Math 639: Lecture 8

Limit laws, introduction to random walk

Bob Hough

February 21, 2017

Bob Hough

Math 639: Lecture 8

February 21, 2017 1 / 59

< 67 ▶

Theorem

Let $X_{n,m}$, $1 \le m \le n$ be independent nonnegative integer valued random variables with $\operatorname{Prob}(X_{n,m} = 1) = p_{n,m}$, $\operatorname{Prob}(X_{n,m} \ge 2) = \epsilon_{n,m}$.

$$\sum_{m=1}^{n} p_{n,m} \to \lambda \in (0,\infty)$$

$$\max_{1 \le m \le n} p_{m,n} \to 0$$

$$\sum_{m=1}^{n} \epsilon_{n,m} \to 0$$

If $S_n = X_{n,1} + \dots + X_{n,n}$ then $S_n \Rightarrow Z$ where Z is Poisson(λ).

Proof.

• Set $X'_{n,m} = 1$ if $X_{n,m} = 1$ and 0 otherwise.

• Let
$$S'_n = X'_{n,1} + \cdots + X'_{n,n}$$

• The conditions imply $S'_n \Rightarrow Z$, and $\operatorname{Prob}(S_n \neq S'_n) \rightarrow 0$.

Theorem

Let N(s,t) be the number of arrivals at a bank in time interval (s,t]. Suppose

- Intervals of arrivals in disjoint intervals are independent
- 2 The distribution of N(s, t) only depends on t s

•
$$\mathsf{Prob}(N(0,h) = 1) = \lambda h + o(h)$$

•
$$Prob(N(0, h) \ge 2) = o(h).$$

Then N(0, t) has a Poisson distribution with mean λt .

- 4 同 6 4 日 6 4 日 6

Let
$$X_{n,m} = N\left(\frac{(m-1)t}{n}, \frac{mt}{n}\right)$$
 for $1 \le m \le n$ and apply the previous theorem.

Definition

A family of random variables N_t , $t \ge 0$ satisfying

• If $0 = t_0 < t_1 < \cdots < t_n$, $N(t_k) - N(t_{k-1})$, $1 \le k \le n$ are independent

2
$$N(t) - N(s)$$
 is Poisson $(\lambda(t - s))$.

is called a *Poisson process with rate* λ .

R	oh	Ho	urch
Ъ	υD	110	ugn

3

- 4 同 6 4 日 6 4 日 6

Theorem

Let $\xi_1, \xi_2, ...$ be independent random variables with $\operatorname{Prob}(\xi_i > t) = e^{-\lambda t}$ for $t \ge 0$. Let $T_n = \xi_1 + \cdots + \xi_n$ with $T_0 = 0$ and $N_t = \sup\{n : T_n \le t\}$. Then N_t is a Poisson process of parameter λ .

(日) (周) (三) (三)

Poisson processes

Proof.

- One may check that T_n has density $f_n(s) = \frac{\lambda^n s^{n-1}}{(n-1)!} e^{-\lambda s}$.
- Now check by induction that

$$\begin{aligned} \operatorname{Prob}(N_t = 0) &= \operatorname{Prob}(T_1 > t) = e^{-\lambda t}, \\ \operatorname{Prob}(N_t = n) &= \operatorname{Prob}(T_n \leqslant t < T_{n+1}) \\ &= \int_0^t \operatorname{Prob}(T_n = s) \operatorname{Prob}(\xi_{n+1} > t - s) ds \\ &= \int_0^t \frac{\lambda^n s^{n-1}}{(n-1)!} e^{-\lambda s} e^{-\lambda(t-s)} ds = e^{-\lambda t} \frac{(\lambda t)^n}{n!}. \end{aligned}$$

Thus N_t has a Poisson distribution with mean λt .

D -			A 10 10 10 10 10
80	n I	ĦΟ	llσn
00			ugn
			-0

3

Image: A match a ma

Poisson processes

Proof.

• Observe

$$\operatorname{Prob}(T_{n+1} \ge u | N_t = n) = \frac{\operatorname{Prob}(T_{n+1} \ge u, T_n \le t)}{\operatorname{Prob}(N_t = n)}$$

• Calculate

$$\operatorname{Prob}(T_{n+1} \ge u, T_n \le t) = \int_0^t f_n(s) \operatorname{Prob}(\xi_{n+1} \ge u - s) ds$$
$$= \int_0^t \frac{\lambda^n s^{n-1}}{(n-1)!} e^{-\lambda s} e^{-\lambda(u-s)} ds = e^{-\lambda u} \frac{(\lambda t)^n}{n!}.$$

Since
$$\operatorname{Prob}(N_t = n) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$
,
 $\operatorname{Prob}(T_{n+1} \ge u | N_t = n) = \frac{e^{-\lambda u}}{e^{-\lambda t}} = e^{-\lambda(u-t)}$.

