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THE SPECTRUM OF THE ABELIAN SANDPILE MODEL

ROBERT HOUGH AND HYOJEONG SON

Abstract. In their previous work, the authors studied the abelian sandpile
model on graphs constructed from a growing piece of a plane or space tiling,
given periodic or open boundary conditions, and identified spectral parameters
which govern the asymptotic spectral gap and asymptotic mixing time. This
paper gives a general method of determining the spectral parameters either
computationally or asymptotically, and determines the spectral parameters in
specific examples.

1. Introduction

When considering Markovian dynamics in a system, important quantities in
describing the behavior are the spectral gap, or difference between the largest and
second-largest eigenvalue of the transition kernel, and the convergence profile to
equilibrium including the mixing time. A central topic in the mixing of large
systems is the cut-off phenomenon, in which, as the system grows, the transition
period to equilibrium is on an asymptotically shorter time scale than the mixing
time [9]. In [12] the authors determine theoretically the asymptotic mixing time
and prove a cut-off phenomenon for abelian sandpile dynamics on growing pieces
of periodic tiling graphs given a periodic or open boundary condition. In [12]
it is shown that the spectral gap and asymptotic mixing time are controlled by
spectral parameters and spectral factors related to the tiling; these objects are
characterized by variational optimization problems. The purpose of this article
is to supplement the theoretical results of [12] by demonstrating computational
and asymptotic methods of determining the spectral parameters and factors for
specific tilings. In doing so, a phenomenon is demonstrated in which a set of open
boundary conditions on the D4 lattice in four dimensions causes the asymptotic
mixing behavior of the abelian sandpile model to be controlled by the model’s
behavior along its three-dimensional open boundary.

1.1. The abelian sandpile model on tiling graphs. The abelian sandpile
model is an important model of self-organized criticality [3], [6], [7], [10], [17],
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[22] which has been studied intensively in the statistical physics literature; see,
e.g., survey [18] and the references therein. The model has been studied in various
aspects including the effect of the geometry of the underlying graph [2], [8], [15],
[19], [21], and the effect of the boundary condition [4], [5], [11], [13], [20]. In [14],
Kassel and Wilson calculate a number of statistics for sandpiles on planar periodic
tiling graphs, extended here to include the asymptotic spectral gap and asymptotic
mixing time. Our results address both the graph geometry and boundary condition.

In sandpile dynamics on a graph G “ pV,Eq with sink s P V , an allocation of
sand σ : V ztsu Ñ Zě0 gives a state of the model. A state σ is stable if σpvq ă degpvq

for all v, otherwise unstable. If σpvq ě degpvq for some v, the node v can topple,
passing one grain of sand to each of its neighbors. The dynamics in the model occur
in discrete time steps and are Markovian. In each step, a grain of sand is added
to the model at a uniform random vertex and all topplings are performed until the
model reaches a stable state. The set of recurrent states for the dynamics forms
the sandpile group G , which is an abelian group isomorphic to Z

V ztsu{Δ1
Z
V ztsu,

where Δ1 is the reduced graph Laplacian; see [12]. Restricted to recurrent states,
the dynamics become a random walk on G , driven by the probability measure

μ “
1

|V |

¨

˝δ0 `
ÿ

vPV ztsu

δev

˛

‚,

where ev is the standard basis vector corresponding to v. The eigenvalues of these
dynamics are given by the Fourier coefficients of μ in the dual group, and the
spectral gap is the difference between 1 and the magnitude of the second-largest
eigenvalue. The total variation mixing time to uniformity is

tmix
“ min

n
}μ˚n

´ UG }TV ă
1

e
,

where UG denotes the uniform probability measure on G .
A periodic plane or space tiling in R

d is an undirected, connected, straight-line
edge graph T which is periodic in a lattice Λ in R

d such that T {Λ is finite. In
[12], sandpile dynamics are considered on two types of graphs constructed from a
growing piece of a periodic plane or space tiling. Let m ě 1 be an integer.

(I) Assume T is embedded in R
d with a vertex at 0. The periodic boundary

graph is Tm “ T {mΛ with 0 designated sink.
(II) Denote the coordinate hyperplanes Hi,j “ tx P R

d : xi “ ju. If T has
reflection symmetry in the family of coordinate hyperplanes tHi,j : 1 ď i ď

d, j P Zu with no edge of T crossing a coordinate hyperplane, then the
open boundary graph Tm is obtained by quotienting T by tHi,mj , 1 ď i ď

d, j P Zu and identifying all vertices on the bounding hyperplanes as sink.

Denote Δ the graph Laplacian,

Δhpvq “ degpvqhpvq ´

ÿ

pv,wqPE

hpwq.

Given a function h P �2pT q, say that h is harmonic modulo 1 if Δh ” 0 mod 1
and denote the set of such functions H 2pT q. Let C1pT q denote the set of integer-
valued functions on T which are finitely supported and have sum 0. In [12] the
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periodic boundary spectral parameter of a periodic tiling is defined to be

(1) γ “ inf

#

ÿ

xPT

1 ´ cosp2πξxq : Δξ P C1
pT q, ξ ı 0 mod 1

+

.

For those T which have reflection symmetry in the coordinate hyperplanes, given a
set S Ă t1, 2, . . . , du, letSS be the group generated by reflections in the hyperplanes
tHj,0, j P Su, and let ASpT q be functions which are antisymmetric under reflection
in each plane Hj,0, j P S. Let H 2

S pT q denote those �2 harmonic modulo 1 functions
in ASpT q. Again, for 0 ď i ă d define the open boundary spectral parameters1

(2) γi “ inf
SĂt1,2,...,du

|S|“i

inf
ξPH 2

S pT q

ξı0 mod 1

ÿ

xPT {SS

1 ´ cosp2πξxq.

In dimension d ě 2 define the ith spectral factor

(3) Γi “
d ´ i

γi

and Γ “ maxi Γi.
For sandpile dynamics on periodic tiling graphs, the relationship between the

spectral parameters of the tiling and the sandpile dynamics is explained in the
following two theorems.

Theorem ([12], Theorem 2). Given a tiling T , as m Ñ 8, the spectral gap of the
transition kernel of sandpile dynamics on Tm satisfies

(4) gap
Tm

“ p1 ` op1qq
γ

|Tm|
.

If T has reflection symmetry in the coordinate hyperplanes with no edges that cross
a hyperplane, then the spectral gap of the transition kernel of sandpile dynamics on
Tm satisfies

(5) gapTm
“ p1 ` op1qq

minpγj : j ě 0q

|Tm|
.

In particular, the spectral parameters determine the asymptotic spectral gap
with either periodic or open boundary condition.

Theorem ([12], Theorem 3). For a fixed tiling T in R
d, sandpiles started from a

recurrent state on Tm have asymptotic total variation mixing time

(6) tmixpTmq „
Γ0

2
|Tm| logm

with a cut-off phenomenon as m Ñ 8.
If the tiling T satisfies the reflection condition, then sandpile dynamics started

from a recurrent configuration on Tm have total variation mixing time

(7) tmixpTmq „
Γ

2
|Tm| logm

with a cut-off phenomenon as m Ñ 8.

1Note that, in the definition of H 2
S pT q, Δξ is not required to be in C1pT q, so that the

definitions of γ and γ0 differ, although the two notions are shown in [12] to coincide in dimensions
at most 4.
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Thus the spectral factors determine the asymptotic mixing time.
If Γ “ Γ0 we say that the bulk or top-dimensional behavior controls the total

variation mixing time, and otherwise that the boundary behavior controls the total
variation mixing time. In [12] it is shown that for two-dimensional tilings satisfying
a reflection condition, the bulk behavior always controls the mixing time.

1.2. Precise statement of results. Our first result computes the periodic bound-
ary spectral parameter for the triangular (tri) and honeycomb (hex) tilings in two
dimensions and the face centered cubic (fcc) tiling in three dimensions. In particu-
lar, this determines the asymptotic spectral gap of dynamics for these tilings, and
the asymptotic mixing time when the tilings are given periodic boundary condition.

Theorem 1. The triangular, honeycomb, and face centered cubic tilings have pe-
riodic boundary spectral parameters2

γtri “ 1.69416p6q,

γhex “ 5.977657p7q,

γfcc “ 0.3623p9q.

Our remaining results concern spectral factors which govern the mixing time of
sandpile dynamics on graphs with open boundary condition.

The D4 lattice has vertices Z4 Y Z
4 ` p

1
2 ,

1
2 ,

1
2 ,

1
2 q and 24 nearest neighbors of 0,

(8) U4 “ t˘e1,˘e2,˘e3,˘e4u Y

"

1

2
pε1, ε2, ε3, ε4q, εi P t˘1u

*

,

which have unit Euclidean length. Let the tiling graph have nearest neighbor
edges. The elements of the D4 lattice are frequently identified with the “Hurwitz
quaternion algebra” in which U4 is the group of units. Let

v1 “ p1, 1, 0, 0q, v2 “ p1,´1, 0, 0q, v3 “ p0, 0, 1, 1q, v4 “ p0, 0, 1,´1q,

and define hyperplanes

Pj “ tx P R
4 : xx, vjy “ 0u.

The D4 lattice has reflection symmetry in the family of hyperplanes

(9) FD4 “ tnvj ` Pj : j P t1, 2, 3, 4u, n P Zu,

which can be dilated and rotated to correspond with tHi,ju, and one can check that
no nearest neighbor edge in D4 crosses this family of hyperplanes; see [12]. Our
next result determines the boundary spectral parameters and spectral factors for
the D4 lattice.

