Math 639: Lecture 9
 Recurrence, Renewal theory

Bob Hough

February 23, 2017

Recurrent and possible values

Definition

Let X_{1}, X_{2}, \ldots be i.i.d. in \mathbb{R}^{d} and let $S_{n}=X_{1}+\cdots+X_{n}$. The number $x \in \mathbb{R}^{d}$ is said to be a recurrent value for the random walk S_{n} if for every $\epsilon>0$,

$$
\operatorname{Prob}\left(\left\|S_{n}-x\right\|_{\infty}<\epsilon \text { i.o. }\right)=1 .
$$

A number x is called a possible value of the random walk if for any $\epsilon>0$, there is an n such that

$$
\operatorname{Prob}\left(\left\|S_{n}-x\right\|_{\infty}<\epsilon\right)>0
$$

Recurrent and possible values

Theorem
The set V of recurrent values is either \varnothing or a closed subgroup of \mathbb{R}^{d}. In the second case $V=U$, the set of possible values.

Recurrent and possible values

Proof.

- Suppose $V \neq \varnothing$. Since V^{c} is open, V is closed.
- We prove: if $x \in U$ and $y \in V$ then $y-x \in V$.
- Let $p_{\delta, m}(z)=\operatorname{Prob}\left(\left\|S_{n}-z\right\|_{\infty} \geqslant \delta\right.$ for all $\left.n \geqslant m\right)$. If $y-x \notin V$, there is an $\epsilon>0$ and $m \geqslant 1$ so that $p_{2 \epsilon, m}(y-x)>0$.
- Choose k so that $\operatorname{Prob}\left(\left\|S_{k}-x\right\|_{\infty}<\epsilon\right)>0$.
- Note that

$$
\operatorname{Prob}\left(\left\|S_{n}-S_{k}-(y-x)\right\|_{\infty} \geqslant 2 \epsilon \text { for all } n \geqslant k+m\right)=p_{2 \epsilon, m}(y-x)
$$

and is independent of $\left\{\left\|S_{k}-x\right\|_{\infty}<\epsilon\right\}$. Thus

$$
p_{\epsilon, m+k}(y) \geqslant \operatorname{Prob}\left(\left\|S_{k}-x\right\|_{\infty}<\epsilon\right) p_{2 \epsilon, m}(y-x)>0
$$

which contradicts $y \in V$. Hence $y-x \in V$.

Recurrent and possible values

Proof.

The above demonstrates that V is a closed subgroup, hence contains 0 , and thus is equal to U.

Transience and recurrence

Definition

If $V \neq 0$ the random walk is transient, otherwise recurrent. The return times to 0 are defined by

$$
\tau_{0}=0, \quad \tau_{n}=\inf \left\{m>\tau_{n-1}: S_{m}=0\right\}, n \geqslant 1
$$

As mentioned last lecture, $\operatorname{Prob}\left(\tau_{n}<\infty\right)=\operatorname{Prob}\left(\tau_{1}<\infty\right)^{n}$.

Transience and recurrence

Theorem
For any random walk, the following are equivalent.
(1) $\operatorname{Prob}\left(\tau_{1}<\infty\right)=1$
(2) $\operatorname{Prob}\left(S_{m}=0\right.$ i.o. $)=1$
(3) $\sum_{m=0}^{\infty} \operatorname{Prob}\left(S_{m}=0\right)=\infty$.

Transience and recurrence

Proof.

- If $\operatorname{Prob}\left(\tau_{1}<\infty\right)=1$, then $\operatorname{Prob}\left(\tau_{n}<\infty\right)=1$ for all n and $\operatorname{Prob}\left(S_{m}=0\right.$ i.o. $)=1$, so 1 implies 2 .
- 2 implies 3 follows from Borel-Cantelli.
- Let

$$
V=\sum_{m=0}^{\infty} \mathbf{1}_{\left(S_{m}=0\right)}=\sum_{n=0}^{\infty} \mathbf{1}_{\left(\tau_{n}<\infty\right)}
$$

and calculate to give 3 implies 1 ,

$$
\begin{aligned}
\mathrm{E}[V] & =\sum_{m=0}^{\infty} \operatorname{Prob}\left(S_{m}=0\right)=\sum_{n=0}^{\infty} \operatorname{Prob}\left(\tau_{n}<\infty\right) \\
& =\sum_{n=0}^{\infty} \operatorname{Prob}\left(\tau_{1}<\infty\right)^{n}=\frac{1}{1-\operatorname{Prob}\left(\tau_{1}<\infty\right)} .
\end{aligned}
$$

Transience and recurrence

Definition

Simple random walk in \mathbb{R}^{d} is defined by letting steps satisfy

$$
\operatorname{Prob}\left(X_{i}=e_{j}\right)=\operatorname{Prob}\left(X_{i}=-e_{j}\right)=\frac{1}{2 d} .
$$

Theorem

Simple random walk is recurrent in $d \leqslant 2$ and transcient in $d \geqslant 3$.

Transience and recurrence

Proof.