Proof.

- Let $T'_1 = T_{N(t)+1} t$ and $T'_k = T_{N(t)+k} T_{N(t)+k-1}$ for $k \ge 2$. Then T'_1, T'_2, \dots are i.i.d. and independent of N_t . Hence the arrivals after time t are independent of N_t and have the same distribution as the original sequence.
- Hence if $0 = t_0 < t_1 < \cdots < t_n$ then $N(t_i) N(t_{i-1})$, i = 1, 2, ..., n are independent.

- 4 同 6 4 日 6 4 日 6

Definition

A function L is said to be *slowly varying* if

$$\lim_{x\to\infty}\frac{L(tx)}{L(x)}=1,\qquad\text{for all }t>0.$$

One may check that $L(t) = \log t$ is slowly varying, but $L(t) = t^{\epsilon}$ is not for any $\epsilon \neq 0$.

- 31

(日) (周) (三) (三)

Stable laws

Theorem

Suppose X_1, X_2, \dots are i.i.d. with a distribution that satisfies If $\lim_{x\to\infty} \frac{\operatorname{Prob}(X_1>x)}{\operatorname{Prob}(|X_1|>x)} = \theta \in [0,1].$ 2 $Prob(|X_1| > x) = x^{-\alpha}L(x)$ where $0 < \alpha < 2$ and L is slowly varying. Let $S_n = X_1 + \cdots + X_n$. $a_n = \inf\{x : \operatorname{Prob}(|X_1| > x) \leq n^{-1}\}, \quad b_n = n \operatorname{E}[X_1 \mathbf{1}(|X_1| \leq a_n)].$ As $n \to \infty$, $\frac{S_n - b_n}{2} \Rightarrow Y$ where Y has a nondegenerate distribution. For a proof, see Durrett pp. 161-162.

Definition

A random variable Y is said to have a *stable law* if for every integer k > 0 there are constants a_k and b_k so that if $Y_1, ..., Y_k$ are i.i.d. and have the same distribution as Y, then $(Y_1 + \cdots + Y_k - b_k)/a_k =_d Y$.

イロト 不得下 イヨト イヨト 二日

Theorem

Y is the limit of $(X_1 + \cdots + X_k - b_k)/a_k$ for some *i.i.d.* sequence X_i if and only if *Y* has a stable law.

R	~	•	н	0		~	h
	U.	<u>ر</u>			ч,	в	

3

(日) (周) (三) (三)

Stable laws

Proof.

- If Y has a stable law, we can take X_1, X_2, \dots i.i.d. with distribution Y.
- Let $Z_n = \frac{1}{a_n}(X_1 + \dots + X_n b_n)$ and $S_n^j = X_{(j-1)n+1} + \dots + X_{jn}$.

Thus

$$Z_{nk} = (S_n^1 + \dots + S_n^k - b_{nk})/a_{nk}$$

$$a_{nk}Z_{nk} = (S_n^1 - b_n) + \dots + (S_n^k - b_n) + (kb_n - b_{nk})$$

$$a_{nk}Z_{nk}/a_n = (S_n^1 - b_n)/a_n + \dots + (S_n^k - b_n)/a_n + (kb_n - b_{nk})/a_n.$$

• Let $n \to \infty$. The first k terms on the right tend to $Y_1, ..., Y_k$ which are independent copies of Y, and $Z_{nk} \Rightarrow Y$, thus the result follows.

- 3

イロト 不得下 イヨト イヨト

Definition

A probability distribution μ is *infinitely divisible* if, for each $n \ge 1$, there is probability distribution μ_n such that $\mu = \mu_n^{*n}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Measures of compound Poisson type

A large family of infinitely divisible measures is given as follows.

Definition

Let μ be a probability measure with characteristic function $\psi(t)$, and let $\lambda \ge 0$ be a parameter. Define μ^{*0} to be the point mass at 0. The probability measure of *compound Poisson type* with parameters μ and λ is the probability measure

$$P(\mu, \lambda) = e^{-\lambda} \sum_{n \ge 0} \frac{\lambda^n \mu^{*n}}{n!}.$$

It has characteristic function $\chi(t) = \mathsf{E}_{P(\mu,\lambda)}[e^{it}] = e^{\lambda(\phi(t)-1)}$.

_ D = 1	_		and the second sec
00		= (0)	
			<u> </u>

The following discussion is taken from Feller, vol 2.