Theorem 2. The spectral parameters of the D4 lattice with reflection planes FD4

and open boundary condition are (ϑ denotes a parameter bounded by 1 in size)

γD4,0 “ 0.075554 ` ϑ0.00024,

γD4,1 “ 0.0440957 ` ϑ0.00017,

γD4,2 “ 0.0389569 ` ϑ0.00013,

γD4,3 “ 0.036873324 ` ϑ0.00012,

γD4,4 “ 0.0357604 ` ϑ0.00011.

2The digit in parenthesis indicates the last significant digit.
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The spectral factors are given by

ΓD4,0 “ 52.9428 ` ϑ0.17,

ΓD4,1 “ 68.03486 ` ϑ0.27,

ΓD4,2 “ 51.3393 ` ϑ0.17,

ΓD4,3 “ 27.1201 ` ϑ0.084.

In particular, the total variation mixing time of the dynamics on the D4 lattice is
dominated by the three-dimensional boundary behavior.

Our final result asymptotically determines the spectral parameters and spectral
factors for Z

d with nearest neighbor edges and with coordinate hyperplanes as
reflecting hyperplanes.

Theorem 3. As d Ñ 8, the periodic boundary spectral parameter of the Z
d lattice

is

(10) γZd “
π2

d2

ˆ

1 `
1

2d
` O

`

d´2
˘

˙

,

and the parameters with open boundary condition are

(11) γZd,j “
π2

2d2

ˆ

1 `
3

2d
` Oj

`

d´2
˘

˙

and, uniformly in j,

(12) γZd,j ě
π2

2d2 ` d
.

For each fixed j,

(13) Γj “
2d3 ´ p2j ` 3qd2 ` Ojpdq

π2
.

In particular, for all d sufficiently large, the total variation mixing time on Z
d is

dominated by the bulk behavior and Γ “
2d3

π2

`

1 ´
3
2d ` O

`

d´2
˘˘

.

Note that, for all d sufficiently large, γZd ‰ γZd,0, so that, in the periodic case,
the constant γZd which determines the asymptotic spectral gap is not related to the
spectral factor Γ0 which controls the asymptotic mixing time.

1.3. Discussion of method. The harmonic modulo 1 functions considered in this
article are evaluated only as functions with values in R{Z, and hence may be as-
signed values in

`

´
1
2 ,

1
2

‰

. On this interval there are constants C1, C2 ą 0 such that

C1x
2 ď 1 ´ cosp2πxq ď C2x

2. In particular, each ξ considered in the definitions of
the spectral factors may be treated as a function in �2pT q.

Rather than work with ξ, it is more convenient to work with its prevector ν “ Δξ,
which is integer valued, and hence behaves discretely. The function ξ is recovered
from ν by convolution with the Green’s function g on T , ξ “ g ˚ ν. Since Δ is
bounded from �2 Ñ �2, only prevectors with bounded �1-norm need be considered,
and, in fact, the arguments of [12] reduce the determination of the spectral factors
to within a prescribed tolerance to a finite calculation.

Given a prevector ν and a set S Ă T , the value

fSpξq “

ÿ

xPS

1 ´ cosp2πξxq
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may be estimated from below by constrained minimization programs. Since the
map Δξ “ ν is linear in ξ, the constraints are linear. The objective function fS
is not convex, but 1 ´ cosp2πξxq is convex in the critical region

“

´
1
4 ,

1
4

‰

and may
be approximated piecewise linearly from below outside this region. Enforcing the
constraint Δξ “ ν at only finitely many vertices gives a rapid method of obtaining
a lower bound for the value of each ξ. Since the linear constraints involve only
the neighbors of the vertex at which the constraint is applied, groups of vertices
which are two-separated may be treated additively. This reduces to a connected
component analysis of the prevector ν. Boundedly many configurations are found
to have a sufficiently small value, and then all ways of gluing these candidates
together are considered.

To calculate the value of the spectral parameters, a Fourier representation for
the Green’s function is used. A general recipe for giving this Fourier representation
for the Green’s function of any tiling is given in [12], and this recipe is used in the
specific examples considered here.

2. Notation list

The following list contains the notation used in this paper.

‚ meas denotes the usual Lebesgue measure on Euclidean space.
‚ Brpxq denotes the Euclidean ball of radius r centered at x in R

d. Its measure

is volpBrpxqq “
rdπ

d
2

Γp d
2 `1q

.

‚ The trigonometric functions are abbreviated epxq “ e2πix, cpxq “ cosp2πxq,
and spxq “ sinp2πxq.

‚ T denotes a periodic tiling graph embedded as an undirected graph in
Euclidean space of dimension d. The graph is assumed connected with
straight line edges. The graph is periodic in a d-dimensional lattice, which
is denoted Λ, and the quotient T {Λ is finite.

‚ Given a set S and a function ξ : S Ñ R{Z,

fSpξq “

ÿ

sPS

1 ´ cpξsq.

If S “ T the subscript is dropped.
‚ Given two nodes x, y in a connected graph G, dpx, yq denotes their graph
distance. Given a node x and a set of nodes S, dpx, Sq “ infyPS dpx, yq is
the distance of x from the set S.

‚ Given x P Λ, τx denotes the translation of functions in T by x.
‚ The �p spaces on a set S are functions ν : S Ñ R, }ν}pp “

ř

tPS |νptq|p. The
�8-norm is the sup norm. When the set is not clear from the context, the
notation } ¨ }p,S is used.

‚ The spaces CρpT q, ρ “ 0, 1, 2, are integer-valued functions defined so
that C0-functions have bounded support, C1pT q-functions are those C0-
functions of zero sum, and C2pT q are those C1 functions of zero moment.
The moment of a function is defined by stopping a simple random walk on
the period lattice Λ as explained in the next section.

‚ Given an integer m ě 1, Tm denotes the periodic boundary graph T {mΛ.
In this case we assume 0 P T and designate 0 sink in Tm.
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‚ Given an integer m ě 1, if after translation T has reflection symmetry in
the coordinate hyperplanes Hi,j “ tx P R

d : xi “ ju without edges cross-
ing the hyperplanes, then Tm denotes the open boundary graph modulo
reflection in the planes Hi,mj with nodes on the hyperplanes identified as
sink.

‚ All of the asymptotic notation in the paper holds as m Ñ 8. The notation
h ! g has the same meaning as h “ Opgq, while, for positive quantities,
h „ g means h

g tends to 1.

‚ An abelian sandpile on a finite connected graph G “ pV,Eq with sink s is
a function σ : V ztsu Ñ Zě0. The sandpile group G consists of all those
states σ which are recurrent for sandpile dynamics on G.

‚ Δ denotes the graph Laplacian on a graph G. Given a function ν on G,
Δνpvq “

ř

pv,wqPE νpvq ´ νpwq.

‚ Given v P T , gv denotes the Green’s function started at v, which satisfies
Δgv “ δv, where δv is the Kronecker delta function at v. Given a real-valued
function ν, the notation g ˚ ν “ gν “

ř

v νpvqgv is used.
‚ Yv,j denotes the jth step of random walk started at a node v in a graph G.
The transitions of the random walk at a point w choose a uniform random
edge from w to traverse.

‚ Tv is a stopping time for simple random walk started at a node v.
‚ The space H 2pT q denotes those harmonic modulo 1 functions h P �2pT q

such that Δh ” 0 mod 1. Given a set S Ă t1, 2, . . . , du, SS denotes the
reflection group generated by reflections in Hi,0, i P S, and AS denotes
functions on T which are antisymmetric in the hyperplane Hi,0 for all
i P S. The space H 2

S “ H 2 X AS consists of harmonic modulo 1 functions
which are antisymmetric in the hyperplanes indexed by S.

‚ γ denotes the periodic boundary spectral parameter of T , and γj denotes

the codimension j open boundary spectral parameter of T . Γj “
d´j
γj

is

the jth spectral factor, and the spectral factor of T is Γ “ maxj Γj .
‚ Given a set S Ă T and a function ν : S Ñ Z, the programs

P pS, νq, P 1
pS, νq, PjpS, νq, QpS, νq, Q1

pS, νq, QjpS, νq

denote not necessarily convex optimization programs which have linear con-
straints.

3. The Green’s function of a tiling

Throughout, T Ă R
d is a periodic tiling, which is periodic in a lattice Λ con-

tained in R
d, with T {Λ finite. After translation, assume that 0 P T , which is true

of all the tilings considered in this article. Given a tiling T and a vertex v, the
Green’s function of T satisfies Δgv “ δv, where δv is the Kronecker delta function
at v. The purpose of this section is to give a more complete description of the
tilings considered, and to develop their Green’s functions.

We indicate a random walk started from v in T by Yv,0 “ v, Yv,1, Yv,2, . . ., in
which the walker crosses each edge from a given vertex with equal probability. A
stopping time adapted to the random walk is a random variable N taking values
in Zě0 Y t8u such that the event tN “ nu is measurable in the sigma algebra
σptYv,0, Yv,1, . . . , Yv,nuq. Let Tv be a stopping time for a simple random walk start-
ing at v in T and stopping at the first positive time that it reaches Λ. This is the
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same stopping time as the first positive visit to 0 on the finite state Markov chain
given by a random walk on T {Λ, and hence ProbpTv ą nq “ O pe´cnq for some
constant c ą 0. See, e.g., [16] for an introduction to finite state Markov chains and
stopping times.

