation.

Proposition 1.5.2. Every regular representation of a finite group G is unitary.

Proof. Let
∑
x∈G axx,

∑
x∈G bxx ∈ CG. Then for arbitrary element g in G,

〈Rg

∑
x∈G

axx,Rg

∑
x∈G

bxx〉 = 〈
∑
x∈G

ax(gx),
∑
x∈G

bx(gx)〉.

The change of variables gx→ h yields

〈Rg

∑
x∈G

axx,Rg

∑
x∈G

bxx〉 = 〈
∑
h∈G

ag−1hh,
∑
h∈G

bg−1hh〉

=
∑
h∈G

ag−1hbg−1h.

Again, the change of variables g−1h→ x leaves

〈Rg

∑
x∈G

axx,Rg

∑
x∈G

bxx〉 = 〈
∑
x∈G

axx,
∑
x∈G

bxx〉.

Hence, every regular representation of a finite group G is unitary.

Proposition 1.5.3. The character χreg of regular representation R of a finite
group G is given as follows; for g ∈ G

χreg(g) =

|G| if g=e,

0 otherwise.

Proof. Let gi denote the i-th element of the column of R. Then it follows
that g−1

i is the i-th element of the row. Observe that (Rg)ii = 1 if and only
if g−1

i gi = g or equivalently, if and only if when e = g. Since R is |G|×|G|
matrix, the trace of Re equals to |G|.

Proposition 1.5.4. The regular representation of a finite group G is not irre-
ducible unless the group is trivial.

Proof. Let χreg be a regular representation of a finite group G. The inner
product 〈χreg, χreg〉 is

〈χreg, χreg〉 = 1
|G|

∑
g∈G

χreg(g)χreg(g).
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From Proposition 1.5.3, χreg(g) = |G| when g = e; otherwise χreg(g) = 0. Thus

〈χreg, χreg〉 = 1
|G|

χreg(e)χreg(e)

= 1
|G|
|G||G|= |G|.

Recalling that a representation ϕ is irreducible if and only if 〈χϕ, χϕ〉 = 1
shows the regular representation R is irreducible if and only if |G|= 1.

Theorem 1.5.1. Let R be the regular representation of a finite group G such
that

R ∼ ϕα1
1 ⊕ ϕα2

2 ⊕ · · ·ϕαn
n

where ϕi is irreducible representation for all i. Then the multiplicity αi of ϕi
equals to the degree of ϕi.

Proof. Recall from Schur’s first orthogonality relations that 〈χϕi
, χϕj
〉 = 0

when ϕi  ϕj. Then

〈χR, χϕi
〉 = α1〈χϕ1 , χϕi

〉+ α2〈χϕ2 , χϕi
〉+ · · ·+ αn〈χϕn , χϕi

〉
= 0 + 0 + · · ·+ αi · 1 + 0 + · · ·+ 0.

Observe that

〈χR, χi〉 = 1
|G|

∑
g∈G

χR(g)χi(g)

= 1
|G|

χR(e)χi(e)

= 1
|G|
|G|degϕi

= degϕ(i).

Hence we conclude that the multiplicity of ϕi equals to the degree of ϕi.

Remark. Recall, from Corollary 1.4.10, the decomposition of a representation
R of a finite group G into a direct sum of irreducibles is unique up to
isomorphism; this also applies to regular representation.
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Theorem 1.5.2. Let {ϕ1, ϕ2, · · · , ϕn} be a complete set of equivalence classes
of irreducible representations of a finite group G. Then

k∑
i=1

(degϕi)2 = |G|.

Proof. Let R be a regular representation of a finite group G such that

R ∼ ϕα1
1 ⊕ ϕα2

2 ⊕ · · ·ϕαn
n .

By Proposition 1.5.3,

|G| = χR(e)
= α1χϕ1(e) + α2χϕ2(e) + · · ·+ αnχϕn(e).

where αi is a multiplicity of ϕi. From Theorem 1.5.1, we know αi = degϕi,
and by the definition degϕi = χϕi

(e). After substituting αi’s and χϕi
(e)’s, we

get
|G|= degϕ1

2 + degϕ2
2 + · · ·+ degϕn2,

as desired.

Corollary 1.5.3. Regular representation of a group G contains all the irre-
ducible representations.

Proof. This is an immediate consequence of Theorem 1.5.1 and Theorem
1.5.2.

Given a representation ϕ of a finite group G on a complex vector space V ,
we showed that if ϕ ∼ ϕ1 ⊕ ϕ2 ⊕ · · · ⊕ ϕn where ϕi is irreducible for all i,
then {χϕ1 , χϕ2 , · · · , χϕn} forms a basis of the space of class functions on G.
Recall that {δC |C ∈ Cl(G)} is also a basis of the space of class functions on
G. The following theorem uses a relation between those two bases.
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Theorem 1.5.4. (Schur’s Second Orthogonality Relations). Let ϕ be a repre-
sentation of a finite group G such that ϕ ∼ ϕ1⊕· · ·⊕ϕn where ϕi is irreducible
for all i. Then for g, h in G,

∑
i

χϕi
(g)χϕi

(h) =


|G|

|CG(h)| if g, h are conjugate,

0 otherwise.

Proof. We proved that {δC|C ∈ Cl(G)} and {χϕ1 , χϕ2 , · · · , χϕn} are two bases
for the space of class functions. Hence, we can rewrite δCG(h)(g) in terms of
irreducible characters, here CG(h) denotes the conjugacy class of h :

δCG(h)(g) =
n∑
i=1
〈δCG(h), χϕi

〉χϕi
(g)

=
n∑
i=1

1
|G|

∑
g
′∈G

δCG(h)(g′)χϕi
(g′)χϕi

(g)

=
n∑
i=1

1
|G|

∑
g
′∈G

δCG(h)(g′)χϕi
(g′−1)χϕi

(g)

=
n∑
i=1

χϕi
(g) 1
|G|

` ∑
g
′∈G

δCG(h)(g′)χϕi
(g′−1)

˘

=
n∑
i=1

χϕi
(g) 1
|G|
|CG(h)|χϕi

(h−1)

= |CG(h)|
|G|

n∑
i=1

χϕi
(g)χϕi

(h−1).

Hence
n∑
i=1

χϕi
(g)χϕi

(h−1) = |G|
|CG(h)|δCG(h)(g) (1.19)

In the case g, h are conjugate, δCG(h)(g) = 1. Then substituting 1 to δCG(h)(g)
in equation 1.19 yields

n∑
i=1

χϕi
(g)χϕi

(h−1) = |G|
|CG(h)| .

In the case g, h are not conjugate, δCG(h)(g) = 0. Substituting 0 to δCG(h)(g)
in equation 1.19 yields

n∑
i=1

χϕi
(g)χϕi

(h−1) = 0.
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This completes the proof.

1.6 Character Table for S3

Character table is a two-dimensional table with |Cl(G)|×|Cl(G)| entries. The
column of the character table corresponds to the conjugacy classes of G, and
the row corresponds to the irreducible characters. In this section, we will
construct the character table for S3.

Recall that there are 6 elements in S3:

S3 = {(1)} ∪ {(1, 2)(2, 3)(3, 1)} ∪ {(1, 2, 3)(1, 3, 2)}.

Observe that there are three conjugacy classes of S3:

{(1)}, {(1, 2)(2, 3)(3, 1)}, {(1, 2, 3)(1, 3, 2)}.

This implies there are exactly 3 irreducible representations of S3; our goal
is to calculate characters of those representations. Let ϕ1, ϕ2 and ϕ3 denote
three irreducible representations of S3. Recall, from Theorem 1.5.2, the sum
of degrees of all the irreducible representation of a finite group equals to the
order of the group. Hence,

degϕ1
2 + degϕ2

2 + degϕ3
2 = |S3|= 6.

All representations have a trivial representation. Let ϕ1 be a trivial repre-
sentation. Then ϕ1(g) = 1 for all g ∈ S3 and degϕ1 = 1. Substituting 1 for
degϕ1

2 gives
1 + degϕ2

2 + degϕ3
2 = 6.

The only possible positive integer solution for above equation is degϕ2 = 1
and degϕ3 = 2. With given information, we can construct the character table
as below:
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{(1)} {(1, 2)(2, 3)(3, 1)} {(1, 2, 3)(1, 3, 2)}
χϕ1 1 1 1
χϕ2 1 x y

χϕ3 2 z w

To complete the character table recall following orthogonality relations.
From Schur’s first orthogonality relations (Theorem 1.4.7), the inner product
〈χϕi

, χϕi
〉 = 1 if and only if i 6= j, and 0 otherwise. Therefore, the rows of

the character table are orthogonal. Also, from Schur’s second orthogonality
relations (Theorem 1.5.4), we know the columns of the character table are
orthogonal. Now we apply orthogonal relations to find x, y, z, and w.

Since the first and second rows are orthogonal:

1 + 3 · x+ 2 · y = 0. (1.20)

Applying Schur’s First Orthogonality Relations to the second row gives

〈χϕ2 , χϕ2〉 = 1
6(1 + 3x2 + 2y2)

= 1.
(1.21)

Observe that (1, 2)(1, 2) = (1) and (1, 2, 3)(1, 2, 3) = (1, 3, 2). Hence,

x2 = 1, y2 = y.

Substituting 1 for x and y for y2 in euqations 1.20 and 1.21 leaves x = −1
and y = 1. Now the character table is

{(1)} {(1, 2)(2, 3)(3, 1)} {(1, 2, 3)(1, 3, 2)}
χϕ1 1 1 1
χϕ2 1 −1 1
χϕ3 2 z w

We use the column orthogonality relations to find z and w. Since the first
and second columns are orthogonal to each other,

1 · 1 + 1 · (−1) + 2 · z = 0.
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Also, the first and third columns are orthogonal. Therefore

1 · 1 + 1 · 1 + 2 · w = 0.

Then z = 0 and w = −1 and this leaves

{(1)} {(1, 2)(2, 3)(3, 1)} {(1, 2, 3)(1, 3, 2)}
χϕ1 1 1 1
χϕ2 1 −1 1
χϕ3 2 0 −1
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Fourier Transform on
Finite Abelian Groups

2

The Fourier transform is widely used in signal processing and probability. In
this journal we document some of the basic statements in Fourier transform
that are necessary when studying the random walks. Before introducing the
Fourier transform, we study the dual group pG. We will see G, a finite abelian
group, is isomorphic to its dual pG. We will show pG forms an orthonormal
basis for CG. As a result, we can we express a function f : Z → Z/nZ
with linear combinations of elements of pG. After establishing the Fourier
transform and its inversion, we will give a well-known application of it, the
Plancherel Theorem.

2.1 Dual Group pG

Recall the definition of a (linear) character. A linear character is a homo-
morphism χ : G → S1, where S1 is a unit circle. Given a finite abelian
group G, its dual group pG is a set of all characters with multiplication as a
binary operation. In this section, we will show that G is isomorphic to pG. By
showing G ∼= pG and recalling distinct characters form an orthonormal set,
we conclude that pG form an orthonormal basis for CG.

Theorem 2.1.1. Let G be a finite abelian group. Then G ∼= pG.

Proof. Recall that a finite abelian group is isomorphic to direct products of
cyclic groups. So suppose,

G ∼= H1 ×H2 × · · · ×Hn.
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where Hi is cyclic for all i. We claim Hi
∼= pHi for all i. Since Hi is cyclic, Hi

is abelian. Recall that when Hi is abelian, the number of distinct irreducible
characters equals to |Hi|. Therefore, |Hi|= |xHi|, and this implies Hi is
isomorphic to xHi. Also, observe that xHi is cyclic. Suppose h generates Hi and
set χ(hx) = χ(h)x = e2πix/|Hi| for χ ∈ xHi. It follows that χ generates xHi. So
far, we have proved

G ∼= H1 ×H2 × · · · ×Hn
∼= xH1 × xH2 × · · · × xHn. (2.1)

It remains for us to show xH1 × xH2 × · · · × xHn
∼= pG. In order to show that,

we claim {A×B ∼= pA× pB for a finite abelian group A and B. Suppose χ ∈
{A×B. Then let χA and χB be character restricted to A and B respectively;
χA(a) = χ(a, 1) and similarly χB = χ(1, b). Define a map T as follows:

T : {A×B → pA× pB

χ 7→ (χA, χB)

Then the map T is a homomorphism: for χ, θ ∈ {A×B

T (χθ) = ((χθ)A, (χθ)B)
= (χAθA, χBθB)
= (χA, χB)(θA, θB)
= T (χ) · T (θ).

Observe that only trivial character is the kernel of the map T . This is because

χ(a, b) = χA(a)χB(b) = χ(a, 1)χ(1, b) = 1

for all a ∈ A and b ∈ B if and only if χ is a trivial character. Hence, the
map T is injective. Lastly, observe that for all (χA, χB) ∈ pA× pB, there exists
a character χ ∈ {A×B, where χ = (χA, χB). Thus, T is surjective. This
establishes the isomorphism between {A×B and pA× pB. Applying this fact
to equation 2.1 yields

G ∼= H1 ×H2 × · · · ×Hn
∼= {(H1 ×H2 × · · · ×Hn) ∼= pG

as desired.
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Remark. Recall from Schur’s First Orthogonality Relations that the set of
distinct characters forms an orthonormal set. Theorem 2.1.1 implies |G|= | pG|.
Thus the set of characters form an orthonormal basis for Z(CG); since we are
working with a finite abelian group, Z(CG) = CG.

2.2 Fourier Analysis on Finite Abelian Groups

Having observed that pG, a set of characters, forms an orthonormal basis
for CG, where G is a finite abelian group, we now introduce the Fourier
transform. The Fourier transform is a map from CG to C pG. We will see
the Fourier transform is a ring isomorphism that takes the convolution into
multiplication; this only applies to a finite abelian group; further discussions
are needed to establish the Fourier transform for the non-abelian group. At
the end of this section, we will give a Plancherel Theorem as an application.

Definition 2.2.1. (Discrete Fourier Transform). Let f be a function from
Z/nZ to C. The discrete Fourier transforms pf of a function f is given by

pf([k]) = |n|〈f, χk〉

=
n−1∑
x=0

f([x])e−2πikx/n

=
n−1∑
x=0

f([x])
`

cos(2πkx/n)− i sin(2πkx/n)
˘

.

Definition 2.2.2. (Fourier Transform on Finite Abelian Group). Let G be a
finite abelian group. The Fourier transform is a map F : CG → C pG such that

F(f) = pf(χ) =
∑
g∈G

f(g)χ(g).

Theorem 2.2.1. Let G be a finite abelian group and f ∈ CG. Then the Fourier
inversion is given by

f = 1
|G|

∑
χ∈ pG

pf(χ)χ.
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Proof. Recall that pG forms a basis for CG. Then

f =
∑
χ∈ pG

〈f, χ〉χ

=
∑
χ∈ pG

1
|G|

∑
g∈G

f(g)χ(g)χ.

Since pf(χ) is
∑
g∈G f(g)χ(g), we get

f = 1
|G|

∑
χ∈ pG

pf(χ)χ

and this completes the proof.

Definition 2.2.3. (Fourier Transform). Let f be an integrable function from
R to C. The Fourier transform of f is given by

F{f}(ξ) =
∫ ∞
−∞

f(x)e−2πixξdx

where ξ ∈ R.

Definition 2.2.4. (Inverse Fourier Transform). Let f be an integrable func-
tion from R to C. Then

f(x) =
∫ ∞
−∞

pf(ξ)e2πixξdξ.

Lemma 2.2.2. The inverse Fourier transform F−1 satisfies following equation:

F−1 = FR = RF

where R{f}(x) := f(−x).

Proof. From the definition of the Fourier transform and Fourier inversion,

FR{ pf(ξ)} = F{ pf(−ξ)}

=
∫ ∞
−∞

pf(x)e2πixξdx

= f(ξ)
= F−1{ pf(ξ)}.
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Thus F−1 = FR. It is obvious that FR = RF from the definition of the
Fourier transform and the flip operator R. This completes the proof.

Remark. The inverse Fourier transform is identical to Fourier transform except
for the flip operator R. Thus proving a statement for the inverse Fourier
transforms automatically shows the statement is also valid for the Fourier
transform.

Theorem 2.2.3. (Convolution Identity). Functions a, b ∈ CG satisfies following
identities:

(1) F{a ∗ b} = F{a} · F{b}
(2) F{a} ∗ F{b} = F{a · b}.

Proof. (1): By the definition of the convolution and the Fourier transform,

ya ∗ b(χ) =
∑
g∈G

a ∗ b(g)χ(g)

=
∑
g∈G

∑
h∈G

a(gh−1)b(h)χ(g)

=
∑
h∈G

b(h)
∑
g∈G

a(gh−1)χ(g).