Definition

A measure μ is *canonical* if the integrals

$$M^+(x) = \int_{x^-}^{\infty} \frac{d\mu(y)}{y^2}, \qquad M^-(-x) = \int_{-\infty}^{-x^+} \frac{d\mu(y)}{y^2}$$

converge for all x > 0.

A sequence of measures $c_n x^2 d\mu_n(x)$ converge properly to $d\mu(x)$ if it converges to $d\mu(x)$ in distribution, and if, for all $\epsilon > 0$, there exists $\tau > 0$ such that for $x > \tau$,

$$\limsup_{n} c_n \left[1 - \int_{-x}^{x} d\mu_n(x) \right] < \epsilon.$$

- 4 同 6 4 日 6 4 日 6

Lemma

If $c_n x^2 d\mu_n(x) \rightarrow d\mu(x)$ properly, then

$$c_n \int_{-\infty}^{\infty} z(x) d\mu_n(x) \to \int_{-\infty}^{\infty} x^{-2} z(x) d\mu(x).$$

for every bounded continuous function z such that $x^{-2}z(x)$ is continuous at the origin.

Lemma

Consider a sequence of probability measures μ_n , with characteristic functions ϕ_n , and define, for some sequence of constants $\{c_n\}, \{\beta_n\}, \{\beta$

$$\psi_n(z) = c_n[\phi_n(z) - 1 - i\beta_n z].$$

Suppose that $\psi_n(z) \rightarrow \rho(z)$ uniformly in $|z| \leq z_0$. Then for $0 < h \leq z_0$,

$$c_n \int_{-\infty}^{\infty} \left(1 - \frac{\sin xh}{xh}\right) d\mu_n(x) \to -\frac{1}{2h} \int_{-h}^{h} \rho(z) dz.$$

- 4 同 6 4 日 6 4 日 6

Proof.

Define $b_n = \int_{-\infty}^{\infty} \sin x d\mu_n(x)$ and write

$$\psi_n(z) = \int_{-\infty}^{\infty} c_n [e^{izx} - 1 - iz\sin x] d\mu_n(x) + ic_n(b_n - \beta_n) z.$$

Divide by -2h and integrate in $|z| \leq h$ to obtain the claim.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Lemma

Under the conditions of the previous lemma, there exists a canonical measure μ and a sequence $n_1, n_2, ... \to \infty$ such that $c_{n_k} x^2 d\mu_{n_k}(x) \to d\mu(x)$ properly.

イロト イポト イヨト イヨト 二日

Proof.

- Put $d\nu_n(x) = c_n x^2 d\mu_n(x)$.
- Since $\left(1 \frac{\sin xh}{xh}\right) \sim \frac{1}{6}x^2h^2$ for x small, and is positive in any case, it follows that $\nu_n(I) < \infty$ for all finite intervals *I*.
- By Helly's selection theorem, there is a subsequence {ν_{n_k}} converging in distribution to a measure ν.
- To prove the tightness, note that $\rho(0) = 0$. By choosing *h* sufficiently small, $-\frac{1}{2h}\int_{-h}^{h}\rho(z)dz$ may be made arbitrarily small. Since the integrand on the left is $\geq \frac{1}{2}$ for $|xh| \geq 2$ and is non-negative otherwise, the result follows.

- 3

イロト 不得下 イヨト イヨト

Lemma

For any canonical measure μ the integral defined by

$$\psi(z) = \int_{-\infty}^{\infty} \frac{e^{izx} - 1 - iz\sin x}{x^2} d\mu(x)$$

defines a continuous function, and to distinct canonical measures there correspond distinct functions.

Ro	ЬΙ	н,	2	n or	h
50	יט		Ju	ıв	

Proof.

- The integral converges by the property of a canonical measure.
- The continuity is immediate.
- Write, for h > 0,

$$\psi(z) - \frac{\psi(z+h) + \psi(z-h)}{2} = \int_{-\infty}^{\infty} e^{izx} \frac{1 - \cos xh}{x^2} d\mu(x).$$

This is the characteristic function of the bounded measure $dA_h(x) = \frac{1-\cos xh}{x^2} d\mu(x)$, and hence determines μ except for possible atoms where $\cos xh = 1$, $x \neq 0$.

• By varying h, μ is determined.