In [12] function spaces are defined on T ,

C0
pT q “ th : T Ñ Z, }h}1 ă 8u ,

C1
pT q “

#

h P C0
pT q,

ÿ

xPT

hpxq “ 0

+

,

C2
pT q “

#

h P C1
pT q,

ÿ

xPT

hpxqErYx,Tx
s “ 0

+

.

The convolution of the Green’s function g on T with a function η of bounded
support in T is defined to be

g ˚ η “ gη “

ÿ

vPT

ηpvqgv.

In Theorem 7 of [12] it is shown that for η P C0pT q, gη P �2pT q if and only if
η P CρpT q for

ρ “

$

&

%

2 d “ 2,
1 d “ 3, 4,
0 d ě 5.

Also, a characterization of the spectral parameters is given. Let I “ tΔη : η P

C0pT qu, and for ξ : T Ñ R{Z,

fpξq “

ÿ

xPT

1 ´ cpξxq.

Similarly, given a set S and ξ : S Ñ R{Z, define

fSpξq “
ÿ

xPS

1 ´ cpξxq.

Recall that given a collection of hyperplanes tHj,0, j P Su, ASpT q consists of
those functions which are antisymmetric in each hyperplane.

Lemma 4. The spectral parameter γ has characterization; in dimension 2,

γ “ tfpg ˚ νq : ν P C2
pT qzI u,

and in dimension at least 3,

γ “ tfpg ˚ νq : ν P C1
pT qzI u.

The parameter γj has characterization

γj “ inf
SĂt1,2,...,du,|S|“j

tfT {SS
pg ˚ νq : ν P Cρ

pT q X ASpT qzI u.

Proof. See the proof of Lemma 21 in [12]; this follows from the fact that ξ P H 2pT q

with Δξ “ ν is given by the convolution ξ “ gν . �
In this article, the above lemma is used to describe the minimization of the

spectral parameter as a search problem over integer-valued vectors which are thus
discretely distributed.

Let μ be the probability distribution of Y0,T0
on Λ. The following evaluation of

the Green’s function of a tiling is given in [12].
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v1

v2

Figure 1. The triangular lattice is spanned by vectors v1, v2.

Lemma 5. In dimension 2, for x P Λ,

(14) g0pxq “

8
ÿ

n“0

μ˚npxq

deg x
´

μ˚np0q

deg 0
,

while in dimension ě 3,

(15) g0pxq “

8
ÿ

n“0

μ˚npxq

deg x
,

and both sums converge. For x R Λ,

(16) g0pxq “ Erg0pYx,Tx
qs.

For v R Λ,

(17) gvpxq “
1

deg x
E

«

Tv´1
ÿ

j“0

1pYv,j “ xq

ff

` E
“

gYv,Tv
pxq

‰

.

In dimension 2, gvpxq ! 1 ` logp2 ` dpv, xqq, and in dimension d ą 2, gvpxq !
1

p1`dpv,xqqd´2 . If j “ 1 or 2 and η P CjpT q,

gηpxq !
1

1 ` dpx, 0qj`d´2

as dpx, 0q Ñ 8.

Using this lemma the following explicit evaluations are obtained for several lattice
tilings. These are used for numerical computations.

3.1. Triangular lattice (see Figure 1). This is a lattice, so the Green’s function
may be calculated without appealing to the stopping time argument above. Let

v1 “ p1, 0q, and let v2 “

´

1
2 ,

?
3
2

¯

. The lattice points take the form n1v1 ` n2v2

with n1, n2 P Z. The lattice graph is regular of degree 6 and the nearest neighbors
to 0 are t˘v1,˘v2,˘pv1 ´ v2qu. Let μ be the measure

(18) μ “
1

6
pδv1 ` δ´v1 ` δv2 ` δ´v2 ` δv1´v2 ` δv2´v1q .

The Green’s function from 0 is

(19) g0pn1v1 ` n2v2q “
1

6

8
ÿ

n“0

μ˚n
pn1v1 ` n2v2q ´ μ˚n

p0q.

This can be obtained via inverse Fourier transform by

(20) g0pn1v1 ` n2v2q “
1

6

ż

R2{Z2

epn1x1 ` n2x2q ´ 1

1 ´
1
3 pcpx1q ` cpx2q ` cpx1 ´ x2qq

dx1dx2.
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v

v2

v1

Figure 2. Coordinates in the honeycomb tiling are given in terms
of the basis for the triangular lattice, v1, v2, and v “

1
3 pv1 ` v2q.

3.2. Honeycomb tiling (see Figure 2). This can be constructed from the trian-
gular lattice as follows. Let v “

1
3 pv1 ` v2q, which is the centroid of the equilateral

triangle with vertices at t0, v1, v2u.
The vertices in the tiling have the form n1v1 ` n2v2 and n1v1 ` n2v2 ` v with

n1, n2 P Z. This is a 3-regular graph. The neighbors of a point n1v1`n2v2 are given
by n1v1 `n2v2 ` tv,´v1 `v,´v2 `vu. The neighbors of a point n1v1 `n2v2 `v are
n1v1 `n2v2 ` v ` t´v,´v ` v1,´v ` v2u. The tiling has reflection symmetry in the
lines in the directions of v,´v1 ` v,´v2 ` v and their translates in the triangular
lattice. The random walk started from 0 stops always on the triangular lattice in
two steps, so the stopped measure is

(21) μ “
1

3
δ0 `

1

9
pδv1 ` δ´v1 ` δv2 ` δ´v2 ` δv1´v2 ` δv2´v1q .

The Green’s function started from 0 is given on the triangular lattice by

(22) g0pn1v1 ` n2v2q “
1

3

8
ÿ

n“0

μ˚n
pn1v1 ` n2v2q ´ μ˚n

p0q,

which has the integral representation

(23) g0pn1v1 ` n2v2q “
1

3

ż

R2{Z2

epn1x1 ` n2x2q ´ 1
2
3 ´

2
9 pcpx1q ` cpx2q ` cpx1 ´ x2qq

dx1dx2.

By harmonicity,

g0pn1v1 ` n2v2 ` vq “
1

3
pg0pn1v1 ` n2v2q ` g0ppn1 ` 1qv1 ` n2v2q

` g0pn1v1 ` pn2 ` 1qv2qq.

By symmetry,

(24) gvpn1v1 ` n2v2 ` vq “ g0pn1v1 ` n2v2q.

Again by harmonicity,

gvpn1v1 ` n2v2q “
1

3
pg0pn1v1 ` n2v2q ` g0ppn1 ´ 1qv1 ` n2v2q

` g0pn1v1 ` pn2 ´ 1qv2qq.
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v1

v2

v3

Figure 3. Coordinates in the face centered cubic lattice are given
in terms of the vectors v1, v2, v3. Any two of these span the trian-
gular lattice.

3.3. Face centered cubic lattice (see Figure 3). This is a lattice tiling in R
3

generated by the vectors

(25) v1 “ p1, 0, 0q , v2 “

ˆ

1

2
,

?
3

2
, 0

˙

, v3 “

ˆ

1

2
,

?
3

6
,

?
6

3

˙

,

which are the vertices of a regular tetrahedron. The tiling graph is regular of degree
12. The neighbors of 0 are

(26) t˘v1,˘v2,˘v3,˘pv1 ´ v2q,˘pv1 ´ v3q,˘pv2 ´ v3qu.

Let μ be the measure which is uniform on these points. The Green’s function
started from 0 is given by

g0pn1v1 ` n2v2 ` n3v3q “
1

12

8
ÿ

n“0

μ˚n
pn1v1 ` n2v2 ` n3v3q.

The Fourier transform is

ĝpx1, x2, x3q

“
1

12 ´ 2pcpx1q ` cpx2q ` cpx3q ` cpx1 ´ x2q ` cpx1 ´ x3q ` cpx2 ´ x3qq
.

3.4. D4 lattice. The D4 lattice is a lattice in R
4 which is frequently presented as

the integer quaternion ring

(27) HpZq “ tn1 ` n2i ` n3j ` n4k : n P Z
4
u

together with the points with odd half-integer coordinates,

(28) D4 “ HpZq Y

ˆ

HpZq `
1

2
p1 ` i ` j ` kq

˙

.

This is a lattice tiling, which is regular of degree 24 as a graph. The 24 neighbors
of 0 are the units of the corresponding quaternion algebra,

(29) U4 “ t˘1,˘i,˘j,˘ku Y

"

1

2
pε1 ` ε2i ` ε3j ` ε4kq : ε P t˘1u

4

*

.
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A basis for the lattice is given by v1 “ 1, v2 “ i, v3 “ j, v4 “
1
2 p1 ` i ` j ` kq. In

these coordinates, the neighbors of 0 are

t˘v1,˘v2,˘v3,˘p2v4 ´ v1 ´ v2 ´ v3q,˘v4,˘p´v1 ` v4q,˘p´v2 ` v4q,

˘ p´v3 ` v4q,˘p´v1 ´ v2 ` v4q,˘p´v1 ´ v3 ` v4q,

˘ p´v2 ´ v3 ` v4q,˘p´v1 ´ v2 ´ v3 ` v4qu.

Let μ be uniform on the neighbors of 0. This measure has Fourier transform

μ̂px1, x2, x3,x4q “
1

12
pcpx1q ` cpx2q ` cpx3q ` cp2x4 ´ x1 ´ x2 ´ x3q

` cpx4q ` cp´x1 ` x4q ` cp´x2 ` x4q ` cp´x3 ` x4q

` cp´x1 ´ x2 ` x4q ` cp´x1 ´ x3 ` x4q ` cp´x2 ´ x3 ` x4q

` cp´x1 ´ x2 ´ x3 ` x4qq.