- Let $\rho_{d}(m)=\operatorname{Prob}\left(S_{m}=0\right)$ in dimension d. This is 0 by parity considerations if m is odd.
- We have $\rho_{1}(2 n) \sim(\pi n)^{-\frac{1}{2}}$ as $n \rightarrow \infty$, which proves the recurrence in dimension 1.
- In dimension 2, let T_{n}^{1} and T_{n}^{2} be independent one dimensional simple random walks. The walk $\left(T_{n}^{1}, T_{n}^{2}\right)$ takes steps, with equal probability $(1,1),(1,-1),(-1,1),(-1,-1)$. Rotating by 45 degrees and dividing by $\sqrt{2}$ gives S_{n}. Hence $\rho_{2}(2 n)=\rho_{1}(2 n)^{2} \sim \frac{1}{\pi n}$. Since $\sum_{n} \frac{1}{n}$ diverges, the walk is recurrent.

Transience and recurrence

Proof.

- Estimate

$$
\begin{aligned}
\rho_{3}(2 n) & =6^{-2 n} \sum_{j, k} \frac{(2 n)!}{(j!k!(n-j-k)!)^{2}} \\
& =2^{-2 n}\binom{2 n}{n} \sum_{j, k}\left(3^{-n} \frac{n!}{j!k!(n-j-k)!}\right)^{2} \\
& \leqslant 2^{-2 n}\binom{2 n}{n} \max _{j, k} 3^{-n} \frac{n!}{j!k!(n-j-k)!} .
\end{aligned}
$$

- The maximum occurs for $j, k, n-j-k$ all at least $\left\lfloor\frac{n}{3}\right\rfloor$ and the estimate $\rho_{3}(2 n) \ll \frac{1}{n^{\frac{3}{2}}}$ follows from Stirling's formula. Since this is summable, the transience follows.
- Transience for $d>3$ follows by projecting on the first 3 coordinates.

Transience and recurrence

We now consider more general random walks.
Lemma
If $\sum_{n=1}^{\infty} \operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty}<\epsilon\right)<\infty$, then $\operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty}<\epsilon\right.$ i.o. $)=0$. If $\sum_{n=1}^{\infty} \operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty}<\epsilon\right)=\infty$ then $\operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty}<2 \epsilon\right.$ i.o. $)=1$.

Transience and recurrence

Proof.

- The first conclusion follows from Borel-Cantelli.
- Let $F=\left\{\left\|S_{n}\right\|<\epsilon \text { i.o. }\right\}^{c}$. Calculate

$$
\begin{aligned}
\operatorname{Prob}(F) & =\sum_{m=0}^{\infty} \operatorname{Prob}\left(\left\|S_{m}\right\|_{\infty}<\epsilon,\left\|S_{n}\right\|_{\infty} \geqslant \epsilon \text { for all } n \geqslant m+1\right) \\
& \geqslant \sum_{m=0}^{\infty} \operatorname{Prob}\left(\left\|S_{m}\right\|_{\infty}<\epsilon,\left\|S_{n}-S_{m}\right\|_{\infty} \geqslant 2 \epsilon \text { for all } n \geqslant m+1\right) \\
& =\sum_{m=0}^{\infty} \operatorname{Prob}\left(\left\|S_{m}\right\|_{\infty}<\epsilon\right) \rho_{2 \epsilon, 1}
\end{aligned}
$$

where $\rho_{\delta, k}=\operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty} \geqslant \delta\right.$ for all $\left.n \geqslant k\right)$. Since $\sum_{m=0}^{\infty} \operatorname{Prob}\left(\left\|S_{m}\right\|_{\infty}<\epsilon\right)=\infty, \rho_{2 \epsilon, 1}=0$.

Transience and recurrence

Proof.

- Let

$$
A_{m}=\left\{\left\|S_{m}\right\|_{\infty}<\epsilon,\left\|S_{n}\right\|_{\infty} \geqslant \epsilon \text { for all } n \geqslant m+k\right\} .
$$

Since any ω belongs to at most $k A_{m}$,

$$
k \geqslant \sum_{m=0}^{\infty} \operatorname{Prob}\left(A_{m}\right) \geqslant \sum_{m=0}^{\infty} \operatorname{Prob}\left(\left\|S_{m}\right\|_{\infty}<\epsilon\right) \rho_{2 \epsilon, k} .
$$

- Thus $\rho_{2 \epsilon, k}=\operatorname{Prob}\left(\left\|S_{j}\right\|_{\infty} \geqslant 2 \epsilon\right.$ for all $\left.j \geqslant k\right)=0$ for each k.

Transience and recurrence

Lemma
Let m be an integer $\geqslant 2$.

$$
\sum_{n=0}^{\infty} \operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty}<m \epsilon\right) \leqslant(2 m)^{d} \sum_{n=0}^{\infty} \operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty}<\epsilon\right)
$$

Transience and recurrence

Proof.

- Write

$$
\sum_{n=0}^{\infty} \operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty}<m \epsilon\right) \leqslant \sum_{n=0}^{\infty} \sum_{k} \operatorname{Prob}\left(S_{n} \in k \epsilon+[0, \epsilon)^{d}\right)
$$

The inner sum is over $k \in\{-m, \ldots, m-1\}^{d}$.

Transience and recurrence

Proof.