After the change of variables gh−1 → g′, we get

ya ∗ b(χ) =
∑
h∈G

b(h)
∑
g
′∈G

a(g′)χ(g′h)

=
∑
h∈G

b(h)
∑
g
′
a(g′)χ(g′)χ(h)

=
∑
h∈G

b(h)χ(h)
∑
g
′∈G

a(g′)χ(g′)

=
∑
g
′∈G

a(g′)χ(g′)
∑
h∈G

b(h)χ(h)

= za(χ) · yb(χ),

the desired result.

(2): The first part of the convolution identity F{a ∗ b} = F{a} · F{b} can be
rewritten as

F
`

F−1(F{a}) ∗ F−1(F{b})
˘

= F{a} · F{b}.
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Applying F−1 on both sides of above equation yields

F−1(F{a}) ∗ F−1(F{b}) = F−1`F{a} · F{b}
˘

. (2.2)

From Lemma 2.2.2, we know proving the second part of the convolution
identity works for the inverse Fourier transform also proves this identity
works for the (forward) Fourier transform. Therefore, equation 2.2 can be
rewritten as

F{a} ∗ F{b} = F{a · b}

as desired.

Corollary 2.2.4. Let G be a finite abelian group. Then (CG,+, ∗) and (C pG,+, ·)
are rings, and the Fourier transform is a ring isomorphism from CG to C pG.

Proof. We first observe the Fourier transform F : CG → C pG is linear: for
c1, c2 ∈ C, a, b ∈ CG, and χ ∈ pG,

F(c1a+ c2b) = {(c1a+ c2b)(χ)
=
∑
g∈G

(c1a+ c2b)(g)χ(g)

= c1
∑
g∈G

a(g)χ(g) + c2
∑
g∈G

b(g)χ(g)

= c1pa(χ) + c2pb(χ)
= c1F(a) + c2F(b).

Hence the Fourier transform is linear. Also, from Theorem 2.2.1, we know the
Fourier transform is invertible. Since invertible linear map is isomorphism,
we conclude that the map F is an isomorphism. Lastly, Theorem 2.2.3 asserts
F(a ∗ b) = F(a) · F(b). This concludes that the Fourier transform is a ring
isomorphism.

We can detect whether x ≡ 0 mod n or not by looking at the value of∑n−1
k=0 e

2πik(x−y)/n. Observe that

n−1∑
k=0

e2πik(x−y)/n =

n if x ≡ y mod n,

0 if x ı y mod n.
(2.3)
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Given a function f(x) on Z/nZ, the Fourier transform pf(k) is

pf(k) =
∑

x∈Z/nZ
f(x)e−2πikx/n.

Applying the Fourier inversion yields

f(0) = 1
n

∑
k∈Z/nZ

pf(k)

= 1
n

∑
k∈Z/nZ

∑
x∈Z/nZ

f(x)e−2πikx/n

=
∑

x∈Z/nZ
f(x)

´ 1
n

∑
k∈Z/nZ

e−2πikx/n
¯

.

We know from Equation 2.3 that the value of 1
n

∑
k∈Z/nZ e

−2πikx/n equals 1 if
and only if x = 0, and 0 otherwise. Thus, the function 1

n

∑
k∈Z/nZ e

−2πikx/n

works as a tool that detects whether x equals to 0 or not.

Theorem 2.2.5. (Parseval Identity). Let f, g ∈ CG where G is a finite abelian
group. Then

〈f, g〉 = 1
|G|
〈 pf, pg〉.

Proof. We make substitution f = 1
|G|
∑
x∈ pG

pf(χ)χ, g = 1
|G|
∑
χ∈ pG pg(χ)χ in the

〈f, g〉 to arrive at

〈f, g〉 =
〈 1
|G|

∑
x∈ pG

pf(χ)χ, 1
|G|

∑
χ∈ pG

pg(χ)χ
〉
.

which is equivalently rewritten as

〈f, g〉 = 1
|G|2

∑
χ∈ pG

pf(χ)pg(χ)

= 1
|G|

´ 1
|G|

∑
χ∈ pG

pf(χ)pg(χ)
¯

..
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Since |G|= | pG| when G is finite abelian, we get

〈f, g〉 = 1
|G|

´ 1
| pG|

∑
χ∈ pG

pf(χ)pg(χ)
¯

= 1
|G|
〈 pf, pg〉

as desired.

The immediate consequence of the Parseval identity is the Plancherel iden-
tity.

Corollary 2.2.6. (Plancherel Identity). Let f ∈ CG where G is a finite abelian
group. Then

||f ||= || pf ||.

Proof. This is the special case of Parseval’s identity.
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Markov Chain
3

3.1 Probability Theory

Before introducing the Markov chain and random walk, the subject we are
interested in, we review some of the basic concepts in probability theory.

Definition 3.1.1. (Sample Space). Given an experiment, the sample space
Ω is a set of all possible outcomes of the experiment.

Definition 3.1.2. (Event). Let Ω be the sample space. The σ-algebra Σ in
P(Ω), the power set of Ω, is called an event.

Remark. Recall the definition of a σ-algebra. For Σ ⊆ P(Ω), σ-algebra satisfies
three properties: Ω is in Σ, Σ is closed under complement and countable
unions.

Definition 3.1.3. (Axioms of Probability). Let Ω be the sample space of an
experiment.
(1) The probability of an event E is a non-negative real number which
satisfies following properties: for all E ∈ S

Prob(E) ∈ R, 0 ≤ Prob(E) ≤ 1.

(2) The probability of the sample space equals to 1:

Prob(Ω) = 1.

(3) For any countable sequence of disjoint events E1, E2, · · ·,

Prob
`

∪∞i=1 Ei
˘

=
∞∑
i=1

Prob(Ei).
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Definition 3.1.4. (Conditional Probability). For F ∈ S with Prob(F ) > 0,
the conditional probability of an event E given that event F has occurred is
defined by

Prob(E|F ) = P (EF )
P (F ) .

Definition 3.1.5. (Random Variable). A real-valued function on a sample
space is called a random variable.

Definition 3.1.6. (Expectation). Let X be a random variable with probability
mass function f(x). The expected value of the random variable X is given by

E[X] =
∫
R
xf(x)dx.

In case where X is a discrete random variable, the expectation of X is given
by

E[X] =
∞∑
i=1

xif(xi).

We review some basic properties of expectation:

Proposition 3.1.1. (Linearity of Expectation). Let E[X] and E[Y ] be finite
and k be a constant value. Then

(1)E[X + Y ] = E[X] + E[Y ]
(2)E[kX] = kE[X].

Proof. The proof is omitted.

Proposition 3.1.2. (The Law of Iterated Expectation). For random variables
X and Y following holds;

E[X] = E[E[X|Y ]].

Proof. From the definition of the expectation, we get

E[E[X|Y ]] =
∫ ∞
−∞

E[X|Y ]fY (y)dy,
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where fY is the probability density of Y . Again by the definition of the
expectation, we get

E[E[X|Y ]] =
∫ ∞
−∞

´
∫ ∞
−∞

xfX|Y (x|y)dx
¯

fY (y)dy

=
∫ ∞
−∞

x
´
∫ ∞
−∞

fX|Y (x|y)fY (y)dy
¯

dx,

where fX|Y (x|y) = fX,Y (x,y)
fY (y) . Then

E[E[X|Y ]] =
∫ ∞
−∞

x
´
∫ ∞
−∞

fX,Y (x, y)dy
¯

dx

=
∫ ∞
−∞

xfX(x)dx

= E[X]

as we desired.

Proposition 3.1.3. For a non-negative discrete random variable X,

E[X] =
∑
t≥1

Prob(X ≥ t).

Proof. Observe that

Prob(X ≥ 1) = Prob(X = 1) + Prob(X = 2) + Prob(X = 3) + · · ·
Prob(X ≥ 2) = Prob(X = 2) + Prob(X = 3) + · · ·
Prob(X ≥ 3) = Prob(X = 3) + · · ·

+
...∑

t≥1 Prob(X ≥ 1) = 1 ·Prob(X = 1) + 2 ·Prob(X = 2) + 3 ·Prob(X = 3) + · · ·

Then ∑
t≥1

Prob(X ≥ 1) =
∞∑
t=1

t ·Prob(X = t) = E[X]

as we wished.

Definition 3.1.7. (Variance). The variance of a random variable X is given
by

VarX = E[X2]− (E[X])2.
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Definition 3.1.8. (Indicator Random Variable). Let A be an event. The
indicator random variable IA is given by

IA =

1 A occurs

0 A does not occur

Remark. Observe that the expectation E(IA) is E(IA) = 1 · Prob(A) + 0 ·
Prob(A) = Prob(A).

Definition 3.1.9. (Uniform Distribution). The probability density function
of uniform distribution U on the interval [a, b] is given by

U =


1
b−a if a ≤ x ≤ b

0 ifx < a or x > b

where b > a

We introduce a classic inequality in probability theory, the Markov inequal-
ity:

Theorem 3.1.1. (Markov Inequality). For a non-negative random variable X,

Prob(X > λ · E[X]) ≤ 1
λ

for all λ ≥ 1.

Proof. SupposeX is finitely distributed with probability mass function P (t) :=
Prob(X = t). Then

E[X] =
∑
t

t · P (t)

=
∑

t≤λ·E[X]
t · P (t) +

∑
t>λ·E[X]

t · P (t)

≥
∑

t>λ·E[X]
t · P (t)

≥ λ · E[X] ·Prob(X > λ · E[X]).

Hence E[X] ≥
´

λ · E[X]
¯

·Prob(X > λE[X]). Upon dividing both the left
and the right hand sides by λ · E[X] we have our desired result.
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Corollary 3.1.2. (Chebyshev’s inequality). Let X be a random variable with
E[X] = 0 and Var[X] = d. Then for any real number λ > 0,

Prob(X > λ
?
d) ≤ 1

λ2 .

Proof. The Chebyshev’s inequality is a special case of the Markov inequality.
Observe that

Prob(X > λ
?
d) ≤ Prob(X2 > λ2d).

Because Var[X] = E[X2] − (E[X])2 = E[X2] + 0 = d, we have E[X2] = d.
Applying the Markov inequality to Prob(X2 > λ2d) yields

Prob(X2 > λ2d) = Prob(X2 > λ2 · E[X2])

≤ E[X2]
λ2d

= 1
λ2 .

Thus
Prob(X > λ

?
d) ≤ Prob(X2 > λ2d) ≤ 1

λ2

as desired.

3.2 Finite State Markov Chain

Definition 3.2.1. (Stochastic Matrix). Let P be a n×m matrix. The matrix
P is stochastic if

∑m
j=1 Pij = 1 for all i and j.

Lemma 3.2.1. Let P be n×m matrix and Q be m× l matrix. If P and Q are
stochastic, then their matrix multiplication PQ is also stochastic.

Proof. From the definition,

[PQ]ij =
m∑
k=1

PikQkj. (3.1)
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Fig. 3.1: Four States Markov Chain

The sum of i-th row of PQ is

l∑
j=1

[PQ]ij =
l∑

j=1

m∑
k=1

PikQkj. (3.2)

Since P and Q are stochastic, we know
∑m
k=1 Pik = 1 = ∑l

j=1 Qkj. Applying
this to (3.2) yields

l∑
j=1

[PQ]ij =
l∑

j=1

m∑
k=1

PikQkj

=
m∑
k=1

Pik
l∑

j=1
Qkj

=
m∑
k=1

Pik · 1

= 1.

Observe that the choice of i was arbitrary. This shows that PQ is stochastic.

We now introduce Markov chain. A Markov chain is a sequence of ran-
dom variables (X0, X1, · · ·) with a Markov property; when a distribution of
Xn+1 only depends on Xn and independent on previous random variables
X0, X1, · · · , Xn−1 we say the random process satisfies Markov property.
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A directed graph G = (V,E) (Figure 3.1) is represented as an example
of a four-state Markov chain; V is the set of vertices and E is the set of
ordered edges. A set of vertices V represents states of the Markov chain
and the directed edge from one state to the other state indicates a positive
probabilities of moving from the one to the other.

Suppose there is an object moving according to Figure 3.1. For example,
if the object is at state 2 currently, the probability of the object moving to
the state 4 is 0.9, and the probability of the object remaining at the present
position is 0.1.

Let X denote a state space of the Markov chain; in this case, X = {1, 2, 3, 4}.
Random variables {Xt}∞t=1 is a function from Z+ ∪∞ to X . Let Xt denote
the object’s position at step t. The Markov property rules the behavior of
random variables {Xt}∞t=1. Suppose Xt = x currently, and we want to know
the probability of moving to state y in the next step. The Markov property
tells us that the Xt+1 only depends on the previous state Xt. Equivalently
saying in symbols,

Prob(Xt+1 = xt+1|X1 = x1, · · · , Xt = xt) = Prob(Xt+1 = xt+1|Xt = xt),

meaning that the previous states that the object have visited does not impact
the probability distribution of next step; only present state does. Thus we get
following equation:

Prob(X0 = x0, X1 = x1, · · · , Xt = xt)
= Prob(X0 = x0)Prob(X1 = x1|X0 = x0) · · ·Prob(Xn−1 = xn−1|Xt = xt)

(3.3)

Definition 3.2.2. (Time-Homogeneous Markov Chain). A Markov chain is
time-homogeneous when

Prob(Xt+1 = x|Xt = y) = Prob(Xt = x|Xt−1 = y).

Remark. We discuss only the time-homogeneous Markov chain in this jour-
nal. Throughout this section, we assume that the Markov chain is time-
homogeneous.
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Let us construct a transition matrix P of the Markov chain:

P (x, y) := Prob(Xt+1 = y|Xt = x).

Applying the above notation to (3.3) yields

Prob(X0 = x0, X1 = x1, · · · , Xt = xt)
= P (x0, x1)P (x1, x2) · · ·P (xn−1, xn).

Since the set of random variables holds Markov property and is time-homogeneous,
we know |X |×|X | matrix is sufficient as a transition matrix. Thus the transi-
tion matrix P is given as follows:

P =

»

–

Prob(Xt+1 = 1|Xt = 1) Prob(Xt+1 = 2|Xt = 1) Prob(Xt+1 = 3|Xt = 1) Prob(Xt+1 = 4|Xt = 1)
Prob(Xt+1 = 1|Xt = 2) Prob(Xt+1 = 2|Xt = 2) Prob(Xt+1 = 3|Xt = 2) Prob(Xt+1 = 4|Xt = 2)
Prob(Xt+1 = 1|Xt = 3) Prob(Xt+1 = 2|Xt = 3) Prob(Xt+1 = 3|Xt = 3) Prob(Xt+1 = 4|Xt = 3)
Prob(Xt+1 = 1|Xt = 4) Prob(Xt+1 = 2|Xt = 4) Prob(Xt+1 = 3|Xt = 4) Prob(Xt+1 = 4|Xt = 4)

fi

fl .

The associated transition matrix to the figure 3.1 is

P =

»

—

—

—

–

0.2 0.3 0 0.5
0 0.1 0 0.9
0 0.3 0.3 0.4

0.5 0.2 0.3 0

fi

ffi

ffi

ffi

fl

.

Observe that P (i, j) is the probability of moving from state i to state j in one
step. Also note that the sum of each row equals to 1; this is because the value
of Xt+1 must take one from the state space. Since the row sum equals to 1,
the transition matrix P is stochastic.

We may want to analyze the distribution ofXt in order to see how distribution
changes as t increases. When analyzing, it is convenient to store probability
distribution of Xt in 1× |X | row vector µt as follows:

µt =
”

Prob(Xt = 1) Prob(Xt = 2) Prob(Xt = 3) Prob(Xt = 4)
ı

.

In case where t = 0, the distribution matrix µ0 is called an initial distribution
of the Markov chain.
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Equipped with the transition matrix and the distribution matrix, the natural
question would be how we get the next step’s distribution. Observe that

µt+1(i) =
∑
j∈X

µt(i)P (i, j),

or equivalently,
µt+1 = µtP .

Thus, multiplying the transition matrix P on the right side of the distribution
of Xt gives the distribution of Xt+1. In general, we can write the previous
equation as

µt = µ0P
t. (3.4)

Note that, from Lemma 3.2.1, P t is stochastic when P is stochastic. Also,
note that,

P t(i, j) = δiP
t(j).

From (3.4), we know δiP
t(j) is the probability distribution Prob(Xt+1 = j)

with initial distribution δi. Therefore, P t(i, j) denotes the probability of state
i of moving to state j in t-steps.