The Green’s function is given by

g0pn1v1 ` n2v2 ` n3v3 ` n4v4q

“
1

24

ż

R4{Z4

epn1x1 ` n2x2 ` n3x3 ` n4x4q

1 ´ μ̂px1, x2, x3, x4q
dx1dx2dx3dx4.

3.5. Z
d lattice. For d ě 3 the lattice Z

d has Green’s function

(30) g0pnq “
1

2d

ż

Rd{Zd

epn ¨ xq

1 ´
1
d pcpx1q ` ¨ ¨ ¨ ` cpxdqq

dx.

4. Optimization problem and computer search

In this section the spectral parameters are determined by a computer search for
several tilings. Recall that

γ “ inf

#

ÿ

xPT

1 ´ cpξxq : Δξ P C1
pT q, ξ ı 0 mod 1

+

and

γi “ inf
SĂt1,2,...,du

|S|“i

inf
ξPH 2

S pT q

ξı0 mod 1

ÿ

xPT {SS

1 ´ cpξxq.

The following arguments index harmonic modulo 1 function ξ with its prevector
ν “ Δξ, which is simpler as the prevector is integer valued. This permits an
approximate ordering on prevectors in terms of their norm and the diameter of
their support. The harmonic modulo 1 function is then recovered as ξ “ g ˚ ν, as
the following lemma demonstrates.

Lemma 6. Let ξ P �2pT q be harmonic modulo 1, and let ν “ Δξ be its prevector.
Then ξ “ gν .

Proof. Since Δ is bounded �2 Ñ �2 and ν is integer valued, it has finite support.
Given x P Λ, let τx denote translation by x, and let ξx “ ξ ´ τxξ. Hence νx “

Δpξxq “ ν ´ τxν is in C1pT q. It follows from [12] that gνxpyq Ñ 0 as dp0, yq Ñ 8.
Since

Δpξx ´ gνxq “ νx ´ νx “ 0

and since ξx ´ gνx vanishes at infinity, it follows from the maximum modulus prin-
ciple that ξx “ gνx . As x Ñ 8 for each fixed y, ξxpyq Ñ ξpyq. Since ξ P �2pT q, it
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tends to 0 at infinity, and hence gν tends to a constant at 8. In fact, this constant
is 0, since modulo a function in C1pT q, ν is a point mass at 0, and the convolu-
tion of g with a C1-function tends to 0, while the convolution with a point mass
either grows logarithmically in dimension 2 or tends to 0 in higher dimension. The
argument may now be repeated with ξ and ν replacing ξx and νx to conclude that
ξ “ gν . �

The next lemma controls cosine sums of ξ in terms of the �2-norm.

Lemma 7. Let S be a finite or countable set, and let ξ P �2pSq, }ξ}8 ď
1
2 . Define

(31) fSpξq “

ÿ

xPS

1 ´ cpξxq.

Let α ą 0, and assume }ξ}22 ě α. Then

(32) 2π2α

ˆ

1 ´
π2

3
α

˙

ď fSpξq ď 2π2
}ξ}

2
2.

Proof. The Taylor series approximation for cpxq on |x| ď
1
2 ,

cpxq “ 1 ´ 2π2x2
`

2π4

3
x4

´ ¨ ¨ ¨ ,

is an alternating series with decreasing increments after the term 2π2x2. Thus
fSpξq ď 2π2}ξ}22. Let 0 ă λ ď 1, and let ξ1 “ λξ satisfy }ξ1}22 “ α. Then
fSpξ1q ď fSpξq. Furthermore, using }ξ1}44 ď }ξ1}42 “ α2,

fSpξ1
q ě 2π2

}ξ1
}
2
2 ´

2

3
π4

}ξ1
}
4
4 ě 2π2α ´

2

3
π4α2.

�

The following lemma is used to estimate the functionals fpξq.

Lemma 8. Let R Ă T , and let ξ : T Ñ
`

´
1
2 ,

1
2

‰

. Let

(33) }ξ}
2
2,Rc “

ÿ

xPT zR

ξ2x.

There is a number ϑ, |ϑ| ď 1, such that

(34) fpξq “

ÿ

xPR

p1 ´ cpξxqq ` 2π2
}ξ}

2
2,Rc ´

π4

3
}ξ}

4
2,Rc ` ϑ

π4

3
}ξ}

4
2,Rc .

Proof. By Taylor approximation, for x P Rc,

2π2ξ2x ´
2

3
π4ξ4x ď 1 ´ cpξxq ď 2π2ξ2x.

Thus,

ÿ

xPR

p1 ´ cpξxqq ` 2π2
}ξx}

2
2,Rc ´

2

3
π4

}ξ}
4
2,Rc

ď fpξq ď
ÿ

xPR

p1 ´ cpξxqq ` 2π2
}ξ}

2
2,Rc ,

from which the claim follows. �
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In practice, Lemma 8 is applied by calculating ξx on R from the Fourier integral
representations in Section 3 in a neighborhood of 0, and calculating }ξ}22 by Parseval.

The following two optimization programs are used to obtain a lower bound for
fpξq. Let ξ “ g ˚ ν, }ξ}8 ď

1
2 . Given a set S Ă T , a lower bound for fpξq is

obtained as the solution of the optimization program QpS, νq:

QpS, νq :

minimize:
ÿ

dpw,Sqď1

1 ´ cpxwq,

subject to: @u P S, pdeg uqxu ´
ÿ

dpw,uq“1

xw “ νu

´
1

2
ď xw ď

1

2
.

A lower bound for QpS, νq is the relaxed optimization program with positive con-
straints P pS, νq:

P pS, νq :

minimize:
ÿ

dpw,Sqď1

1 ´ cpxwq,

subject to: @u P S, pdeg uqxu `

ÿ

dpw,uq“1

xw ě |νu|

´
1

2
ď xw ď

1

2
.

Note that the objective function is convex and with nondegenerate Hessian in the in-
terior with the stronger condition |xw| ď

1
4 , and hence has a unique local minimum

there. In order to estimate QpS, νq and P pS, νq numerically, the range 1
4 ď |xw| ď

1
2

was split into several equal size intervals and the objective function was approxi-
mated piecewise linearly on these, obtaining a lower bound for the minimum. The
minima were compared with the variables constrained to lie in each interval. De-
note PjpS, νq and QjpS, νq the programs in which both

“

´
1
2 ,´

1
4

‰

and
“

1
4 ,

1
2

‰

are
split into j equal size intervals, and the objective function interpolating linearly
between the values of cpxq on the endpoints. Note that the minimum of Pj and
Qj on each product of intervals is determined as a unique interior minimum or
boundary value. In the examples considered in dimensions 3 and higher, }ξ}22 was
optimized rather than fpξq, and it was demonstrated that the extremal function
is the same. Programs Q1pS, νq and P 1pS, νq have the same constraints, but have
objective function

ř

dpw,Sqď1 x
2
w. Note that this objective function is convex.

The optimization programs P, Pj, P
1, Q,Qj , Q

1 satisfy the following monotonicity
properties.

Lemma 9. The programs P, Pj , P
1, Q,Qj , Q

1 are monotone increasing in the set
S, in the sense that if S Ă T , then P pS, νq ď P pT, νq, and similarly for the other
programs. The programs P, Pj , P

1 are monotone increasing in the prevector |ν|.

Proof. Either increasing the size of the constraint set or increasing |ν| makes the
solution more constrained, and thus increases the minimum. �

The programs also satisfy the following additivity property.
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Lemma 10. Let BpSq “ tu : dpu, Sq ď 1u be the distance 1 enlargement of S.
When S1, S2, . . . , Sk are some sets in T whose distance 1 enlargements are pairwise

disjoint, then
řk

i“1 QpSi, νq ď fpξq and
řk

i“1 Q
1pSi, νq ď }ξ}22.

Proof. Since the sets of variables are disjoint, the sum of the optimization programs
can be considered to be a single optimization program, which is then satisfied by
ξ. The corresponding values for ξ are thus an upper bound on the optimum. �

Since the remaining programs P, P 1, Pj , Qj are relaxations of Q and Q1, the
additivity property in Lemma 10 holds for these as well.

A basic estimate for the value of Q1 is as follows.

Lemma 11. Let G “ pV,Eq be a graph, and let v P V of degree at least 2, with a
single edge to each of its neighbors and no self-loops. Let |νv| “ 1. The optimization
problem P 1ptvu, 1q “ Q1ptvu, νq has value 1

degpvqpdegpvq`1q
.

Proof. When considering Q1, assume without loss of generality that νv “ 1. The
constraint is pdeg vqxv ´

ř

pv,wqPE xw “ 1 and the objective function is x2
v `

ř

pv,wqPE x2
w. Evidently xw for pv, wq P E may be assumed to be nonpositive,

which proves the equality of the two programs. Since the claimed value is less than
1
4 , we may assume that all |xv| ă

1
2 at the optimum, and thus that the optimum

is achieved at an interior point. By Lagrange multipliers, there is a scalar λ such
that xv “ λ deg v and xw “ ´λ for all pv, wq P E. Thus λ “

1
degpvqpdegpvq`1q

. The

claim follows, since

(35)
ÿ

dpv,wqď1

x2
w “ λ2 degpvqpdegpvq ` 1q.

�

In particular, combining this lemma with Lemma 10 above proves that the ex-
tremal prevector has a bounded �1-norm.