Theorem

Let $\{\mu_n\}$ be a sequence of probability measures, with characteristic functions $\{\phi_n\}$, and let $\{c_n\}$, $\{\beta_n\}$ be sequences of real numbers. Set $b_n = \int_{-\infty}^{\infty} \sin x d\mu_n(x)$. A continuous limit

$$\psi_n(z) = c_n[\phi_n(z) - 1 - i\beta_n z] \to \rho(z)$$

exists if and only if there exists a canonical measure $\boldsymbol{\mu}$ and a number \boldsymbol{b} such that

$$c_n x^2 d\mu_n(x) \to d\mu(x)$$

properly and $c_n(b_n - \beta_n) \rightarrow b$. In this case

$$\rho(z) = \psi(z) + ibz$$

where $\psi(z) = \int_{-\infty}^{\infty} \frac{e^{izx} - 1 - iz \sin x}{x^2} d\mu(x)$. This uniquely determines μ .

イロト 不得下 イヨト イヨト

Proof.

- The claim in the forward direction holds since $z(x) = e^{i\zeta x} 1 i\zeta \sin x$ is bounded as a function of x, and satisfies $\frac{z(x)}{x^2}$ is continuous at the origin.
- For the reverse direction, let $\psi_n(z) \to \rho(z)$ for all z, with ρ continuous.
- $e^{\psi_n(z)}$ is a characteristic function, and it converges uniformly to $e^{\rho(z)}$ in finite intervals.
- By the uniform convergence, there exists a canonical measure μ and a subsequence $\{n_1, n_2, ...\}$ such that $c_{n_k} x^2 d\mu_{n_k}(x) \rightarrow d\mu(x)$ properly.
- The proper convergence guarantees

$$\psi_{n_k}(z) = \int_{-\infty}^{\infty} \left[e^{izx} - 1 - iz\sin x \right] c_{n_k} d\mu_{n_k}(x) \to \psi(z).$$

Proof.

- Thus $\rho(z) = \psi(z) + ibz$.
- Since $\psi(1)$ is real, $b = \Im \rho(1)$.
- It follows that ψ and b are uniquely determined independent of the sequence {n_k}. This proves the required convergence.

R.	h	. н	10		۳h
	υL	· ·	10	ч	вu

Lemma

Let $\{\phi_n\}$ be a sequence of characteristic functions. If the limit on the right is continuous, the relations

$$\phi_n^n(z) \to \omega(z), \qquad n[\phi_n(z) - 1] \to \rho(z)$$

are equivalent, and if either holds, $\omega(z) = e^{\rho(z)}$.

Ro	ЬI	-1-	110	h
50	יט	10	ug	

Proof.

- First assume $n[\phi_n(z) 1] \rightarrow \rho(z)$. Thus $\phi_n(z) \rightarrow 1$ and the convergence is uniform in fixed intervals $|z| < z_0$.
- For *n* sufficiently large, $\log \phi_n(z)$ is well defined, and by Taylor expansion,

$$\log \phi_n^n(z) = n \log \phi_n(z) \to \rho(z),$$

so $\omega(z) = e^{\rho(z)}$.

D	~	h	ш	~	~	h
ப	υ	υ		υu	12	
					•	

イロト 不得下 イヨト イヨト

Proof.

- Now suppose $\phi_n^n(z) \to \omega(z)$. Then $\omega(0) = 1$, so $\omega(z) \neq 0$ for $|z| \leq z_0$.
- Since the convergence is uniform, $\phi_n(z) \neq 0$ for $|z| < z_0$ for all n sufficiently large, and thus $\log \phi_n(z)$ is well defined in $|z| < z_0$. It follows that $\rho(z) = \log \omega(z)$ for $|z| < z_0$.
- After passing to a subsequence, we can find ho such that for all z

$$n_k[\phi_{n_k}(z)-1] \rightarrow \rho(z).$$

This implies $\phi_{n_k}^{n_k}(z) \to e^{\rho(z)}$, so $\rho = \log \omega$. But the limit now holds for the full sequence.

(日) (周) (三) (三)

Theorem

For ω to be an infinitely divisible characteristic function it is necessary and sufficient that there exist a canonical measure μ and a real number b such that $\omega = e^{\rho}$ with

$$\rho(z) = \psi(z) + ibz$$

$$\psi(z) = \int_{-\infty}^{\infty} \frac{e^{izx} - 1 - iz\sin x}{x^2} d\mu(x).$$

D -				
во	D	HΟ	Πø	'n

Proof.

- First suppose ω is infinitely divisible with $\omega_n^n = \omega$. Then $n[\omega_n(z) 1] \rightarrow \rho(z)$, which is the special case $c_n = n$, $\beta_n = 0$ of the previous theorem. The existence of canonical measure μ with ψ and b as defined there follows.
- Now suppose that $\omega = e^{\rho}$ is of the described form. First, suppose that the canonical measure μ is concentrated on $|x| > \delta$. Let

$$d\mu(x) = cx^2 d\nu(x).$$

where ν is a probability distribution with characteristic function γ .