But what happens when we multiply transition matrix on the left side of
the distribution of Xt? Suppose f is a function on X . Then multiplying
transition matrix P to the left side of f gives the expectation; for x ∈ X ,
Pf(x) = ∑

y∈X f(x)P (x, y). Note that P (x, y) can be thought as a probability
of X1 = y, given an initial distribution δx. Hence, Pf(x) = Eδx(f(X1)).

We now give a formal definition of the Markov chain.

Definition 3.2.3. (Markov Chain). A sequence of random variablesX0, X1, · · ·
that satisfies a Markov property is called a Markov Chain. Thus Xn+1 is in-
dependent of X0, X1, · · · , Xn−1 but conditionally on Xn. Equivalently saying,
for Prob(X1 = x1, X2 = x2, · · · , Xt = xt) > 0,

Prob(Xt+1 = xt+1|X1 = x1, · · · , Xt = xt) = Prob(Xt+1 = xt+1|Xt = xt)
= P (xt, xt+1).

It is convention to write

Prob(Xt+1 = i|Xt = j,X0 = k) = Pk(j, i).
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Definition 3.2.4. (Accessibility). Let X be a finite state space of a Markov
Chain. For i, j ∈ X , we say j is accessible from i (written i → j) if there
exists a non-negative integer t such that

Prob(Xt = j|X0 = i) > 0.

The accessibility relation is reflexive because for all i ∈ X , Prob(X0 = i|X0 =
i) = 1. Also, this relation is transitive. For i→ j and j → k, it is easy to see
i→ k. However, the accessibility relation is not symmetric. We can think of
the below-directed graph as an example of a two-state Markov chain such
that 1→ 2, but not 2→ 1.

1 2

0.1

0.9

1.0

Definition 3.2.5. (Communicate). Let X be a finite state space of a Markov
chain. For i, j ∈ X , we say i communicates with j (written i ↔ j) if i → j

and j → i.

Observe that the communicating relation is trivially symmetric; if i ↔ j,
then j ↔ i. Recall that accessibility relation is reflexive and transitive;
communicating relation inherits those properties. Thus communicating
relation is an equivalence relation. Since communicating relation is an
equivalence relation, communicating classes partitions a state space. Let us
define

[i] := {j ∈ X |i↔ j}.

1 2

34
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Then [1], [2, 3], [4] partition the above Markov chain. If a Markov chain
consists of one communicating class, we call the chain is irreducible;

Definition 3.2.6. (Irreducibility). We say a Markov chain is irreducible if it
has only one communicating class. In other words, a Markov chain with state
space X and transition matrix P is irreducible if for each x, y ∈ X , there
exists a non-negative integer t such that P t(x, y) > 0.

If a Markov chain is irreducible, given any two states in state space X , we
can reach one state from the other state in some step; the number of steps
depends on the choice of two states; this means we can reach all states given
sufficient time, no matter what the initial distribution was.

Definition 3.2.7. (Period). The period of state i (written d(i)) is the greatest
common divisor of a set D(i) := {t ≥ 1 : P t(i, i) > 0}.

Let X be a finite state space of an irreducible Markov chain. Then, for
i, j ∈ X , i → j and j → i. Hence, i → i. Therefore, we can assure that the
set {t ≥ 1 : P t(i, i) > 0} is not empty, and hence we can define the period in
irreducible Markov chain without any problem.

Definition 3.2.8. (Aperiodic). A Markov chain is aperiodic if every state has
period 1. Otherwise, we call the chain is periodic.

Lemma 3.2.2. For an irreducible Markov chain, the period is constant on the
state space.

Proof. Let X be a finite state space of a Markov chain with transition matrix P
and i, j ∈ X . The periods of i and j are gcdD(i) = gcd{t ≥ 1 : P t(i, i) > 0}
and gcdD(j) = gcd{t ≥ 1 : P t(j, j) > 0} respectively. First, we prove
gcdD(i) ≥ gcdD(j).

Since P is irreducible, there exists t1, t2 ∈ Z+ such that

P t1(i, j) > 0, P t2(j, i) > 0. (3.5)

We observe that

P t1+t2(j, j) = P t2 · P t1(j, j) =
∑
k∈X

P t2(j, k)P t1(k, j) ≥ P t2(j, i)P t1(i, j).
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Hence
P t2+t1(j, j) ≥ P t2(j, i)P t1(i, j) > 0, (3.6)

and t1 + t2 ∈ D(j). Suppose t ∈ D(i). Because

P t+t1+t2(j, j) ≥ P t2(j, i)P t(i, i)P t1(i, j) > 0,

we get t+ (t1 + t2) ∈ D(j). Since t1 + t2, t+ (t1 + t2) ∈ D(j),

t1 + t2 = k1 · gcdD(j)
t+ t1 + t2 = k2 · gcdD(j)

for some k1, k2 ∈ Z. Then

t = (k2 − k1) · gcdD(j).

Since k2 − k1 ∈ Z, we get t ∈ D(j). Recall that t was an arbitrary ele-
ment of D(i) and greatest common divisor for D(i) is gcdD(i) as we set
at the beginning. Therefore gcdD(j) ≤ gcdD(j). A dual argument asserts
gcdD(j) ≥ gcdD(j). Hence

gcdD(j) = gcdD(j)

as desired.

Since the period of irreducible Markov chain is constant on the state space,
showing the period of one state is aperiodic implies the irreducible Markov
chain is aperiodic.

Lemma 3.2.3. (Bézout’s Identity). Let a and b be integers. Then there exists
integers x and y such that

ax+ by = gcd(a, b).

Proof. Let S be the set S := {ax + by | x, y ∈ Z}. Observe the set S is
not empty; for example, {−a, a,−b, b} ⊆ S. Since the set is not empty, we
can apply the well-ordering principle. We claim that the smallest element
c = ax′+ by′ of the set S is gcd(a, b).
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We first show c is a common divisor for a and b. From the division algorithm,

a = qc+ r, 0 ≤ r < c.

Then

r = a− qc
= a− q(ax′+ by′)
= a(1− qx′)− b(qy′).

Observe that r is a linear combination of a and b, and therefore r ∈ S.
However, we set c to be the smallest element of S and 0 ≤ r < c. Thus the
only possible value that r can take is 0. Therefore we conclude c divides a. A
dual argument shows c divides b.

It remains for us to show c is the greatest common divisor of a and b. Suppose
d is any common divisor of a and b such that a = de and b = df . Then

c = ax′+ by′

= (de)x′+ (df)y′

= d(ex′+ fy′).

Hence d | c and this implies d ≤ c. This concludes that c is a gcd(a, b).

Lemma 3.2.4. Let S be any set of non-negative integers. Suppose gcdS = 1
and the set S is closed under addition. Then there exists an integer x such that
y ≥ x implies y ∈ S.

Proof. From the Bézout’s identity, we know there exits integers a1, a2, · · · , an
such that

a1s1 + a2s2 + · · ·+ ansn = 1 (3.7)

where si ∈ S. There are two cases to consider: case 1 is when all the
integer coefficients ai ≥ 0 for all i; case 2 is when we have negative integer
coefficients.

In case 1, since S is closed under addition, 1 ∈ S; this finishes the proof
because for all non-negative integers x,

x = x · 1 = x · (a1s1 + a2s2 + · · ·+ ansn) ∈ S.
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In case 2, suppose a1, a2, · · · , ai ≥ 0 and ai+1, ai+2, · · · , an < 0; otherwise, we
can reorder the variables and relabel them. Since S is a set closed under
addition, observe that

b1 := a1s1 + a2s2 + · · ·+ aisi ∈ S
b2 := −(ai+1si+1 + ai+2si+2 + · · ·+ ansn) ∈ S

Also (3.7) can be rewritten as

a1s1 + a2s2 + · · ·+ ansn = b1 − b2 = 1. (3.8)

Now suppose b2 ≥ 1; when b2 = 0, this case is same as the first case we
discussed. We want to show there exists a positive integer y such that x ≥ y

implies x ∈ S. In order to prove this, we need to show an arbitrary integer
with some constraint can be written as a linear combination of elements of S
with positive coefficients. Suppose x ≥ b2

2. Then by Euclidean algorithm,

x = qb2 + r, 0 ≤ r < b2

= qb2 + r · 1.
(3.9)

Substituting 1 with b1 − b2 by (3.8) yields

x = qb2 + r(b1 − b2) = rb1 + (q − r)b2.

Showing q − r is a positive coefficients proves that x ∈ S, and this completes
the proof. Combining the equation and the inequality in (3.9) leaves

b2
2 ≤ x = qb2 + r < (q + 1)b2.

Then b2
2 ≤ (q + 1)b2. Dividing both sides of inequality by b2 and rewriting the

inequality gives
q ≥ b2 − 1.

Subtracting r from the both sides of inequality yields

q − r ≥ b2 − 1− r. (3.10)

Recall that
0 ≤ r < b2.
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This inequality implies

−1− r ≤ −1 < b2 − 1− r (3.11)

Combining (3.10) with (3.11) results

q − r ≥ b2 − 1− r > −1.

Hence q − r ≥ 0 and x is a linear combination of b1 and b2 with positive
coefficients. Thus x is an element of S and this completes the proof.

Now we are ready to prove that in the case of finite Markov chain, the
ergodicity is equivalent to aperiodicity plus the irreducibility.

Proposition 3.2.1. For an aperiodic and irreducible Markov chain which has
a finite state space X and transition matrix P , there exists t0 ∈ Z+ such that
t ≥ t0 implies P t(i, j) > 0 for all i, j ∈ X .

Proof. Recall from Lemma 3.2.2, the period is constant on the state space
of an irreducible Markov chain. Therefore gcd T (i) = gcd{t ≥ 1 | P t(i, i) >
0} = 1 for all i ∈ X . We first observe that T (i) is closed. Let t1, t2 ∈ T (i).
Then t1 + t2 ∈ T (i); this is because

P t1+t2(i, i) ≥ P t1(i, i)P t2(i, i) > 0.

Hence, T (i) is closed under addition. Since the set T (i) is closed under
addition and has greatest common divisor as a 1, it follows from Lemma
3.2.4 that there exists t(i) such that ti ≥ t(i) implies ti ∈ T (i).

Since P is an irreducible Markov chain, there exits t(ij) such that P t(ij)(i, j) >
0; the value t(ij) is dependent on the choice of i and j. Then

P ti+t(ij)(i, j) ≥ P ti(i, i)P t(ij)(i, j) > 0.

Letting t(ij) := maxj∈X (t(ij)). Then tij ≥ t(ij) implies P ti+tij (i, j) > 0.
Finally, let the value of t(i) be maxi∈X t(i) where t(i) ∈ T (i). Then t ≥
t(i) + t(ij) implies

P t(i, j) > 0 for all i, j ∈ X

as we desired.

3.2 Finite State Markov Chain 59



Definition 3.2.9. (Hitting Time). Let a sequence of random variables
(X0, X1, · · ·) be a Markov chain with finite state space X and transition
matrix P . The hitting time for x ∈ X is

Ti := min {t ≥ 0|Xt = i}.

Remark. We also define T+
i := min {t ≥ 1|Xt = i} and T (n)

i denotes n-th visit
to the state i.

1 2

34

Suppose X0 = 1. Then P1(T2 <∞) = 1. However, in case when X0 = 4, we
get P1(T2 <∞) = 0.

Definition 3.2.10. (Stopping Time). Let {X0, X1, · · ·} be a Markov chain.
Then the stopping time with respect to this Markov chain is a random
variable T : X → Z+ ∪ {0,∞} such that the event {T = n} only depends on
the previous (X0, X1, · · · , Xn) for all n.

The examples of stopping time are hitting time and n-th time of getting head
when tossing a coin. However, the last exit time of a state i,

max{n ≥ 0|Xn = i},

is not a hitting time because the last exit time depends on the future also.

We will see a Markov property plus stopping time implies a strong Markov
property.

Theorem 3.2.5. (Strong Markov Property). Let (Xn|n ≥ 0) be a Markov chain
with a transition matrix P and T be a stopping time with respect to this time.
Then

Prob(XT+1 = i1, XT+2 = i2, · · · |XT = i0, T <∞) = P (i0, i1)P (i1, i2) · · ·
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Proof. Let A be an event depend on X0, X1, · · · , XT . Then

Prob(XT+1 = i1, XT+2 = i2, · · · ;A, T = n,XT = i0)

= Prob(XT+1 = i1, XT+2 = i2, · · · ;A, T = n,XT = i0)
Prob(A, T = n,XT = i0) ·Prob(A, T = n,XT = i0)

= Prob(XT+1 = i1, XT+2 = i2, · · · |A, T = n,XT = i0)Prob(A, T = n,XT = i0)

Since the event A depends on only X0, X1, · · · , Xn and independent on the
future events after XT ,

Prob(XT+1 = i1, XT+2 = i2, · · · ;A, T = n,XT = i0)
= Prob(XT+1 = i1, XT+2 = i2, · · · |T = n,XT = i0)Prob(A, T = n,XT = i0)

Because of Markov property, we get

Prob(XT+1 = i1, XT+2 = i2, · · · ;A, T = n,XT = i0)
= P (i0, i1)P (i1, i2)P (i3, i4) · · ·Prob(A, T = n,XT = i0).

Therefore

Prob(XT+1 = i1, XT+2 = i2, · · · |T = n,XT = i0)Prob(A, T = n,XT = i0)
= P (i0, i1)P (i1, i2)P (i3, i4) · · ·Prob(A, T = n,XT = i0)

By summing over for n = 1, 2, 3, · · ·, we get

Prob(XT+1 = i1, XT+2 = i2, · · · |T <∞, XT = i0)Prob(A, T <∞, XT = i0)
= P (i0, i1)P (i1, i2)P (i3, i4) · · ·Prob(A, T <∞, XT = i0)

and upon dividing above equation by Prob(A, T <∞, XT = i0), we get

Prob(XT+1 = i1, XT+2 = i2, · · · |T <∞, XT = i0) = P (i0, i1)P (i1, i2)P (i3, i4) · · ·

as we desired.

Definition 3.2.11. (Regenerative Process). A regenerative process {Xt|t ≥
0} is a random process such that there exist points 0 ≤ T 1 < T 2 < T 3 < · · ·
such that following two properties holds;

(1) {Xt|T r ≤ t < T r+1} has same distribution as {Xt|T r−1 ≤ t < T r}.
(2) {Xt|T r ≤ t < T r+1} is independent of {Xt|0 ≤ t < T r}
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We show the Markov chain with a stopping time T is a regenerative process.

Let Ti be a hitting time of a state i of a Markov chain:

Ti := T
(1)
i := min {t ≥ 1|Xt = i} and T

(0)
i := 0

We recursively define n-th hitting time:

T
(n)
i := min {t ≥ T

(n−1)
i + 1|Xt = i}.

Now, let us define n-th excursion:

X (n)
i := {Xt|T (n)

i ≤ t < T
(n+1)
i } for n ∈ Z+

and
X (0)

i := {Xt|0 ≤ t < Ti}

Theorem 3.2.6. Let {Xt|t ≥ 0} be a Markov chain and let {T (n)
i |n = 0, 1, 2, · · ·}

be a set of n-th hitting time of state i. Then for T (n)
i <∞,

(1) X (n)
i is independent of X (0)

i ,X (1)
i , · · · ,X (n−1)

i

(2) The distribution of X (n)
i is same as X (n−1)

i for all n = 2, 3, 4, · · ·.

Proof. By applying the strong Markov property (Theorem 3.2.5) at stopping
time T (n)

i , we get {X
T

(n)
i +t|t ≥ 0} is independent of {Xt|0 ≤ t < T

(n)
i }. Thus

(1) holds.

Since Markov chain is assumed to be time-homogeneous, we get the same
distribution for X (n)

i for n ∈ Z+.

3.3 Classification of States

Definition 3.3.1. (Recurrent). Let {Xt|t ≥ 0} be a Markov chain. Then state
i is called recurrent if

Prob(Ti <∞|X0 = i) = 1.
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Definition 3.3.2. (Transient). Let {Xt|t ≥ 0} be a Markov chain. Then state
i is called transient if

Prob(Ti <∞|X0 = i) < 1.

Let Vi denote the number of visits to a state i of a Markov chain.

Vi =
∞∑
t=1

1{Xt=i} where 1Xt=i

1 if Xt = i,

0 if Xt 6= i.

Recall that T (n)
i is the n-th hitting time of the state i. Then it follows that

Vi = max{n ≥ 0|T (n)
i <∞}.

