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Poisson processes

Theorem

Let Xn.m, 1 < m < n be independent nonnegative integer valued random
variables with Prob(Xp m = 1) = pn.m, Prob(X,m = 2) = €p m.

(1] anz]_ Pnm — AE (07 OO)

Q@ maxi<ms<n Pmn — 0

Q> _1enm—0
If Sn = Xp1 + -+ + Xp,n then S, = Z where Z is Poisson(\).
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Poisson processes

Proof.
o Set X}, ,, = 1if X, » =1 and 0 otherwise.
o Let S, =X+ -+ X,
@ The conditions imply S/, = Z, and Prob(S, # S/,) — 0.
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Poisson processes

Theorem

Let N(s, t) be the number of arrivals at a bank in time interval (s, t].
Suppose

© The numbers of arrivals in disjoint intervals are independent
@ The distribution of N(s,t) only depends on t — s
@ Prob(N(0,h) =1) = Ah+ o(h)
Q Prob(N(0,h) = 2) = o(h).
Then N(0, t) has a Poisson distribution with mean At.
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Poisson processes

Proof.

Let Xpm =N <(m Lt mt) for 1 < m < n and apply the previous

theorem. Ol
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Poisson processes

Definition
A family of random variables N;, t > 0 satisfying

Q If0=ty<ty <--- <ty N(tx) — N(tx—1), 1 < k < nare
independent

@ N(t) — N(s) is Poisson(\(t — s)).
is called a Poisson process with rate \.
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Poisson processes

Theorem

Let £1,&5, ... be independent random variables with Prob(&; > t) = e At
fort >0. Let T, =& + -+ &, with To =0 and Ny = sup{n: T, < t}.
Then N; is a Poisson process of parameter \.
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Poisson processes

Proof.
@ One may check that T, has density f,(s) = %e‘“
@ Now check by induction that

Prob(N; = 0) = Prob(Ty > t) = e,
Prob(Ny = n) = Prob(T, <t < Tpy1)

t
= f Prob(T, = s) Prob({p+1 > t — s)ds

0
t —1
_ J A" hs g (t=s) g — g=rt(AD)"
o (n—=1)! n!
Thus N; has a Poisson distribution with mean At.
D)
8 /59

Bob Hough Math 639: Lecture 8 February 21, 2017



Poisson processes

Proof.

@ Observe
PrOb( n+1 =

o Calculate

Prob(Tht1 = u, T, <

t ynen—1 n
:J As e AMU=5) g — g~ (At) .
o (n—1)! n!
Since Prob(N; = n) = e*“%,
Prob(To1 = ulN; = n) = €57 = e A1),
D/

Prob( n+1 / u T )
N, —
> ulNe = n) = ——p o Ne = )

t) = fot fn(s) Prob(&ny1 = u —s)ds

Bob Hough
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Poisson processes

Proof.

o Let T],_ = TN(t)+1 — t and Tli = TN(t)Jrk — TN(t)Jrk,l for k > 2.
Then T{, T}, ... are i.i.d. and independent of N;. Hence the arrivals
after time t are independent of N; and have the same distribution as
the original sequence.

@ Hence if 0 =ty < t; < --- < t, then N(t;) — N(ti—1), i =1,2,...,n
are independent.
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Stable laws

Definition
A function L is said to be slowly varying if

XIi_erOO L(x) =1, for all t > 0.

One may check that L(t) = logt is slowly varying, but L(t) = t¢ is not for
any € # 0.
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Stable laws

Theorem
Suppose X1, Xz, ... are i.i.d. with a distribution that satisfies
Prob(X;>x
Q lim, o g3 — f e [0,1].
@ Prob(|X1| > x) = x7“L(x)

where 0 < a < 2 and L is slowly varying. Let S, = X1 + --- + X,,

an = inf{x : Prob(|X1| > x) < n '}, b, = nE[X11(|X1| < an)].

As n — o0, 5"

b" = Y where Y has a nondegenerate distribution.

For a proof, see Durrett pp. 161-162.
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Stable laws

Definition

A random variable Y is said to have a stable law if for every integer k > 0
there are constants ax and by so that if Y7,..., Y are i.i.d. and have the
same distribution as Y, then (Y1 + -+ Yx — bi)/ax =4 Y.
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Stable laws

Theorem

Y is the limit of (X1 + - -+ Xy — bx)/ax for some i.i.d. sequence X; if and
only if Y has a stable law.
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Stable laws

Proof.
@ If Y has a stable law, we can take X, X5, ... i.i.d. with distribution Y.

o Let Zy= (X1 +++ Xy — by) and S = Xj_1yps1 + -+ + Xin.
@ Thus

Lok = (5,% + -+ S,l,( — b,,k)/a,,k
ankZnk = (SE— bp) + -+ + (S5 — by) + (kb — bpk)
ankZnk/an = (Sp — bn)/an + -+ + (SK — bn)/an + (kbn — bpi)/an.
@ Let n — 0. The first k terms on the right tend to Yj, ..., Yi which
are independent copies of Y, and Z,x = Y/, thus the result follows.