We have e^{c(γ(z)-1)} is the characteristic function of a distribution of compound Poisson type, and hence is infinitely divisible. It differs from e^ρ by the centering factor e^{iβz}, so that e^ρ is infinitely divisible.

Proof.

- Now set, for $\delta > 0$, μ_{δ} the measure $\mu \mathbf{1}(|x| \ge \delta)$ and let $\psi_{\delta}(z)$ be the corresponding integral.
- Let $\sigma^2 \ge 0$ be the mass assigned by μ to 0. Hence, as $\delta \to 0$,

$$-\frac{1}{2}\sigma^2 z^2 + \psi_{\delta}(z) \to \psi(z).$$

• The left hand side is the logarithm of a characteristic function, hence so is the right. Since $\frac{\psi}{n}$ is obtained by replacing μ with $\frac{\mu}{n}$, the claim follows on setting $\omega_n = e^{\frac{\psi}{n}}$, $\omega = e^{\psi}$.

Random walk

Definition

Let $X_1, X_2, ...$ be i.i.d. taking values in \mathbb{R}^d , and let $S_n = X_1 + \cdots + X_n$. S_n is a random walk.

In studying random walk we work on the product probability space $(\Omega,\mathscr{F},\mathsf{Prob})$ from Kolmogorov's extension theorem,

$$\Omega = \{(\omega_1, \omega_2, ...) : \omega_i \in \mathbb{R}^d\}$$

$$\mathscr{F} = \mathscr{B} \times \mathscr{B} \times ...$$

Prob = $\mu \times \mu \times ..., \qquad \mu$ is the distribution of X_i
 $X_n(\omega) = \omega_n.$

Bob Hough

Definition

A finite permutation of $\mathbb{N} = \{1, 2, ...\}$ is a map π from \mathbb{N} to \mathbb{N} so that $\pi(i) \neq i$ for only finitely many *i*. An event *A* is permutable if $\pi^{-1}A = \{\omega : \pi\omega \in A\} = A$ for all finite permutations π . The collection of permutable events is a σ -field, called the *exchangeable* σ -field, \mathscr{E} .

The tail σ -algebra is contained in $\mathscr E$, as are the events

- $\{\omega: S_n(\omega) \in B \text{ i.o.}\}.$
- $\{\omega : \limsup_{n \to \infty} S_n(\omega) / c_n \ge 1\}.$

Theorem (Hewitt-Savage 0-1 Law) If $X_1, X_2, ...$ are *i.i.d.* and $A \in \mathscr{E}$ then $\operatorname{Prob}(A) \in \{0, 1\}$.

D				
RO	h I	=,	$\cap \Pi$	σh
00			υu	8.

- 3

・ロン ・四 ・ ・ ヨン ・ ヨン

Hewitt-Savage 0-1 Law

- Let $A \in \mathscr{E}$
- Let $A_n \in \sigma(X_1, ..., X_n)$ so that $\operatorname{Prob}(A_n \Delta A) \to 0$ as $n \to \infty$. Here $A\Delta B = (A B) \cup (B A)$ is the symmetric difference.
- Define $\pi = \pi_n$ by $\pi(j) = n + j$ if $j \le n$, $\pi(j) = j n$ if $n + 1 \le j \le 2n$ and $\pi(j) = j$ otherwise. Note π^2 is the identity.
- Write $A_n = B_n \times \mathbb{R}^{\mathbb{N}}$ where $B_n \subset \mathbb{R}^n$. We have

$$\mathsf{Prob}(A_n \Delta A) = \mathsf{Prob}(\omega : \pi \omega \in A_n \Delta A)$$

and

$$\{\omega:\pi\omega\in A_n\}=\{\omega:(\omega_{n+1},...,\omega_{2n})\in B_n\}$$

Write A'_n for this event.

- 3

イロト 不得下 イヨト イヨト

Hewitt-Savage 0-1 Law

• Use
$$\operatorname{Prob}(A_n \Delta A) = \operatorname{Prob}(A'_n \Delta A)$$
, so
 $\operatorname{Prob}(A_n \Delta A'_n) \leq \operatorname{Prob}(A_n \Delta A) + \operatorname{Prob}(A'_n \Delta A) \to 0.$

• The implies

$$0 \leq \operatorname{Prob}(A_n) - \operatorname{Prob}(A_n \cap A'_n) \\ \leq \operatorname{Prob}(A_n \cup A'_n) - \operatorname{Prob}(A_n \cap A'_n) = \operatorname{Prob}(A_n \Delta A'_n) \to 0,$$

so
$$\operatorname{Prob}(A_n \cap A'_n) \to \operatorname{Prob}(A)$$
.