The strategy of the arguments is now described as follows. Say two points xi, xt

in the support of ν are 2-path connected, or just connected for short, if there is
a sequence of points xi “ x0, x1, . . . , xn “ xt in the support of ν such that the
graph distance between xi and xi`1 is at most 2. By Lemma 10, the value of the
optimization programs applied with Si separated connected components of supp ν
is additive. Since the value of each optimization program is translation invariant
and, for a fixed ν, monotone in S, all connected components with P or Q (resp.,
P 1, Q1, Pj , Qj) value at most a fixed constant can be enumerated by starting from
a base configuration and adding connected points to the set S one at a time.

The configuration ν must be in Cρ for ξ P �2pT q, where

ρ “

$

&

%

2 d “ 2,
1 d “ 3, 4,
0 d ě 5.

Having enumerated all feasible connected components, the search is completed by
considering all methods of gluing together several connected components which
produce ν P Cρ.
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1 ´1

´1 1

Figure 4. The configuration indicated is a choice of prevector ν
which generates the extremal ξ for the triangular lattice.

4.1. Issues of precision. The techniques used in this section consist in the fol-
lowing: minimization of a convex function in a convex bounded region, which can
be certified by the calculation of the derivative of the objective function at the
optimum found, and the integration of a function with bounded derivatives over
a bounded domain. Although the integrals involving the characteristic function of
a Green’s function may have a singularity at 0, this may be removed in each case
by switching to spherical coordinates of the correct dimension near the point of
singularity. Thus the numerical results are verifiable to within the claimed preci-
sion. The generating code written in SciPy is available from the public repository
https://github.com/rdhough/spectral_gap.

4.2. Proof of Theorems 1 and 2.

4.2.1. Triangular lattice case (see Figure 4). Let the triangular lattice be generated

by v1 “ p1, 0q and v2 “

´

1
2 ,

?
3
2

¯

. Let ξ˚ “ g ˚ ν˚ with ν˚ “ δ0 ´ δv1 ´ δv2 ` δv1`v2 .

The value

(36) fpξ˚
q “ 1.69416p5q

was estimated by Lemma 8 with

(37) R “ tn1v1 ` n2v2 : maxp|n1|, |n2|q ď 10u.

It is shown that γtri “ fpξ˚q by computer search. The documentation and source
code for this search are available from the public repository https://github.com/

rdhough/spectral_gap.

4.2.2. Honeycomb tiling case (see Figure 5). Let v1 “ p1, 0q, let v2 “

´

1
2 ,

?
3
2

¯

,

and let v “
1
3 pv1 ` v2q. Thus the points in the honeycomb lattice have the form

n1v1 ` n2v2 ` n3v with n3 P t0, 1u and n1, n2 P Z. The optimal configuration is
given by ξ˚ “ g ˚ ν˚:

(38) ν˚
“ δ0 ´ δv ` δv2 ´ δ´v1`v ` δv2´v1 ´ δv2´v1`v.

The value fpξ˚q “ 5.977657p8q was obtained as in Lemma 8 with

(39) R “ tn1v1 ` n2v2 ` n3v : |n1|, |n2| ď 10, n3 P t0, 1uu.

The documentation of this computer search, and its source code, are available from
the public repository https://github.com/rdhough/spectral_gap.

https://github.com/rdhough/spectral_gap
https://github.com/rdhough/spectral_gap
https://github.com/rdhough/spectral_gap
https://github.com/rdhough/spectral_gap
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1 ´1

´1 1

1 ´1

Figure 5. The configuration indicated is a choice of prevector ν
which generates the extremal ξ for the honeycomb tiling.

1

´1

Figure 6. The configuration indicated is a choice of prevector ν
which generates the extremal ξ for the face centered cubic lattice.

4.2.3. Face centered cubic lattice case (see Figure 6). The optimum is shown to
be achieved by ν˚ “ δ0 ´ δv1 , ξ

˚ “ g ˚ ν˚ with }ξ˚}22 “ 0.01867p5q. The value
γfcc “ fpξ˚q “ 0.3623p9q was calculated by applying Lemma 8 with

(40) R “ tn1v1 ` n2v2 ` n3v3 : |n1|, |n2|, |n3| ď 5u.

In order to show that ν˚ is the optimizer, it is more convenient to work with
}ξ}22 than fpξq. By Lemma 7, if }ξ}22 ě α with

(41) 2π2α

ˆ

1 ´
π2

3
α

˙

ą γfcc, α “ 0.01963,

then fpξq ą γfcc.
Let ξ be harmonic modulo 1, }ξ}8 ď

1
2 . Let Δξ “ ν.

Lemma 12. If }ν}8 ě 2, then }ξ}22 ě
4

12¨13 ą 0.025 ą α.

Proof. By Lemma 11, since degp0q “ 12, P 1pt0u, 1q “
1

12¨13 . Within the interior
of the domain, the objective function scales quadratically, and hence P 1pt0u, 2q “

4
12¨13 . Applying this, translated to node x where |νx| ě 2, implies the claim. �

Since the Green’s function on a three-dimensional lattice is not in �2, it follows
that the optimal ν is in C1pT q, and hence has the same number of nodes with
values 1 and ´1.

Lemma 13. Suppose | supp ν| ě 4, and let z1, z2, z3, z4 be four points in the support,
two each with value 1,´1. The optimization problem Q1ptz1, z2, z3, z4u, νq has value
at least 2

99 ą α.
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Proof. Let the linear constraints be written as �i ¨ x “ νzi . Thus �i has value 12
at zi and value ´1 at each of the 12 neighbors of zi. Recall that the optimization
problem minimizes }x}22 subject to the constraints. The optimum can be assumed
not to be achieved on the boundary, since if some |xj | “

1
2 , then }x}22 ě

1
4 , which

exceeds the claimed bound. By Lagrange multipliers, at the optimum, for some
scalars λ1, λ2, λ3, λ4, x “ λ1�1 `λ2�2 `λ3�3 `λ4�4. Note that }�i}

2
2 “ 12 ¨13 “ 156.

Also, for i ‰ j, ´20 ď �i ¨ �j ď 2. The lower bound here is achieved when zi and zj
are adjacent, in which case they have four common neighbors. The upper bound
is achieved when they differ by a rotation of v1 ` v2, in which case they have two
common neighbors.

The constraints may be written as

(42) �tipλ1�1 ` λ2�2 ` λ3�3 ` λ4�4q “ νzi

or

(43) 156pI ` Aq

¨

˚

˚

˝

λ1

λ2

λ3

λ4

˛

‹

‹

‚

“

¨

˚

˚

˝

νz1
νz2
νz3
νz4

˛

‹

‹

‚

,

where A has zeros on the diagonal and has row sums contained in the interval
r´

60
156 ,

6
156 s. Let λ1

i “ 156λi and rewrite this as

(44) A

¨

˚

˚

˝

λ1
1

λ1
2

λ1
3

λ1
4

˛

‹

‹

‚

“

¨

˚

˚

˝

νz1 ´ λ1
1

νz2 ´ λ1
2

νz3 ´ λ1
3

νz4 ´ λ1
4

˛

‹

‹

‚

.

Thus maxp|νzi ´λ1
i|q ď

60
156 maxp|λ1

i|q. Since |νzi | “ 1, it follows that maxp|λ1
i|q ď 2,

and, hence, maxp|νzi ´ λ1
i|q ď

120
156 ă 1. Thus λi and νzi have the same sign.

Write

pνz1�1 ` νz2�2 ` νz3�3 ` νz4�4q
t
pλ1�1 ` λ2�2 ` λ3�3 ` λ4�4q “ 4,

and, by expanding the inner product on the left, express this as

a1νz1λ1 ` a2νz2λ2 ` a3νz3λ3 ` a4νz4λ4

“ a1|λ1| ` a2|λ2| ` a3|λ3| ` a4|λ4| “ 4,

where
ai “ }�i}

2
2 `

ÿ

j‰i

νziνzj �i ¨ �j .

There is one j for which νzi “ νzj and two of the opposite sign. Since ´20 ď

�i ¨ �j ď 2,

´24 ď

ÿ

j‰i

νziνzj �i ¨ �j ď 42.

By the above considerations, 156 ´ 24 “ 132 ď ai ď 156 ` 42 “ 198. Since

}x}
2
2 “ λ1νz1 ` λ2νz2 ` λ3νz3 ` λ4νz4

“ |λ1| ` |λ2| ` |λ3| ` |λ4|

it follows that }x}22 ě
4

198 “ 0.02 ą α. �
It follows that the optimum has | supp ν| “ 2. The following lemma reduces the

search to a finite search.
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Lemma 14. Let |ν0| “ 1, and let νw “ 0 for w such that 1 ď dpw, 0q ď 2. Let
S “ tw : dpw, 0q ď 2u. Then Q1pS, νq ě 0.0125.

Proof. This was verified in SciPy. �

It follows that there may not be two points in the support of ν at graph distance
greater than 6, or else the optimization problem could be applied at each point,
and the 2-norm would be too large. This reduces the search to checking all config-
urations with two points in the support at graph distance at most 6. The choice
with adjacent points is the minimizer.

4.2.4. D4 tiling case. The following optimization problems are used in the deter-
mination of the spectral parameters. In D4, up to multiplication by a unit and
reflection in the coordinate hyperplanes, there is one element each of norm 1, 2, 3,
and 4 in D4. Representatives are 1, 1 ` i, 1 ` i ` j, and 2.

