Math 639: Lecture 9

Recurrence, Renewal theory

Bob Hough

February 23, 2017

P ₂	h	ш.	~.	. ~	h
Ъυ	D.		υι	ıg	u

Math 639: Lecture 9

Definition

Let $X_1, X_2, ...$ be i.i.d. in \mathbb{R}^d and let $S_n = X_1 + \cdots + X_n$. The number $x \in \mathbb{R}^d$ is said to be a *recurrent value* for the random walk S_n if for every $\epsilon > 0$,

$$\mathsf{Prob}(\|S_n - x\|_{\infty} < \epsilon \text{ i.o.}) = 1.$$

A number x is called a *possible value* of the random walk if for any $\epsilon > 0$, there is an n such that

$$\mathsf{Prob}(\|S_n - x\|_{\infty} < \epsilon) > 0.$$

Theorem

The set V of recurrent values is either \emptyset or a closed subgroup of \mathbb{R}^d . In the second case V = U, the set of possible values.

< 4 ₽ × <

Recurrent and possible values

Proof.

- Suppose $V \neq \emptyset$. Since V^c is open, V is closed.
- We prove: if $x \in U$ and $y \in V$ then $y x \in V$.
- Let $p_{\delta,m}(z) = \operatorname{Prob}(||S_n z||_{\infty} \ge \delta \text{ for all } n \ge m)$. If $y x \notin V$, there is an $\epsilon > 0$ and $m \ge 1$ so that $p_{2\epsilon,m}(y x) > 0$.
- Choose k so that $\operatorname{Prob}(||S_k x||_{\infty} < \epsilon) > 0$.
- Note that

$$\operatorname{Prob}(\|S_n - S_k - (y - x)\|_{\infty} \ge 2\epsilon \text{ for all } n \ge k + m) = p_{2\epsilon,m}(y - x)$$

and is independent of $\{\|S_k - x\|_{\infty} < \epsilon\}$. Thus

$$p_{\epsilon,m+k}(y) \ge \operatorname{Prob}(\|S_k - x\|_{\infty} < \epsilon)p_{2\epsilon,m}(y - x) > 0,$$

which contradicts $y \in V$. Hence $y - x \in V$.

Proof.

The above demonstrates that V is a closed subgroup, hence contains 0, and thus is equal to U.

D			
RO	h F		uan
00		10	

Definition

If $V \neq 0$ the random walk is *transient*, otherwise *recurrent*. The *return times to 0* are defined by

$$\tau_0 = 0, \qquad \tau_n = \inf\{m > \tau_{n-1} : S_m = 0\}, \ n \ge 1.$$

As mentioned last lecture, $\operatorname{Prob}(\tau_n < \infty) = \operatorname{Prob}(\tau_1 < \infty)^n$.

Theorem

For any random walk, the following are equivalent.

$$Prob(\tau_1 < \infty) = 1$$

2
$$Prob(S_m = 0 \ i.o.) = 1$$

$$\sum_{m=0}^{\infty} \operatorname{Prob}(S_m = 0) = \infty.$$

3

- 4 同 6 4 日 6 4 日 6

Proof.

- If $Prob(\tau_1 < \infty) = 1$, then $Prob(\tau_n < \infty) = 1$ for all *n* and $Prob(S_m = 0 \text{ i.o.}) = 1$, so 1 implies 2.
- 2 implies 3 follows from Borel-Cantelli.

Let

$$V = \sum_{m=0}^{\infty} \mathbf{1}_{(S_m=0)} = \sum_{n=0}^{\infty} \mathbf{1}_{(\tau_n < \infty)}$$

and calculate to give 3 implies 1,

$$E[V] = \sum_{m=0}^{\infty} \operatorname{Prob}(S_m = 0) = \sum_{n=0}^{\infty} \operatorname{Prob}(\tau_n < \infty)$$
$$= \sum_{n=0}^{\infty} \operatorname{Prob}(\tau_1 < \infty)^n = \frac{1}{1 - \operatorname{Prob}(\tau_1 < \infty)}$$

Definition

Simple random walk in \mathbb{R}^d is defined by letting steps satisfy

$$\operatorname{Prob}(X_i = e_j) = \operatorname{Prob}(X_i = -e_j) = \frac{1}{2d}.$$

Theorem

Simple random walk is recurrent in $d \leq 2$ and transcient in $d \geq 3$.

Proof.