- Let $T_{k}=\inf \left\{\ell \geqslant 0: S_{\ell} \in k \epsilon+[0, \epsilon)^{d}\right\}$. Thus

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \operatorname{Prob}\left(S_{n} \in k \epsilon+[0, \epsilon)^{d}\right)=\sum_{n=0}^{\infty} \sum_{\ell=0}^{n} \operatorname{Prob}\left(S_{n} \in k \epsilon+[0, \epsilon)^{d}, T_{k}=\ell\right) \\
& \leqslant \sum_{\ell=0}^{\infty} \sum_{n=\ell}^{\infty} \operatorname{Prob}\left(\left\|S_{n}-S_{\ell}\right\|_{\infty}<\epsilon, T_{k}=\ell\right) \\
& =\sum_{m=0}^{\infty} \operatorname{Prob}\left(T_{k}=m\right) \sum_{j=0}^{\infty} \operatorname{Prob}\left(\left\|S_{j}\right\|<\epsilon\right) \leqslant \sum_{j=0}^{\infty} \operatorname{Prob}\left(\left\|S_{j}\right\|_{\infty}<\epsilon\right) .
\end{aligned}
$$

The proof is complete since there are $(2 m)^{d}$ values of k.

Transience and recurrence

Theorem

The convergence (resp. divergence) of $\sum_{n} \operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty}<\epsilon\right)$ for a single value of $\epsilon>0$ is sufficient for transience (resp. recurrence).

If $d=1$, if $\mathrm{E}\left[X_{i}\right]=\mu \neq 0$, then the strong law of large numbers implies $S_{n} / n \rightarrow \mu$, so $\left|S_{n}\right| \rightarrow \infty$ and S_{n} is transient.

The Chung-Fuchs Theorem

Theorem (Chung-Fuchs theorem)
Suppose $d=1$. If the weak law of large numbers holds in the form $S_{n} / n \rightarrow 0$ in probability, then S_{n} is recurrent.

The Chung-Fuchs Theorem

Proof.

- Let $u_{n}(x)=\operatorname{Prob}\left(\left|S_{n}\right|<x\right)$ for $x>0$.
- Applying the previous lemma,

$$
\sum_{n=0}^{\infty} u_{n}(1) \geqslant \frac{1}{2 m} \sum_{n=0}^{\infty} u_{n}(m) \geqslant \frac{1}{2 m} \sum_{n=0}^{A m} u_{n}(n / A)
$$

for any $A<\infty$ since $u_{n}(x) \geqslant 0$ and is increasing in x.

- Since $u_{n}(n / A) \rightarrow 1$, letting $m \rightarrow \infty$ gives

$$
\sum_{n=0}^{\infty} u_{n}(1) \geqslant A / 2
$$

for all A. The conclusion now follows from the previous theorem.

Transience and recurrence

Theorem
 If S_{n} is a random walk in \mathbb{R}^{2} and $\frac{S_{n}}{n^{\frac{1}{2}}}$ converges to a non-degenerate normal distribution, then S_{n} is recurrent.

Transience and recurrence

Proof.

- Let $u(n, m)=\operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty}<m\right)$.
- We have

$$
\sum_{n=0}^{\infty} u(n, 1) \geqslant\left(4 m^{2}\right)^{-1} \sum_{n=0}^{\infty} u(n, m)
$$

- If $m / \sqrt{n} \rightarrow c$, then

$$
u(n, m) \rightarrow \int_{[-c, c]^{2}} n(x) d x
$$

where $n(x)$ is the limiting normal distribution.

- Let $u\left(\left[\theta m^{2}\right], m\right) \rightarrow \rho\left(\theta^{-\frac{1}{2}}\right)$.

Transience and recurrence

Proof.

- Write

$$
\frac{1}{m^{2}} \sum_{n=0}^{\infty} u(n, m)=\int_{0}^{\infty} u\left(\left\lfloor\theta m^{2}\right\rfloor, m\right) d \theta
$$

and let $m \rightarrow \infty$ to obtain

$$
\liminf _{m \rightarrow \infty} \frac{1}{4 m^{2}} \sum_{n=0}^{\infty} u(n, m) \geqslant \frac{1}{4} \int_{0}^{\infty} \rho\left(\theta^{-\frac{1}{2}}\right) d \theta
$$

The integral diverges since $\rho(c)=\int_{[-c, c]^{2}} n(x) d x \sim n(0)(2 c)^{2}$ as $c \downarrow 0$.

Transience and recurrence

Theorem
Let $\phi(t)$ be the characteristic function of X_{i}. Let $\delta>0 . S_{n}$ is recurrent if and only if

$$
\sup _{r<1} \int_{(-\delta, \delta)^{d}} \Re \frac{1}{1-r \phi(y)} d y=\infty .
$$

Parseval

Theorem (Parseval relation)

Let μ and ν be probability measures on \mathbb{R}^{d} with characteristic functions ϕ and ψ. Then

$$
\int \psi(t) \mu(d t)=\int \phi(x) \nu(d x) .
$$

Proof.

