Syllabus for Probability I, Spring 2017

Meetings time and place:

Lecture: TTh 11:30am–12:50pm in Physics P123.

Course webpage: math.stonybrook.edu/~rdhough/mat639-spring17

Professor:

Robert Hough robert.hough@stonybrook.edu Math Tower 4-118 Office Hours: F 10am-12pm

Course Description: This is a first graduate probability course, covering measure spaces, random variables, the weak and strong laws of large numbers, the Central Limit Theorem and Martingales. In the latter part of the course I intend to give an introduction to concentration of measure, including isoperimetric and log-Sobolev inequalities.

Prerequisite: Measure theory. Royden's *Real analysis* is a more than sufficient reference.

Required text: Rick Durrett. *Probability: Theory and Examples*, 4th ed. Cambridge University Press, 2010.

Supplementary text: M. Ledoux. *The Concentration of Measure Phenomenon*, AMS Publishing 2001.

Note: Amir Dembo's notes cover much of the material in Durrett with additional exercises and corrections. See the course webpage.

Homework and exam policy: Homework assigned is not mandatory. If turned in, the instructor agrees to return it with some comments.

Students with disabilities: If you have a physical, psychological, medical, or learning disability that may impact your course work, please contact Disability Support Services at (631) 632-6748 or http://studentaffairs.stonybrook.edu/dss/. They will determine with you what accommodations are necessary and appropriate. All information and documentation is confidential.

Administrative deadlines:

Drop deadline: Friday Feb. 3, 4pm (no W) Grade basis deadline: Friday Mar. 24, 4pm (drop with W) For more details, see the SBU registrar: http://www.stonybrook.edu/registrar/index.shtml

Date	Topics	Reading
Tu Jan 24.	Review of measure theory, random variables, expec-	D 1.1–1.6, A.1
	tation.	
Th Jan 26.	Product measures, independence.	D 1.7, 2.1, A.3–A.5
Tu Jan 31.	Law of large numbers	D 2.2–2.4
Th Feb 2.	Convergence of random series and large deviations	D 2.5–2.6
Tu Feb 7.	Central limit theorems	D 3.1–3.4
Th Feb 9.	Local limit theorem	D 3.5, 3.9
Tu Feb 14.	Stein's method	
Th Feb 16.	Poisson approximation	D 3.6–3.8
Tu Feb 21.	Random walks	D 4
Th Feb 23.	Martingales	D 5.1–5.3
Tu Feb 28.	Martingales	D 5.4–5.5
Th Mar 2.	Martingales	D 5.6–5.7
Tu Mar 7.	Markov chains	D 6.1–6.4
Th Mar 9.	Markov chains	D 6.5–6.8
Tu Mar 14.	Spring recess, no class	
Th Mar 16.	Spring recess, no class	
Tu Mar 21.	Random walk on the hypercube	
Th Mar 23.	Riffle shuffling	
Tu Mar 28.	Ergodic theorems	D 7.1–7.5
Th Mar 30.	Ergodic theorems	
Tu Apr 4.	Ergodic theorems	
Th Apr 6.	Brownian motion	D 8.1–8.3
Tu Apr 11.	Brownian motion	D 8.4–8.5
Th Apr 13.	Brownian motion	D 8.6–8.8
Tu Apr 18.	Consequences of concentration	L 1.1–1.6
Th Apr 20.	Isoperimetric inequalities and concentration	L 2.1–2.3
Tu Apr 25.	Concentration and geometry	L 3.1–3.5
Th Apr 27.	Concentration in product spaces	L 4.1–4.5
Tu May 2.	Entropy and concentration	L 5.1–5.5
Th May 4.	Applications	L 8.1–8.5

Tentative Course Schedule: Sections labeled D refer to Durrett, sections labeled L refer to Ledoux.