Ol

v
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Infinitely divisible distributions

Definition

A probability distribution p is infinitely divisible if, for each n > 1, there is
probability distribution g, such that p = pi".
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Measures of compound Poisson type

A large family of infinitely divisible measures is given as follows.
Definition

Let 1 be a probability measure with characteristic function ¢ (t), and let
A\ > 0 be a parameter. Define 1*9 to be the point mass at 0. The

probability measure of compound Poisson type with parameters 1 and A is
the probability measure

. )\n *n
P(uA) =) TMI

n=0

It has characteristic function x(t) = Ep(u) [et] = eMe(t)—1)
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Infinitely divisible distributions

The following discussion is taken from Feller, vol 2.
Definition
A measure p is canonical if the integrals

A R

x= Y -0 Y

" du(y)
2

converge for all x > 0.
A sequence of measures c,x?dju,(x) converge properly to du(x) if it

converges to du(x) in distribution, and if, for all € > 0, there exists 7 > 0
such that for x > 1,

lim sup ¢, [1 —JX du,,(x)] <e

n —X
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Infinitely divisible distributions

Lemma
If cax®dpn(x) — du(x) properly, then
Q0 00
C,,J z(x)dpn(x) — f x2z(x)du(x).
-0 -0

for every bounded continuous function z such that x~2z(x) is continuous
at the origin.
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Infinitely divisible distributions

Lemma
Consider a sequence of probability measures ,,, with characteristic
functions ¢, and define, for some sequence of constants {cp},{n},

Yn(2) = calpn(2) — 1 — iBnz].

Suppose that 1¥p(z) — p(z) uniformly in |z| < zg. Then for 0 < h < z,

00 . h 1 h
. f (1_5'"X)dun<x>a—2h o(2)dez.

—a0 xh —h
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Infinitely divisible distributions

Proof.

Define b, = §”_ sin xdjn(x) and write

Pn(2) = JOO cn[e™ — 1 — izsin x]dpn(x) + ica(bp — Bn)z.

—00
Divide by —2h and integrate in |z| < h to obtain the claim. O
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Infinitely divisible distributions

Lemma

Under the conditions of the previous lemma, there exists a canonical
measure . and a sequence ni, np, ... — 00 such that

CnX*dpin, (x) — du(x) properly.
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Infinitely divisible distributions

Proof.

e Put dv,(x) = cpx?dpn(x).

@ Since (1 — %) ~ %x2h2 for x small, and is positive in any case, it
follows that v,(/) < oo for all finite intervals /.

@ By Helly's selection theorem, there is a subsequence {v,, } converging
in distribution to a measure v.

@ To prove the tightness, note that p(0) = 0. By choosing h sufficiently
small, 2hS , P(z)dz may be made arbitrarily small. Since the

integrand on the Ieft is > 1 for |xh| = 2 and is non-negative
otherwise, the result foIIows.
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Infinitely divisible distributions

Lemma

For any canonical measure yi the integral defined by

¥(2) =

JOO e —1—izsinx
2
0 X

dpu(x)

defines a continuous function, and to distinct canonical measures there
correspond distinct functions.
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Infinitely divisible distributions

Proof.
@ The integral converges by the property of a canonical measure.
@ The continuity is immediate.
o Write, for h > 0,

Y(z+ h) +Y(z—h) _foo eile—cosxh

- 2
2 — X

Y(z) — dp(x).

This is the characteristic function of the bounded measure
dAp(x) = l_ii%s)d’d,u(x), and hence determines 1 except for possible
atoms where cosxh = 1, x # 0.

@ By varying h, p is determined.
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Infinitely divisible distributions

Theorem

Let {un} be a sequence of probability measures, with characteristic
functions {¢n}, and let {c,}, {Bn} be sequences of real numbers. Set
by = §” sinxdpun(x). A continuous limit

wn(z) = Cn[¢n(z) — ’.an] - p(Z)

exists if and only if there exists a canonical measure p and a number b
such that

C,,deu,,(x) — du(x)
properly and c, (b, — B,) — b. In this case
p(2) = U(z) + ibz

where ¢(z Si wdu( ). This uniquely determines .
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Infinitely divisible distributions

Proof.

