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Recurrent and possible values

Definition
Let Xi, X, ... beiid. in RY and let S,, = Xi + - - - + X,. The number
x € R? is said to be a recurrent value for the random walk S,, if for every

e >0,
Prob(||Sn — x|leo < €i.0.) = 1.

A number x is called a possible value of the random walk if for any € > 0,
there is an n such that

Prob(|[S, — x| < €) > 0.
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Recurrent and possible values

Theorem

The set V of recurrent values is either 5 or a closed subgroup of RY. In
the second case V = U, the set of possible values.
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Recurrent and possible values

Proof.
@ Suppose V # ¢F. Since V€ is open, V is closed.
@ We prove: if xe U and y € V then y — x e V.

o Let psm(z) = Prob(|S, —z|c =6 forall n = m). If y —x ¢ V, there
isan € >0 and m > 1 so that pse m(y — x) > 0.

@ Choose k so that Prob(||Sx — x| <€) > 0.
@ Note that

Prob(||Sn — Sk — (¥ — x)[lec = 2¢ for all n = k + m) = poe m(y — x)
and is independent of {[|Sx — x|« < €}. Thus
pe,m+k(y) = PrOb(Hsk - XHOO < 6)p2e,m<y - X) >0,

which contradicts y € V. Hence y — x e V.
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Recurrent and possible values

Proof.

The above demonstrates that V is a closed subgroup, hence contains 0,
and thus is equal to U. O
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Transience and recurrence

Definition
If V # 0 the random walk is transient, otherwise recurrent. The return
times to 0 are defined by

70 =0, Tp =inf{m>7,_1:Sp =0}, n> 1.

As mentioned last lecture, Prob(7, < c0) = Prob(m; < «0)".
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Transience and recurrence

Theorem

For any random walk, the following are equivalent.
Q Prob(m; <) =1
@ Prob(S, =0i0.)=1
Q@ X _,Prob(S, =0) = .
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Transience and recurrence

Proof.

e If Prob(m; < ) = 1, then Prob(7, < o) = 1 for all n and
Prob(S, = 0i.0.) =1, so 1 implies 2.

@ 2 implies 3 follows from Borel-Cantelli.

0
V= ZO (Sm=0) = Z 1 (Th<0)

and calculate to give 3 implies 1,

o Let

0 o)
E[V] = ). Prob(S 2 Prob(7, < o)
m=0 n=0
- 1
= Z Prob(1; < 00)" =

= 1 — Prob(r; < o0)
D/
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Transience and recurrence

Definition
Simple random walk in R? is defined by letting steps satisfy

1

Prob(X; = ej) = Prob(X; = —¢j) = oV

Theorem
Simple random walk is recurrent in d < 2 and transcient in d > 3.
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Transience and recurrence

Proof.
o Let py(m) = Prob(S,, = 0) in dimension d. This is 0 by parity
considerations if m is odd.

1 . .
@ We have p1(2n) ~ (mn)~2 as n — oo, which proves the recurrence in
dimension 1.

e In dimension 2, let T} and T? be independent one dimensional simple
random walks. The walk (T,}, T,?) takes steps, with equal probability
(1,1),(1,-1),(—1,1),(—1,—1). Rotating by 45 degrees and dividing
by v/2 gives S,. Hence p>(2n) = p1(2n)? ~ % Since Zn% diverges,
the walk is recurrent.

Ol

v
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Transience and recurrence

Proof.
o Estimate

pa(2n) = 6727

@ The maximum occurs for j, k, n — j — k all at least [gJ and the
estimate p3(2n) « % follows from Stirling’s formula. Since this is
2

n
summable, the transience follows.

@ Transience for d > 3 follows by projecting on the first 3 coordinates.
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Transience and recurrence

We now consider more general random walks.
Lemma

IF > Prob(||Sslls < €) < o0, then Prob(||Spll < € i.0.)

> Prob(||Sallec < €) = o0 then Prob(|Sy|« < 2€ i.0.) 1
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Transience and recurrence

Proof.
@ The first conclusion follows from Borel-Cantelli.

o Let F = {||Sn| < €i.0.}¢. Calculate

Prob(F) = Prob(|Smlo < € [|Snlec = € for all n = m + 1)

18

0

3
II

Prob(|Smleo < €, [|Sn — Smlloo = 2€ for all n = m + 1)

WV
P18

0

S
I

Prob(||Smlle < G)P2e,1

[
18

0

S
II

where ps = Prob(||S,[c = 6 for all n > k). Since
Zon(q):o Prob([|Smlle < €) = o0, p2e1 = 0.