• By independence

$$\operatorname{Prob}(A_n \cap A'_n) = \operatorname{Prob}(A_n) \operatorname{Prob}(A'_n) \to \operatorname{Prob}(A)^2.$$

This shows $\operatorname{Prob}(A) = \operatorname{Prob}(A)^2$ so $\operatorname{Prob}(A) \in \{0, 1\}$.

Theorem

For a random walk on \mathbb{R} , there are only four possibilities, of which one has probability 1:

- $S_n = 0$ for all n
- $\lim_{n\to\infty} S_n = \infty$
- $\lim_{n\to\infty} S_n = -\infty$
- $-\infty = \liminf S_n < \limsup S_n = \infty$.

3

< 4 ₽ × <

Proof.

- The Hewitt-Savage 0-1 Law implies that $\limsup S_n$ is a constant $c \in [-\infty, \infty]$.
- Let $S'_n = S_{n+1} X_1$, which has the same distribution. Thus $c = c X_1$, so that if c is finite, then $X_1 = 0$.
- The remaining cases are obvious.

Definition

Let $\mathscr{F}_n = \sigma(X_1, ..., X_n)$. A random variable N taking values in $\{1, 2, ...\} \cup \{\infty\}$ is said to be a *stopping time* or an *optional random* variable if for every $n < \infty$, $\{N = n\} \in \mathscr{F}_n$. The σ -algebra generated by stopping time N is

$$\mathscr{F}_{N} = \{A \in \sigma(X_{1}, X_{2}, ...) : \forall n, A \cap \{N = n\} \in \mathscr{F}_{n}\}.$$

Given a set A, the hitting time of A is $N = \inf\{n : S_n \in A\}$. This is a stopping time.

Theorem

Let $X_1, X_2, ...$ be i.i.d., $\mathscr{F}_n = \sigma(X_1, ..., X_n)$ and let N be a stopping time with $\operatorname{Prob}(N < \infty) > 0$. Conditional on $\{N < \infty\}$, $\{X_{N+n}, n \ge 1\}$ is independent of \mathscr{F}_N and has the same distribution as the original sequence.

イロト 不得下 イヨト イヨト 二日

Stopping times

Proof.

• It suffices to show that if $A \in \mathscr{F}_N$ and $B_j \in \mathscr{B}$ for $1 \leq j \leq k$, then

$$Prob(A, N < \infty, X_{N+j} \in B_j, 1 \le j \le k)$$
$$= Prob(A \cap \{N < \infty\}) \prod_{j=1}^k \mu(B_j).$$

• For each fixed n

$$Prob(A, N = n, X_{N+j} \in B_j, 1 \le j \le k$$
$$= Prob(A \cap \{N = n\}) \prod_{j=1}^k \mu(B_j).$$

since $A \cap \{N = n\} \in \mathscr{F}_n$. This suffices.

Definition

Let $\Omega = \mathbb{R}^{\mathbb{N}}$, and define the shift $\theta : \Omega \to \Omega$ by

$$(\theta\omega)(n) = \omega(n+1), \qquad n = 1, 2, \dots$$

Define, iteratively, $\theta^1 = \theta$ and, for k > 1, $\theta^k = \theta \circ \theta^{k-1}$. If N is a stopping time, define

$$\theta^{N}\omega = \begin{cases} \theta^{n}\omega & \{N=n\}\\ \Delta & \{N=\infty\} \end{cases}$$

where Δ is an extra point added to Ω .

Ro	h I	H.	~	a	h
50			υu	g	

- 31

イロト イポト イヨト イヨト

Example

The stopping time

$$\tau(\omega) = \inf\{n > 0 : \omega_1 + \dots + \omega_n = 0\}$$

is the time of the first return to 0. Set $\tau(\Delta) = \infty$. Define $\tau_1 = \tau$ and, for n > 1,

$$\tau_n(\omega) = \tau_{n-1}(\omega) + \tau(\theta^{\tau_{n-1}}(\omega)).$$

This records the time of the *n*th return to 0.

3

(日) (周) (三) (三)

Stopping times

In general, the iterates of a stopping time T are defined by $T_0 = 0$ and

$$T_n(\omega) = T_{n-1}(\omega) + T(\theta^{T_{n-1}}\omega), \qquad n \ge 1.$$

One can check by induction that $\operatorname{Prob}(T_n < \infty) = \operatorname{Prob}(T < \infty)^n$. Let $t_n = T(\theta^{T_{n-1}})$.