By Fubini,

$$
\begin{aligned}
\int \psi(t) \mu(d t) & =\iint e^{i t x} \nu(d x) \mu(d t) \\
& =\iint e^{i t x} \mu(d t) \nu(d x)=\int \phi(x) \nu(d x)
\end{aligned}
$$

Transience and recurrence

Lemma
If $|x| \leqslant \frac{\pi}{3}$ then $1-\cos x \geqslant \frac{x^{2}}{4}$.
Proof.
If $|z| \leqslant \frac{\pi}{3}$ then $\cos z \geqslant \frac{1}{2}$. Hence

$$
\begin{aligned}
\sin y & =\int_{0}^{y} \cos z d z \geqslant \frac{y}{2} \\
1-\cos x & =\int_{0}^{x} \sin y d y \geqslant \int_{0}^{x} \frac{y}{2} d y=\frac{x^{2}}{4} .
\end{aligned}
$$

Transience and recurrence

Proof of Recurrence Theorem.

- The density

$$
F_{\delta}(x)=\frac{\delta-|x|}{\delta^{2}} \mathbf{1}(|x| \leqslant \delta)
$$

has characteristic function $\hat{F}_{\delta}(t)=2 \frac{1-\cos \delta t}{(\delta t)^{2}}$.

- Let S_{n} have density μ_{n}. One has

$$
\begin{aligned}
\operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty} \leqslant \frac{1}{\delta}\right) & \leqslant 4^{d} \int \prod_{i=1}^{d} \frac{1-\cos \left(\delta t_{i}\right)}{\left(\delta t_{i}\right)^{2}} \mu_{n}(t) \\
& =2^{d} \int_{(-\delta, \delta)^{d}} \prod_{i=1}^{d} \frac{\delta-\left|x_{i}\right|}{\delta^{2}} \phi^{n}(x) d x .
\end{aligned}
$$

Transience and recurrence

Proof of Recurrence Theorem.

- Hence

$$
\sum_{n=0}^{\infty} r^{n} \operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty}<\frac{1}{\delta}\right) \leqslant 2^{d} \int_{(-\delta, \delta)^{d}} \prod_{i=1}^{d} \frac{\delta-\left|x_{i}\right|}{\delta^{2}} \frac{1}{1-r \phi(x)} d x
$$

and

$$
\sum_{n=0}^{\infty} \operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty}<\frac{1}{\delta}\right) \leqslant\left(\frac{2}{\delta}\right)^{d} \sup _{r<1} \int_{(-\delta, \delta)^{d}} \Re \frac{1}{1-r \phi(x)} d x
$$

Thus finiteness of the right hand side gives transience of the walk.

Transience and recurrence

Proof of Recurrence Theorem.

- For the reverse direction, use density $G_{\delta}(x)=\frac{\delta\left(1-\cos \left(\frac{x}{\delta}\right)\right)}{\pi x^{2}}$, with characteristic function $\hat{G}_{\delta}(t)=(1-|\delta t|) \mathbf{1}\left(|t| \leqslant \frac{1}{\delta}\right)$.
- Hence

$$
\begin{aligned}
\operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty}<\frac{1}{\delta}\right) & \geqslant \int_{(-1 / \delta, 1 / \delta)^{d}} \prod_{i=1}^{d}\left(1-\left|\delta x_{i}\right|\right) \mu_{n}(d x) \\
& =\int \prod_{i=1}^{d} \frac{\delta\left(1-\cos \left(t_{i} / \delta\right)\right)}{\pi t_{i}^{2}} \phi^{n}(t) d t
\end{aligned}
$$

Transience and recurrence

Proof of Recurrence Theorem.

- Hence

$$
\begin{aligned}
\sum_{n=0}^{\infty} r^{n} \operatorname{Prob}\left(\left\|S_{n}\right\|_{\infty}<1 / \delta\right) & \geqslant \int \prod_{i=1}^{d} \frac{\delta\left(1-\cos \left(t_{i} / \delta\right)\right)}{\pi t_{i}^{2}} \frac{1}{1-r \phi(t)} d t \\
& \geqslant(4 \pi \delta)^{-d} \int_{(-\delta, \delta)^{d}} \Re \frac{1}{1-r \phi(t)} d t .
\end{aligned}
$$

- Letting $r \uparrow 1$ proves the theorem.

Transience and recurrence

Definition

A random walk in \mathbb{R}^{3} is truly three-dimensional if the distribution of X_{1} has $\operatorname{Prob}\left(X_{1} \cdot \theta \neq 0\right)>0$ for all $\theta \neq 0$.

Theorem
No truly three-dimensional random walk is recurrent.

Transience and recurrence

Proof.

- If $z=a+b i$ with $a \leqslant 1$,

$$
\Re \frac{1}{1-z}=\frac{1-a}{(1-a)^{2}+b^{2}} \leqslant \frac{1}{1-a} .
$$

- Hence

$$
\Re \frac{1}{1-r \phi(t)} \leqslant \frac{1}{\Re(1-r \phi(t))} \leqslant \frac{1}{\Re(1-\phi(t))} .
$$

- Estimate

$$
\Re(1-\phi(t))=\int(1-\cos (x t)) \mu(d x) \geqslant \int_{|x \cdot t|<\frac{\pi}{3}} \frac{|x \cdot t|^{2}}{4} \mu(d x) .
$$

Transience and recurrence

Proof.