DJ
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Transience and recurrence

Proof.

o Let
Am = {|Smloo < € ||Snloc = € for all n = m + k}.

Since any w belongs to at most k Ap,,

Mg
MS

Prob(Am) =

0 m

Prob (HSmHOO < 6) P2e k-

m 0

@ Thus poc x = Prob(||Sj|lsc = 2¢ for all j > k) = 0 for each k.
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Transience and recurrence

Lemma

Let m be an integer > 2.

0¢] Q0

Z rob HS"’HOO < me < Z Prob HS”H(D < 6)
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Transience and recurrence

Proof.
o Write

Q0

[oe]
Z Prob(|Salle < me) < > > Prob(S, € ke + [0,€)9).

n=0 n=0 k

The inner sum is over k€ {—m,...,m — 1}7.
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Transience and recurrence

Proof.
o Let Ty =inf{{ >0:5S;e ke +[0,¢)}. Thus

ZProbS € ke + [0,€)? ZZProbS € ke +[0,€)9, Ty = £)

n=0 n=0/¢=0
O O
< D1 D1 Prob(| Sy — Sellew < €, T =€)
0=0 n=/
0 o0 0
= ). Prob(Ti = m) > Prob(||Sj| < €) < > Prob(]|Sjfle < €.
m=0 j=0 j=0

The proof is complete since there are (2m)9 values of k.

O

v
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Transience and recurrence

Theorem

The convergence (resp. divergence) of ¥, Prob(|Splls < €) for a single
value of € > 0 is sufficient for transience (resp. recurrence).

If d =1, if E[X;] = u # 0, then the strong law of large numbers implies
Sp/n — u, so |Sp| — o and S, is transient.
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The Chung-Fuchs Theorem

Theorem (Chung-Fuchs theorem)

Suppose d = 1. If the weak law of large numbers holds in the form
Sp/n — 0 in probability, then S, is recurrent.
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The Chung-Fuchs Theorem

Proof.
@ Let up(x) = Prob(|S,| < x) for x > 0.

@ Applying the previous lemma,
[o9) 1 0 1 Am
Z un(1) 7 Z % Z un(n/A)
n=0 n=0 n=0

for any A < oo since u,(x) > 0 and is increasing in x.

@ Since u,(n/A) — 1, letting m — oo gives

i up(1) = A/2.
n=0

for all A. The conclusion now follows from the previous theorem.

Ol

v
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Transience and recurrence

Theorem

If S, is a random walk in R? and 2 converges to a non-degenerate
n2
normal distribution, then S,, is recurrent.
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Transience and recurrence

Proof.
@ Let u(n,m) = Prob(||Sy]s < m).

@ We have

2 u(n,1) = (4m?)~1 Z u(n, m).
n=0

n=0
e If m/y/n— c, then

u(n, m) — f n(x)dx
[_C7C]2

where n(x) is the limiting normal distribution.
o Let u([m?], m) — p(H_%).
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Transience and recurrence

Proof.
o Write

iOOUI’IITIZOOU m2m
i 2 o(nem) = [ ulom) mas

and let m — oo to obtain

Q0
lim inf — Z n, m) f p(ﬁ_%)dﬁ.

m—a0 m

The integral diverges since p(c) = S[ic o n(x)dx ~ n(0)(2c)?
c|O.

Bob Hough Math 639: Lecture 9 February 23, 2017 23 /62



Transience and recurrence

Theorem

Let ¢(t) be the characteristic function of X;. Let 6 > 0. S, is recurrent if
and only if

1
sup R——dy = .
r<1 J(—(S,(S)d 1—ro(y)”
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Parseval

Theorem (Parseval relation)

Let ;v and v be probability measures on R? with characteristic functions ¢

and . Then
| vt = [oon

Proof.
By Fubini,

fown [
[ Joraer v
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Transience and recurrence

Lemma
2
If x| < § then1—cosx > %-.
4
Proof.
If |z| < Z then cosz > 1. Hence
3 2

Y
. Y
siny = =
0 2
X X y
1—cosx=f sinydy > | Zdy =
0 0 2
[]
”
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Transience and recurrence

Proof of Recurrence Theorem.

@ The density
x|

Fot) = 22 0(1x] < 0

has characteristic function Fs(t) = 22 (g‘t’)sft.

@ Let S, have density p,. One has

d1- cos(dt;)
Prob (ISole < 3 ) <4 [ T[*one un(®)

i=1

_d ’X" x)d
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Transience and recurrence

Proof of Recurrence Theorem.