Lemma 3.3.1. Prob(Vi ≥ t|X0 = i) =
´

Prob(Ti < ∞|X0 = i)
¯t

for all
t ∈ Z+ ∪ {0}.

Proof. When t = 0, it is trivially true from the definition. For inductive step,
assume above statement holds for t = n. By applying the strong Markov
property at T (n)

i , we get

Probi(Vi ≥ n+ 1) = Probi(Vi ≥ n)Probi(Vi ≥ 1).

By inductive hypothesis, we know Probi(Vi ≥ n) =
´

Probi(Ti < ∞)}
¯n

.
Thus,

Probi(Vi ≥ n+ 1) =
´

Probi(Ti <∞)}
¯n

Probi(Vi ≥ 1)

=
´

Probi(Ti <∞)}
¯n

Probi(Ti <∞)

=
´

Probi(Ti <∞)}
¯n+1

.

as desired.

Suppose state i is recurrent. Then a process starting from i will visit the
state i with the probability 1. Again, by the Markov property, the process will
revisit the state. Applying the Markov property recursively, we conclude that
the state will be revisited infinitely many times.
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Suppose now that a state i is transient. Then Prob(Ti <∞|X0 = i) < 1 by
definition. Then Prob(Vi < ∞) = 0. Hence, the state i is revisited finitely
many times during the process.

Lemma 3.3.2. Suppose a state i of a Markov chain is recurrent. Then the
followings are equivalent.
(a) Prob(Vi =∞|X0 = i) = 1
(b) Prob(Ti <∞|X0 = i) = 1
(c)

∑∞
t=0

´

Prob(Ti <∞|X0 = i)
¯t

=∞

Proof. From the previous discussion, we know (a) is equivalent to (b). Sup-
pose now (b) holds. Observe that from Proposition 3.1.3 and Lemma 3.3.1,

Ei(Vi) =
∞∑
t=0

Prob(Vi > r)

=
∞∑
t=0

´

Prob(Ti <∞|X0 = i)
¯t

=
∞∑
t=0

1

=∞.

Hence (b) implies (c).

Suppose (c) holds. Then

E(Vi) =
∞∑
t=0

´

Prob(Ti <∞|X0 = i)
¯t

= 1
1−Prob(Ti <∞|X0 = i)

=∞.

Hence Prob(Ti <∞|X0 = i) equals to 1 as desired, and this completes the
proof.

Lemma 3.3.3. Suppose a state i of a Markov chain is transient. Then the
followings are equivalent.
(a) Prob(Vi <∞|X0 = i) = 1
(b) Prob(Ti <∞|X0 = i) < 1
(c)

∑∞
t=0

´

Prob(Ti <∞|X0 = i)
¯t

<∞
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Proof. From the previous discussion, we know (a) is equivalent to (b). We
show (b) is equivalent to (c). Suppose (b) holds. Then observe that from
Proposition 3.1.3 and Lemma 3.3.1,

Ei(Vi) =
∞∑
t=0

Prob(Vi > r)

=
∞∑
t=0

´

Prob(Ti <∞|X0 = i)
¯t

= 1
1−Prob(Ti <∞|X0 = i)

<∞.

Hence (b) implies (c).

Suppose now (c) holds. Then

E(Vi) = 1
1−Prob(Ti <∞|X0 = i)

<∞.

Hence Prob(Ti < ∞|X0 = i) must be less than1, and this completes the
proof.

Corollary 3.3.4. Any state of a Markov chain is either recurrent or transient.

Proof. Observe that Prob(Ti <∞|X0 = i) is either less than 1 or equals to 1.
Then from Lemma 3.3.2 and Lemma 3.3.3, all the states of Markov chain is
either recurrent or transient.

Corollary 3.3.5. State i or a Markov chain with a transition matrix P is
recurrent if

∑∞
n=1 P

n
ii =∞ and transient if

∑∞
n=1 P

n
ii <∞.
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Proof. From Lemma 3.3.2 and 3.3.3, we showed that state i is recurrent if
E[Vi] =∞ and transient if E[Vi] <∞. Observe that

E[Vi] = E[
∞∑
n=0

I{Xn=i}|X0 = i]

=
∞∑
n=0

E[I{Xn=i}|X0 = i]

=
∞∑
n=0

Prob(Xn = i|X0 = i)

=
∞∑
n=0

P n(i, i).

Hence state i is recurrent if
∑∞
n=1 P

n(i, i) =∞ and transient if
∑∞
n=1 P

n(i, i) <
∞.

Corollary 3.3.6. If state i is a transient state of a Markov chain with a transi-
tion matrix P and a state space X , then

P n(j, i)→ 0 as n→ 0.

Proof. First observe that

E[Vi|X0 = j] = E[
∞∑
n=0

I{Xn=i}|X0 = j]

=
∞∑
n=0

Prob(Xn = i|X0 = j)

=
∞∑
n=0

P n(j, i).

Since i is transient we have E[Vi|X0 = j] <∞, and therefore in case j → i,
we must have P n(j, i)→ 0 as n→∞ because the sum must be convergent;
in case i is not accessible from j, we have P n(j, i) = 0.

Theorem 3.3.7. Transient and recurrent are communicating class properties.

Proof. Let a state i be transient and a state j communicate with j. Let P be a
transition matrix of a Markov chain. Then there exists t1 and t2 such that

P t1(i, j) > 0, P t2(j, i) > 0.
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Then
∞∑
t=0

P t(j, j) ≤ 1
P t1(i, j) · P t2(j, i)

∞∑
t=0

P t1+t2+t(i, i)

Since i is a transient state, therefore from Lemma 3.3.3, we know

∞∑
t=0

P t1+t2+t(i, i) <∞.

Therefore
∞∑
t=0

P t(j, j) <∞,

and therefore by Lemma 3.3.3, j is also transient. This proves that if one state
of a communicating class is transient, all the states in the class are transient.
Now suppose one of the states of communicating class is not transient. Then
that state is recurrent by Corollary 3.3.4. By our previous observation that
transient is a class property, if one of the states of the chain is recurrent, other
states must be recurrent; otherwise, we see the contradiction.

Even if Prob(Ti <∞|X0 = i) = 1, observe that it does not guarantee E[Ti] <
∞. We introduce definitions of positive recurrent and null recurrent.

Definition 3.3.3. (Positive Recurrent). A state i is positive recurrent if it is
recurrent and E[Ti] <∞.

Definition 3.3.4. (Null Recurrent). A state i is positive recurrent if it is
recurrent and E[Ti] =∞.

Positive and null recurrence are also class properties:

Lemma 3.3.8. (Wald’s Identity). Let {Xn}n≥1 be independent and identically
distributed (i.i.d.) random variables which have a finite expectation. Let T be
a stopping time which is independent of {Xn}n≥1 and which also has a finite
expectation. Then

E[X1 +X2 + · · ·+XT ] = E[X1]E[T ].

Proof. Observe that
T∑
t=1

Xt =
∞∑
t=1

XtI{T≥t},
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where I{T≥t} is a indicator random variable. Substituting
∑T
t=1 Xt in E[∑T

t=1 Xt]
yields

E[
T∑
t=1

Xt] = E[
∞∑
t=1

XtI{T≥t}].

By the linearity of the expectation, we get

E[
T∑
t=1

Xt] =
∞∑
t=1

E[XtI{T≥t}].

By applying the law of iterated expectation (Theorem 3.1.2) we arrive at

E[
T∑
t=1

Xt] =
∞∑
t=1

E[E[XtI{T≥t}|X1, X2, · · · , Xt−1]].

Recall that T is a stopping time. Then by the strong Markov property, T is
only dependent on X1, X2, · · · , Xt−1. Thus I{T≥t} is completely determined
by X1, X2, · · · , Xt−1, and therefore we can pull I{T≥t} from conditional expec-
tation:

E[
T∑
t=1

Xt] =
∞∑
t=1

E[I{T≥t}E[Xt|X1, X2, · · · , Xt−1]].

Recall that Xn’s are independent. Hence

E[
T∑
t=1

Xt] =
∞∑
t=1

E[IT≥tE[X1]]

= E[X1]
∞∑
t=1

E[I{T≥t}]

From the Definition 3.1.8, we observed that the expectation of the indicator
random variable is E[I{T≥t}] = Prob(T ≥ t). Therefore

E[
T∑
t=1

Xt] = E[X1]
∞∑
t=1

Prob(T ≥ t).

Applying the Proposition 3.1.3 yields

E[
T∑
t=1

Xt] = E[X1]E[T ],

as we wished.

Theorem 3.3.9. Positive and null recurrence are class properties.
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Proof. Let state i be null recurrent of a Markov chain with a transition matrix
P , and let state i communicate with j. Since i ↔ j, there exists n satisfies
P n(ij) > 0; let n be a smallest positive integer satisfies the inequality. Now
let A be a event such that

A = {Xn = j and Ti > n given X0 = i}.

Because i is a null recurrent and E[Ti] ≥ E[Ti, A],

∞ > E[Ti] ≥ E[Ti, A]
= E[Ti|A]P (A)
= (n+ E[Tij])P (A)

where Tij denotes the first hitting time of state j given X0 = i. In order
to make above inequality holds, we must have E[Tij] < ∞; otherwise, we
have E[Ti] >∞ which contradicts our assumption that i is null recurrent. It
remains for us to show E[Tji] <∞.

Let {Yn}n≥1 be i.i.d. random variables with each distribution same as Ti.
Then n-th hitting time of state i is

T
(n)
i = Y1 + Y2 + · · ·+ Yn.

Let N be a number of time that the process visits state i until the process
hits state j. Then N is a stopping time. To see E[N ] <∞, let the probability
p denotes the probability of the process visits state i before visiting state j.
Suppose the process visits i, then by the strong Markov property, the future
after the process visits i is independent of the past before the process hits
the state i. Then we can observe that N is a geometric distribution with
probability p, and therefore E[N ] <∞. Observe that the following inequality
holds;

Tji ≤
N∑
n=1

Yn.

Applying Wald’s Identity (Lemma 3.3.8), yields

E[Tji] ≤ E[
N∑
n=1

Yn] = E[Y1]E[N ] <∞.
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Hence E[Tji] <∞ and

E[Tj] ≤ E[Tji] + E[Tij] <∞

as we wished. Thus null recurrence is a class property. Observe that the
recurrent state is either positive recurrent or null recurrent. If one state in the
communicating class is positive recurrent, other states must also be positive
recurrent; otherwise, since null recurrence is a class property, all the states
should be null recurrent.

Lemma 3.3.10. An irreducible finite Markov chain with a transition probability
P is recurrent.

Proof. Since the chain is irreducible and finite, there must be at least one
state i such that state i is visited infinitely many times; otherwise, if all the
state are transient, we will eventually run out of state to visit as the chain
moves. By the strong Markov property,

0 < P (Xn = i for infinitely many n)
= P (Xn = i for some n)Pi(Vi =∞).

(3.12)

From Lemma 3.3.2, 3.3.3 and Corollary 3.3.4, we showed any state of Markov
chain is either transient or recurrent. Hence Pi(Vi = ∞) equals to either
1 or 0. To make the inequality 3.12 holds, we must have Pi(Vi = ∞) = 1.
Therefore state i is recurrent. Since recurrent is a class property followed by
Theorem 3.3.7, we conclude the chain is also recurrent.

Proposition 3.3.1. An irreducible finite Markov chain with a transition matrix
P and a state space X is positive recurrent.

Proof. Because positive recurrence is a class property by Theorem 3.3.9,
showing at least one state of a Markov chain is positive recurrent proves the
chain is positive recurrent. Recall that the transition matrix P is stochastic;

∑
j∈X

P (i, j) = 1.
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Lemma 3.2.1 implies when P is stochastic, P n is also stochastic for all n.
Hence

lim
n→∞

∑
j∈X

P n(i, j) = 1. (3.13)

Since the sum is finite, we can put limits inside the finite sum;

∑
j∈X

lim
n→∞

P n(i, j) = 1

If all states are null recurrent, then limn→∞ P
n(i, j) = 0 for all j, and therefore∑

j∈X limn→∞ P
n(i, j) = 0. This contradicts the equation 3.13. Hence at least

one state must be positive recurrent and this proves the chain is positive
recurrent.

3.4 Existence and Uniqueness of Stationary
Distribution

Definition 3.4.1. (Stationary Distribution). Let π be a distribution of a
Markov chain {Xn}n≥0 with a transition matrix P and a state space X . The
distribution π is stationary if π satisfies the balance equation

π = πP

or equivalently,
π(i) =

∑
j∈X

π(j)P (j, i)

for all j ∈ X

Remark. If µ0 = π, then µn = π for all n

Obviously, from the balance equation, we know the stationary distribution
is a left eigenvector with an eigenvalue 1. One may ask whether all Markov
chain has stationary distribution. However, we can think of counterexamples.
Suppose a Markov chain is not irreducible; suppose a state space X = A ∪B
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where A and B has a stationary distribution πa and πb respectively. Given a
transition matrix P as

P =
«

PA 0
0 PB

ff

where PA and PB are transition matrix of A and B respectively. Then π =
”

qπa (1− q)πb
ı

where 0 ≤ q ≤ 1 is an infinite set of stationary distributions
of the chain. On the other hand, given a transition matrix P

P =

»

—

—

—

—

—

—

–

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

any distribution π with
∑
i π(i) = 1 is a stationary distribution.

Now one may ask if stationary distribution exists, under what condition it is
unique. We will see that the irreducible Markov chain has a unique stationary
distribution if and only if it is positive recurrent. We will show the existence
of unique stationary distribution by constructing it.

Definition 3.4.2. (Probability Flux). Given two subsets A and B of a state
space of a Markov chain with a transition matrix P , the probability flux is
given by

flux(A,B) =
∑
i∈A

∑
j∈B

π(i)P (i, j).

Proposition 3.4.1. A distribution π is stationary if and only if

flux(A,AA) = flux(AA, A)

for all A ⊂ X and
∑
i∈X π(i) = 1.

Proof. (⇒): Since the balance equation holds

π(i) =
∑
j∈X

π(j)P (j, i)

=
∑
j∈A

π(j)P (j, i) +
∑
j∈AA

π(j)P (j, i)
(3.14)
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for some fixed subsetA of the state space. Observe that π(i) = π(i)∑j∈X P (i, j)
since P is stochastic. Thus

π(i)
∑
j∈X

P (i, j) =
∑
j∈A

π(j)P (j, i) +
∑
j∈AA

π(j)P (j, i)

or equivalently,

∑
j∈A

π(i)P (i, j) +
∑
j∈AA

π(i)P (i, j) =
∑
j∈A

π(j)P (j, i) +
∑
j∈AA

π(j)P (j, i).

Applying
∑
i∈A on the both sides of above equation yields

∑
i∈A

∑
j∈A

π(i)P (i, j)+
∑
i∈A

∑
j∈AA

π(i)P (i, j) =
∑
i∈A

∑
j∈A

π(j)P (j, i)+
∑
i∈A

∑
j∈AA

π(j)P (j, i).

(3.15)
Observe that

∑
i∈A

∑
j∈A π(i)P (i, j) equals to

∑
i∈A

∑
j∈A π(j)P (j, i). Hence

3.15 becomes ∑
i∈A

∑
j∈AA

π(i)P (i, j) =
∑
i∈A

∑
j∈AA

π(j)P (j, i)

which can be rewritten as

flux(A,AA) = flux(AA, A)

as we wished.

(⇐): Suppose flux(A,AA) = flux(AA, A). By setting A = {i}, we get

∑
a∈{i}

∑
b∈{i}A

π(a)P (a, b) =
∑
a∈{i}A

∑
b∈{i}

π(a)P (a, b) (3.16)

The left side of the equation 3.16 equals to

∑
a∈{i}

∑
b∈{i}A

π(a)P (a, b) =
∑
b∈{i}A

π(i)P (i, b).

The right side of the equation 3.16 equals to

∑
a∈{i}A

∑
b∈{i}

π(a)P (a, b) =
∑
a∈{i}A

π(a)P (a, i).
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Therefore, ∑
b∈{i}A

π(i)P (i, b) =
∑
a∈{i}A

π(a)P (a, i). (3.17)

Combining above equation 3.17 with
∑
i∈X π(i) = 1 and naming variables

differently, we get
π(i) =

∑
j∈X

π(j)P (j, i)

as desired.

However, solving systems of equations may be cumbersome. We will con-
struct a stationary distribution and give an exact formula at the end of this
chapter.

Theorem 3.4.1. An irreducible Markov chain {Xt}t≥0 with a transition matrix
P has a stationary distribution if and only if it is positive recurrent.