The claim in the forward direction holds since
z(x) = e/ — 1 — isinx is bounded as a function of x, and satisfies

% is continuous at the origin.

For the reverse direction, let ¥,(z) — p(z) for all z, with p
continuous.

e¥"(2) is a characteristic function, and it converges uniformly to er(?)
in finite intervals.

By the uniform convergence, there exists a canonical measure y and a
subsequence {n1, ny, ...} such that ¢, x?dun, (x) — du(x) properly.

The proper convergence guarantees

Y (2) = Joo [eizx — 1 —izsin x] Cn, ditn, (x) = Y(2).

—00

O
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Infinitely divisible distributions

Proof.
@ Thus p(z) = ¢(z) + ibz.
@ Since 9(1) is real, b = Ip(1).

o |t follows that ) and b are uniquely determined independent of the
sequence {n}. This proves the required convergence.
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Infinitely divisible distributions

Lemma
Let {¢n} be a sequence of characteristic functions. If the limit on the right
is continuous, the relations

$n(z) = w(z),  nl¢n(z) —1] = p(2)

are equivalent, and if either holds, w(z) = e’?).
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Infinitely divisible distributions

Proof.
o First assume n[¢,(z) — 1] — p(z). Thus ¢n(z) — 1 and the
convergence is uniform in fixed intervals |z| < zp.
e For n sufficiently large, log ¢n(2) is well defined, and by Taylor
expansion,
log ¢(2) = nlog ¢n(2) — p(2),

s0 w(z) = e”?).
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Infinitely divisible distributions

Proof.
e Now suppose ¢7(z) — w(z). Then w(0) =1, so w(z) # 0 for
|z| < zp.
@ Since the convergence is uniform, ¢,(z) # 0 for |z| < zy for all n
sufficiently large, and thus log ¢,(z) is well defined in |z| < zp. It
follows that p(z) = logw(z) for |z| < z.

@ After passing to a subsequence, we can find p such that for all z

nk[dn (2) = 1] = p(2).

This implies ¢pt(z) — e?), so p = logw. But the limit now holds for
the full sequence.

O

v
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Infinitely divisible distributions

Theorem

For w to be an infinitely divisible characteristic function it is necessary and

sufficient that there exist a canonical measure 1 and a real number b such
that w = e” with

p(2) = U(z) + ibz
W(z) = f_ e — 1X; izsin Xd,u(x).
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Infinitely divisible distributions

Proof.
o First suppose w is infinitely divisible with w! = w. Then
n[wn(z) — 1] — p(z), which is the special case ¢, = n, 5, = 0 of the
previous theorem. The existence of canonical measure p with ¥ and b
as defined there follows.
@ Now suppose that w = e” is of the described form. First, suppose
that the canonical measure p is concentrated on |x| > 4. Let

du(x) = ex®dv(x).

where v is a probability distribution with characteristic function ~.

o We have e€((2)=1) s the characteristic function of a distribution of
compound Poisson type, and hence is infinitely divisible. It differs
from e” by the centering factor e/?Z, so that e” is infinitely divisible.

Ol
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Infinitely divisible distributions

Proof.

@ Now set, for § > 0, ps the measure pl(|x| = 0) and let ¥5(z) be the
corresponding integral.

o Let 02 > 0 be the mass assigned by y to 0. Hence, as § — 0,

202 4 () = (a).

@ The left hand side is the logarithm of a characteristic function, hence
so is the right. Slnce is obtained by replacing 1 with £, the claim

2 Wb
follows on setting w, = en, w = e¥.
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Random walk

Definition

Let X1, Xo, ... be i.i.d. taking values in RY, and let S, = X; +--- 4+ X,,. S,
is a random walk.

In studying random walk we work on the product probability space
(Q,.#, Prob) from Kolmogorov's extension theorem,

Q = {(w1,ws,...) : wj € R}

F=BXBX..
Prob = p x p x ..., 1 is the distribution of X;
Xn(w) = wp.
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Permutable variables

Definition

A finite permutation of N = {1,2,...} is a map 7 from N to N so that
m(i) # i for only finitely many i. An event A is permutable if

7 1A = {w: mw e A} = A for all finite permutations 7. The collection of
permutable events is a o-field, called the exchangeable o-field, & .