- Let $t=\rho \theta$ where $\theta \in S=\{x:|x|=1\}$. This gives

$$
\Re(1-\phi(\rho \theta)) \geqslant \frac{\rho^{2}}{4} \int_{|x \cdot \theta|<\frac{\pi}{3 \rho}}|x \cdot \theta|^{2} \mu(d x) .
$$

- Letting $\rho \rightarrow 0$ and $\theta(\rho) \rightarrow \theta$,

$$
\liminf _{\rho \rightarrow 0} \int_{|x \cdot \theta(\rho)|<\frac{\pi}{3 \rho}}|x \cdot \theta(\rho)|^{2} \mu(d x) \geqslant \int|x \cdot \theta|^{2} \mu(d x)>0
$$

- This implies that for $\rho<\rho_{0}$

$$
\inf _{\theta \in S} \int_{|x \cdot \theta|<\frac{\pi}{3 \rho}}|x \cdot \theta|^{2} \mu(d x)=C>0
$$

Transience and recurrence

Proof.

- It follows that for $0<\rho<\rho_{0}, \Re(1-\phi(\rho \theta)) \geqslant \frac{C \rho^{2}}{4}$.
- Thus

$$
\begin{aligned}
\int_{(-\delta, \delta)^{d}} \Re \frac{1}{1-r \phi(y)} d y & \leqslant \int_{0}^{\delta \sqrt{d}} \rho^{d-1} d \rho \int \frac{1}{\Re(1-\phi(\rho \theta))} d \theta \\
& \leqslant C^{\prime} \int_{0}^{1} \rho^{d-3} d \rho<\infty
\end{aligned}
$$

Paths

Definition

Consider simple random walk on \mathbb{Z}. A polygonal line has segments $\left(k-1, S_{k-1}\right) \rightarrow\left(k, S_{k}\right)$. A path is a polygonal line that is a possible outcome of simple random walk.

To count the number of paths from $(0,0)$ to (n, x), introduce $a=\frac{n+x}{2}$ and $b=\frac{n-x}{2}$. The number $N_{n, x}$ of paths is $\binom{n}{a}$.

The reflection principle

Theorem (Reflection principle)

If $x, y>0$, then the number of paths from $(0, x)$ to (n, y) that are 0 at some time is equal to the number of paths from $(0,-x)$ to (n, y).

The reflection principle

Proof.

- Suppose $\left(0, s_{0}\right),\left(1, s_{1}\right), \ldots,\left(n, s_{n}\right)$ is a path from $(0, x)$ to (n, y).
- Let $K=\inf \left\{k: s_{k}=0\right\}$. Let $s_{k}^{\prime}=-s_{k}$ for $k \leqslant K$ and $s_{k}^{\prime}=s_{k}$ for $k>K$. Thus $\left(k, s_{k}^{\prime}\right)$ is a path from $(0,-x)$ to (n, y).
- Conversely, if $\left(0, t_{0}\right),\left(1, t_{1}\right), \ldots,\left(n, t_{n}\right)$ is a path from $(0,-x)$ to (n, y), then it must cross 0 . Set $K=\inf \left\{k: t_{k}=0\right\}$ and let $t_{k}^{\prime}=-t_{k}$ for $k \leqslant K$ and $t_{k}^{\prime}=t_{k}$ for $k>K$.
- Thus $\left(k, t_{k}^{\prime}\right), 0 \leqslant k \leqslant n$ is a path from $(0, x) \rightarrow(n, y)$ that is 0 at time K. This completes the bijection.

Ballot theorem

Theorem (Ballot theorem)
Suppose that in an election candidate A gets α votes and candidate B gets β votes, where $\beta<\alpha$. Given uniform ordering of the votes, the probability that throughout the counting A always leads B is $\frac{\alpha-\beta}{\alpha+\beta}$.

Ballot theorem

Proof.

- The number of admissible arrangements of the votes is the number of paths from $(1,1)$ to (n, x) that don't cross 0 .
- By the reflection principle, the number of paths from $(1,1)$ to (n, x) which do cross 0 is equal to the number of paths from $(1,1)$ to ($n,-x$).
- Hence, the number of admissible paths is

$$
\begin{aligned}
N_{n-1, x-1}-N_{n-1, x+1} & =\binom{n-1}{\alpha-1}-\binom{n-1}{\alpha} \\
& =\frac{(n-1)!}{(\alpha-1)!(n-\alpha)!}-\frac{(n-1)!}{\alpha!(n-\alpha-1)!} \\
& =\frac{\alpha-(n-\alpha)}{n} \frac{n!}{\alpha!(n-\alpha)!}=\frac{\alpha-\beta}{\alpha+\beta} N_{n, x} .
\end{aligned}
$$

Visits to 0

Lemma

$\operatorname{Prob}\left(S_{1} \neq 0, S_{2} \neq 0, \ldots, S_{2 n} \neq 0\right)=\operatorname{Prob}\left(S_{2 n}=0\right)$.

Visits to 0

Proof.