Proof. (⇒): Recall that positive recurrence is a class property. We first
show if an irreducible Markov chain is positive recurrent, then there exists a
stationary distribution. We will show the existence of stationary distribution
by constructing it. Let us define and recall some variables;

T
(0)
i = T+

i := min{t|t ≥ 1, Xt = i}
T

(n)
i := min{t|t ≥ T

(n−1)
i + 1, Xt = i};

X (0)
i := {Xt|0 ≤ t < Ti, X0 = i};

X (n)
i := {Xt|T (n)

i ≤ t < T
(n+1)
i };

Nj =
∞∑
t=1

I{Xt=j,Ti≥t}.

Also recall from Theorem 3.2.6, given T
(n)
i , the n-th hitting time of state i,

n-th excursion X (n)
i is independent of X (0)

i , · · · ,X (n−1)
i . Furthermore, the

distributions of excursions are same for all n. This implies that the proportion
of the times that the chain spends at state j are same for all excursions. This
also implies that the proportion of time that chain spends in state j for long
run time is same as the proportion of the time spent in n-th excursion. To
guarantee n-th excursion exists, we must have every state to be recurrent;
otherwise Pi(Ti < ∞) < 1 and we are unable to define n-th excursion for
sure.
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Observe that our previous discussion implies

E[Ti] =
∑
j∈X

E[Nj|X0 = i];

In words, the expected length of first excursion X (0)
i equals the sum of

expected number of visits to state during X (0)
i . To make sure the expected

length of excursion to be finite, we must have every state of the chain to be
positive recurrent; otherwise, we will have E[Ti] =∞.

Let us define a new variable d(j);

d(j) = E[Nj|X0 = i]

=
∞∑
t=1

E[I{Xt=j,Ti≥t}|X0 = i].

We will show d(j)/∑i∈X d(i) satisfies the balance equation, and therefore it is
a stationary distribution. Note that I{Xt=j,Ti≥t} is an indicator function, then

d(j) =
∞∑
t=1

Pi(Xt = j, Ti ≥ t) (3.18)

Define an event
Ak := {Xt−1 = k}

for all k ∈ X . Then Ak’s partition entire sample space. Applying this fact,
equation 3.18 can be rewritten as

d(j) =
∞∑
t=1

∑
k∈X

Pi(Xt = j,Xt−1 = k, Ti ≥ t).

Observe that when k = i, Pi(Xt = j,Xt−1 = k, Ti ≥ t) = 0 because we cannot
have Xt−1 = i at the same time Ti ≥ t. Hence

d(j) =
∞∑
t=1

∑
k 6=i

Pi(Xt = j,Xt−1 = k, Ti ≥ t). (3.19)

For simplicity, let

aij(t) :=
∑
k 6=i

Pi(Xt = j,Xt−1 = k, Ti ≥ t).
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Now observe that
aij(t) =

∑
k 6=i

aik(t− 1)P (k, j) (3.20)

for t = 2, 3, · · ·. Let us rewrite equation (3.19) by using notation from (3.20);

d(j) =
∞∑
t=1

aij(t)

= aij(1) +
∞∑
t=2

aij(t)
(3.21)

Here observe that aij(1) = ∑
k 6=i Pi(X1 = j,X0 = k, Ti ≥ 1) equals to P (i, j).

Substituting 3.21 with 3.20 yields

d(j) = P (i, j) +
∞∑
t=2

∑
k 6=i

aik(t− 1)P (k, j)

= P (i, j) +
∑
k 6=i

´ ∞∑
t=2

aik(t− 1)
¯

P (k, j)

= P (i, j) +
∑
k 6=i

d(k)P (k, j)

(3.22)

From the definition, d(i) = E[Ni|X0 = i]; it is a number of visits to state i
before the chain visits state i for the first time after its first visit at time 0.
Thus d(i) = 1. Applying this to (3.22) leaves

d(j) =
∑
k∈X

d(k)P (k, j).

Lastly, let us normalize d(j);

π(j) := d(j)∑
i∈X d(j) .

Then we see
π = πP

as we desired.

(⇐): We now show if stationary distribution exists, then the chain is positive
recurrent and furthermore the stationary distribution is unique. Suppose a
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stationary distribution exists for an irreducible Markov chain. Then there
exists π such that satisfies the balance equation;

π = πP. (3.23)

The balance equation (3.23) implies

π = πP n

or equivalently,
π(i) =

∑
j∈X

π(j)P n(j, i). (3.24)

Applying limit to (3.24) leaves

π(i) = lim
n→∞

∑
j∈X

π(j)P n(j, i). (3.25)

Since the sum is finite, (3.25) can be rewritten as

π(i) =
∑
j∈X

lim
n→∞

π(i)P n(j, i).

By Corollary 3.3.6, if i is a transient state then, limn→∞ P
n(j, i) = 0. Suppose

all states of chain are transient, then π(i) = 0 for all i. It contradicts the fact
that

∑
i∈X π(i) = 1. Thus our assumption that all state are transient is wrong

and hence there must exists a recurrent state. Recall that recurrent is a class
property; one state being recurrent implies all states must be recurrent.

We now prove the chain is positive recurrent, and show the uniqueness of
stationary distribution. Suppose initial distribution µ0 = π, then µn = π for
all n. We claim

E[Ti|X0 = i]π(i) = E[Ti|X0 = i]P (X0 = i) = 1.

From Proposition 3.1.3, E[Ti|X0 = i]P (X0 = i) can be rewritten as

E[Ti|X0 = i]P (X0 = i) =
∞∑
n=1

P (Ti ≥ n|X0 = i)P (X0 = i)

=
∞∑
n=1

P (Ti ≥ n,X0 = i).
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From the basic set theory, we know given two sets A and B, P (A ∩ B) =
P (A)−P (A∩BA). Setting A = {X1 6= i,X2 6= i, · · · , Xn−1 6= i}, B = {X0 = i}
leaves

∞∑
n=1

Prob(Ti ≥ n,X0 = i) = Prob(Ti ≥ 1, X0 = i)

+
∞∑
n=2

´

Prob(X1 6= i,X2 6= i, · · · , Xn−1 6= i)−Prob(X0 6= i,X1 6= i, · · · , Xn−1 6= i)
¯

Observe that Prob(Ti ≥ 1, X0 = i) equals to Prob(X0 = i). Also recall that
we assumed an initial distribution to be π, and therefore whole process is
stationary; hence we can shift the index of Prob(X1 6= i,X2 6= i, · · · , Xn−1 6=
i) by one and still have same probability. Note that following holds;

∞∑
n=1

Prob(Ti ≥ n,X0 = i) = Prob(X0 = i)

+
∞∑
n=2

´

Prob(X0 6= i,X1 6= i, · · · , Xn−2 6= i)−Prob(X0 6= i,X1 6= i, · · · , Xn−1 6= i)
¯

(3.26)

For the simplicity of notation, let us define a new variable;

bn := Prob(X0 6= i,X1 6= i, · · · , Xn 6= i). (3.27)

Applying this notation (3.27) to (3.26) yields

∞∑
n=1

Prob(Ti ≥ n,X0 = i) = Prob(X0 = i) +
∞∑
n=2

(bn−2 − bn−1)

=
´

Prob(X0 = i) + b0

¯

− lim
n→∞

bn

=
´

Prob(X0 = i) + Prob(X0 6= i)
¯

− lim
n→∞

bn

= 1− lim
n→∞

bn.

Observe that
lim
n→∞

bn = lim
n→∞

Prob(X0 6= i, · · · , Xn 6= i),

the probability that recurrent state i will never be visited given an initial
position at j. By the strong Markov property with hitting time T

(n)
j and
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irreducibility of the chain, for each excursion, there exists a positive integer
such that P n(j, i) > 0. Hence limn→∞ bn = 0. To sum up,

E[Ti|X0 = i]π(i) = 1,

and therefore
π(i) = 1

E[Ti|X0 = i] .

Since mean time to return to state i is unique, π is also unique. To see
the chain is positive recurrent, assume the chain is null recurrent. Then
E[Ti|X0 = i] = ∞, and therefore π(i) = 0 for all i ∈ X . But we may not
have

∑
i∈X π(i) = 1. Thus we have reached a contradiction and our original

assumption that the chain is null recurrent is wrong, and the chain must be
positive recurrent. This completes the proof.
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Random Walks on Finite
Groups

4

4.1 Upper Bound Lemma

Having studied some of the essential statements of group representation,
character theory, Fourier transform, and Markov chain, we are ready to
introduce random walks on finite groups.

Definition 4.1.1. (Random Walk). A random walk driven by a probability
measure µ on a group has a distribution at step n given by µ∗n where µ∗1 = µ

and µ∗n = µ ∗ µ∗(n−1).

We first verify µ∗n is a probability measure in the following proposition.

Proposition 4.1.1. Let P and Q be probability distributions on a finite group
G and suppose P and Q are independent. Then P ∗ Q is also a probability
distribution on G.

Proof. Since P and Q are probability distributions on a finite group G, fol-
lowing holds:

∑
g∈G

P (g) = 1,
∑
g∈G

Q(g) = 1,

0 ≤ P (g), Q(g) ≤ 1 for all g ∈ G.

From the definition of the convolution, for g ∈ G

P ∗Q(g) =
∑
h∈G

P (gh−1)Q(h).
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Observe that P (gh−1)Q(h) ≤ Q(h) ≤ 1 for h ∈ G because P (gh−1) ≤ 1.

Also, we can easily verify that
∑
g∈G P ∗Q(g) = 1;

∑
g∈G

P ∗Q(g) =
∑
g∈G

∑
h∈G

P (gh−1)Q(h)

=
∑
h∈G

Q(h)
∑
g∈G

P (gh−1).

Since P (gh−1) sums over all the elements in G once,
∑
g ∈ GP (gh−1) equals

to 1. Thus,

∑
g∈G

P ∗Q(g) =
∑
h∈G

Q(h) · 1

= 1 · 1 = 1.

Hence P ∗Q is a probability distribution on G.

We will introduce a property that convolution between two probability mea-
sures enjoys. Before stating the proposition, we recall the definition of
support of a function.

By using convolution, we can find a probability distribution of a sum of two
or more independent random variables. Let X and Y be two independent
random variables on G such that X ∼ P and Y ∼ Q. Let probability
distribution Z = XY be their sum, and let Z ∼ R. To calculate R(Z = g),
first suppose Y = h where h ∈ G. Then X must equal to gh−1 in order to
make Z = g. Hence R(Z = g) = ∑

h∈G P (gh−1)Q(h) = P ∗ Q(g). This is
an intuition behind the definition of the random walk; the n-th power of
convolution of a probability measure µ on a finite group G is a probability
distribution on n-th step.

Definition 4.1.2. (Support). Let P be a probability distribution on a group
G. The support of P is given by supp (P ) = {g ∈ G|P (g) 6= 0}.

Proposition 4.1.2. Let P and Q be probability distributions on a finite group
G, and let P and Q be independent. Then supp (P ∗Q) = supp (P ) · supp (Q).

Proof. From the definition of the support,

supp (P ∗Q) = {g ∈ G|
∑
h∈G

P (gh−1)Q(h) 6= 0}.
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Then g ∈ supp (P ∗Q) if and only if there exist h ∈ G such that gh−1 ∈
supp (P ) and h ∈ supp (Q). Since (gh−1) · h = g, we see that supp (P ∗Q) =
supp (P ) · supp (Q) as desired.

Definition 4.1.3. (Ergodic). A random walk driven by a probability measure
µ is called ergodic if there exits a positive integer t such that

supp(µ∗t) = G.

Example 4.1.1. Let µ be a probability on Z/101Z given by

µ(x) =


1
2 if x = ±1,
0 otherwise.

This is called a simple random walk and the general cases of this walk will
be revisited in the next example.

At step 0: µ is the probability distribution at step 0.

x
−3 −2 −1 0 1 2 3

1

At step 1: µ is the probability distribution at step 1.

x
−3 −2 −1 0 1 2 3

1
2

1
2

At step 2: µ ∗ µ is the probability distribution at step 2.

x
−3 −2 −1 0 1 2 3

1
4

1
2

1
4

At step 3: µ∗3 is the probability distribution at step 3.

x
−3 −2 −1 0 1 2 3

1
8

3
8

3
8

1
8
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The random walker’s position at n-th steps has the distribution

µ∗n = µ ∗ µ∗(n−1)

on Z/101Z. It is beneficial to study the Fourier transform of xµ∗n. It follows
from the definition of the Fourier transform that

pµ(n) =
∑

x∈Z/101Z
µ(x)e−2πinx/101.

Then

zµ ∗ µ(n) =
∑
x

µ ∗ µ(x)e−2πinx/101

=
∑
x

∑
y

µ(x− y)µ(y)e−2πinx/101

=
∑
x

∑
y

µ(x− y)e−2πin(x−y)/101µ(y)e−2πiny/101

=
´

pµ(n)
¯2

as expected; this can be also verified by Theorem 2.2.3. We see that after n
steps xµ∗n(ξ) = (pµ(ξ))n. Note that |e2πinξ/101|= 1. Then

|pµ(ξ)| =

∣∣∣∣∣∣
∑

x∈Z/101Z
µ(x)e−2πiξx/101

∣∣∣∣∣∣ ≤
∑

x∈Z/101Z
µ(x) = 1.

Also, note that if µ is a uniform measure U, then

pU(ξ) =
∑

x∈Z/101Z
U(x)e−2πiξx/101

= 1
101

∑
x∈Z/101Z

e−2πiξx/101

=

1 if ξ = 0,
0 if ξ 6= 0.

In this case, pU(ξ) detects whether ξ equals 0 or not.
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−3 −2 −1 0 1 2 3
1

Fig. 4.1: Step 0 of a Simple Random Walk on Z

More generally, given χ ∈ Ĝ, pU(χ) equals to δχ1. This is because

pU(χ) =
∑
g∈G

U(g)χ(g)

=
∑
g∈G

1
|G|

χ(g)

=
∑
g∈G

1
|G|

χ1(g)χ(g)

= 〈χ1, χ〉.

Finally by Schur’s orthogonality relations (Theorem 1.4.7), we get

pU(χ) = δχ1 .

Example 4.1.2. (Simple Random Walk on Z)

Let the state space X be Z. Let {Xn}n≥1 be independent and identically
distributed (i.i.d.) random variables where each random variable Xi is
defined as follows:

Xi =

1 with Prob(Xi = 1) = 1
2 ,

−1 with Prob(Xi = 1) = 1
2 .

The simple random walk on Z is a random process defined as W0 = 0 and

Wn := X1 +X2 + · · ·+Xn.

Here, note that at each step, the move is independent from the past;

Wn+1 = Wn +Xn+1.

At each time, the random walker moves to either left or right by one step
from the current position (Figure 4.1).
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Observe that Wt is binomially distributed:

Prob(W2t = 2j) = 1
22t

ˆ

2t
t+ j

˙

. (4.1)

To understand why (4.1) holds, think of selecting t + j random variables
among 2t independent random variables and assign the value 1 to each of
them. For the remaining 2t− (t+ j) random variables, we assign the value
−1 to them. As a result, we get

W2t = X1 +X2 + · · ·+X2t = 1 · (t+ j)− 1 · (2t− (t+ j)) = 2j

as we desired.

Let us calculate the expectation of Wt. First, note that

E[Xi] = 1 · 1
2 − 1 · 1

2 = 0

E[X2
i ] = 1 · 1

2 + 1 · 1
2 = 1.

(4.2)

The linearity of expectation (Proposition 3.1.1) and (4.2) yields

E[Wt] = E[X1] + · · ·+ E[Xt] = 0,

E[W 2
t ] = E[

´

X1 + · · ·+Xt

¯2
]

= E[
t∑
i

X2
i + 2

∑
i<j

XiXj]

= E[
t∑
i

X2
i ] + 2

∑
i<j

E[Xi]E[Xj]

= E[
t∑
i

X2
i ] + 0

= t.

Then the variance Var(Wt) is E[W 2
t ]− E[Wt]2 = t. Moreover, observe that if

t increases, the probability approaches a normal distribution:

1
?

2πt
e−

x2
2t .

4.1 Upper Bound Lemma 85



Fig. 4.2: Simple Random Walks on 1-Dimension (Left), Simple Random Walk on
2-Dimension (Right)

We give a generalized version of a simple random walk. There is a classic
example of a random walk on n-dimension. When the dimension is 1, we
can think of the random walk as a tossing a fair coin, similar to our previous
discussion. When the dimension is 2, we can think of the random walk like a
drunkard in New York City. The drunkard’s initial location is X0, and at each
step, the drunkard has an equal probability of moving east, west, south, and
north.