- Let ρ_d(m) = Prob(S_m = 0) in dimension d. This is 0 by parity considerations if m is odd.
- We have $\rho_1(2n) \sim (\pi n)^{-\frac{1}{2}}$ as $n \to \infty$, which proves the recurrence in dimension 1.
- In dimension 2, let T_n^1 and T_n^2 be independent one dimensional simple random walks. The walk (T_n^1, T_n^2) takes steps, with equal probability (1, 1), (1, -1), (-1, 1), (-1, -1). Rotating by 45 degrees and dividing by $\sqrt{2}$ gives S_n . Hence $\rho_2(2n) = \rho_1(2n)^2 \sim \frac{1}{\pi n}$. Since $\sum_n \frac{1}{n}$ diverges, the walk is recurrent.

イロト イポト イヨト イヨト 二日

Proof.

Estimate

$${}_{3}(2n) = 6^{-2n} \sum_{j,k} \frac{(2n)!}{(j!k!(n-j-k)!)^{2}}$$

= $2^{-2n} {\binom{2n}{n}} \sum_{j,k} \left(3^{-n} \frac{n!}{j!k!(n-j-k)!} \right)^{2}$
 $\leq 2^{-2n} {\binom{2n}{n}} \max_{j,k} 3^{-n} \frac{n!}{j!k!(n-j-k)!}.$

- The maximum occurs for j, k, n j k all at least $\lfloor \frac{n}{3} \rfloor$ and the estimate $\rho_3(2n) \ll \frac{1}{n^2}$ follows from Stirling's formula. Since this is summable, the transience follows.
- Transience for d > 3 follows by projecting on the first 3 coordinates.

We now consider more general random walks.

Lemma

If
$$\sum_{n=1}^{\infty} \operatorname{Prob}(\|S_n\|_{\infty} < \epsilon) < \infty$$
, then $\operatorname{Prob}(\|S_n\|_{\infty} < \epsilon \text{ i.o.}) = 0$. If $\sum_{n=1}^{\infty} \operatorname{Prob}(\|S_n\|_{\infty} < \epsilon) = \infty$ then $\operatorname{Prob}(\|S_n\|_{\infty} < 2\epsilon \text{ i.o.}) = 1$.

Proof.

• The first conclusion follows from Borel-Cantelli.

• Let
$$F = \{ \|S_n\| < \epsilon \text{ i.o.} \}^c$$
. Calculate

$$Prob(F) = \sum_{m=0}^{\infty} Prob(\|S_m\|_{\infty} < \epsilon, \|S_n\|_{\infty} \ge \epsilon \text{ for all } n \ge m+1)$$
$$\ge \sum_{m=0}^{\infty} Prob(\|S_m\|_{\infty} < \epsilon, \|S_n - S_m\|_{\infty} \ge 2\epsilon \text{ for all } n \ge m+1)$$
$$= \sum_{m=0}^{\infty} Prob(\|S_m\|_{\infty} < \epsilon)\rho_{2\epsilon,1}$$

where $\rho_{\delta,k} = \operatorname{Prob}(\|S_n\|_{\infty} \ge \delta \text{ for all } n \ge k)$. Since $\sum_{m=0}^{\infty} \operatorname{Prob}(\|S_m\|_{\infty} < \epsilon) = \infty$, $\rho_{2\epsilon,1} = 0$.

Proof.

Let

$$A_m = \{ \|S_m\|_{\infty} < \epsilon, \|S_n\|_{\infty} \ge \epsilon \text{ for all } n \ge m+k \}.$$

Since any ω belongs to at most $k A_m$,

$$k \ge \sum_{m=0}^{\infty} \operatorname{Prob}(A_m) \ge \sum_{m=0}^{\infty} \operatorname{Prob}\left(\|S_m\|_{\infty} < \epsilon\right) \rho_{2\epsilon,k}.$$

• Thus $\rho_{2\epsilon,k} = \operatorname{Prob}(\|S_j\|_{\infty} \ge 2\epsilon \text{ for all } j \ge k) = 0 \text{ for each } k.$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Lemma

Let m be an integer ≥ 2 .

$$\sum_{n=0}^{\infty} \operatorname{Prob}(\|S_n\|_{\infty} < m\epsilon) \leq (2m)^d \sum_{n=0}^{\infty} \operatorname{Prob}(\|S_n\|_{\infty} < \epsilon).$$

Ro	h	н	0.1	at	
50	0		υu	g,	ł

3

(日) (同) (三) (三)

Proof.

• Write

$$\sum_{n=0}^{\infty} \operatorname{Prob}(\|S_n\|_{\infty} < m\epsilon) \leq \sum_{n=0}^{\infty} \sum_{k} \operatorname{Prob}(S_n \in k\epsilon + [0, \epsilon)^d).$$

The inner sum is over $k \in \{-m, ..., m-1\}^d$.

D -	 	
00	IOT IO	

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Proof.