Lemma 15. Consider the following optimization problems:

(i) Let ν0 “ 1. Then

(45) P 1
pt0u, 1q “

1

600
“ 0.0016.

(ii) Let S “ tw : dpw, 0q ď 1u. Let ν0 “ 1, and let νw “ 0 for w such that
dpw, 0q “ 1. Then

(46) Q1
pS, νq ě 0.00206.

(iii) Let ν0 “ 1, and let νw “ 0 for 1 ď dpw, 0q ď 2. Then

(47) Q1
pS, νq ě 0.00233.

(iv) For u P t1, 1 ` i, 1 ` i ` j, 2u let ν0 “ 1, νu “ ˘1. A lower bound for the
program Q1pt0, uu, νq in each case is given in the following table:

u `1 ´1
1 0.00357 0.00312
1 ` i 0.00330 0.00336
1 ` i ` j 0.00332 0.00334
2 0.00332 0.00333

Proof. The first value is the same as from Lemma 11. The remaining values were
determined in SciPy. �

Note that the first estimate of the lemma implies that P 1pt0u, 2q ě
1

150 , since the
objective function is quadratic. This reduces to prevectors with }ν}8 ď 1 in the
calculations that follow.

Lemma 16. If ξ is harmonic modulo 1 on D4 and ν “ Δξ has | supp ν| ě 3, then
}ξ}22 ě

3
742 ą 0.004043.

Proof. Let z1, z2, z3 be points in the support of ν. Then }ξ}22 is bounded below
by the value of the relaxed optimization program P 1ptz1, z2, z3u, 1q. By applying
Lagrange multipliers, the variable x may be expressed as λ1v1 `λ2v2 `λ3v3, where
v1, v2, v3 are the gradients of the constraint linear forms. The linear constraints
become vtipλ1v1 ` λ2v2 ` λ3v3q “ 1 and

(48) }x}
2
2 “ pλ1v1 ` λ2v2 ` λ3v3q

t
pλ1v1 ` λ2v2 ` λ3v3q “ λ1 ` λ2 ` λ3.
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Since each vi has one entry 24 and 24 entries 1, }vi}
2
2 “ 600, and for i ‰ j,

vtivj ď 24 ` 24 ` 23 “ 71. Write the constraints as

(49) 600pI ` Aq

¨

˝

λ1

λ2

λ3

˛

‚“

¨

˝

1
1
1

˛

‚

with A having 0’s on the diagonal and row sums bounded in size by 142
600 . Let

λ1
i “ 600λi, so that

(50) A

¨

˝

λ1
1

λ1
2

λ1
3

˛

‚“

¨

˝

1 ´ λ1
1

1 ´ λ1
2

1 ´ λ1
3

˛

‚,

so that maxp|1 ´ λ1
i|q ď

142
600 maxp|λ1

i|q. This implies that maxp|λ1
i|q ď 2 and thus

maxp|1´λ1
i|q ď

284
600 , so that each λi ą 0. Thus, summing constraints, λ1`λ2`λ3 ě

3
742 . �

The proof of Theorem 1 in the case of D4 is as follows.

Case (γD4,0). The extremal example is given by ξ˚ “ g ˚ ν˚ with ν˚ “ δ0 ´ δ1.
The 2-norm of ξ˚ was calculated by Parseval,

}ξ˚
}
2
2 “

ż

pR{Zq4

2p1 ´ cpy1qq

gpy1, y2, y3, y4q2
dy1dy2dy3dy4,

gpy1, y2, y3, y4q “ 24 ´ 2pcpy1q ` cpy2q ` cpy3q ` cp2y4 ´ y1 ´ y2 ´ y3q

` cpy4q ` cpy4 ´ y1 ´ y2 ´ y3q ` cpy4 ´ y1q ` cpy4 ´ y2q

` cpy4 ´ y3q ` cpy4 ´ y1 ´ y2q ` cpy4 ´ y1 ´ y3q

` cpy4 ´ y2 ´ y3qq.

This was calculated in SciPy, }ξ˚}22 “ 0.0038397p3q. By symmetry, }ξ˚}28 ď
1
2}ξ˚}22,

and hence }ξ˚}44 ď
1
2}ξ˚}42. It follows that, for some |ϑ| ă 1, whose value may vary

from line to line,

γD4,0 “ 2π2
}ξ˚

}
2
2 ´

π4

3
}ξ˚

}
4
4 ` ϑ

π4

3
}ξ˚

}
4
4

“ 2π2
}ξ˚

}
2
2 ´

π4

6
}ξ˚

}
4
2 ` ϑ

π4

6
}ξ˚

}
4
2

“ 0.075554 ` ϑ0.00024.

Thus,

ΓD4,0 “
4

γ0
“ 52.9428 ` ϑ0.17.

To verify that ξ˚ is extremal, suppose that ξ is harmonic modulo 1, }ξ}8 ď
1
2 ,

and Δξ “ ν is another candidate. Since the Green’s function is not in �2 in
dimension 4, it follows that ν P C1pT q. By Lemma 7, to conclude that ξ is not
extremal, it suffices to conclude that }ξ}22 ě α with

(51) 2π2α

ˆ

1 ´
π2

3
α

˙

ě 0.075794, α ą 0.0039.

Note that }ν}8 “ 1, since the first optimization program in Lemma 15 can be
applied where |νx| ě 2 and gives a value for the 2-norm which is too large. Also,
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there are not 3 points in supp ν by Lemma 16. If the two points in the support
of ν have distance at least 5, then the second optimization problem of Lemma 15
may be applied at each point, which makes the 2-norm too large. Hence the two
points in the support have graph distance at most 4. One point may be taken to
be 0. The second point needs to be considered only up to multiplication by the 24
quaternion units and by reflection in the coordinate hyperplanes. The candidates
for the second point were checked exhaustively; the minimizer is ν0 and all other
points had a 2-norm too large.

Case (γD4,1). By symmetry assume that the reflecting hyperplane is P1 “ tx P

R
4 : x1 ` x2 “ 0u. It is verified that the optimal prevector is ν˚ “ δp1,0,0,0q, with

reflection symmetry, so that ν˚p0,´1, 0, 0q “ ´1, and let ξ˚ “ g ˚ ν˚. The 2-norm
may be taken on the quotient by summing ξ2x over points x on one side of the
hyperplane, including the hyperplane where ξ vanishes, hence say

(52) }ξ}
2
2,t1u “

ÿ

x:x1`x2ě0

ξ2x.

By Parseval,

(53) }ξ˚
}
2
2,t1u “

1

2

ż

pR{Zq4

|epy1q ´ ep´y2q|2

gpy1, y2, y3, y4q2
dy1dy2dy3dy4 “ 0.0022421p8q.

In this case

γD4,1 “ 2π2
}ξ˚

}
2
2,t1u ´

π4

3
}ξ˚

}
4
2,t1u ` ϑ

π4

3
}ξ˚

}
4
2,t1u

“ 0.0440957 ` ϑ0.00017.

Thus,

ΓD4,1 “
3

γ1
“ 68.03486 ` ϑ0.27.

To check that ξ˚ is the optimizer, let ξ be harmonic modulo 1, let }ξ}8 ď
1
2 ,

with reflection antisymmetry in P1, and let Δξ “ ν. It suffices to prove by Lemma
7 that }ξ}22,t1u

ě α with

(54) 2π2α

ˆ

1 ´
π2

3
α

˙

ě 0.04427, α ą 0.00226.

If | supp ν| ě 2 in tx : x1 ` x2 ą 0u, then if two of the points in the support
have distance at least 3 apart, the first optimization problem of Lemma 15 may be
applied at each point. Otherwise the last optimization problem may be applied. In
either case, the 2-norm is too large. Thus there is a single point in the support, say
px1, x2, x3, x4q of value 1. The reflection point is p´x2,´x1, x3, x4q. The 2-norm is,
by Parseval,

(55)

ż

pR{Zq4

|epx1y1 ` x2y2q ´ ep´x2y1 ´ x1y2q|2

gpy1, y2, y3, y4q2
dy1dy2dy3dy4.

If x has graph distance 3 or more from the boundary hyperplane P1, then the third
optimization program of Lemma 15 may be applied to show that the 2-norm is too
large. It now follows by checking case by case that the minimizer is z “ x1`x2 “ 1,
which is ν˚.
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Case (γD4,2). By symmetry assume that the reflecting hyperplanes are P1 “ tx P

R
4 : x1 ` x2 “ 0u and P2 “ tx P R

4 : x1 ´ x2 “ 0u. The optimizing prevector is
ν˚ “ δp1,0,0,0q and ξ˚ “ g ˚ ν˚. By reflection antisymmetry,

(56) ν˚
p0,´1, 0, 0q “ ´1, ν˚

p´1, 0, 0, 0q “ 1, ν˚
p0, 1, 0, 0q “ ´1.

The 2-norm is }ξ˚}22,t1,2u
“ 0.0019800p3q. Calculating as in the case of γD4,1,

γD4,2 “ 2π2
}ξ˚

}
2
2,t1,2u ´

π4

3
}ξ˚

}
4
2,t1,2u ` ϑ

π4

3
}ξ˚

}
4
2,t1,2u

“ 0.0389569 ` ϑ0.00013.

Thus,

ΓD4,2 “
2

γD4,2
“ 51.3393 ` ϑ0.17.

To verify that ξ˚ is extremal, let ξ be harmonic modulo 1 with reflection anti-
symmetry in P1 and P2, and let ν “ Δξ. To rule out that ξ is extremal it suffices
to check by Lemma 7 that }ξ}22,t1,2u

ě α with

(57) 2π2α

ˆ

1 ´
π2

3
α

˙

ě 0.0391, α ą 0.002.