By using a Python, we can simulate random walks on n-dimensions. The
left figure in Figure 4.2 illustrates the random walk on 1-dimension. The
x-axis represents the number of steps, and the y-axis represents the position.
The right figure illustrates the random walk on 2-dimension. The blue line
represents the trajectory of a drunkard started from an initial position (0, 0).

Example 4.1.3. (Simple Random Walk on Zn)

Let X = Zn = {0, 1, 2, · · · , n − 1} be a state space, and define a transition
matrix P as follows:

P (j, k) =


1
2 if k ≡ j + 1 mod n,

1
2 if k ≡ j − 1 mod n,

0 otherwise.

A random walk on the n-cycle is a Markov chain with state space X and
transition matrix P as defined above. We give two examples of random walk
on n-cycle (Figure 4.3): 6-cycle and 7-cycle given that X0 = 0.
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0

1

2

3

4

5

0

1

2

34

5

6

Fig. 4.3: Random Walk on 6-Cycle (Left) and 7-Cycle (Right)

r.v\X 0 1 2 3 4 5

X1

X2

X3

X4

X5

r.v\X 0 1 2 3 4 5 6

X1

X2

X3

X4

X5

X6

The left table describes 6-cycle, and the right table describes 7-cycle. The
check-mark in (t, x)-th slot of the table indicates P t(0, x) > 0; the state x
is accessible from the state 0 in t-th step. We observe that both cycles are
irreducible from the above tables; both cycles have one communicating class.
Let us examine the period of each state of 6-cycle and 7-cycle.

We can partition the state X into two states; X1 = {0, 2, 4}, X2 = {1, 3, 5}.
Notice that the period of any state is 2 in 6-cycle case. Hence 6-cycle is
periodic.

The period of any state space in random walk on 7-cycle is 1. Hence, P is
aperiodic. Then by Proposition 3.2.1, there exists t(x) such that P t(x, y) > 0
for all x, y ∈ X and t > t(x). In this case, the t(x) is 5.

We can think the random walk on the n-cycle as follows. We toss a fair coin.
If the head is up, we move one step clockwise. Otherwise, we move one step
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counter-clockwise. Let Z be a random variable with uniform distribution on
{−1, 1}. Then the transition matrix P of this Markov chain can be defined as

P (x, y) := Prob{(x+ Z) mod n = y}.

The stationary distribution of random walk on 6-cycle is
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In general the stationary distribution of random walk on n-cycle is
”

1
n

1
n
· · · 1

n

ı

.

Like we have seen, not every simple random walk on Zn is aperiodic. We
introduce a lazy random walk on n-cycle which is always aperiodic no matter
what the value of n.

Definition 4.1.4. (Lazy Random Walk on n-cycle).

Let X = Zn = {0, 1, 2, · · · , n − 1} be a state space, and define a transition
matrix P as follows:

P (j, k) =


1
4 if k ≡ j + 1 mod n,

1
2 if k ≡ j mod n,

1
4 if k ≡ j − 1 mod n.

Note that P (j, j) = 1
2 > 0 for all j ∈ X , and therefore every state has period

1. Hence every lazy random walk on n-cycle is aperiodic.

Example 4.1.4. (Simple Random Walk on a Finite Graph G).
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Given a graph G = (V,E) where V is a set of vertices, and E is a set of edges,
a simple random walk on a finite graph G is a Markov chain with state space
V and transition matrix P defined as follows; for j, k ∈ V

P (j, k) =


1

deg(j) if x ∼ y

0 otherwise.

Observe that the stationary distribution π of a simple random walk on a finite
graph G is

(deg(x1)
2|E| ,

deg(x2)
2|E| , · · · , deg(xn)

2|E| )

for all xi ∈ V .

The topics that we are interested in are how many steps are required to get
close to the uniform distribution. We will use the total variance distance to
measure the distance between probability measures.

Definition 4.1.5. (Total Variation Distance). Let µ and ν be probability
measures on a measure space (X ,B). The total variation distance between
µ and ν is

||µ− ν||TV(X )= sup
A∈B
|µ(A)− ν(A)|.

There is a nice identity relation between total variation distance and L1 norm.
We first recall L1 norm.

Definition 4.1.6. (L1 norm) Let f be a function in CG. The L1 norm of the
function f is defined as

||f ||1=
∑
g∈G
|f(g)|.

Proposition 4.1.3. Let P and Q be probability measure on a finite group G.
Then

||P −Q||TV= 1
2 ||P −Q||1.

Proof. Let

A = {g ∈ G|P (g) > Q(g)}
B = {g ∈ G|P (g) ≤ Q(g)}.
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We claim ||P −Q||TV= P (A)−Q(A) = Q(B)− P (B). If P = Q, then we are
done. So suppose P 6= Q. Then it follows that there exists g ∈ G such that
P (g) > Q(g). Now let

||P −Q||TV= |P (C)−Q(C)| (4.3)

for C ⊆ G. We claim if ||P − Q||TV= |P (C) − Q(C)|, then ||P − Q||TV=
|P (Cc)−Q(Cc)|. A direct calculation shows it is true;

|P (Cc)−Q(Cc)| = |P (G \ C)−Q(G \ C)|
= |1− P (C)− 1 +Q(C)|
= |Q(C)− P (C)|
= |P (C)−Q(C)|
= ||P −Q||TV.

Hence
||P −Q||TV= |P (Cc)−Q(Cc)|= |P (C)−Q(C)|. (4.4)

Suppose P (g) > Q(g) for some g ∈ G with g ∈ C; otherwise, from equation
4.4, we can assume g ∈ Cc and get the same result. We want show C ⊆ A;
since |P (A)−Q(A)|> |P (C)−Q(C)|= ||P −Q||TV, showing C ⊆ A proves
||P −Q||TV= |P (A)−Q(A)| as required. First observe that |P (C)−Q(C)|=
P (C)−Q(C). Assume, for the sake of contradiction, |P (C)−Q(C)|= Q(C)−
P (C). Then

|P (C \ {g})−Q(C \ {g})| = Q(C \ {g})− P (C \ {g})

=
´

Q(C)− P (C)
¯

+
´

P (g)−Q(g)
¯

.

From our assumption P (g)−Q(g) > 0. Therefore,

|P (C \ {g})−Q(C \ {g})| > Q(C)− P (C)
= |P (C)−Q(C)|
= ||P −Q||TV.

(4.5)

However the inequality 4.5 contradicts equation 4.3 and the definition of
the total variation distance. Thus, we have reached a contradiction and
||P − Q||TV= |P (C) − Q(C)|= P (C) − Q(C). Therefore, C ⊆ A. Thus our
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assumption was wrong and C ⊆ A. It follows that |P −Q|TV= P (A)−Q(A).
A similar argument asserts |P −Q|TV= Q(B)− P (B). Thus,

|P −Q|TV= P (A)−Q(A) = Q(B)− P (B). (4.6)

Applying equation 4.6 to ||P −Q||TV gives

||P −Q||TV = 1
2

´

P (A)−Q(A) +Q(B)− P (B)
¯

= 1
2

´∑
g∈A
|P (g)−Q(g)|+

∑
g∈B
|P (g)−Q(g)|

¯

= 1
2

´∑
g∈G
|P (g)−Q(g)|

¯

= 1
2 ||P −Q||1,

the desired result.

Note that total variation distance sums over all the subsets of the state space.
By Proposition 4.1.3, we can get the total variation distance more easily.

We now introduce the upper bound Lemma introduced by Diaconis and
Shahshahani. This Lemma provides a tool to determine the distance.

Lemma 4.1.1. (Upper Bound Lemma). Let Q be a probability measure on a
finite abelian group G and U be a uniform measure on G. Then

||Q− U||2TV≤
1
4

∑
χ∈ pG\{χ1}

| pQ(χ)|2.

Proof. By Proposition 4.1.3,

||Q− U||2TV =
´1

2 |Q− U|1
¯2

= 1
4

´

|Q− U|1
¯2

= 1
4

´∑
g∈G
|Q(g)− U(g)|

¯2

= 1
4

´∑
g∈G
|Q(g)− U(g)|·χ1(g)

¯2

= 1
4

´

|G|
〈
|Q− U|, χ1

〉¯2
.

4.1 Upper Bound Lemma 91



Applying the Cauchy-Schwarz inequality yields,

||Q− U||2TV ≤
1
4

´

|G||Q− U||χ1|
¯2

= 1
4 |G|

2|Q− U|2·1.

The Plancherel identity (Corollary 2.2.6) gives

||Q− U||2TV ≤
1
4 |G||

pQ− pU|2

= 1
4 |G|

´

〈 pQ, pQ〉+ 〈pU, pU〉 − 2〈 pQ, pU〉
¯

.
(4.7)

Recall from our previous observation that pU(χ) = δχ1. Calculating inner
products gives

〈 pQ, pQ〉 = 1
|G|

∑
χ∈ pG

pQ(χ) pQ(χ),

〈pU, pU〉 = 1
|G|

∑
χ∈ pG

pU(χ)pU(χ) = 1
|G|

∑
χ∈ pG

δχ1 · δχ1 = 1
|G|

,

〈 pQ, pU〉 = 1
|G|

∑
χ∈ pG

pQ(χ)pU(χ) = 1
|G|

∑
χ∈ pG

pQ(χ)δχ1(χ) = 1
|G|

pQ(χ1),

= 〈Q,χ1〉 = 1
|G|

∑
g∈G

Q(g)χ1(g) = 1
|G|

∑
g∈G

Q(g) · 1 = 1
|G|

.

(4.8)

We can make substitutions in the equation 4.7 by using equations 4.8 to get
the desired result;

||Q− U||2TV ≤
1
4 |G|

´

〈 pQ, pQ〉+ 〈pU, pU〉 − 2〈 pQ, pU〉
¯

= 1
4 |G|

´ 1
|G|

∑
χ∈ pG

pQ(χ) pQ(χ) + 1
|G|
− 2 1
|G|

¯

Observe that pQ(χ1) = ∑
g∈GQ(g)χ1(g) = ∑

g∈GQ(g) = 1. Then

||Q− U||2TV ≤
1
4 |G|

´ 1
|G|

∑
χ∈ pG\{χ1}

| pQ(χ)|2+ 1
|G|

+ 1
|G|
− 2
|G|

¯

= 1
4

∑
χ∈ pG\{χ1}

| pQ(χ)|2.
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This completes the proof.

Remark. We can apply upper bound lemma to random walk by setting Q =
P ∗k. Then we get ||P ∗k − U||2TV≤ 1

4

∣∣∣ pP (χ)
∣∣∣2k.

4.2 Spectrum of Graph

Definition 4.2.1. (Spectrum of the Graph). Let G = (V,E) be a graph with
V as the set of vertices and E as the set of edges. The spectrum of the graph
is the set of eigenvalues of the adjacency matrix of graph G.

Remark. By the spectral theorem for symmetric matrices, we know an adja-
cency matrix of a graph G has real eigenvalues.

Recall that given a group G, CG is a set of all functions from G to C.

Definition 4.2.2. (Spectrum of the Random Walk). Let P be a probability
measure on a finite group G, and let T : CG → CG be a convolution operator
given by T (h) = P ∗ h. The spectrum spec (P ) of the random walk driven by
a probability measure P is the set of all eigenvalues of the linear operator T .

Lemma 4.2.1. Let P be a probability measure on a finite group G. Then

spec(P ) ⊆ {z ∈ C||z|≤ 1}.

Proof. For pP (χ) ∈ spec (P )

| pP (χ)| = |G|·|〈P, χ〉|
= |

∑
g∈G

P (g)χ(g)|

≤
∑
g∈G

P (g)|χ(g)|.

Since |χ(g)|= 1 for all g ∈ G,

| pP (χ)|≤
∑
g∈G

P (g) = 1.
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Theorem 4.2.2. Let G be a finite abelian group and f be an element of CG.
If T : CG → CG is a convolution operator given by T (h) = f ∗ h, then T is a
diagonalizable linear operator.

Proof. We first show T is a linear operator. Let h1, h2 : G → C. Then for
g1 ∈ G,

T (h1 + h2)(g1) = f ∗ (h1 + h2)(g1)
=
∑
g2∈G

f(g1g
−1
2 )(h1 + h2)(g2)

=
∑
g2∈G

f(g1g
−1
2 )

´

h1(g2) + h2(g2)
¯

=
∑
g2∈G

´

f(g1g
−1
2 )h1(g2)

¯

+
∑
g2∈G

´

f(g1g
−1
2 )h2(g2)

¯

= f ∗ h1(g1) + f ∗ h2(g1)
= T (h1)(g1) + T (h2)(g1).

Hence, T is a linear operator.

Recall from Schur’s orthogonality relations (Theorem 1.4.7), irreducible char-
acters form an orthonormal set. Hence showing T has irreducible characters
as eigenvectors with eigenvalue pf(χ) proves T is diagonalizable.

Let χ, ψ ∈ pG. From Theorem 2.2.3, we know

zf ∗ χ = pf · pχ.

By Schur’s orthogonality relations (Theorem 1.4.7), we know pχ(ψ) = |G|〈χ, ψ〉 =
|G| if and only if χ = ψ. Hence,

zf ∗ χ(ψ) = pf(χ) · |G|δχ. (4.9)

Applying the inverse Fourier transforms to (4.9) gives

f ∗ χ = pf(χ) · χ

or equivalently,
T (χ) = pf(χ)χ.
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Hence, χ is an eigenvector with the eigenvalue pf(χ). Therefore we conclude
that T is diagonalizable.

Applying theorem (Theorem 4.2.2) to random walks yields an immediate
corollary.

Corollary 4.2.3. Let G be a finite abelian group and let P be a probability
measure on G. Then the set of all characters χ such that pP (χ) = λ forms an
orthonormal basis for the eigenspace of λ.
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Abelian Sandpile Model
5

5.1 Abelian Sandpile Model and Laplacian
Operator

Let G be a graph with chips or grains of sand on its vertices as below; there
are three grains of sand on v1, one grain of sand on each of v2 and v3, and no
sand on vs.

v1

v2

v3

s

We call a vertex is stable if it has fewer grains of sand than its degree;
otherwise, we call a vertex unstable. Note that vertex v1 is unstable. We
can topple or fire an unstable vertex by giving one sand to each neighboring
vertices. We designate one vertex as a sink, and any grains of sands that falls
into the sink gets removed; the graph G has s as a sink vertex. After toppling
the vertex v1, we get the following configuration:
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v1

v2

v3

s

Observe that a sand that passed to the sink vertex s is removed. Also notice
that toppling of v1 made the other vertex v2 be unstable. The below diagram
shows the stabilization of a sandpile on G. At first, v2 is toppled, and v1 and
v3 are toppled in order.

v1

v2

v3

s

v1

v2

v3

s

v1

v2

v3

s

Later, we will see that the order of toppling does not impact the final configu-
ration of a sandpile, which is called an abelian property of the sandpiles.

Observer that v2 is still unstable from the last configuration. Hence we topple
v2 again to get the stabilization.

v1

v2

v3

s
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We now have all the stable vertices. When all the vertices are stable, the
configuration is called stable. There exists no more vertex to topple. Hence
we stop the toppling.

Definition 5.1.1. (Abelian Sandpile Model). Let G = (V,E, s) be a graph
with a set of vertices V , a set of edges E, and s ∈ V as a sink. The abelian
sandpile model is a graph G with each vertex associated with a value that
corresponds to the number of grains of sand on the vertex. Passed grains of
sand to the sink s is removed.

Definition 5.1.2. (Stable). A vertex v is stable if it has less grains of sand
than its degree.

Definition 5.1.3. (Unstable). A vertex v is unstable if it has equal or more
grains of sand than its degree.

Definition 5.1.4. (Non-Sink Vertices). Ṽ denotes a set of non-sink vertices
of G:

Ṽ := V \{s}

Definition 5.1.5. (Configuration). A configuration of G is given by

Config(G) := ZṼ := {
∑
v∈Ṽ

c(v)v : c(v) ∈ Z for all v ∈ V }

Remark. Since sandpiles have only nonnegative integer amounts of sand
grains on each vertex, c(v) ≥ 0 for all v ∈ V .

Definition 5.1.6. (Stable). A configuration c of G is stable if c(v) < deg(v)
for all v ∈ Ṽ .

Definition 5.1.7. (Toppling). One unstable vertex can be toppled by sending
out a grain of sand to each neighboring vertex from the unstable vertex.

As we observed previously, toppling might cause other vertices to be unstable
and result in an avalanche of topplings.