• Let
$$T_k = \inf\{\ell \ge 0 : S_\ell \in k\epsilon + [0, \epsilon)^d\}$$
. Thus

$$\sum_{n=0}^{\infty} \operatorname{Prob}(S_n \in k\epsilon + [0, \epsilon)^d) = \sum_{n=0}^{\infty} \sum_{\ell=0}^n \operatorname{Prob}(S_n \in k\epsilon + [0, \epsilon)^d, T_k = \ell)$$

$$\leq \sum_{\ell=0}^{\infty} \sum_{n=\ell}^{\infty} \operatorname{Prob}(\|S_n - S_\ell\|_{\infty} < \epsilon, T_k = \ell)$$

$$= \sum_{m=0}^{\infty} \operatorname{Prob}(T_k = m) \sum_{j=0}^{\infty} \operatorname{Prob}(\|S_j\| < \epsilon) \leq \sum_{j=0}^{\infty} \operatorname{Prob}(\|S_j\|_{\infty} < \epsilon).$$

The proof is complete since there are $(2m)^d$ values of k.

-						
- 14	\sim	n 1	_	\sim	100	h
_ D				υι	ıg	
					~	

Image: A math a math

Theorem

The convergence (resp. divergence) of $\sum_{n} \operatorname{Prob}(||S_n||_{\infty} < \epsilon)$ for a single value of $\epsilon > 0$ is sufficient for transience (resp. recurrence).

If d = 1, if $E[X_i] = \mu \neq 0$, then the strong law of large numbers implies $S_n/n \rightarrow \mu$, so $|S_n| \rightarrow \infty$ and S_n is transient.

Theorem (Chung-Fuchs theorem)

Suppose d = 1. If the weak law of large numbers holds in the form $S_n/n \rightarrow 0$ in probability, then S_n is recurrent.

D			
RO	h F		uan
00		10	

- 4 同 6 4 日 6 4 日 6

The Chung-Fuchs Theorem

Proof.

- Let $u_n(x) = \text{Prob}(|S_n| < x)$ for x > 0.
- Applying the previous lemma,

$$\sum_{n=0}^{\infty} u_n(1) \ge \frac{1}{2m} \sum_{n=0}^{\infty} u_n(m) \ge \frac{1}{2m} \sum_{n=0}^{Am} u_n(n/A)$$

for any $A < \infty$ since $u_n(x) \ge 0$ and is increasing in x.

• Since $u_n(n/A) \to 1$, letting $m \to \infty$ gives

$$\sum_{n=0}^{\infty} u_n(1) \ge A/2.$$

for all A. The conclusion now follows from the previous theorem.

Theorem

If S_n is a random walk in \mathbb{R}^2 and $\frac{S_n}{n^{\frac{1}{2}}}$ converges to a non-degenerate normal distribution, then S_n is recurrent.

Proof.

• Let
$$u(n,m) = \text{Prob}(||S_n||_{\infty} < m)$$
.

 \bullet We have $\sum_{n=0}^\infty u(n,1) \geqslant (4m^2)^{-1} \sum_{n=0}^\infty u(n,m).$

• If
$$m/\sqrt{n} \rightarrow c$$
, then

$$u(n,m) \rightarrow \int_{[-c,c]^2} n(x) dx$$

where n(x) is the limiting normal distribution. • Let $u([\theta m^2], m) \rightarrow \rho(\theta^{-\frac{1}{2}})$.

3

(日) (同) (三) (三)

Proof.

• Write

$$\frac{1}{m^2}\sum_{n=0}^{\infty}u(n,m)=\int_0^{\infty}u(\lfloor\theta m^2\rfloor,m)d\theta$$

and let $m \to \infty$ to obtain

$$\liminf_{m\to\infty}\frac{1}{4m^2}\sum_{n=0}^{\infty}u(n,m)\geq\frac{1}{4}\int_0^{\infty}\rho(\theta^{-\frac{1}{2}})d\theta.$$

The integral diverges since $\rho(c) = \int_{[-c,c]^2} n(x) dx \sim n(0)(2c)^2$ as $c \downarrow 0$.

Bob Hough

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem

Let $\phi(t)$ be the characteristic function of X_i . Let $\delta > 0$. S_n is recurrent if and only if

$$\sup_{r<1}\int_{(-\delta,\delta)^d}\Re\frac{1}{1-r\phi(y)}dy=\infty.$$

_						
20	h.	_	0			
20				-	-	

Parseval

Theorem (Parseval relation)

Let μ and ν be probability measures on \mathbb{R}^d with characteristic functions ϕ and $\psi.$ Then

$$\psi(t)\mu(dt) = \int \phi(x)\nu(dx).$$

Proof.

By Fubini,

$$\begin{aligned} \int \psi(t)\mu(dt) &= \int \int e^{itx}\nu(dx)\mu(dt) \\ &= \int \int e^{itx}\mu(dt)\nu(dx) = \int \phi(x)\nu(dx). \end{aligned}$$

Bob Hough

February 23, 2017 25 / 62

3

Lemma

If
$$|x| \leq \frac{\pi}{3}$$
 then $1 - \cos x \geq \frac{x^2}{4}$.