The tail o-algebra is contained in &, as are the events
o {w:5S,(w)eBio.}.

o {w:limsup,_,, Sn(w)/ch = 1}.
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Hewitt-Savage 0-1 Law

Theorem (Hewitt-Savage 0-1 Law)
If X1, X2, ... are i.i.d. and A € & then Prob(A) € {0,1}. J
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Hewitt-Savage 0-1 Law

o Let Ac &

e Let A, e 0(Xy,..., Xp) so that Prob(A,AA) — 0 as n — c0. Here
AAB = (A— B) u (B — A) is the symmetric difference.

@ Definemr=m,byn(j) =n+jifj<n n(j)=j—nifn+1<,<2n
and 7(j) = j otherwise. Note 72 is the identity.
e Write A, = B,, x RN where B, c R". We have

Prob(A,AA) = Prob(w : 7w € A,AA)

and
{w:mwe Ap} = {w: (Wnt1, ey won) € Bp}

Write A’ for this event.
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Hewitt-Savage 0-1 Law

@ Use Prob(A,AA) = Prob(A|,AA), so
Prob(A,AA") < Prob(A,AA) + Prob(A.AA) — 0.
@ The implies

0 rob(A,) — Prob(A, n A%)

rob(A, U A") — Prob(A, n A") = Prob(A,AA") — 0,

NN

P
P
so Prob(A, n Al) — Prob(A).

@ By independence
Prob(A, n A’) = Prob(A,) Prob(A’) — Prob(A)2.

This shows Prob(A) = Prob(A)? so Prob(A) e {0, 1}.
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Hewitt-Savage 0-1 Law

Theorem

For a random walk on R, there are only four possibilities, of which one has
probability 1:

@ S,=0 forall n
@ lim, ,n S, =@
o lim,,pn S, =—
°

—o0 = liminf S, < limsup S, = .
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Hewitt-Savage 0-1 Law

Proof.

@ The Hewitt-Savage 0-1 Law implies that limsup S, is a constant
¢ € [—o0, 0].

@ Let S/ = S,+1 — Xi, which has the same distribution. Thus
¢ = ¢ — Xi, so that if c is finite, then X; = 0.

@ The remaining cases are obvious.
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Stopping times

Definition

Let #, = o(X1,..., Xp). A random variable N taking values in

{1,2,...} U {oo} is said to be a stopping time or an optional random
variable if for every n < 0, {N = n} € .%,,. The o-algebra generated by
stopping time N is

Fn={Aeco(X1,Xa,...):Vn, An{N = n} € Fp,}.

Given a set A, the hitting time of Ais N = inf{n: S, € A}. This'is a
stopping time.

Bob Hough Math 639: Lecture 8 February 21, 2017 42 / 59



Stopping times

Theorem

Let X1, X, ... be i.id., Z, = 0(X1,...,X,) and let N be a stopping time
with Prob(N < «) > 0. Conditional on {N < oo}, {Xnin,n =1} is
independent of .7y and has the same distribution as the original sequence.
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Stopping times

Proof.
o It suffices to show that if Ae Zy and Bj € & for 1 < j < k, then

Prob(A, N < o0, X4 € B, 1 < j < k)
k

= Prob(An {N < o0}) HH(BJ')-
j=1

@ For each fixed n
Prob(A, N = n,XN+j € Bj, 1<) < k)

k

= Prob(A n {N = n}) HN(BJ')'

since An {N = n} € .%,. This suffices.
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Shift

Definition
Let Q = RN and define the shift : Q — Q by

(Ow)(n) = w(n+1), n=12 ...
Define, iteratively, * = @ and, for k > 1, 6 = o #¥~1. If N is a stopping

time, define
0"w {N = n}
N _
07w = { A {N=ow)

where A is an extra point added to 2.
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Stopping times

Example
The stopping time

T(w) =inf{n>0:w; + - +w, =0}

is the time of the first return to 0. Set 7(A) = 0. Define 71 = 7 and, for
n>1,
Tn(w) = Th—1(w) + 7(07(w)).

This records the time of the nth return to 0.
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Stopping times

In general, the iterates of a stopping time T are defined by Tg = 0 and
Tn(w) = Tn—l(w) + T(eTnflw), n=1.

One can check by induction that Prob(T, < o0) = Prob(T < «0)".
Let t, = T(071).

Theorem
Suppose Prob(T < o) = 1. The random vectors

Vn = (tn; XT,,,1+1a C) XTn)

are independent and identically distributed.