By the Ballot theorem

$$
\begin{aligned}
\operatorname{Prob}\left(S_{1}>0, \ldots, S_{2 n}>0\right) & =\sum_{r=1}^{\infty} \operatorname{Prob}\left(S_{1}>0, \ldots, S_{2 n-1}>0, S_{2 n}=2 r\right) \\
& =\frac{1}{2^{2 n}} \sum_{r=1}^{\infty}\left(N_{2 n-1,2 r-1}-N_{2 n-1,2 r+1}\right)=\frac{N_{2 n-1,1}}{2^{2 n}} .
\end{aligned}
$$

Since $\operatorname{Prob}\left(S_{2 n-1}=1\right)=\operatorname{Prob}\left(S_{2 n}=0\right)$ we obtain

$$
\operatorname{Prob}\left(S_{1}>0, \ldots, S_{2 n}>0\right)=\frac{1}{2} \operatorname{Prob}\left(S_{2 n}=0\right)
$$

the claim follows by symmetry.

Visits to 0

$$
\text { Set } L_{2 n}=\sup \left\{m \leqslant 2 n: S_{m}=0\right\} \text {. }
$$

Lemma

Let $u_{2 m}=\operatorname{Prob}\left(S_{2 m}=0\right)$. Then $\operatorname{Prob}\left(L_{2 n}=2 k\right)=u_{2 k} u_{2 n-2 k}$.

$$
\begin{aligned}
& \text { Proof. } \\
& \operatorname{Prob}\left(L_{2 n}=2 k\right)=\operatorname{Prob}\left(S_{2 k}=0, S_{2 k+1} \neq 0, \ldots, S_{2 n} \neq 0\right)=u_{2 k} u_{2 n-2 k} .
\end{aligned}
$$

The arcsine law

Theorem
For $0<a<b<1$,

$$
\operatorname{Prob}\left(a \leqslant \frac{L_{2 n}}{2 n} \leqslant b\right) \rightarrow \frac{1}{\pi} \int_{a}^{b}(x(1-x))^{-\frac{1}{2}} d x
$$

The arcsine law

Proof.

- Since $u_{2 n}=\frac{\binom{2 n}{n^{2 n}}}{2^{n}} \sim \frac{1}{\sqrt{\pi n}}$ one obtains that if $\frac{k}{n} \rightarrow x$ as $n \rightarrow \infty$, then

$$
n \operatorname{Prob}\left(L_{2 n}=2 k\right) \rightarrow \frac{1}{\pi \sqrt{x(1-x)}}
$$

- The convergence is uniform on compact sets. Thus

$$
\begin{aligned}
\operatorname{Prob}\left(a \leqslant \frac{L_{2 n}}{2 n} \leqslant b\right) & =\sum_{2 a n \leqslant 2 k \leqslant 2 b n} \operatorname{Prob}\left(L_{2 n}=2 k\right) \\
& \rightarrow \frac{1}{\pi} \int_{a}^{b} \frac{d x}{\sqrt{x(1-x)}}
\end{aligned}
$$

The arcsine law

Theorem

Let $\pi_{2 n}$ be the number of segments $\left(k-1, S_{k-1}\right) \rightarrow\left(k, S_{k}\right)$ that lie above the axis, i.e. in $\{(x, y): y \geqslant 0\}$, and let $u_{m}=\operatorname{Prob}\left(S_{m}=0\right)$.

$$
\operatorname{Prob}\left(\pi_{2 n}=2 k\right)=u_{2 k} u_{2 n-2 k}
$$

and consequently, if $0<a<b<1$,

$$
\operatorname{Prob}\left(a \leqslant \frac{\pi_{2 n}}{2 n} \leqslant b\right) \rightarrow \frac{1}{\pi} \int_{a}^{b} \frac{d x}{\sqrt{x(1-x)}}
$$

The arcsine law

Proof.

- Let $\beta_{2 k, 2 n}=\operatorname{Prob}\left(\pi_{2 n}=2 k\right)$. We prove $\beta_{2 k, 2 n}=u_{2 k} u_{2 n-2 k}$ by induction.
- When $n=1$,

$$
\beta_{0,2}=\beta_{2,2}=\frac{1}{2}=u_{0} u_{2} .
$$

- Calculate

$$
\begin{aligned}
\frac{1}{2} u_{2 n} & =\operatorname{Prob}\left(S_{1}>0, S_{2}>0, \ldots, S_{2 n}>0\right) \\
& =\operatorname{Prob}\left(S_{1}=1, S_{2}-S_{1} \geqslant 0, \ldots, S_{2 n}-S_{1} \geqslant 0\right) \\
& =\frac{1}{2} \operatorname{Prob}\left(S_{1} \geqslant 0, \ldots, S_{2 n-1} \geqslant 0\right) \\
& =\frac{1}{2} \operatorname{Prob}\left(S_{1} \geqslant 0, \ldots, S_{2 n} \geqslant 0\right)=\frac{1}{2} \beta_{2 n, 2 n}=\frac{1}{2} \beta_{0,2 n} .
\end{aligned}
$$

The arcsine law

Proof.