Theorem

Suppose $\mathsf{Prob}(\mathit{T} < \infty) = 1.$ The random vectors

$$V_n = (t_n, X_{T_{n-1}+1}, ..., X_{T_n})$$

are independent and identically distributed.

This follows since $V_1, ..., V_{n-1} \in \mathscr{F}(T_{n-1})$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem (Wald's equation)

Let $X_1, X_2, ...$ be i.i.d. with $E[|X_i|] < \infty$. If N is a stopping time with $E[N] < \infty$, then $E[S_N] = E[X_1] E[N]$.

Bob Hough

Math 639: Lecture 8

February 21, 2017 48 / 59

イロト 不得下 イヨト イヨト 二日

Wald's equation

Proof.

First suppose the $X_i \ge 0$.

$$\mathsf{E}[S_N] = \int S_N dP = \sum_{n=1}^{\infty} \int S_n \mathbf{1}_{(N=n)} dP = \sum_{n=1}^{\infty} \sum_{m=1}^n \int X_m \mathbf{1}_{(N=n)} dP.$$

By Fubini

$$=\sum_{m=1}^{\infty}\sum_{n=m}^{\infty}\int X_m\mathbf{1}_{(N=n)}dP=\sum_{m=1}^{\infty}\int X_m\mathbf{1}_{(N\geq m)}dP.$$

Since $\{N \ge m\} = \{N \le m-1\}^c \in \mathscr{F}_{m-1}$ it is independent of X_m , the last expression is

$$\sum_{m=1}^{\infty} \mathsf{E}[X_m] \operatorname{Prob}(N \ge m) = \mathsf{E}[X_1] \mathsf{E}[N].$$

Proof.

To handle the general case, use

$$\infty > \sum_{m=1}^{\infty} \mathsf{E}[|X_m|] \operatorname{Prob}(N \ge m) = \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} \int |X_m| \mathbf{1}_{(N=n)} dP,$$

which justifies the application of Fubini.

Ro	ЬΙ	Ho		rh.
50	יט	10	սչ	511

< + **-□** < - < <

Wald's equation

Example

- Let $X_1, X_2, ...$ be i.i.d. with $Prob(X_i = 1) = Prob(X_i = -1) = \frac{1}{2}$.
- Let a < 0 < b be integers and let $N = \inf\{n : S_n \notin (a, b)\}$.
- Observe that if x ∈ (a, b), Prob(x + S_{b-a} ∉ (a, b)) ≥ 2^{-(b-a)}, since b a steps right land outside the interval. Hence

$$\operatorname{Prob}(N > n(b-a)) \leq (1-2^{-(b-a)})^n \qquad \Rightarrow \qquad \operatorname{E}[N] < \infty.$$

• By the previous theorem, $E[S_N] = 0$, so $b \operatorname{Prob}(S_N = b) + a \operatorname{Prob}(S_N = a) = 0$ and

$$\operatorname{Prob}(S_N = b) = \frac{-a}{b-a}, \quad \operatorname{Prob}(S_N = a) = \frac{b}{b-a}$$

イロト イポト イヨト イヨト 二日

Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_n] = 0$ and $E[X_n^2] = \sigma^2 < \infty$. If T is a stopping time with $E[T] < \infty$, then $E[S_T^2] = \sigma^2 E[T]$.

Bob Hough

- 3

イロト 不得下 イヨト イヨト

Wald's second equation

Proof.

Since $E[X_n] = 0$ and X_n is independent of S_{n-1} and $\mathbf{1}_{(T \ge n)} \in \mathscr{F}_{n-1}$,

$$S_{T \wedge n}^2 = S_{T \wedge (n-1)}^2 + (2X_n S_{n-1} + X_n^2) \mathbf{1}_{(T \ge n)}$$
$$\mathsf{E}[S_{T \wedge n}^2] = \mathsf{E}[S_{T \wedge (n-1)}^2] + \sigma^2 \operatorname{Prob}(T \ge n).$$

Thus

$$\mathsf{E}[S_{T \wedge n}^2] = \sigma^2 \sum_{m=1}^n \mathsf{Prob}(T \ge m)$$
$$\mathsf{E}[(S_{T \wedge n} - S_{T \wedge m})^2] = \sigma^2 \sum_{k=m+1}^n \mathsf{Prob}(T \ge k).$$

This shows that $S_{T \wedge n}$ is a Cauchy sequence in L^2 , so the equality is obtained by letting $n \to \infty$.

Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_n] = 0$ and $E[X_n^2] = 1$, and let $T_c = \inf\{n \ge 1 : |S_n| > cn^{\frac{1}{2}}\}.$

$$\mathsf{E}[\mathcal{T}_c] \left\{ egin{array}{cc} < \infty & c < 1 \ = \infty & c \geqslant 1 \end{array}
ight.$$

Ro	h	н	0.1	at	
50	0		υu	g,	1

- 3

Proof.

- If $E[T_c] < \infty$ then $E[T_c] = E[S_{T_c}^2] > c^2 E[T_c]$, a contradiction if $c \ge 1$.
- Now suppose c < 1 and let $\tau = T_c \wedge n$ and observe $S_{\tau-1}^2 \leqslant c^2(\tau-1)$, so by Cauchy-Schwarz

$$\begin{split} \mathsf{E}[\tau] &= \mathsf{E}[S_{\tau}^{2}] = \mathsf{E}[S_{\tau-1}^{2} + 2\,\mathsf{E}[S_{\tau-1}X_{\tau}] + \mathsf{E}[X_{\tau}^{2}] \\ &\leq c^{2}\,\mathsf{E}[\tau] + 2c\,\big(\mathsf{E}[\tau]\,\mathsf{E}[X_{\tau}^{2}]\big)^{\frac{1}{2}} + \mathsf{E}[X_{\tau}^{2}]. \end{split}$$

• The proof is completed by the following lemma.

Pa	ь L	l	~h
Ъυ	יט	iou	gп

Lemma

If T is a stopping time with $E[T] = \infty$, then

$$\mathsf{E}[X_{T \wedge n}^2]/\mathsf{E}[T \wedge n] \to 0$$

as $n \to \infty$.

This suffices to show $E[T_c] < \infty$, since otherwise, with $0 < \epsilon < 1 - c^2$ and n large one obtains $E[\tau] \leq (c^2 + \epsilon) E[\tau]$.

イロト 不得下 イヨト イヨト 二日

Proof.

• Write

$$\mathsf{E}[X_{T \wedge n}^2] = \mathsf{E}[X_{T \wedge n}^2 \mathbf{1}(X_{T \wedge n}^2 \leqslant \epsilon(T \wedge n))] + \sum_{j=1}^n \mathsf{E}[X_j^2 \mathbf{1}(T \wedge n = j, X_j^2 > \epsilon j)].$$

- Bound the first term by $\leq \epsilon \operatorname{E}[T \land n]$.
- To bound the second, choose $N \ge 1$ so that for $n \ge N$,

$$\sum_{j=1}^{n} \mathsf{E}[X_j^2 \mathbf{1}(X_j^2 > \epsilon j)] < n\epsilon,$$

which is possible since $E[X_j^2] < \infty$.

Proof.

Bound

$$\sum_{j=1}^{N} \mathsf{E}[X_j^2 \mathbf{1}(T \land n, X_j^2 > \epsilon j)] \leqslant N \, \mathsf{E}[X_1^2],$$

 $\quad \text{and} \quad$

$$\sum_{j=N}^{n} \mathbb{E}[X_j^2 \mathbf{1}(T \land n, X_j^2 > \epsilon j)] \leq \sum_{j=N}^{n} \mathbb{E}[X_j^2 \mathbf{1}(T \land n \ge j, X_j^2 > \epsilon j)]$$
$$= \sum_{j=N}^{n} \operatorname{Prob}(T \land n \ge j) \mathbb{E}[X_j^2 \mathbf{1}(X_j^2 > \epsilon j)]$$
$$= \sum_{j=N}^{n} \sum_{k=j}^{\infty} \operatorname{Prob}(T \land n = k) \mathbb{E}[X_j^2 \mathbf{1}(X_j^2 > \epsilon j)]$$

Proof.

Bound the last sum by

$$\leq \sum_{k=N}^{\infty} \sum_{j=1}^{k} \operatorname{Prob}(T \wedge n = k) \operatorname{E}[X_j^2 \mathbf{1}(X_j^2 > \epsilon j)]$$
$$\leq \epsilon \sum_{k=N}^{\infty} k \operatorname{Prob}(T \wedge n = k) \leq \epsilon \operatorname{E}(T \wedge n).$$

We've checked

$$\mathsf{E}[X_{T \wedge n}^2] \leqslant 2\epsilon \, \mathsf{E}[T \wedge n] + N \, \mathsf{E}[X_1^2].$$

Since $E[T \land n] \rightarrow \infty$, the conclusion follows.

3

<ロ> (日) (日) (日) (日) (日)