
Math 639: Lecture 8
Limit laws, introduction to random walk

Bob Hough

February 21, 2017

Bob Hough Math 639: Lecture 8 February 21, 2017 1 / 59



Poisson processes

Theorem

Let Xn,m, 1 ď m ď n be independent nonnegative integer valued random
variables with ProbpXn,m “ 1q “ pn,m, ProbpXn,m ě 2q “ εn,m.

1
řn

m“1 pn,m Ñ λ P p0,8q

2 max1ďmďn pm,n Ñ 0

3
řn

m“1 εn,m Ñ 0

If Sn “ Xn,1 ` ¨ ¨ ¨ ` Xn,n then Sn ñ Z where Z is Poissonpλq.
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Poisson processes

Proof.

Set X 1n,m “ 1 if Xn,m “ 1 and 0 otherwise.

Let S 1n “ X 1n,1 ` ¨ ¨ ¨ ` X 1n,n.

The conditions imply S 1n ñ Z , and ProbpSn ‰ S 1nq Ñ 0.
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Poisson processes

Theorem

Let Nps, tq be the number of arrivals at a bank in time interval ps, ts.
Suppose

1 The numbers of arrivals in disjoint intervals are independent

2 The distribution of Nps, tq only depends on t ´ s

3 ProbpNp0, hq “ 1q “ λh ` ophq

4 ProbpNp0, hq ě 2q “ ophq.

Then Np0, tq has a Poisson distribution with mean λt.
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Poisson processes

Proof.

Let Xn,m “ N
´

pm´1qt
n , mt

n

¯

for 1 ď m ď n and apply the previous

theorem.
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Poisson processes

Definition

A family of random variables Nt , t ě 0 satisfying

1 If 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn, Nptkq ´ Nptk´1q, 1 ď k ď n are
independent

2 Nptq ´ Npsq is Poissonpλpt ´ sqq.

is called a Poisson process with rate λ.
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Poisson processes

Theorem

Let ξ1, ξ2, ... be independent random variables with Probpξi ą tq “ e´λt

for t ě 0. Let Tn “ ξ1 ` ¨ ¨ ¨ ` ξn with T0 “ 0 and Nt “ suptn : Tn ď tu.
Then Nt is a Poisson process of parameter λ.
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Poisson processes

Proof.

One may check that Tn has density fnpsq “
λnsn´1

pn´1q! e
´λs .

Now check by induction that

ProbpNt “ 0q “ ProbpT1 ą tq “ e´λt ,

ProbpNt “ nq “ ProbpTn ď t ă Tn`1q

“

ż t

0
ProbpTn “ sqProbpξn`1 ą t ´ sqds

“

ż t

0

λnsn´1

pn ´ 1q!
e´λse´λpt´sqds “ e´λt

pλtqn

n!
.

Thus Nt has a Poisson distribution with mean λt.
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Poisson processes

Proof.

Observe

ProbpTn`1 ě u|Nt “ nq “
ProbpTn`1 ě u,Tn ď tq

ProbpNt “ nq
.

Calculate

ProbpTn`1 ě u,Tn ď tq “

ż t

0
fnpsqProbpξn`1 ě u ´ sqds

“

ż t

0

λnsn´1

pn ´ 1q!
e´λse´λpu´sqds “ e´λu

pλtqn

n!
.

Since ProbpNt “ nq “ e´λt pλtq
n

n! ,

ProbpTn`1 ě u|Nt “ nq “ e´λu

e´λt “ e´λpu´tq.
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Poisson processes

Proof.

Let T 11 “ TNptq`1 ´ t and T 1k “ TNptq`k ´ TNptq`k´1 for k ě 2.
Then T 11,T

1
2, ... are i.i.d. and independent of Nt . Hence the arrivals

after time t are independent of Nt and have the same distribution as
the original sequence.

Hence if 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn then Npti q ´ Npti´1q, i “ 1, 2, ..., n
are independent.
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Stable laws

Definition

A function L is said to be slowly varying if

lim
xÑ8

Lptxq

Lpxq
“ 1, for all t ą 0.

One may check that Lptq “ log t is slowly varying, but Lptq “ tε is not for
any ε ‰ 0.
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Stable laws

Theorem

Suppose X1,X2, ... are i.i.d. with a distribution that satisfies

1 limxÑ8
ProbpX1ąxq
Probp|X1|ąxq

“ θ P r0, 1s.