@ Hence
& 1 d5—|x 1
" Prob (sn < ) < zdf ' d
nZ;) @ 5 (_575)(1 111 (52 1-— r¢(X)
and

i Prob (|5 oy < 1) < (2>ds f Rt g
i — < — u X.
=0 * ) ) r<li (—6,0)4 1-— rqﬁ(x)

Thus finiteness of the right hand side gives transience of the walk.
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Transience and recurrence

Proof of Recurrence Theorem.

@ For the reverse direction, use density Gs(x) = W with

characteristic function Gs(t) = (1 — |6t)1(]¢t| < 3).

@ Hence
1
Prob (|5,,|OO < ) > J
0 (=1/8,1/5)7 j_

JH ( _;(152 t/é))qﬁ "(t)dt.

(1 — |0xi[) p1n(dx)

-
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Transience and recurrence

Proof of Recurrence Theorem.

@ Hence
(1 — cos(t;/0)) 1
Z r" Prob(||Shllec < 1/6) = JH 2 T ro(0 dt
1
> (4m6)~ —d
> (4m0) J;-&,&)d%l — ré(t) ‘

@ Letting r 1 1 proves the theorem.
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Transience and recurrence

Definition
A random walk in R3 is truly three-dimensional if the distribution of X;
has Prob(Xj - 6 # 0) > 0 for all  # 0.

Theorem
No truly three-dimensional random walk is recurrent.
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Transience and recurrence

Proof.
o lfz=a+ biwitha<1
1 1—a 1
9%1—2 T (1-a)2 + 2 S1—5
@ Hence
1 1 1
R < < :
1—rp(t) ~ R(1—ro(t)) — R(1—¢(t))
@ Estimate
L2
R —o(0) = [ - costatnuian > [ Epan,

x-tl<Z
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Transience and recurrence

Proof.
o Let t = pf where € S = {x : |x| = 1}. This gives

2
R(L-0(60)) > 5 [ Ix- 0l

|X-9|<%

@ Letting p — 0 and 0(p) — 6,

lim inff 1x - 0(p)[Ppu(dx) = f|x -0)?u(dx) > 0.
P=0 Jixo(p)l <5

@ This implies that for p < pg

inff Ix - 0°u(dx) = C > 0.
05 Jix01<
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Transience and recurrence

Proof.
o It follows that for 0 < p < po, R(1 — &(pb)) = %ﬁ.
e Thus

1 WA 1
R——  dy < e V| [ —; |
f(_w 1—ro(y) y<L P ”f R(1 — ¢(p0))

1
< C’J p?3dp < .
0
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Paths

Definition

Consider simple random walk on Z. A polygonal line has segments
(k—1,54_1) — (k,Sk). A path is a polygonal line that is a possible
outcome of simple random walk.

To count the number of paths from (0,0) to (n,x), introduce a = 25X

and b = 5%, The number N, of paths is (7).
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The reflection principle

Theorem (Reflection principle)

If x,y > 0, then the number of paths from (0, x) to (n,y) that are 0 at
some time is equal to the number of paths from (0, —x) to (n, y).
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The reflection principle

Proof.
@ Suppose (0, ), (1,s1), ..., (n,s,) is a path from (0, x) to (n,y).
o Let K = inf{k: s =0}. Let s, = —s for k < K and s = s for
k > K. Thus (k,s;) is a path from (0, —x) to (n,y).
e Conversely, if (0, tp), (1,t1), ..., (n, t,) is a path from (0, —x) to (n,y),
then it must cross 0. Set K = inf{k : t, = 0} and let t, = —t, for
k < K and t; = ty for k > K.

@ Thus (k,t;), 0 < k < nis a path from (0,x) — (n,y) that is 0 at
time K. This completes the bijection.
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Ballot theorem

Theorem (Ballot theorem)

Suppose that in an election candidate A gets a votes and candidate B
gets [ votes, where 5 < «. Given uniform ordering of the votes, the

oo o 5 _ﬁ
probability that throughout the counting A always leads B is g—w
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Ballot theorem

Proof.

@ The number of admissible arrangements of the votes is the number of
paths from (1,1) to (n, x) that don't cross 0.

@ By the reflection principle, the number of paths from (1,1) to (n, x)
which do cross 0 is equal to the number of paths from (1,1) to
(n7 _X)'

@ Hence, the number of admissible paths is

n—1 n—1
No—1x—1— Np—1x+1 = < ) = < )
a—1 «

(n—1)! (n—1)!