- Let R be the time of the first return to 0 , and set $f_{2 m}=\operatorname{Prob}(R=2 m)$. We have

$$
\beta_{2 k, 2 n}=\frac{1}{2} \sum_{m=1}^{k} f_{2 m} \beta_{2 k-2 m, 2 n-2 m}+\frac{1}{2} \sum_{m=1}^{n-k} f_{2 m} \beta_{2 k, 2 n-2 m} .
$$

- By induction,

$$
\beta_{2 k, 2 n}=\frac{1}{2} u_{2 n-2 k} \sum_{m=1}^{k} f_{2 m} u_{2 k-2 m}+\frac{1}{2} u_{2 k} \sum_{m=1}^{n-k} f_{2 m} u_{2 n-2 k-2 m} .
$$

The conclusion holds, since $u_{2 k}=\sum_{m=1}^{k} f_{2 m} u_{2 k-2 m}$.

Renewals

Let ξ_{1}, ξ_{2}, \ldots be i.i.d. positive random variables with distribution F and define a sequence of times by

$$
T_{0}=0, \quad T_{k}=T_{k-1}+\xi_{k}, k \geqslant 1 .
$$

The T_{k} are referred to as renewals. Let $N_{t}=\inf \left\{k: T_{k}>t\right\}$. Define $U(t)=\mathrm{E}\left[N_{t}\right]$.

Theorem

As $t \rightarrow \infty, \frac{U(t)}{t} \rightarrow \frac{1}{\mu}$.

Renewals

Proof.

- Pick $\delta>0$ so that $\operatorname{Prob}\left(\xi_{i}>\delta\right)=\epsilon>0$. Pick K so that $K \delta \geqslant t$. Since K consecutive ξ_{i} 's greater than δ make $T_{n}>t$,

$$
\operatorname{Prob}\left(N_{t}>m K\right) \leqslant\left(1-\epsilon^{K}\right)^{m} .
$$

Thus $\mathrm{E}\left[N_{t}\right]<\infty$.

- By Wald's equation,

$$
\mu \mathrm{E}\left[N_{t}\right]=\mathrm{E}\left[T_{N_{t}}\right] \geqslant t
$$

so $U(t) \geqslant \frac{t}{\mu}$.

Renewals

Proof.

- If $\operatorname{Prob}\left(\xi_{i} \leqslant c\right)=1$ then $\mu \mathrm{E}\left[N_{t}\right]=\mathrm{E}\left[T_{N_{t}}\right] \leqslant t+c$, so the result holds for bounded distributions. If we replace $\bar{\xi}_{i}=\min \left(\xi_{i}, c\right)$ and define \bar{T}_{n} and \bar{N}_{t} then

$$
\mathrm{E}\left[N_{t}\right] \leqslant \mathrm{E}\left[\bar{N}_{t}\right] \leqslant \frac{t+c}{\mathrm{E}\left[\bar{\xi}_{i}\right]}
$$

Let $t \rightarrow \infty$, then $c \rightarrow \infty$ to obtain $\lim \sup _{t \rightarrow \infty} \frac{\mathrm{E}\left[N_{t}\right]}{t} \leqslant \frac{1}{\mu}$.

Renewal measure

Definition

The renewal measure of a process T_{k} is the measure

$$
U(A)=\sum_{n=0}^{\infty} \operatorname{Prob}\left(T_{n} \in A\right)
$$

Blackwell's renewal theorem

Theorem (Blackwell's renewal theorem)
If F is nonarithmetic with mean $\mu<\infty$, then $U([t, t+h]) \rightarrow \frac{h}{\mu}$ as $t \rightarrow \infty$.
See Durrett p. 211 for the case $\mu=\infty$.

Delayed renewal process

Definition

If $T_{0} \geqslant 0$ is independent of ξ_{1}, ξ_{2}, \ldots and has distribution G, then $T_{k}=T_{k-1}+\xi_{k}, k \geqslant 1$ defines a delayed renewal process, and G is the delay distribution.

If we let $N_{t}=\inf \left\{k: T_{k}>t\right\}$ and set $V(t)=\mathrm{E}\left[N_{t}\right]$, then

$$
V(t)=\int_{0}^{t} U(t-s) d G(s)
$$

Similarly,

$$
U(t)=1+\int_{0}^{t} U(t-s) d F(s)
$$

or $U=\mathbf{1}_{[0, \infty)}(t)+U * F$, and $V=G * U=G+V * F$.

Stationary renewal process

Definition

When $G(t)=\frac{1}{\mu} \int_{0}^{t} 1-F(y) d y$ and $V(t)=G(t)+\int_{0}^{t} \frac{t-y}{\mu} d F(y)=\frac{t}{\mu}$, the process $T_{0}, T_{1}, T_{2}, \ldots$ is called the stationary renewal process associated to ξ_{i}.

Blackwell's renewal theorem

Proof of Blackwell's theorem in case $\mu<\infty$.

- Let $T_{0}, T_{1}, T_{2}, \ldots$ be a renewal process, and let $T_{0}^{\prime}, T_{1}^{\prime}, T_{2}^{\prime}, \ldots$ be an independent stationary renewal process.
- Given $\epsilon>0$, we find J and K such that $\left|T_{J}-T_{K}^{\prime}\right|<\epsilon$.
- Let $\eta_{1}, \eta_{2}, \ldots$ and $\eta_{1}^{\prime}, \eta_{2}^{\prime}, \ldots$ be i.i.d. independent of T_{n} and T_{n}^{\prime}, taking values 0 and 1 with probability $\frac{1}{2}$.
- Let $\nu_{n}=\eta_{1}+\cdots+\eta_{n}$ and $\nu_{n}^{\prime}=1+\eta_{1}^{\prime}+\cdots+\eta_{n}^{\prime}, S_{n}=T_{\nu_{n}}$, and $S_{n}^{\prime}=T_{\nu_{n}^{\prime}}^{\prime}$.