2 Probp|X1| ą xq “ x´αLpxq

where 0 ă α ă 2 and L is slowly varying. Let Sn “ X1 ` ¨ ¨ ¨ ` Xn,

an “ inftx : Probp|X1| ą xq ď n´1u, bn “ n ErX11p|X1| ď anqs.

As nÑ8, Sn´bn
an

ñ Y where Y has a nondegenerate distribution.

For a proof, see Durrett pp. 161-162.
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Stable laws

Definition

A random variable Y is said to have a stable law if for every integer k ą 0
there are constants ak and bk so that if Y1, ...,Yk are i.i.d. and have the
same distribution as Y , then pY1 ` ¨ ¨ ¨ ` Yk ´ bkq{ak “d Y .
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Stable laws

Theorem

Y is the limit of pX1 ` ¨ ¨ ¨ `Xk ´ bkq{ak for some i.i.d. sequence Xi if and
only if Y has a stable law.
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Stable laws

Proof.

If Y has a stable law, we can take X1,X2, ... i.i.d. with distribution Y .

Let Zn “
1
an
pX1 ` ¨ ¨ ¨ ` Xn ´ bnq and S j

n “ Xpj´1qn`1 ` ¨ ¨ ¨ ` Xjn.

Thus

Znk “ pS
1
n ` ¨ ¨ ¨ ` Sk

n ´ bnkq{ank

ankZnk “ pS
1
n ´ bnq ` ¨ ¨ ¨ ` pS

k
n ´ bnq ` pkbn ´ bnkq

ankZnk{an “ pS
1
n ´ bnq{an ` ¨ ¨ ¨ ` pS

k
n ´ bnq{an ` pkbn ´ bnkq{an.

Let nÑ8. The first k terms on the right tend to Y1, ...,Yk which
are independent copies of Y , and Znk ñ Y , thus the result follows.
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Infinitely divisible distributions

Definition

A probability distribution µ is infinitely divisible if, for each n ě 1, there is
probability distribution µn such that µ “ µ˚nn .
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Measures of compound Poisson type

A large family of infinitely divisible measures is given as follows.

Definition

Let µ be a probability measure with characteristic function ψptq, and let
λ ě 0 be a parameter. Define µ˚0 to be the point mass at 0. The
probability measure of compound Poisson type with parameters µ and λ is
the probability measure

Ppµ, λq “ e´λ
ÿ

ně0

λnµ˚n

n!
.

It has characteristic function χptq “ EPpµ,λqre
its “ eλpφptq´1q.
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Infinitely divisible distributions

The following discussion is taken from Feller, vol 2.

Definition

A measure µ is canonical if the integrals

M`pxq “

ż 8

x´

dµpyq

y2
, M´p´xq “

ż ´x`

´8

dµpyq

y2

converge for all x ą 0.
A sequence of measures cnx

2dµnpxq converge properly to dµpxq if it
converges to dµpxq in distribution, and if, for all ε ą 0, there exists τ ą 0
such that for x ą τ ,

lim sup
n

cn

„

1´

ż x

´x
dµnpxq



ă ε.
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Infinitely divisible distributions

Lemma

If cnx
2dµnpxq Ñ dµpxq properly, then

cn

ż 8

´8

zpxqdµnpxq Ñ

ż 8

´8

x´2zpxqdµpxq.

for every bounded continuous function z such that x´2zpxq is continuous
at the origin.
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Infinitely divisible distributions

Lemma

Consider a sequence of probability measures µn, with characteristic
functions φn, and define, for some sequence of constants tcnu, tβnu,

ψnpzq “ cnrφnpzq ´ 1´ iβnzs.

Suppose that ψnpzq Ñ ρpzq uniformly in |z | ď z0. Then for 0 ă h ď z0,

cn

ż 8

´8

ˆ

1´
sin xh

xh

˙

dµnpxq Ñ ´
1

2h

ż h

´h
ρpzqdz .
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Infinitely divisible distributions

Proof.

Define bn “
ş8

´8
sin xdµnpxq and write

ψnpzq “

ż 8

´8

cnre
izx ´ 1´ iz sin xsdµnpxq ` icnpbn ´ βnqz .

Divide by ´2h and integrate in |z | ď h to obtain the claim.