Suppose a vertex v is unstable. Then toppling of vertices other than v would
never make v stable; hence in order to make the vertex v to be stable, we
need to topple v.
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We denote illegal firing as sequences of vertex firings that might contain
firing stable vertices; we call firing only unstable vertices a legal firing.

Given a configuration c, let us denote by c◦ the stabilization of c after se-
quences of toppling σ. In symbols,

c
σ−→ c◦

Definition 5.1.8. (Global Sink). A vertex s designated as a global sink is
globally accessible; meaning that there exists a path from each vertex to the
sink.

Definition 5.1.9. (Adjacency Matrix). Given a graph G = (V,E), the adja-
cency matrix A is |V |×|V | matrix defined by

Aij =

1 if Vi ∼ Vj,

0 otherwise.

Definition 5.1.10. (Full Laplacian). Given a sandpile G = (V,E, s), the full
Laplacian ∆ is defined by

∆ = deg(G)− A

where deg(G) = diag
´

deg(v1), · · · , deg(v|V |−1), deg(s)
¯

and A is the adja-
cency matrix of G.

We note that the rows of full Laplacian matrix sum to zero. This is because
the amount of grains lost from the unstable vertex equals to the amount of
sand gained by its neighboring vertices.

Definition 5.1.11. (Reduced Laplacian). Given a sandpile G = (V,E, s), the
reduced Laplacian r∆ is defined by

r∆ = Ądeg(G)− rA

where Ądeg(G) = diag
´

deg(v1), · · · , deg(v|V |−1)
¯

and rA is the reduced adja-
cency matrix where row and column corresponding to the sink are deleted.

Let us calculate the full Laplacian and the reduced Laplacian for the following
sandpile.
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v1

v2

v3

s

The full Laplacian is given by

∆ = deg(G)− A =

»

—

—

—

–

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

fi

ffi

ffi

ffi

fl

−

»

—

—

—

–

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

fi

ffi

ffi

ffi

fl

=

»

—

—

—

–

2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

fi

ffi

ffi

ffi

fl

.

The associated reduced Laplacian is

r∆ =

»

—

–

2 −1 0
−1 2 −1
0 −1 2

fi

ffi

fl

Observe that the configuration of the above sandpile is 4v1 + v2 + v3. As we
seen before, toppling the vertex v1 results in the configuration v1 + 2v2 + v3.
The corresponding calculation can be done by using the reduced Laplacian:

»

—

–

1
2
1

fi

ffi

fl

=

»

—

–

3
1
1

fi

ffi

fl

−

»

—

–

2 −1 0
−1 2 −1
0 −1 2

fi

ffi

fl

»

—

–

1
0
0

fi

ffi

fl

.
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5.2 Existence and Uniqueness of Stabilization

Lemma 5.2.1. (Least Action Principle). Let c be a configuration on G. Let σ
be a legal toppling sequence to stabilize c. then for any sequence of toppling τ
that stabilizes c, σ ≤ τ .

Proof. Let v1, v2, · · · , vn be a legal toppling procedure according to σ. We will
prove by induction on n. When n = 0, the statement is trivially true.

For induction step, suppose the statement is true for n− 1 > 0. Observe that
since v1 is unstable, the only way to make v1 stable is to topple it at least
once; as we observed before, toppling vertices other than v1 would not make
v1 stable. Hence for any sequence of toppling τ that stabilizes c, τ(v1) > 0.

We now fire v1 and get configuration c′. Then v2, v3, · · · , vn is a legal sequence
of toppling that results stabilization given the configuration c′. Define

τ ′ := τ − v1.

Then τ ′ is a sequence of toppling that results stabilization of configuration c′.
By inductive hypothesis we know

σ − v1 ≤ τ ′.

By adding v1 on the both sides, we get

σ ≤ τ ′+ v1 = τ

as desired.

Corollary 5.2.2. Let c be a configuration. If c σ−→ c1, c τ−→ c2, and c1 and c2 are
stable, then σ = τ and c1 = c2.

Lemma 5.2.3. If a graphG = (V,E) has a global sink, then every configuration
has a stabilization.

Proof. Let s denotes a global sink and N be the total number of chips in the
configuration c. Given a vertex v0 ∈ V , suppose v0, v1, · · · , vn is a path from
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v0 to vn = s. Then observe that vn−1 fire at most N times since every time
vn−1 fires a chip falls into the sink vn = s.

Note that vn−2 needs to fire at most deg(vn−1) times to cause vn−1 to fire so
that a chip fall into a sink. Hence vn−2 fire at most deg(vn−1) ·N times. With
similar logic, we see that v ∈ V fires at most deg(v1) ·deg(v2) · · · deg(vn−1) ·N
times. It follows that the configuration c has only finitely many legal firing
sequence, hence c has a stabilization.

Let c be a configuration. Define the chip addition operator Ev that adds a
single chip at vertex v and then stabilizes:

Evc = (c+ 1v)◦

Lemma 5.2.4. For any graph with a global sink, the chip addition operators
commute.

Proof. Let c be a configuration on a graph G. Observe that whatever vertices
unstable in c + 1v is also unstable in c′ = c + 1v + 1w. We apply the firing
sequence that stabilizes c+ 1v. Then we obtain the configuration Evc+ 1w.
After stabilization we get EwEvc at the end.

By stabilizing c+ 1w first, we get EvEwc. By the uniqueness of stabilization,
we conclude that EwEvc = EvEwc as desired.

Remark. This lemma justifies the term "abelian sandpile model."
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Sandpile Dynamics on
Tiling Graphs

6

6.1 Sandpile Dynamics

Sandpile dynamics on a finite connected graph G = (V,E) may be described
as follows. In the model, a node s ∈ V is designated sink. Each non-sink
vertex v is assigned a non-negative number σ(v) of chips. If at some point
σ(v) ≥ deg(v) the vertex can topple, passing one chip to each neighbor; if a
chip falls on the sink it is lost from the model.

Definition 6.1.1. (Sandpile). A sandpile on a graph G is a map σ : G→ Z≥0.

Definition 6.1.2. (Full Sandpile). The map σfull = deg−1 is the full sandpile.

The set of stable sandpiles is indicated

S (G) = {σ : G→ Z≥0 : σ ≤ σfull}. (6.1)

Definition 6.1.3. (Stable). A configuration σ is called stable if σ(v) < deg(v)
for all v ∈ V \ {s}.

The dynamics in the model occur in discrete time steps, in which a chip is
added to the model at a uniform random vertex, then all legal topplings
occur until the model reaches a stable state.

Definition 6.1.4. (Recurrent). A sandpile c is recurrent if it is stable and
for every configuration a, there exists a sandpile configuration b such that
c = (a+ b)◦.
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Given a graph G, the set of recurrent sandpiles on the graph form an abelian
group.

The set of recurrent states form the sandpile group and are indicated G (G).
Its dual group is Ĝ .

Recall the definition of Laplacian operator given in previous chapter.

Definition 6.1.5. (Graph Laplacian). Denote ∆ the graph Laplacian ∆f(v) =
deg(v)f(v)−∑(v,w)∈E f(w).

When G is a finite graph and a node s has been designated sink, the re-
duced Laplacian ∆′ is obtained from ∆ by removing the row and column
corresponding to the sink.

Since the sandpile group of a graph with sink s is isomorphic to G =
ZV \{s}/∆′ZV \{s} where ∆′ is the reduced graph Laplacian obtained by omit-
ting the row and column corresponding to the sink, the dual group is isomor-
phic to Ĝ = (∆′)−1ZV \{s}/ZV \{s}. Thus ∆′ provides a natural mapping from
Ĝ → G . A map in the reverse direction may be constructed via convolution
with the graph Green’s function.

Definition 6.1.6. (Harmonic Modulo 1). Given a function f on T , say that
f is harmonic modulo 1 if ∆f ≡ 0 mod 1 and denote the set of such functions
H (T ).

Let
H (G) = {f : G→ R,∆f ≡ 0 mod 1}. (6.2)

Since the random walk considered is a random walk on an abelian group,
in terms of the mixing behavior there is no loss in assuming that the walk
is started at the identity. Also, the transition kernel is diagonalized by the
Fourier transform, that is, the characters, for ξ ∈ Ĝ , χξ(g) = e2πiξ(g) are
eigenfunctions for the transition kernel, and the eigenvalues are the Fourier
coefficients

µ̂(ξ) = 1
|V |

˜

1 +
∑

v∈V \{s}
e(ξv)

¸

. (6.3)
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Definition 6.1.7. (Group Convolution). A random walk driven by a prob-
ability measure µ on a group has distribution at step n given by µ∗n where
µ∗1 = µ and µ∗n = µ ∗ µ∗(n−1) is the group convolution.

We recall some of the definitions.

Definition 6.1.8. (Total Variation Distance). The total variation distance
between two probability measures µ and ν on a measure space (X ,B) is

‖µ− ν‖TV(X ) = sup
A∈B
|µ(A)− ν(A)|. (6.4)

Definition 6.1.9. (Total Variation Mixing Time). Given a measure µ driving
sandpile dynamics on the group of recurrent sandpile states G (G) with
uniform measure UG , the total variation mixing time is

tmix = min
{
k :

∥∥∥µ∗k − UG (G)

∥∥∥
TV(G (G))

<
1
e

}
. (6.5)

Definition 6.1.10. (Cut-Off Phenomenon). Given a sequence of graphs Gn

the sandpile dynamics is said to satisfy the cut-off phenomenon in total
variation if, for each ε > 0,

∥∥∥µ∗d(1−ε)tmixe − UG (Gn)

∥∥∥
TV(G (Gn))

→ 1,∥∥∥µ∗b(1+ε)tmixc − UG (Gn)

∥∥∥
TV(G (Gn))

→ 0

as n→∞.

6.2 Sandpiles with Periodic and Open
Boundary

Definition 6.2.1. (Periodic Space Tiling). let M be a non-singular d × d

matrix, and let Λ = M · Zd < Rd be a d-dimensional lattice. A (periodic)
space tiling T is a connected graph embedded in Rd which is connected, is
Λ-periodic, has finitely many vertices in a fundamental domain for Rd/Λ, and
has bounded degree.
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Fig. 6.1: The square, triangular and tetrakis square lattices are examples of tilings
with reflecting families of lines such that the quotient by the reflection
group is a bounded convex region of the plane.

Suppose without loss of generality that 0 is a vertex in T . Given an integer
m ≥ 1, two types of graphs are considered.

(1) (Torus boundary condition) The graph Tm = T /mΛ consists of md

fundamental domains with opposite faces identified. By convention, 0
is designated sink.

(2) (Open boundary condition) In two dimensions, assume that there are
vectors v1, ..., vk in which T has translational symmetry, and lines
`1, ..., `k, `i = {x ∈ R2 : 〈x, vi〉 = 0} such that T has reflection symme-
try in the family of lines

F = {nvi + `i : 1 ≤ i ≤ k, n ∈ Z}. (6.6)

In this case, let R be an open, connected, convex region cut out by
some of the lines, and assume further that R2 is tiled by the reflections
of R in the family of lines and that any sequence of reflections which
maps R to itself is the identity map.

The results concerning sandpile dynamics are proved by studying the spec-
trum of the sandpile transition kernel.

6.3 Spectral Gap and Spectral Factors

In the case of a torus boundary condition, define the spectral parameter

γ = inf

∑
x∈T

1− cos(2πξx) : ξ ∈H (T ), ξ 6≡ 0 mod 1

 . (6.7)
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Fig. 6.2: The triangular, hex and square lattice configurations with open boundary
condition.

In two dimensions, let L denote the set of lines which make up a segment
of the boundary of R and let C be the set of pairs of lines from L which
intersect at a corner of the boundary of R. Write an affine line a ∈ L as
a = nv + ` where v ∈ R2 and ` is the perpendicular line. A pair of affine
lines (a1, a2) ∈ C have `1 and `2 that split T into four quadrants. Let Q(a1,a2)

be the quadrant whose translate contains R. Given a ∈ L , let Ha(T ) be
those functions ξ ∈ H (T ) which are anti-symmetric in `, similarly given
(a1, a2) ∈ C , let H(a1,a2)(T ) be those functions in H (T ) which are anti-
symmetric in `1 and `2. Define spectral parameters

γ0 = inf
ξ∈H (T )
ξ 6≡0 mod 1

∑
x∈T

1− cos(2πξx)

γ1 = 1
2 inf
a∈L

inf
ξ∈Ha(T )
ξ 6≡0 mod 1

∑
x∈T

1− cos(2πξx)

γ2 = inf
(a1,a2)∈C

inf
ξ∈H(a1,a2)(T )
ξ 6≡0 mod 1

∑
x∈Q(a1,a2)

1− cos(2πξx).

Let SS be the group generated by reflections in S, and let HS(T ) denote
those harmonic modulo 1 functions which are anti-symmetric in Hj,0 for all
j ∈ S, identified with functions on T /SS. Again, for 0 ≤ i ≤ d define the
spectral parameters

γi = inf
S⊂{1,2,...,d}
|S|=i

inf
ξ∈HS(T )
ξ 6≡0 mod 1

∑
x∈T /SS

1− cos(2πξx). (6.8)
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Thus γ0 = γ. In dimension d ≥ 2 define the jth spectral factor

Γj = d− j
γj

(6.9)

and Γ = maxj Γj.

The following theorem determines the spectral of sandpile dynamics for
plane and space tiling graphs.

Theorem 6.3.1. Given a tiling T , as m→∞, the spectral gap of the transition
kernel of sandpile dynamics on Tm satisfies

gapTm
= (1 + o(1)) γ

|Tm|
. (6.10)

If T has a family of reflection symmetries F and satisfies condition A, then the
spectral gap of the transition kernel of sandpile dynamics on Tm satisfies

gapTm
= (1 + o(1))minj γj

|Tm|
. (6.11)

The following theorem demonstrates a cut-off phenomenon in sandpile
dynamics on general tiling graphs with either a torus or open boundary
condition. Whereas the mixing of sandpiles with torus boundary condition is
controlled by the spectral gap, when there is an open boundary condition,
the mixing time is controlled by the spectral factor.

Theorem 6.3.2. For a fixed tiling T in Rd, sandpiles started from a recurrent
state on Tm have asymptotic total variation mixing time

tmix(Tm) ∼ d

2γ |Tm|logm (6.12)

with a cut-off phenomenon as m→∞.

If the tiling T satisfies the reflection condition and condition A then sandpile
dynamics started from a recurrent configuration on Tm have total variation
mixing time

tmix(Tm) ∼ Γ
2 |Tm|logm (6.13)

with a cut-off phenomenon as m→∞.
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Motivated by Theorem 6.3.2, if Γ = Γ0 say that the bulk or top dimensional
behavior controls the total variation mixing time, and otherwise that the
boundary behavior controls the total variation mixing time. The proof of
Theorem 6.3.2 will in fact generate a statistic which randomizes at the
mixing time, and this statistic is either distributed throughout the graph, or
concentrated near the boundary of the dimension controlling the spectral
factor.

Corollary 6.3.3. All plane tilings satisfying the reflection condition and condi-
tion A have total variation mixing time controlled by the bulk behavior.

Proof. It suffices that Γ1 ≤ Γ0. Indeed, the factor of 2−1 in γ1 is canceled
by the ratio 2

2−1 of dimensions, and the anti-symmetry condition imposes
an extra constraint on the harmonic modulo 1 function in the inf, so that
1
2γ0 ≤ γ1.

In particular, Corollary 6.3.3 implies that asymptotic mixing time of sandpile
dynamics on the square grid with open and periodic boundary condition are
the same to top order.

Theorem 6.3.4. The triangular tiling has periodic boundary spectral parame-
ters

γtri = 1.69416(6).

Remark. The digit in parenthesis indicates the last significant digit.

The determination of the Green’s function in the tiling as opposed to lattice
case is more involved. It is reduced to the lattice case by stopping a random
walk on the tiling when it hits the period lattice, and using the resulting
stopped measure to determine the Green’s function restricted to the lattice.

6.4 Optimization problem and computer search

In this section the spectral parameters are determined by computer search
for several tilings. Recall that

γ = inf
ξ∈H (T )
ξ 6≡0 mod 1

∑
x∈T

1− c(ξx).
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For two dimensional tilings set

γ0 = inf
ξ∈H (T )
ξ 6≡0 mod 1

∑
x∈T

1− c(ξx)

γ1 = 1
2 inf
a∈L

inf
ξ∈Ha(T )
ξ 6≡0 mod 1

∑
x∈Ta

1− c(ξx)

γ2 = inf
(a1,a2)∈C

inf
ξ∈H(a1,a2)(T )
ξ 6≡0 mod 1

∑
x∈Q(a1,a2)

1− c(ξx).