Blackwell's renewal theorem

Proof of Blackwell's theorem in case $\mu<\infty$.

- The increments of $S_{n}-S_{n}^{\prime}$ are 0 with probability $\frac{1}{4}$ and are symmetric about 0 . Since ξ_{k} is nonarithmetic, $S_{n}-S_{n}^{\prime}$ is irreducible. Since the increments have mean 0 ,

$$
N=\inf \left\{n:\left|S_{n}-S_{n}^{\prime}\right|<\epsilon\right\}
$$

has $\operatorname{Prob}(N<\infty)=1$. Set $J=\nu_{N}$ and $K=\nu_{N}^{\prime}$.

- Define coupling

$$
T_{n}^{\prime \prime}=\left\{\begin{array}{ll}
T_{n} & n \leqslant J \\
T_{J}+T_{K+(n-J)}-T_{K}^{\prime} & n>J
\end{array} .\right.
$$

Thus $T_{j+i}^{\prime \prime}-T_{J}^{\prime \prime}=T_{K+i}^{\prime}-T_{K}^{\prime}$ for $i \geqslant 1$.

- By construction, T_{n} and $T_{n}^{\prime \prime}$ have the same distribution.

Blackwell's renewal theorem

Proof of Blackwell's theorem in case $\mu<\infty$.

- Let

$$
N^{\prime}(s, t)=\left|\left\{n: T_{n}^{\prime} \in[s, t]\right\}\right|, \quad N^{\prime \prime}(s, t)=\left|\left\{n: T_{n}^{\prime \prime} \in[s, t]\right\}\right| .
$$

We have

$$
N^{\prime \prime}(t, t+h)=N^{\prime}\left(t+T_{K}^{\prime}-T_{J}, t+h+T_{K}^{\prime}-T_{J}\right)
$$

This is sandwiched between $N^{\prime}(t+\epsilon, t+h-\epsilon)$ and $N^{\prime}(t-\epsilon, t+h+\epsilon)$. Hence

$$
\begin{aligned}
\frac{h-2 \epsilon}{\mu}-\operatorname{Prob}\left(T_{J}>t\right) U(h) & \leqslant U([t, t+h]) \\
& \leqslant \frac{h+2 \epsilon}{\mu}+\operatorname{Prob}\left(T_{J}>t\right) U(h)
\end{aligned}
$$

Renewal equation

Definition

A renewal equation is an equation $H=h+H * F$.
Examples include $h \equiv 1$ and $U(t)=1+\int_{0}^{t} U(t-s) d F(s)$ and $h(t)=G(t), V(t)=G(t)+\int_{0}^{t} V(t-s) d F(s)$.

Renewal equation

Theorem

If h is bounded then the function

$$
H(t)=\int_{0}^{t} h(t-s) d U(s)
$$

is the unique solution of the renewal equation that is bounded on bounded intervals.

Renewal equation

Proof.

Let $U_{n}(A)=\sum_{m=0}^{n} \operatorname{Prob}\left(T_{m} \in A\right)$ and

$$
H_{n}(t)=\int_{0}^{t} h(t-s) d U_{n}(s)=\sum_{m=0}^{n}\left(h * F^{* m}\right)(t)
$$

Thus $H_{n+1}=h+H_{n} * F$. Since $U(t)<\infty, U_{n}(t) \uparrow U(t)$. Hence

$$
\left|H(t)-H_{n}(t)\right| \leqslant\|h\|_{\infty}\left|U(t)-U_{n}(t)\right|
$$

so $H_{n}(t) \rightarrow H(t)$ uniformly on bounded intervals. Also,

$$
\left|H_{n} * F(t)-H * F(t)\right| \leqslant \sup _{s \leqslant t}\left|H_{n}(s)-H(s)\right| \leqslant\|h\|_{\infty}\left|U(t)-U_{n}(t)\right| .
$$

Taking $n \rightarrow \infty, H$ is a solution of the renewal equation.

Renewal equation

Proof.

To prove the uniqueness, suppose H_{1}, H_{2} are two solutions, and set $K=H_{1}-H_{2}$ and note $K=K * F$. Iterating gives $K=K * F^{* n} \rightarrow 0$ as $n \rightarrow \infty$.

Pedestrian delay

Example

- Consider crossing a road with traffic given by Poisson process with rate λ.
- One unit of time is required to cross the road. Thus the transition time is $\inf \{t$: no arrivals in $(t, t+1]\}$.
- By considering the time of the first arrival, $H(t)=\operatorname{Prob}(M \leqslant t)$ satisfies

$$
H(t)=e^{-\lambda}+\int_{0}^{1} H(t-y) \lambda e^{-\lambda y} d y
$$

- Hence, $H(t)=e^{-\lambda} \sum_{n=0}^{\infty} F^{* n}(t)$.