The case of two points in the support modulo reflections is ruled out as before.
Suppose the point in the support is px1, x2, x3, x4q. This point may have not have
distance at least 2 from both hyperplanes, or else the second optimization problem
of Lemma 15 may be applied to show that the 2-norm is too large. Hence, minp|x1`

x2|, |x1 ´ x2|q “ 1, say, by symmetry, x1 ` x2 “ 1, and x differs by p1, 1, 0, 0q

from its reflection in P1. If x has graph distance 3 or more from P2, then the
optimization program which enforces Δξp0, 0, 0, 0q “ 1, Δξp1, 1, 0, 0q “ ´1 and
Δξpvq “ 0 if dpv, tp0, 0, 0, 0q, p1, 1, 0, 0quq ď 2 can be applied, which has minimum
2-norm 0.0041780p9q. This is a lower bound for twice the 2-norm of ξ modulo
reflections, and is too large. Hence x has graph distance at most 2 from P2, so
x1 ´ x2 is either 1 or 2. The case 1 is the minimizer.

Case (γD4,3). By symmetry assume the reflecting hyperplanes are P1,P2,P3,
with

(58) P3 “ tx P R
4 : x3 ` x4 “ 0u.

It is shown that the minimizer is ν˚ “ δp1,0,1,0q with ξ˚ “ g ˚ ν˚, }ξ˚}22,t1,2,3u
“

0.0018737p9q. The corresponding value of α to rule out other configurations is
α “ 0.00189. Arguing as for γD4,1 and γD4,2,

γD4,3 “ 0.036873324 ` ϑ0.00012.

Thus,

ΓD4,3 “
1

γD4,3
“ 27.1201 ` ϑ0.084.

Arguing as above, we may assume that | supp ν˚| “ 1, and that the point x “

px1, x2, x3, x4q has distance 1 to one hyperplane, say, without loss, that x1`x2 “ 1.
Also, the distance to the next closest hyperplane is at most 2, so say x1 ´x2 “ 1 or
x1 ´ x2 “ 2. If supp ν had distance 3 or more from P3, then after translation, the
program Q1pS, νq can be applied with S given by supp ν together with its reflection
in P1 and P2, and the distance 2 neighborhood of these points, the corresponding
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lower bound being 1
4 of this value due to the reflections. Up to translation, this

reduces to considering Δξ at

p0, 0, 0, 0q, p1, 1, 0, 0q, p1,´1, 0, 0q, p2, 0, 0, 0q

or
p0, 0, 0, 0q, p1, 1, 0, 0q, p2,´2, 0, 0q, p3,´1, 0, 0q

and their distance 2 neighborhood. Both programs were ruled out. The three
remaining possibilities are considered, and ν˚ gives the optimum.

Case (γD4,4). The minimizer is ν˚ “ δp1,0,1,0q with ξ˚ “ g ˚ ν˚, }ξ˚}22,t1,2,3,4u
“

0.0018170p7q. The value of α to rule out other configurations in this case is α “

0.0018281. This obtains

γD4,4 “ 0.0357604 ` ϑ0.00011.

The above considerations reduce to the case where ν is supported at a single point,
with distance 1 from P1, and distance at most 2 from P2 and P3. Arguing
similarly to the case of three hyperplanes shows that the distance to P4 is also at
most 2, which reduces to a finite check. The best case is ν˚.

5. The spectral parameters of the Z
d
-tiling

This section evaluates the spectral factor of the Zd-lattice asymptotically, proving
Theorem 3.

When d ě 3, the Green’s function on Z
d may be recovered from its Fourier

transform via Fourier inversion,

(59) g0pxq “
1

2d

ż

pR{Zqd

epx ¨ yq

1 ´
1
d pcpy1q ` ¨ ¨ ¨ ` cpydqq

dy.

The following lemma is useful in studying this integral evaluation asymptotically.
Let meas denote the unit Lebesgue measure on r0, 1s.

Lemma 17. Let X1, X2, . . . , Xd be i.i.d. random variables on r´1, 1s with distri-
bution

(60) ProbpX1 ď aq “ meas t0 ď t ď 1 : cptq ď au .

Let X “
1
d pX1 ` X2 ` ¨ ¨ ¨ ` Xdq. For 0 ď δ ď 1,

(61) ProbpX ą 1 ´ δq ď min

˜

e´
dp1´δq2

2 ,

ˆ

πeδ

4

˙
d
2

¸

.

The two bounds are equal for δ “ 0.27819p3q “: ζ.

Proof. Chernoff’s inequality [1, p. 328, Theorem A.1.16] states that if Y1, . . . , Yn

are independent with ErYis “ 0 and |Yi| ď 1, with S “ Y1 ` ¨ ¨ ¨ ` Yn, then

ProbpS ą aq ă e´ a2

2n .

The first claimed bound follows, since ErX1s “ 0 and |X1| ď 1. For the second
bound, use 1 ´ cptq ě 8t2 for |t| ď

1
2 . Thus, estimating with the Euclidean volume

of a ball of radius r in d dimensions, volBrp0q “
rdπ

d
2

Γp d
2 `1q

,

(62) ProbpX ą 1 ´ δq ď meas

˜

t P

„

´
1

2
,
1

2

jd

: }t}22 ď
δd

8

¸

ď
pπδdq

d
2

8
d
2 Γ

`

d
2 ` 1

˘
.
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Now use

(63) Γ

ˆ

d

2
` 1

˙

ě

ˆ

d

2e

˙
d
2

,

which is valid for d ě 2. �

The following lemma estimates }ξ}22 asymptotically when ν is supported on a
single point. This example controls the mixing time for all d sufficiently large.

Lemma 18. Let d ě 5, let 0 ď k ď d, and let ν : Zd Ñ Z which has reflection
antisymmetry in the first k coordinate hyperplanes P1, . . . ,Pk. Let Sk be the group
of reflections in P1, . . . ,Pk and suppose that modulo Sk, ν is a point mass. Let
ξ “ g ˚ ν. Then as d Ñ 8,

(64) }ξ}
2
2,Zd{Sk

“
1

4d2

ˆ

1 `
3

2d
` Ok

`

d´2
˘

˙

.

Proof. When d ě 5 the Green’s function is in �2pZdq. The �2-norm is

(65) }g0}
2
2 “

1

4d2

ż

pR{Zqd

dy
`

1 ´
1
d pcpy1q ` ¨ ¨ ¨ ` cpydqq

˘2 .

Note that 1
d pcpy1q ` ¨ ¨ ¨ ` cpydqq is the Fourier series of the measure μ of a simple

random walk on Z
d.

When ν has reflection symmetry in k hyperplanes and is supported at a single
point a in the quotient space, the 2-norm of g ˚ ν in the quotient space is

}g ˚ ν}
2
2,Zd{Sk

“
1

4d2

ż

pR{Zqd

1
2k

ˇ

ˇ

ˇ

śk
j“1pepajyjq ´ ep´ajyjqq

ˇ

ˇ

ˇ

2

`

1 ´
1
d pcpy1q ` ¨ ¨ ¨ ` cpydqq

˘2 dy

“
1

4d2

ż

pR{Zqd

śk
j“1p1 ´ cp2ajyjqq

`

1 ´
1
d pcpy1q ` ¨ ¨ ¨ ` cpydqq

˘2 dy.

By symmetry of the random walk,

(66) }g ˚ ν}
2
2,Zd{Sk

“
1

4d2

ż

pR{Zqd

śk
j“1p1 ´ ep2ajyjqq

`

1 ´
1
d pcpy1q ` ¨ ¨ ¨ ` cpydqq

˘2 dy.

Use the formula

(67)
1

p1 ´ xq2
“ 1 ` 2x ` 3x2

` ¨ ¨ ¨ ` nxn´1
`

nxn

1 ´ x
`

xn

p1 ´ xq2

with x “
1
d pcpy1q ` ¨ ¨ ¨ ` cpydqq.

To estimate }g0}22, write this as

}g0}
2
2 “

1

4d2

˜

1 ` 3

ż

pR{Zqd
x2dy ` 4

ż

pR{Zqd

x4

1 ´ x
dy `

ż

pR{Zqd

x4

p1 ´ xq2
dy

¸

“
1

4d2

˜

1 `
3

2d
`

ż

pR{Zqd

4x4

1 ´ x
`

x4

p1 ´ xq2
dy

¸

.
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To estimate the integrals, by symmetry, pair x and ´x so that the integrals become

´

ż 1

0

c4
ˆ

8

1 ´ c2
`

2 ` 2c2

p1 ´ c2q2

˙

dProbpx ě cq

“

ż 1

0

d

dc

ˆ

c4p10 ´ 6c2q

p1 ´ c2q2

˙

Probpx ě cqdc

“

ż 1

0

ˆ

40c3 ´ 36c5

p1 ´ c2q2
`

40c5 ´ 24c7

p1 ´ c2q3

˙

Probpx ě cqdc

ď

ż 1´ζ

0

ˆ

40c3 ` 12c7

p1 ´ c2q3

˙

e´ dc2

2 dc(68)

`

ż ζ

0

ˆ

40p1 ´ cq3 ` 12p1 ´ cq7

c3p2 ´ cq3

˙

´πec

4

¯
d
2

dc.(69)

In (68), bound 1
1´c2 ď

1
2ζ´ζ2 , and then extend the integrals to 8 to obtain a bound

of Opd´2q. The integral (69) is exponentially small in d.
Also, for a ‰ 0, writing

1 ` 2x ` 3x2
` 4x3

` 4
x4

1 ´ x
`

x4

p1 ´ xq2

and bounding the integral of the last two terms in absolute value obtains

1

4d2

ż

pR{Zqd

ep2
řk

j“1 ajyjq
`

1 ´
1
d pcpy1q ` ¨ ¨ ¨ ` cpydqq

˘2 dy

“
3

4d2
μ˚2

p2a1e1 ` ¨ ¨ ¨ ` 2akekq ` O

˜

1

4d2

ż

pR{Zqd

x4

p1 ´ xq2
dy

¸

“
3

16d4
1p}a1e1 ` ¨ ¨ ¨ ` akek}1 “ 1q ` O

ˆ

1

d4

˙

.