In higher dimensions assume that the reflecting hyperplanes are built from
an orthonormal system, and

γi = inf
S⊂{1,2,...,d}
|S|=i

inf
ξ∈HS(T )
ξ 6≡0 mod 1

∑
x∈T /SS

1− c(ξx).

The following arguments index harmonic modulo 1 function ξ with its pre-
vector ν = ∆ξ, which is simpler as the prevector is integer valued. This
permits an approximate ordering on prevectors in terms of their norm, and
the diameter of their support. The harmonic modulo 1 function is then
recovered as ξ = g ∗ ν.

Lemma 6.4.1. Let S be a finite or countable set and let ξ ∈ `2(S), ‖ξ‖∞≤ 1
2 .

Define
fS(ξ) =

∑
x∈S

1− c(ξx). (6.14)

Let α > 0 and assume ‖ξ‖2
2≥ α. Then

2π2α

ˆ

1− π2

3 α
˙

≤ fS(ξ) ≤ 2π2‖ξ‖2
2. (6.15)

Proof. The Taylor series approximation for c(x) on |x|≤ 1
2 ,

c(x) = 1− 2π2x2 + 2π4

3 x4 − · · ·
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is an alternating series with decreasing increments after the term 2π2x2.
Thus fS(ξ) ≤ 2π2‖ξ‖2

2. Let 0 < λ ≤ 1 and let ξ′ = λξ satisfy ‖ξ′‖2
2= α. Then

fS(ξ′) ≤ fS(ξ). Furthermore,

fS(ξ′) ≥ 2π2‖ξ′‖2
2−

2
3π

4‖ξ′‖4
4

≥ 2π2α− 2
3π

4α‖ξ′‖2
∞

≥ 2π2α− 2
3π

4α2.

The following lemma is used to estimate the functionals f(ξ).

Lemma 6.4.2. Let R ⊂ T and let ξ : T →
`

−1
2 ,

1
2

‰

. Let

‖ξ‖2
2,Rc =

∑
x∈T \R

ξ2
x. (6.16)

There is a number ϑ, |ϑ|≤ 1 such that

f(ξ) =
∑
x∈R

p1− c(ξx)q+ 2π2‖ξ‖2
2,Rc−

π4

3 ‖ξ‖
4
2,Rc+ϑ

π4

3 ‖ξ‖
4
2,Rc . (6.17)

Proof. By Taylor approximation, for x ∈ Rc,

2π2ξ2
x −

2
3π

4ξ4
x ≤ 1− c(ξx) ≤ 2π2ξ2

x.

Thus,

∑
x∈R

(1− c(ξx)) + 2π2‖ξx‖2
2,Rc−

2
3π

4‖ξ‖4
2,Rc

≤ f(ξ) ≤
∑
x∈R

(1− c(ξx)) + 2π2‖ξ‖2
2,Rc ,

from which the claim follows.

In practice, Lemma 6.4.2 is applied by calculating ξx on R from the Fourier
integral representations in Section ?? in a neighborhood of 0, and calculating
‖ξ‖2

2 by Parseval.
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The following two optimization programs are used to obtain a lower bound
for f(ξ). Let ξ = g ∗ ν, ‖ξ‖∞≤ 1

2 . Given a set S ⊂ T , a lower bound for f(ξ)
is obtained as the solution of the optimization program Q(S, ν),

Q(S, ν) :
minimize:

∑
d(w,S)≤1

1− c(xw)

subject to: ∀u ∈ S, (deg u)xu −
∑

d(w,u)=1
xw = νu

− 1
2 ≤ xw ≤

1
2 .

A lower bound for Q(S, ν) is the relaxed optimization program with positive
constraints P (S, ν)

P (S, ν) :
minimize:

∑
d(w,S)≤1

1− c(xw)

subject to: ∀u ∈ S, (deg u)xu +
∑

d(w,u)=1
xw ≥ νu

− 1
2 ≤ xw ≤

1
2 .

Note that the objective function is convex and with non-degenerate Hessian
in the interior with the stronger condition |xw|≤ 1

4 , and hence has a unique
local minima there. In order to estimate Q(S, ν) and P (S, ν) numerically,
the range 1

4 ≤ |xw|≤
1
2 was split into several equal size intervals and the

objective function was approximated piecewise linearly on these, obtaining
a lower bound for the minimum. The minima were compared with the
variables constrained to lie in each interval. Denote Pj(S, ν) and Qj(S, ν)
the programs in which both

“

−1
2 ,−

1
4

‰

and
“1

4 ,
1
2

‰

are split into j equal size
intervals, and objective function interpolating linearly between the values
of c(x) on the endpoints. Note that the minimum of Pj and Qj on each
product of intervals is determined deterministically as a unique interior
minimum or boundary value. In the examples considered in dimensions 3
and higher, ‖ξ‖2

2 was optimized rather than f(ξ), and it was demonstrated
that the extremal function is the same. Programs Q′(S, ν) and P ′(S, ν) have
the same constraints, but have objective function

∑
d(w,S)≤1 x

2
w. Note that this

objective function is convex.
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Lemma 6.4.3. Let G = (V,E) be a graph and let v ∈ V of degree at least 2.
Let |νv|= 1. The optimization problem Q′({v}, ν) has value 1

deg(v)(deg(v)+1) .

Proof. Since the claimed value is smaller than the value on the boundary,
it may be assumed that the optimum is achieved at an interior point. By
Lagrange multipliers, there is a scalar λ such that xv = λ deg v and xw = −λ
for all (v, w) ∈ E. Thus λ = 1

deg(v)(deg(v)+1) . The claim follows, since

∑
d(v,w)≤1

x2
w = λ2 deg(v)(deg(v) + 1). (6.18)

The optimization programs P, Pj, P ′, Q,Qj, Q
′ satisfy the following mono-

tonicity properties.

Lemma 6.4.4. The programs P, Pj, P ′, Q,Qj, Q
′ are monotone increasing in

the set S. The programs P, Pj, P ′ are monotone increasing in the prevector |ν|.

Proof. This follows from constraint relaxation.

The programs also satisfy the following additivity property.

Lemma 6.4.5. Let B(S) = {u : d(u, S) ≤ 1} be the distance 1 enlargement
of S. When S1, S2, ..., Sk are some sets in T whose distance 1 enlargements
B(S1), B(S2), ..., B(Sk) are pairwise disjoint, then

∑k
i=1 Q(Si, ν) ≤ f(ξ) and∑k

i=1 Q
′(Si, ν) ≤ ‖ξ‖2

2.

Proof. Since the sets of variables are disjoint, the sum of the optimization
programs can be considered to be a single optimization program, which is
then satisfied by the optimizing solution ξ.

Since the remaining programs P, P ′, Pj, P ′j are relaxations of Q and Q′, the
additivity property holds for these as well.

The strategy of the arguments is now described as follows. Say two points
xi, xt in the support of ν are 2-path connected, or just connected for short,
if there is a sequence of points xi = x0, x1, ..., xn = xt in the support of
ν, such that the graph distance between xi and xi+1 is at most 2. By the
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−1 1

Fig. 6.3: The extremal configuration for the triangular lattice.

additivity lemma, the value of the optimization programs applied with Si

separated connected components of supp ν is additive. Since the value of each
optimization program is translation invariant and, for a fixed ν, monotone in
S, all connected components with P or Q (resp. P ′, Q′, Pj, Qj) value at most
a fixed constant can be enumerated by starting from a base configuration
and adding connected points to the set S one at a time.

The configuration ν must be in Cρ for ξ ∈ `2(T ). Having enumerated all
feasible connected components, the search is completed by considering all
methods of gluing together several connected components which produce a
ν ∈ Cρ.

Let the triangular lattice be generated by v1 = (1, 0) and v2 =
´

1
2 ,

?
3

2

¯

. Let
ξ∗ = g ∗ ν∗ with ν∗ = δ0 − δv1 − δv2 + δv1+v2. The value

f(ξ∗) = 1.69416(5) (6.19)

was estimated by Lemma 6.4.2 with

R = {n1v1 + n2v2 : max(|n1|, |n2|) ≤ 10}. (6.20)

It is to be shown that γtri = f(ξ∗).

First the case of a node of height 3 in the extremal prevector is ruled out.

Lemma 6.4.6. Suppose |ν0|= 3. The optimization program P ({0}, |ν|) has
value 2. In particular, ν does not achieve γtri.

Proof. At the optimum, the largest value is x0, since if xw is larger for some
w with d(w, 0) = 1 then the constraint may be improved by swapping x0 and
xw. It follows that |xw|≤ 1

4 for w 6= 0 since otherwise the claimed bound
would be exceeded. For a fixed x0, the conditioned optimization problem is
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now convex with a unique local minimum, which by symmetry occurs with
all variables equal. This reduces to minimizing 1− c(x) + 6

`

1− c
`1

2 − x
˘˘

for 0 ≤ x ≤ 1
2 , which has minimum 2.

Next the possibility of a prevector with node of height at least 2 is ruled
out.

Lemma 6.4.7. If |ν0|= 2, P ({0}, |ν|) ≥ 1.4322. If |ν0|= 1, P ({0}, |ν|) ≥
0.44256.

Proof. These values were verified in SciPy.

It follows that if the minimizing prevector has a node of height 2, it does not
have any non-zero node at distance greater than 2 from the node of height 2,
since otherwise the two optimization problems could be applied separately
at the two nodes, and the total value would exceed γtri.

Up to rotation, there are two types of nodes at graph distance 2 from 0 in T ,
v1 + v2 and 2v1. A non-zero node at distance two is ruled out by considering
the following optimization problems.

Lemma 6.4.8. Suppose |ν0|= 2 and |νv1+v2|= 1. Then P ({0, v1 + v2}, |ν|) ≥
1.83. If |ν0|= 2 and |ν2v1|= 1 then P ({0, 2v1}, |ν|) ≥ 1.85.

Proof. These values were verified in SciPy.

Note that P (S, |ν|) is increasing in |ν|. The above lemmas prove that if the
optimizing prevector ν has a node of height 2, then any non-zero node in ν
is adjacent to the node of height 2. After translation and multiplying by ±1,
assume ν0 = 2. The case in which all six neighbors of 0 are non-zero is ruled
out as follows.

Lemma 6.4.9. Let |ν0|= 2 and |νw|≥ 1 for each w with d(w, 0) = 1. Let
S = {w : d(w, 0) ≤ 1}. Then P (S, |ν|) ≥ 1.9233.

Proof. This was verified in SciPy.
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Similarly, there are not two adjacent nodes of height 2, as the following
lemma verifies.

Lemma 6.4.10. Suppose that |ν0|= 2 and |νv1|= 2. Then P ({0, v1}, |ν|) ≥ 2.3.

Proof. This was verified in SciPy.

Since it is necessary that ν ∈ C2(T ) for ξ ∈ `2(T ), the remaining possible
configurations have an even number of non-zero nodes adjacent to 0. There
must be at least 2, and when there are two, the configuration is, up to
rotation, ν = −δ−v1 + 2δ0 − δv1 which has f(ξ) ≥ 2.23. No configuration with
four non-zero nodes is in C2(T ). This concludes the proof that there is not a
node of height 2.

Next decompose the support of ν into 2-path connected components. The
next stage in the argument reduces to the case of a single connected compo-
nent. If there were four or more connected components, Lemma 6.4.7 could
be applied at a node in each connected component, which obtains a value at
least 4× 0.44256 > 1.76. Hence there are at most 3 connected components,
and since ν ∈ C2(T ), one must contain more than one node.

Lemma 6.4.11. If |ν0|= 1 and |νv1|= 1 then

P ({0, v1}, |ν|) ≥ 0.6729. (6.21)

If |ν0|= 1 and |νv1+v2|= 1 then

P ({0, v1 + v2}, |ν|) ≥ 0.8509. (6.22)

If |ν0|= 1 and |ν2v1|= 1 then

P ({0, 2v1}, |ν|) ≥ 0.8677. (6.23)

Proof. These were verified in SciPy.

It follows that if there are 3 connected components then the only possibility
is that one has diameter 1 as in (6.21) and the other two are singletons, since
otherwise the sum of the values of the programs exceeds γ. To remain in
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C2(T ), the configuration of diameter 1 has two nodes since the total number
of nodes is even.

Lemma 6.4.12. Let ν0 = 1 and νw = 0 for w such that d(w, 0) = 1. Let
S = {w : d(w, 0) ≤ 1}. Then Q(ν, S) ≥ 0.9127.

Proof. This was verified in SciPy.

If there were an optimal configuration with 3 connected components, then
the component with two adjacent nodes must have both nodes of equal sign
for the configuration to be in C2(T ). Thus the two singletons would be
placed symmetrically opposite the center of the configuration of size 2 and
have the same sign. Since they are disconnected, they have distance at least
3 from the component of size 2. It follows that Lemma 6.4.12 can be applied
at each singleton so that the value exceeds γtri. This eliminates the case of 3
connected components.

Next suppose that there are two connected components. By applying (6.22)
and (6.23) it follows that at least one of the connected components has
diameter at most 1.

Lemma 6.4.13. Suppose ν0 = νv1 = 1. Then Q({0, v1}, ν) ≥ 1.1518.

Proof. This was verified in SciPy.

If one connected component has such a large Q value, then by Lemma 6.4.11,
the other component can only be a singleton. The case of two connected
components with one a singleton is deferred to the end of the proof. Thus
consider the case of only connected components of size at least 2 in which
adjacent nodes have opposite signs. It follows that one of the components of
diameter 1 has size 2, with adjacent nodes of opposite sign.

Lemma 6.4.14. Let ν0 = 1, νv1 = −1. Let S = {w : d(w, {0, v1}) ≤ 1} and
assume νw = 0 if d(w, {0, v1}) = 1. Then Q(S, ν) ≥ 0.971.

Proof. This was verified in SciPy.
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Combining Lemma 6.4.14 with Lemma 6.4.11 if one of the connected com-
ponents has diameter greater than 1, then the component of diameter 1 has
distance from it at most 3, hence exactly 3 since the components are not
connected. As in the case of a singleton, this case is deferred to the end of the
discussion. If both components have diameter 1, then to be in C2(T ), both
have size two and have adjacent nodes of opposite sign. Applying Lemma
6.4.14 to each, these are separated by at most distance 4. This reduces to a
finite check, and none of the configurations achieves the optimum.

The argument above reduces to considering either prevectors with support
that are 2 path connected, or prevectors of diameter greater than 1 which
are connected at distance 2, together with a second connected component
which is either a singleton or a pair of adjacent nodes of opposing signs. By
combining Lemmas 6.4.12 and 6.4.14 with Lemma 6.4.11, it follows that if
there is a second connected component it has distance exactly 3 from the
component of diameter greater than 1.

The proof is now concluded by computer search. All connected components C
up to translation and symmetry were enumerated, which satisfied one of the
following three criteria, P (C, 1) ≤ γtri = 1.69416(5), P (C, 1) ≤ γtri − 0.44256,
P (C, 1) ≤ γtri − 0.6729, with ν = 1 indicating νx = 1 for all x. The first
list consists of all candidate supports which are connected and may give
the optimum. By Lemmas 6.4.7 and 6.4.11, the latter two lists enumerate
configurations which may be paired with a singleton or a pair of adjacent
nodes. Since P (C, 1) is increasing in C, the enumeration was performed by
building configurations from the base C = {0} adding neighbors at distance
1 or 2, until the appropriate limit was exceeded. The first list contains
configurations with at most 7 vertices, the second list contains configurations
with at most 5 vertices and the third list contains configurations with at most
4 vertices.

Note that a configuration which can appear with adjacent and opposite
signed nodes and have a C2(T ) assignment of signs must have an even
number of nodes. Also, those of size 2 have already been considered. Only
one configuration on 4 nodes, and no configurations on more nodes had
a sufficiently small value of P (C). The configuration on 4 nodes was, up
to symmetries, {0, v1, v2, v1 + v2}. However, there is no assignment of signs
which makes this configuration in C2(T ) when paired with an adjacent
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pair of nodes with opposite signs. A connected component with 3 vertices
cannot be assigned signs in such a way that a singleton can be added at
distance 3 to make a configuration in C2(T ), since the distance between the
one pair of opposite signed nodes must match the other. There is a single
configuration on 5 nodes with P value less than γtri − 0.44256. There are
4 ways of assigning signs so that a singleton can be added that makes the
configuration in C2(T ). Each of these was tested and none give the extremal
configuration. This reduces to the case of connected components. This finite
check was performed in SciPy and obtains ν0 and ξ0 as claimed.
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