Proof.

If $|z| \leq \frac{\pi}{3}$ then $\cos z \geq \frac{1}{2}$. Hence

$$\sin y = \int_0^y \cos z dz \ge \frac{y}{2}$$
$$1 - \cos x = \int_0^x \sin y dy \ge \int_0^x \frac{y}{2} dy = \frac{x^2}{4}.$$

Bob Hough

-2

イロト イポト イヨト イヨト

Proof of Recurrence Theorem.

• The density

$$F_{\delta}(x) = rac{\delta - |x|}{\delta^2} \mathbf{1}(|x| \leq \delta)$$

has characteristic function $\hat{F}_{\delta}(t) = 2 \frac{1 - \cos \delta t}{(\delta t)^2}$.

• Let S_n have density μ_n . One has

$$\begin{aligned} \operatorname{Prob}\left(\|S_n\|_{\infty} \leq \frac{1}{\delta}\right) \leq 4^d \int \prod_{i=1}^d \frac{1 - \cos(\delta t_i)}{(\delta t_i)^2} \mu_n(t) \\ &= 2^d \int_{(-\delta,\delta)^d} \prod_{i=1}^d \frac{\delta - |x_i|}{\delta^2} \phi^n(x) dx. \end{aligned}$$

Bob Hough

• • • • • • • • • • • •

Proof of Recurrence Theorem.

Hence

$$\sum_{n=0}^{\infty} r^n \operatorname{Prob}\left(\|S_n\|_{\infty} < \frac{1}{\delta}\right) \leq 2^d \int_{(-\delta,\delta)^d} \prod_{i=1}^d \frac{\delta - |x_i|}{\delta^2} \frac{1}{1 - r\phi(x)} dx$$

and

$$\sum_{n=0}^{\infty} \operatorname{Prob}\left(\|S_n\|_{\infty} < \frac{1}{\delta}\right) \leqslant \left(\frac{2}{\delta}\right)^d \sup_{r<1} \int_{(-\delta,\delta)^d} \Re \frac{1}{1-r\phi(x)} dx.$$

Thus finiteness of the right hand side gives transience of the walk.

Bob Hough	
-----------	--

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof of Recurrence Theorem.

• For the reverse direction, use density $G_{\delta}(x) = \frac{\delta(1-\cos(\frac{x}{\delta}))}{\pi x^2}$, with characteristic function $\hat{G}_{\delta}(t) = (1 - |\delta t|)\mathbf{1}(|t| \leq \frac{1}{\delta})$.

Hence

$$\begin{aligned} \mathsf{Prob}\left(\|S_n\|_{\infty} < \frac{1}{\delta}\right) &\geq \int_{(-1/\delta, 1/\delta)^d} \prod_{i=1}^d (1 - |\delta x_i|) \mu_n(dx) \\ &= \int \prod_{i=1}^d \frac{\delta(1 - \cos(t_i/\delta))}{\pi t_i^2} \phi^n(t) dt. \end{aligned}$$

Bob Hough

- 3

イロト 不得下 イヨト イヨト

Proof of Recurrence Theorem.

• Hence

$$\sum_{n=0}^{\infty} r^n \operatorname{Prob}(\|S_n\|_{\infty} < 1/\delta) \ge \int \prod_{i=1}^d \frac{\delta(1 - \cos(t_i/\delta))}{\pi t_i^2} \frac{1}{1 - r\phi(t)} dt$$
$$\ge (4\pi\delta)^{-d} \int_{(-\delta,\delta)^d} \Re \frac{1}{1 - r\phi(t)} dt.$$

• Letting $r \uparrow 1$ proves the theorem.

Bo	h I	H	ou	σŀ	n.
				ο.	

3

(日) (同) (三) (三)

Definition

A random walk in \mathbb{R}^3 is *truly three-dimensional* if the distribution of X_1 has $\operatorname{Prob}(X_1 \cdot \theta \neq 0) > 0$ for all $\theta \neq 0$.

Theorem

No truly three-dimensional random walk is recurrent.

Ro	h I	H.	~	10	h
50			υı	'B'	

Proof.

• If
$$z = a + bi$$
 with $a \leq 1$,

$$\Re \frac{1}{1-z} = \frac{1-a}{(1-a)^2 + b^2} \leqslant \frac{1}{1-a}$$

• Hence $\Re \frac{1}{1-r\phi(t)} \leqslant \frac{1}{\Re(1-r\phi(t))} \leqslant \frac{1}{\Re(1-\phi(t))}.$

Estimate

$$\Re(1-\phi(t)) = \int (1-\cos(xt))\mu(dx) \ge \int_{|x\cdot t| < \frac{\pi}{3}} \frac{|x\cdot t|^2}{4}\mu(dx).$$

Bob Hough

3

(日) (周) (三) (三)

Proof.