C(a—Dl(n—a)! al(n—a-—1)!
a—(n—a) n! :a—ﬂ

n aln—a)l  a+p "
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Visits to 0

Lemma
Prob(51 # 0, S5 #0,...,5, # 0) = Prob(Sg,, = 0) J

Bob Hough Math 639: Lecture 9 February 23, 2017 40 / 62



Visits to 0

Proof.
By the Ballot theorem

(o8]
Prob(Sy > 0, ..., S3p > 0) = > Prob(Sy > 0,..., S2n-1 > 0, Sop = 2r)

r=1

1 & Non—
= 2 D (Non-12r-1 = Nop_12r11) = 22"2,,1’1
r=1
Since Prob(S2p—1 = 1) = Prob(S2, = 0) we obtain
1
PrOb(Sl > 0, s00 52,, > 0) = 5 Prob(Sz,, = 0)

the claim follows by symmetry. [
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Visits to 0

Set Ly, = sup{m < 2n: S, = 0}.
Lemma

Let upy, = Prob(52m = 0) Then Prob(Lg,, = 2/() = Uk Uop—2k-

Proof.
PrOb(LG = 2k) = PrOb(Szk =0,5%ki1 #0,...,5, # O) = Upklop_ok. L]
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The arcsine law

Theorem
For0<a<b<1,

b
Prob <a < L22" < b) - lf (x(1 — x)) "2 dx.
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The arcsine law

Proof.
)

22n

@ Since up, =

1

~

one obtains that if % — x as n — o0, then

A/ TN
1
nProb(Ly, = 2k) > ————.
m4/x(1 — x)

@ The convergence is uniform on compact sets. Thus

Prob (a

L2n

<b)
n

< Prob(La, = 2k)

2

2an<2k<2bn

i dx
-z =

Bob Hough

Math 639: Lecture 9 February 23, 2017

44 / 62



The arcsine law

Theorem

Let mo, be the number of segments (k — 1, Sx_1) — (k, Sk) that lie above
the axis, i.e. in {(x,y) : y = 0}, and let u,, = Prob(S,, = 0).

Prob(ma, = 2k) = upktop—2k

and consequently, if0 <a< b <1,

n 1 (P d
Prob(aéé2 <b>—>f -l
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The arcsine law

Proof.
o Let Bk 2n = Prob(ma, = 2k). We prove ok 2n = UokUzp—2k by
induction.
@ When n=1,
Bo2 = P22 = 5 = tot.
o Calculate

1
§U2n = PI’Ob(Sl > 0, 52 > 0, 5005 52,, > 0)

=Prob(5; =1,5,—-51>0,...,5,— 5 = 0)
1
= Prob($1 =0, ..., 52,-1 = 0)

1 1 1
=5 Prob(51 >0, ..., 5, > 0) = 562n,2n = E/BO,Zn'

Bob Hough Math 639: Lecture 9 February 23, 2017 46 / 62



The arcsine law

Proof.

@ Let R be the time of the first return to 0, and set
fom = Prob(R = 2m). We have

k n—k
1 1
Bok,2n = 5 mz_j,l fomB2k—2m,2n—2m + 5 mz_:l fomB2k 2n—2m-

@ By induction,

1 k n—k
Pak.an = 7 U2n—2k > bomtiok—om + 5 U2k > fomlian—2k—2m:
m=1 m=1

The conclusion holds, since uy, = an:l fomUok—om-
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Renewals

Let &1, &2, ... be i.i.d. positive random variables with distribution F and
define a sequence of times by

To =0, Tk =Tk1+8&, k=1
The Ty are referred to as renewals. Let Ny = inf{k : T > t}. Define
Theorem
U(t)

Ast—on, YO 1
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Renewals

Proof.

@ Pick § > 0 so that Prob(§; > ¢) = € > 0. Pick K so that Ko > t.
Since K consecutive &;'s greater than § make T, > t,

Prob(N; > mK) < (1 — €)™,

Thus E[N;] < o0.
e By Wald’s equation,

WE[N,] = E[Tn,] = t,

t
so U(t) > .
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Renewals

Proof.

o If Prob(¢; < ¢) = 1 then pE[N;] = E[Ty,] < t + c, so the result
holds for bounded distributions. If we replace £; = min(¢;, ¢) and
define T, and N, then

— t+c
E[N¢] < E[N:] < —
E[i]-
Let t — o0, then ¢ — o0 to obtain limsup,_, E[’tvt] < %
DJ
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Renewal measure

Definition

The renewal measure of a process Ty is the measure

U(A) = i Prob(T, € A).
n=0
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Blackwell's renewal theorem

Theorem (Blackwell's renewal theorem) J

If F is nonarithmetic with mean ;1 < oo, then U([t,t + h]) — ﬁ ast— .