This follows since Vi, ..., V,—1 € F(Tp-1).
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Wald's equation

Theorem (Wald's equation)

Let X1, Xz, ... be i.i.d. with E[|X;|] < c0. If N is a stopping time with
E[N] < oo, then E[Sn] = E[X1] E[N].
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Wald's equation

Proof.

First suppose the X; >

E[Sn] = JSNdP ij,\,ndp ZZJXan)dP

By Fubini

0 o -
- Z Z JXml(N—n)dP = 2 J‘Xml(/\/gm)dP.
= m=1

m=1n

Since {N = m} = {N < m— 1}€ € .Z,,_1 it is independent of X, the last

expression is

iE ] Prob(N > m) = E[X] E[N].

m=

0.

n=1m=1

m

1

Ol
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Wald's equation

Proof.

To handle the general case, use

0 > 2 E[|Xm|] Prob(N i i J|Xm|1(,\,_,,)dP,

m=1 m=1n=m

which justifies the application of Fubini. O
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Wald's equation

Example
o Let Xi,Xa, ... be i.i.d. with Prob(X; = 1) = Prob(X; = —1) = 3.
@ Let a <0 < b be integers and let N = inf{n: S, ¢ (a,b)}.

o Observe that if x € (a, b), Prob(x + Sp_, ¢ (a, b)) = 2=(>=2) since
b — a steps right land outside the interval. Hence

Prob(N > n(b — a)) < (1 - 2*“’*‘?))" ~  E[N] <.

@ By the previous theorem, E[Sy] = 0, so
bProb(Sy = b) + aProb(Sy = a) = 0 and

Prob(Sy = b) = Py Prob(Sy = a) = e
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Wald's second equation

Theorem

Let X1, Xy, ... be i.i.d. with E[X,] =0 and E[X?] = 0% < o0. If T is a
stopping time with E[T| < co, then E[S%] = o2 E[T].
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Wald's second equation

Proof.
Since E[X,] = 0 and X, is independent of S,_1 and 1(7>,) € Fp_1,
S%—/\n = 5%/\(”71) + (2Xn5n_1 + Xr?)l(TZn)
E[Sgl'/\n] = E[S'zl'/\(nfl)] + o? PI’Ob(T > n)_

Thus
E[S2,,] = o2 2 Prob(T = m)
m=1
E[(STan— STam)?] = 02 Prob(T > k).

k=m+1

This shows that St ., is a Cauchy sequence in L?, so the equality is
obtained by letting n — 0.
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Small deviations

Theorem
Let X1, Xa, ... be i.i.d. with E[X,] = 0 and E[X2] = 1, and let
Tc=inf{n>1:|S,| > cn%}.
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Small deviations

Proof.

o If E[T.] < oo then E[T.] = E[S%.] > c®E[T,], a contradiction if
c= 1

@ Now suppose ¢ < 1 and let 7 = T, A n and observe
S2 | < c%(r —1), so by Cauchy-Schwarz

E[r] = E[S?] = E[S?_; + 2E[S,_ 1XT] + E[X?]
< A E[7] + 2¢ (E[r ]E[Xz]) + E[X?].

@ The proof is completed by the following lemma.
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Small deviations

Lemma
If T is a stopping time with E[T]| = oo, then

E[X7 n)/ELT A n] -0

as n — 0. )

This suffices to show E[T,] < oo, since otherwise, with 0 < ¢ < 1 — ¢? and
n large one obtains E[7] < (c? + €) E[7].
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Small deviations

Proof.
o Write

E[X%An] = E[X%/\nl(x%/\n < €(T AN n))]
+ Z E[XJ-21(T AN =j,Xj2 > €f)].
j=1
@ Bound the first term by < €E[T A n].

@ To bound the second, choose N > 1 so that for n > N,

n

Z X21 2 > ¢j)] < ne,

which is possible since E[ij] < 0.
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Small deviations

Proof.
@ Bound
N
DTEXPL(T A n XP > ¢f)] < NE[XP],
j=1
and

j
j=N
= Y Prob(T A n=j)E[X?1(X}? > €j)]
j=N
n a0
= > Y Prob(T A n = k)E[X?1(X? > €j)]
Jj=Nk=j

Ol

v
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Small deviations

Proof.
@ Bound the last sum by
0 k
< Y D Prob(T A n=k)E[X?1(X? > ¢)]
k=N j=1
06}

eZkProb T An=k)<eE(T A n).
k=N

@ We've checked
E[X%,,] <2¢E[T A n] + NE[X?].

Since E[T A n] — 0, the conclusion follows.

Bob Hough Math 639: Lecture 8 February 21, 2017 59 / 59