• Let
$$t = \rho \theta$$
 where $\theta \in S = \{x : |x| = 1\}$. This gives

$$\Re(1-\phi(\rho\theta)) \ge \frac{\rho^2}{4} \int_{|x\cdot\theta| < \frac{\pi}{3\rho}} |x\cdot\theta|^2 \mu(dx).$$

• Letting $\rho \to 0$ and $\theta(\rho) \to \theta$,

$$\liminf_{\rho \to 0} \int_{|x \cdot \theta(\rho)| < \frac{\pi}{3\rho}} |x \cdot \theta(\rho)|^2 \mu(dx) \ge \int |x \cdot \theta|^2 \mu(dx) > 0.$$

• This implies that for $\rho < \rho_0$

$$\inf_{\theta \in S} \int_{|x \cdot \theta| < \frac{\pi}{3\rho}} |x \cdot \theta|^2 \mu(dx) = C > 0.$$

Proof.

• It follows that for $0 < \rho < \rho_0$, $\Re(1 - \phi(\rho\theta)) \ge \frac{C\rho^2}{4}$.

Thus

$$\begin{split} \int_{(-\delta,\delta)^d} \Re \frac{1}{1 - r\phi(y)} dy &\leq \int_0^{\delta\sqrt{d}} \rho^{d-1} d\rho \int \frac{1}{\Re(1 - \phi(\rho\theta))} d\theta \\ &\leq C' \int_0^1 \rho^{d-3} d\rho < \infty. \end{split}$$

・ロト ・四ト ・ヨト ・ヨト 三日

Bob Hough	Math 639: Lecture 9	February 23, 2017	34 / 62

Definition

Consider simple random walk on \mathbb{Z} . A polygonal line has segments $(k-1, S_{k-1}) \rightarrow (k, S_k)$. A *path* is a polygonal line that is a possible outcome of simple random walk.

To count the number of paths from (0,0) to (n,x), introduce $a = \frac{n+x}{2}$ and $b = \frac{n-x}{2}$. The number $N_{n,x}$ of paths is $\binom{n}{a}$.

Theorem (Reflection principle)

If x, y > 0, then the number of paths from (0, x) to (n, y) that are 0 at some time is equal to the number of paths from (0, -x) to (n, y).

Bob Hough

イロト 不得下 イヨト イヨト 二日

The reflection principle

Proof.

- Suppose $(0, s_0), (1, s_1), \dots, (n, s_n)$ is a path from (0, x) to (n, y).
- Let $K = \inf\{k : s_k = 0\}$. Let $s'_k = -s_k$ for $k \leq K$ and $s'_k = s_k$ for k > K. Thus (k, s'_k) is a path from (0, -x) to (n, y).
- Conversely, if $(0, t_0), (1, t_1), ..., (n, t_n)$ is a path from (0, -x) to (n, y), then it must cross 0. Set $K = \inf\{k : t_k = 0\}$ and let $t'_k = -t_k$ for $k \leq K$ and $t'_k = t_k$ for k > K.
- Thus (k, t'_k) , $0 \le k \le n$ is a path from $(0, x) \to (n, y)$ that is 0 at time K. This completes the bijection.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Ballot theorem)

Suppose that in an election candidate A gets α votes and candidate B gets β votes, where $\beta < \alpha$. Given uniform ordering of the votes, the probability that throughout the counting A always leads B is $\frac{\alpha-\beta}{\alpha+\beta}$.

イロト イポト イヨト イヨト 二日

Ballot theorem

Proof.

- The number of admissible arrangements of the votes is the number of paths from (1,1) to (*n*,*x*) that don't cross 0.
- By the reflection principle, the number of paths from (1,1) to (n,x) which do cross 0 is equal to the number of paths from (1,1) to (n,−x).
- Hence, the number of admissible paths is

$$N_{n-1,x-1} - N_{n-1,x+1} = \binom{n-1}{\alpha-1} - \binom{n-1}{\alpha}$$
$$= \frac{(n-1)!}{(\alpha-1)!(n-\alpha)!} - \frac{(n-1)!}{\alpha!(n-\alpha-1)!}$$
$$= \frac{\alpha - (n-\alpha)}{n} \frac{n!}{\alpha!(n-\alpha)!} = \frac{\alpha - \beta}{\alpha + \beta} N_{n,x}.$$

Lemma

$\mathsf{Prob}(S_1 \neq 0, S_2 \neq 0, ..., S_{2n} \neq 0) = \mathsf{Prob}(S_{2n} = 0).$

- D			
RO	h F	011	αh
00		IUU	2 I I
			•

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Visits to 0

Proof.