See Durrett p.211 for the case y = co.
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Delayed renewal process

Definition
If To > 0 is independent of &1, &>, ... and has distribution G, then

Ty = Ti_1+ &k, k =1 defines a delayed renewal process, and G is the
delay distribution.

If we let Ny = inf{k : Ty > t} and set V(t) = E[N], then

V() - f U(t — 5)dG(s).

0

Similarly, .
ui)=1+ f U(t — s)dF(s).
0

or U=1jg)(t)+UxF,and V=G+U=G+V=F.
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Stationary renewal process

Definition
When G(t) = X 501— y)dy and V(t) = G(t) + §o 5L dF(y) = £, the
process To, T1, T,, ... is called the stationary renewa/ process assoaated to

&i.

54 / 62
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Blackwell's renewal theorem

Proof of Blackwell's theorem in case p < 0.
o Let Ty, T1, Ty, ... be a renewal process, and let T§, T, T3, ... be an
independent stationary renewal process.
o Given ¢ > 0, we find J and K such that |T; — T, | <e.
o Let m1,m2,... and 7}, 15, ... be i.i.d. independent of T, and T}, taking
values 0 and 1 with probability %
oletvy=m+---+mpand v, =1+n,+---+n, Sy =T,, and
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Blackwell's renewal theorem

Proof of Blackwell's theorem in case p < 0.

@ The increments of S, — S/, are 0 with probability % and are symmetric
about 0. Since & is nonarithmetic, S, — S/ is irreducible. Since the
increments have mean 0,

N =inf{n:|S,—S]| <€}
has Prob(N < o) = 1. Set J = vy and K = v),.
@ Define coupling

T// —

n

Tn n<J
T, + TK+(n_J) = T;{ n>J

Thus Tj’ﬁr,- - T = T,’<+,- — Ty fori>1.

@ By construction, T, and T, have the same distribution.
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Blackwell's renewal theorem

Proof of Blackwell's theorem in case p < 0.
o Let

N'(s,t)=|{n: T, e s, t]}], N'(s,t) = |{n: T/ € [s, t]}|.

We have
N'(t,t+h) =N (t+Ti—Tt+h+Ti—T)).

This is sandwiched between N'(t + ¢,t + h — €) and
N'(t — e, t + h+€). Hence

h — 2¢

— Prob(T,; > t)U(h) < U([t, t + h])

h2
< 252 Prob(T; > t)U(h).
1
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Renewal equation

A renewal equation is an equation H = h+ H = F.

Definition J

Examples include h=1and U(t) =1+ Sé U(t — s)dF(s) and
h(t) = G(t), V(t) = G(t) + §3 V(t — s)dF(s).
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Renewal equation

Theorem
If h is bounded then the function

H(t) = fot h(t — s)dU(s)

is the unique solution of the renewal equation that is bounded on bounded
intervals.

v
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Renewal equation

Proof.
Let Un(A) = > _o Prob(Tp, € A) and

t n
Hn(t)zf h(t — s)dUn(s) = Y. (h= F*™)(

0 m=0

Thus Hp11 = h+ Hy = F. Since U(t) < o, Up(t) T U(t). Hence
|H(t) = Ha(t)] < Ao U(2) = Un(t)]

so H,(t) — H(t) uniformly on bounded intervals. Also,

|Hn # F(t) — H = F(t)] < sup [Hn(s) — H(s)| < || U(t) — Un(t)].

s<t

Taking n — o0, H is a solution of the renewal equation.

Ol
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Renewal equation

Proof.

To prove the uniqueness, suppose Hi, H> are two solutions, and set
K = Hiy — H» and note K = K = F. lterating gives K = K« F*" — 0 as
n — 0. Ol
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Pedestrian delay

Example

o Consider crossing a road with traffic given by Poisson process with
rate A.

@ One unit of time is required to cross the road. Thus the transition
time is inf{t : no arrivals in (¢, t + 1]}.
@ By considering the time of the first arrival, H(t) = Prob(M < t)

satisfies )

H(t) = e +f H(t — y) e N dy.
0

@ Hence, H(t) = e_)‘ZOO F*n(t).
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