By expanding the numerator of (66), this implies that

(70) }g ˚ ν}
2
2,Zd{Sk

“
1

4d2

ˆ

1 `
3

2d
` Okpd´2

q

˙

.

�

The following lemma evaluates }ξ}22 asymptotically when the support of ν is
larger.

Lemma 19. Let d ě 5. Let ν “ δ0 ´ δa for some a ‰ 0 P Z
d, and let ξ “ g ˚ ν. As

d Ñ 8,

(71) }ξ}
2
2 “

$

&

%

1
2d2

`

1 `
1
2d ` O

`

d´2
˘˘

}a}1 “ 1,

1
2d2

`

1 `
3
2d ` O

`

d´2
˘˘

}a}1 ą 1.
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Proof. As in the previous lemma, let μ̂pyq “
1
d pcpy1q ` ¨ ¨ ¨ ` cpydqq. Then, by

Parseval, estimating the error as above,

}g ˚ ν}
2
2 “

1

4d2

ż

pR{Zqd

|ν̂pyq|2

p1 ´ μ̂pyqq2
dy

“
1

4d2

ż

pR{Zqd
|ν̂pyq|

2
`

1 ` 2μ̂pyq ` 3μ̂pyq
2

` 4μ̂pyq
3
˘

dy ` Opd´4
q.

Let ν̌pxq “ νp´xq. The integral can be evaluated by using Parseval on each term,
ż

pR{Zqd
|ν̂pyq|

2μ̂pyq
jdy “ ν ˚ ν̌ ˚ μ˚j

p0q.

Since ν ˚ ν̌p0q “ }ν}22 and

μ˚0
p0q ` 2μp0q ` 3μ˚2

p0q ` 4μ˚3
p0q “ 1 `

3

2d
,

the ν ˚ ν̌p0q terms contribute }ν}22

`

1 `
3
2d

˘

. For }a}1 “ 1,

(72) μ˚0
paq ` 2μpaq ` 3μ˚2

paq ` 4μ˚3
paq “

1

d
` O

ˆ

1

d2

˙

,

while for }a}1 ą 1, the sum is Opd´2q. Thus, for ν “ δ0 ´ δa,

(73) ν ˚ ν̌ “ 2δ0 ´ δa ´ δ´a

and

(74) }g ˚ ν}
2
2 “

2

4d2

ˆ

1 `
3

2d
´ 1p}a} “ 1q

1

d
` O

ˆ

1

d2

˙˙

.

�
The results obtained by integration are to be compared with the following lower

bounds for }ξ}22 obtained from a convex optimization program.

Lemma 20. Let ξ “ g ˚ν be a function on Z
d, d ě 2, with reflection antisymmetry

in the first k coordinate hyperplanes. Let the corresponding reflection group be Sk.
Consider ξ and ν to be antisymmetric functions on the quotient of Zd{Sk. The
following bounds hold for }ξ}22,Zd{Sk

. For all 1 ď i, j ď d, i ‰ j,

(75) }ξ}
2
2,Zd{Sk

ě

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

1
4d2`2d | supp ν| ě 1,

2
4d2`6d | supp ν| ě 2, u, u ` ej P supp ν,

2
4d2`2d`1 | supp ν| ě 2, u, u ` 2ej P supp ν,

2
4d2`2d`2 | supp ν| ě 2, u, u ` ei ` ej P supp ν,

2
4d2`2d | supp ν| ě 2, u, w P supp ν, dpu,wq ě 3.

Proof. The optimization program P 1pt0u, 1q is a lower bound for the first quantity.
This program has value 1

p2dqp2d`1q
, since the optimum occurs at an interior point,

and is achieved by x0 “
1

2d`1 , xw “
1

p2dqp2d`1q
for dpw, 0q “ 1.

In the last case, two translated copies of P 1pt0u, 1q may be applied, one at each
point in the support.
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In the remaining cases, a lower bound for }ξ}22,Zd{Sk
is given by setting, for

u “ e1, 2e1, e1 `e2, ν0 “ νu “ 1, and calculating P 1pt0, uu, 1q. The optimum in this
case is achieved at an interior point since the values on the boundary are at least
1
4 , which exceeds the claimed bound. At an interior point, by Lagrange multipliers
the optimum takes the form

(76) x “ λ1v1 ` λ2v2,

where v1 and v2 are the gradients of the two linear constraints. The linear system
vt1pλ1v1 ` λ2v2q “ 1, vt2pλ1v1 ` λ2v2q “ 1 is symmetric in λ1, λ2 and has a unique
solution with λ “ λ1 “ λ2 “

1
}v1}22`vt

1v2
. Thus

(77) }x}
2
2 “ 2λ2

p}v1}
2
2 ` vt1v2q “

2

}v1}22 ` vt1v2
.

Since }v1}22 “ 4d2 ` 2d and vt1v2 has value 4d, 1, 2 in the three cases considered, the
claim follows. �

Lemma 21. Let ξ “ g ˚ ν be a function on Z
d, d ě 5, satisfying | supp ν| ě 3.

Then

(78) }ξ}
2
2 ě

3

4d2 ` 10d
.

Proof. After translation, suppose that 0, u1, u2 are in the support. A lower bound
for the 2-norm is given by the value of the optimization program P 1pt0, u1, u2u, 1q:

minimize:
ÿ

dpw,t0,u1,u2uqď1

x2
w,

subject to: 2dx0 `

d
ÿ

i“1

xei ` x´ei ě 1,

2dxu1
`

d
ÿ

i“1

xu1`ei ` xu1´ei ě 1,

2dxu2
`

d
ÿ

i“1

xu2`ei ` xu2´ei ě 1.

Let x be the set of variables, and write the constraints as vt1x ě 1, vt2x ě 1,
vt3x ě 1. By Lagrange multipliers, the optimum occurs at x “ λ1v1 ` λ2v2 ` λ3v3.
Since the distance 1 neighborhoods of 0, u1, u2 pairwise overlap in at most 2 points,
each neighborhood has some variable not shared by the others. Since the optimum
occurs with all variables nonnegative, λ1, λ2, λ3 ě 0.

We have }vi}
2
2 “ 4d2`2d, and for i ‰ j, vtivj ď 4d. Adding the three constraints,

(79) pvt1 ` vt2 ` vt3qpλ1v1 ` λ2v2 ` λ3v3q ě 3.
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Hence pλ1 ` λ2 ` λ3q ě
3

4d2`10d , since

}x}
2
2 “

`

λ1v
t
1 ` λ2v

t
2 ` λ3v

t
3

˘

pλ1v1 ` λ2v2 ` λ3v3q

ě λ1v
t
1pλ1v1 ` λ2v2 ` λ3v3q ` λ2v

t
2pλ1v1 ` λ2v2 ` λ3v3q

` λ3v
t
3pλ1v1 ` λ2v2 ` λ3v3q

ě λ1 ` λ2 ` λ3

ě
3

4d2 ` 10d
.

�

Combining the estimates, it is now possible to prove Theorem 3.

Proof of Theorem 3. In determining γZd , ν “ Δξ is C1, and hence | supp ν| ě 2.
Using 1 ´ cpξxq “ 2π2ξ2x ` Opξ4xq it follows that fpξq “ 2π2}ξ}22 ` Op}ξ}42q. By
Lemma 21, if | supp ν| ě 3, then }ξ}22 ě

3
4d2`10d . Combining with Lemma 19,

for all d sufficiently large the optimum is achieved by ν “ δ0 ´ δe1 with }ξ}22 “
1

2d2

`

1 `
1
2d ` O

`

d´2
˘˘

. Hence

(80) γZd “
π2

d2

ˆ

1 `
1

2d
` O

`

d´2
˘

˙

.

By Lemma 20, it follows that if | supp ν| ě 2 for the extremal prevector, then
}g ˚ ν}22 ě

1
2d2 `Opd´3q. Thus, asymptotically in d, the extremum is achieved with

ν a point mass. Approximating 1 ´ cpξxq “ 2π2ξ2x ` Opξ4xq, it follows from Lemma
18 that, as d Ñ 8, for each j,

(81) γZd,j “
π2

2d2

ˆ

1 `
3

2d
` Ojpd´2

q

˙

,

and, uniformly in j, by the first estimate of Lemma 20,

(82) γZd,j ě
π2

2d2 ` d
p1 ` Opd´2

qq.

It follows that, for all j,

(83) Γj ď
pd ´ jqp2d2 ` d ` Op1qq

π2
,

and for each fixed j,

(84) Γj “
pd ´ jqp2d2 ´ 3d ` Ojp1qq

π2
.

In particular, Γ “ Γ0 “
2d3

´3d2
`Opdq

π2 for all d sufficiently large. �
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