By the Ballot theorem

$$\begin{aligned} \mathsf{Prob}(S_1 > 0, ..., S_{2n} > 0) &= \sum_{r=1}^{\infty} \mathsf{Prob}(S_1 > 0, ..., S_{2n-1} > 0, S_{2n} = 2r) \\ &= \frac{1}{2^{2n}} \sum_{r=1}^{\infty} (N_{2n-1,2r-1} - N_{2n-1,2r+1}) = \frac{N_{2n-1,1}}{2^{2n}}. \end{aligned}$$

Since $\operatorname{Prob}(S_{2n-1}=1) = \operatorname{Prob}(S_{2n}=0)$ we obtain

$$Prob(S_1 > 0, ..., S_{2n} > 0) = \frac{1}{2} Prob(S_{2n} = 0)$$

the claim follows by symmetry.

Bob Hough

Math 639: Lecture 9	Fe

Set $L_{2n} = \sup\{m \leq 2n : S_m = 0\}.$

Lemma

Let
$$u_{2m} = \text{Prob}(S_{2m} = 0)$$
. Then $\text{Prob}(L_{2n} = 2k) = u_{2k}u_{2n-2k}$.

Proof.

$$Prob(L_{2n} = 2k) = Prob(S_{2k} = 0, S_{2k+1} \neq 0, ..., S_{2n} \neq 0) = u_{2k}u_{2n-2k}.$$

D					
RO	h I	=	\sim	10	h
00			υı	- 5	

- 2

<ロ> (日) (日) (日) (日) (日)

Theorem

For 0 < a < b < 1,

$$\operatorname{Prob}\left(a \leq \frac{L_{2n}}{2n} \leq b\right) \to \frac{1}{\pi} \int_{a}^{b} (x(1-x))^{-\frac{1}{2}} dx.$$

Bob Hough

Math 639: Lecture 9

February 23, 2017 43 / 62

æ

<ロ> (日) (日) (日) (日) (日)

The arcsine law

Proof.

• Since
$$u_{2n} = \frac{\binom{2n}{n}}{2^{2n}} \sim \frac{1}{\sqrt{\pi n}}$$
 one obtains that if $\frac{k}{n} \to x$ as $n \to \infty$, then
 $n \operatorname{Prob}(L_{2n} = 2k) \to \frac{1}{\pi \sqrt{x(1-x)}}.$

• The convergence is uniform on compact sets. Thus

$$\operatorname{Prob}\left(a \leq \frac{L_{2n}}{2n} \leq b\right) = \sum_{\substack{2an \leq 2k \leq 2bn}} \operatorname{Prob}(L_{2n} = 2k)$$
$$\rightarrow \frac{1}{\pi} \int_{a}^{b} \frac{dx}{\sqrt{x(1-x)}}.$$

3

Theorem

Let π_{2n} be the number of segments $(k - 1, S_{k-1}) \rightarrow (k, S_k)$ that lie above the axis, i.e. in $\{(x, y) : y \ge 0\}$, and let $u_m = \operatorname{Prob}(S_m = 0)$.

$$\mathsf{Prob}(\pi_{2n} = 2k) = u_{2k}u_{2n-2k}$$

and consequently, if 0 < a < b < 1,

$$\operatorname{Prob}\left(a \leqslant \frac{\pi_{2n}}{2n} \leqslant b\right) \to \frac{1}{\pi} \int_{a}^{b} \frac{dx}{\sqrt{x(1-x)}}.$$

R	oh	Ho	urch
Ъ	υD	110	ugn

- 3

イロト 不得下 イヨト イヨト

The arcsine law

Proof.

- Let $\beta_{2k,2n} = \operatorname{Prob}(\pi_{2n} = 2k)$. We prove $\beta_{2k,2n} = u_{2k}u_{2n-2k}$ by induction.
- When n = 1,

$$\beta_{0,2}=\beta_{2,2}=\frac{1}{2}=u_0u_2.$$

Calculate

$$\begin{split} &\frac{1}{2}u_{2n} = \operatorname{Prob}(S_1 > 0, S_2 > 0, ..., S_{2n} > 0) \\ &= \operatorname{Prob}(S_1 = 1, S_2 - S_1 \geqslant 0, ..., S_{2n} - S_1 \geqslant 0) \\ &= \frac{1}{2}\operatorname{Prob}(S_1 \geqslant 0, ..., S_{2n-1} \geqslant 0) \\ &= \frac{1}{2}\operatorname{Prob}(S_1 \geqslant 0, ..., S_{2n} \geqslant 0) = \frac{1}{2}\beta_{2n,2n} = \frac{1}{2}\beta_{0,2n}. \end{split}$$

The arcsine law

Proof.

• Let R be the time of the first return to 0, and set $f_{2m} = \text{Prob}(R = 2m)$. We have

$$\beta_{2k,2n} = \frac{1}{2} \sum_{m=1}^{k} f_{2m} \beta_{2k-2m,2n-2m} + \frac{1}{2} \sum_{m=1}^{n-k} f_{2m} \beta_{2k,2n-2m}.$$

By induction,

$$\beta_{2k,2n} = \frac{1}{2} u_{2n-2k} \sum_{m=1}^{k} f_{2m} u_{2k-2m} + \frac{1}{2} u_{2k} \sum_{m=1}^{n-k} f_{2m} u_{2n-2k-2m}.$$

The conclusion holds, since $u_{2k} = \sum_{m=1}^{k} f_{2m} u_{2k-2m}$.

3

イロト イポト イヨト イヨト

Renewals

Let ξ_1, ξ_2, \dots be i.i.d. positive random variables with distribution F and define a sequence of times by

$$T_0 = 0,$$
 $T_k = T_{k-1} + \xi_k, \ k \ge 1.$

The T_k are referred to as *renewals*. Let $N_t = \inf\{k : T_k > t\}$. Define $U(t) = E[N_t]$.

Theorem

As
$$t \to \infty$$
, $\frac{U(t)}{t} \to \frac{1}{\mu}$.

3

(日) (周) (三) (三)

Renewals

Proof.

• Pick $\delta > 0$ so that $Prob(\xi_i > \delta) = \epsilon > 0$. Pick K so that $K\delta \ge t$. Since K consecutive ξ_i 's greater than δ make $T_n > t$,

$$\operatorname{Prob}(N_t > mK) \leqslant (1 - \epsilon^K)^m.$$

Thus $E[N_t] < \infty$.

By Wald's equation,

$$\mu \mathsf{E}[N_t] = \mathsf{E}[T_{N_t}] \ge t,$$

so $U(t) \ge \frac{t}{\mu}$.

(日) (周) (三) (三)

Renewals

Proof.

Bo

• If $\operatorname{Prob}(\xi_i \leq c) = 1$ then $\mu \operatorname{E}[N_t] = \operatorname{E}[T_{N_t}] \leq t + c$, so the result holds for bounded distributions. If we replace $\overline{\xi}_i = \min(\xi_i, c)$ and define \overline{T}_n and \overline{N}_t then

$$\mathsf{E}[N_t] \leqslant \mathsf{E}[\overline{N}_t] \leqslant \frac{t+c}{\mathsf{E}[\overline{\xi}_i]}.$$

Let $t \to \infty$, then $c \to \infty$ to obtain $\limsup_{t\to\infty} \frac{\mathsf{E}[N_t]}{t} \leqslant \frac{1}{\mu}$.

o Hough	Math 639: Lecture 9	February 23, 2017

イロト 不得 トイヨト イヨト

50 / 62

Definition

The *renewal measure* of a process T_k is the measure

$$U(A) = \sum_{n=0}^{\infty} \operatorname{Prob}(T_n \in A).$$

Pal	<u>ч</u> Ц		~h
BOI	וו כ	υuį	зu

3

A (10) × (10) × (10)

Theorem (Blackwell's renewal theorem)

If F is nonarithmetic with mean $\mu < \infty$, then $U([t, t+h]) \rightarrow \frac{h}{\mu}$ as $t \rightarrow \infty$.

See Durrett p.211 for the case $\mu = \infty$.

Delayed renewal process

Definition

If $T_0 \ge 0$ is independent of $\xi_1, \xi_2, ...$ and has distribution G, then $T_k = T_{k-1} + \xi_k$, $k \ge 1$ defines a *delayed renewal process*, and G is the *delay distribution*.

If we let $N_t = \inf\{k : T_k > t\}$ and set $V(t) = E[N_t]$, then

$$V(t) = \int_0^t U(t-s) dG(s).$$

Similarly,

$$U(t) = 1 + \int_0^t U(t-s)dF(s).$$

or $U = \mathbf{1}_{[0,\infty)}(t) + U * F$, and V = G * U = G + V * F.

53 / 62

Definition

When $G(t) = \frac{1}{\mu} \int_0^t 1 - F(y) dy$ and $V(t) = G(t) + \int_0^t \frac{t-y}{\mu} dF(y) = \frac{t}{\mu}$, the process T_0, T_1, T_2, \dots is called the *stationary renewal process* associated to ξ_i .

Blackwell's renewal theorem

Proof of Blackwell's theorem in case $\mu < \infty$.

- Let $T_0, T_1, T_2, ...$ be a renewal process, and let $T'_0, T'_1, T'_2, ...$ be an independent stationary renewal process.
- Given $\epsilon > 0$, we find J and K such that $|T_J T'_K| < \epsilon$.
- Let η₁, η₂, ... and η'₁, η'₂, ... be i.i.d. independent of T_n and T'_n, taking values 0 and 1 with probability ¹/₂.
- Let $\nu_n = \eta_1 + \cdots + \eta_n$ and $\nu'_n = 1 + \eta'_1 + \cdots + \eta'_n$, $S_n = T_{\nu_n}$, and $S'_n = T'_{\nu'_n}$.

イロト 不得下 イヨト イヨト 二日

Blackwell's renewal theorem

Proof of Blackwell's theorem in case $\mu < \infty$.

• The increments of $S_n - S'_n$ are 0 with probability $\frac{1}{4}$ and are symmetric about 0. Since ξ_k is nonarithmetic, $S_n - S'_n$ is irreducible. Since the increments have mean 0,

$$N = \inf\{n : |S_n - S'_n| < \epsilon\}$$

has $\operatorname{Prob}(N < \infty) = 1$. Set $J = \nu_N$ and $K = \nu'_N$.

• Define *coupling*

$$T_n'' = \begin{cases} T_n & n \leq J \\ T_J + T_{K+(n-J)} - T_K' & n > J \end{cases}$$

Thus $T''_{j+i} - T''_J = T'_{K+i} - T'_K$ for $i \ge 1$.

• By construction, T_n and T''_n have the same distribution.

Blackwell's renewal theorem

$\label{eq:proof} \mbox{Proof of Blackwell's theorem in case $\mu < \infty$. $ \bullet$ Let $ \end{tabular} $$

$$N'(s,t) = |\{n: T'_n \in [s,t]\}|, \qquad N''(s,t) = |\{n: T''_n \in [s,t]\}|.$$

We have

$$N''(t, t + h) = N'(t + T'_K - T_J, t + h + T'_K - T_J).$$

This is sandwiched between $N'(t + \epsilon, t + h - \epsilon)$ and $N'(t - \epsilon, t + h + \epsilon)$. Hence

$$\frac{h-2\epsilon}{\mu} - \operatorname{Prob}(T_J > t)U(h) \leq U([t, t+h])$$
$$\leq \frac{h+2\epsilon}{\mu} + \operatorname{Prob}(T_J > t)U(h).$$

Definition

A renewal equation is an equation H = h + H * F.

Examples include $h \equiv 1$ and $U(t) = 1 + \int_0^t U(t-s)dF(s)$ and h(t) = G(t), $V(t) = G(t) + \int_0^t V(t-s)dF(s)$.

イロト イポト イヨト イヨト 二日

Theorem

If h is bounded then the function

$$H(t) = \int_0^t h(t-s) dU(s)$$

is the unique solution of the renewal equation that is bounded on bounded intervals.

Ro	ЬΙ	He		αh	
50	יט	пc	'nU,	gп	

Renewal equation

Proof.

Let $U_n(A) = \sum_{m=0}^n \operatorname{Prob}(T_m \in A)$ and

$$H_n(t) = \int_0^t h(t-s) dU_n(s) = \sum_{m=0}^n (h * F^{*m})(t).$$

Thus $H_{n+1} = h + H_n * F$. Since $U(t) < \infty$, $U_n(t) \uparrow U(t)$. Hence

$$|H(t) - H_n(t)| \leq ||h||_{\infty} |U(t) - U_n(t)|$$

so $H_n(t) \rightarrow H(t)$ uniformly on bounded intervals. Also,

$$|H_n * F(t) - H * F(t)| \leq \sup_{s \leq t} |H_n(s) - H(s)| \leq ||h||_{\infty} |U(t) - U_n(t)|.$$

Taking $n \to \infty$, H is a solution of the renewal equation.

Bob Hough

イロト 不得 トイヨト イヨト 二日

Proof.

To prove the uniqueness, suppose H_1 , H_2 are two solutions, and set $K = H_1 - H_2$ and note K = K * F. Iterating gives $K = K * F^{*n} \rightarrow 0$ as $n \rightarrow \infty$.

- 3

- 4 同 6 4 日 6 4 日 6

Example

- Consider crossing a road with traffic given by Poisson process with rate $\lambda.$
- One unit of time is required to cross the road. Thus the transition time is inf{t : no arrivals in (t, t + 1]}.
- By considering the time of the first arrival, $H(t) = \operatorname{Prob}(M \leq t)$ satisfies

$$H(t) = e^{-\lambda} + \int_0^1 H(t-y)\lambda e^{-\lambda y} dy.$$

• Hence, $H(t) = e^{-\lambda} \sum_{n=0}^{\infty} F^{*n}(t)$.

- 3

- 4 同 6 4 日 6 4 日 6