Bob Hough Math 639: Lecture 8 February 21, 2017 21 / 59



Infinitely divisible distributions

Lemma

Under the conditions of the previous lemma, there exists a canonical
measure µ and a sequence n1, n2, ...Ñ8 such that
cnkx

2dµnk pxq Ñ dµpxq properly.
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Infinitely divisible distributions

Proof.

Put dνnpxq “ cnx
2dµnpxq.

Since
`

1´ sin xh
xh

˘

„ 1
6x

2h2 for x small, and is positive in any case, it
follows that νnpI q ă 8 for all finite intervals I .

By Helly’s selection theorem, there is a subsequence tνnk u converging
in distribution to a measure ν.

To prove the tightness, note that ρp0q “ 0. By choosing h sufficiently

small, ´ 1
2h

şh
´h ρpzqdz may be made arbitrarily small. Since the

integrand on the left is ě 1
2 for |xh| ě 2 and is non-negative

otherwise, the result follows.
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Infinitely divisible distributions

Lemma

For any canonical measure µ the integral defined by

ψpzq “

ż 8

´8

e izx ´ 1´ iz sin x

x2
dµpxq

defines a continuous function, and to distinct canonical measures there
correspond distinct functions.
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Infinitely divisible distributions

Proof.

The integral converges by the property of a canonical measure.

The continuity is immediate.

Write, for h ą 0,

ψpzq ´
ψpz ` hq ` ψpz ´ hq

2
“

ż 8

´8

e izx
1´ cos xh

x2
dµpxq.

This is the characteristic function of the bounded measure
dAhpxq “

1´cos xh
x2

dµpxq, and hence determines µ except for possible
atoms where cos xh “ 1, x ‰ 0.

By varying h, µ is determined.
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Infinitely divisible distributions

Theorem

Let tµnu be a sequence of probability measures, with characteristic
functions tφnu, and let tcnu, tβnu be sequences of real numbers. Set
bn “

ş8

´8
sin xdµnpxq. A continuous limit

ψnpzq “ cnrφnpzq ´ 1´ iβnzs Ñ ρpzq

exists if and only if there exists a canonical measure µ and a number b
such that

cnx
2dµnpxq Ñ dµpxq

properly and cnpbn ´ βnq Ñ b. In this case

ρpzq “ ψpzq ` ibz

where ψpzq “
ş8

´8
e izx´1´iz sin x

x2
dµpxq. This uniquely determines µ.
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Infinitely divisible distributions

Proof.

The claim in the forward direction holds since
zpxq “ e iζx ´ 1´ iζ sin x is bounded as a function of x , and satisfies
zpxq
x2

is continuous at the origin.

For the reverse direction, let ψnpzq Ñ ρpzq for all z , with ρ
continuous.

eψnpzq is a characteristic function, and it converges uniformly to eρpzq

in finite intervals.

By the uniform convergence, there exists a canonical measure µ and a
subsequence tn1, n2, ...u such that cnkx

2dµnk pxq Ñ dµpxq properly.

The proper convergence guarantees

ψnk pzq “

ż 8

´8

“

e izx ´ 1´ iz sin x
‰

cnkdµnk pxq Ñ ψpzq.
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Infinitely divisible distributions

Proof.

Thus ρpzq “ ψpzq ` ibz .

Since ψp1q is real, b “ =ρp1q.
It follows that ψ and b are uniquely determined independent of the
sequence tnku. This proves the required convergence.
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Infinitely divisible distributions

Lemma

Let tφnu be a sequence of characteristic functions. If the limit on the right
is continuous, the relations

φnnpzq Ñ ωpzq, nrφnpzq ´ 1s Ñ ρpzq

are equivalent, and if either holds, ωpzq “ eρpzq.
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Infinitely divisible distributions

Proof.

First assume nrφnpzq ´ 1s Ñ ρpzq. Thus φnpzq Ñ 1 and the
convergence is uniform in fixed intervals |z | ă z0.

For n sufficiently large, log φnpzq is well defined, and by Taylor
expansion,

log φnnpzq “ n log φnpzq Ñ ρpzq,

so ωpzq “ eρpzq.
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Infinitely divisible distributions

Proof.

Now suppose φnnpzq Ñ ωpzq. Then ωp0q “ 1, so ωpzq ‰ 0 for
|z | ď z0.

Since the convergence is uniform, φnpzq ‰ 0 for |z | ă z0 for all n
sufficiently large, and thus log φnpzq is well defined in |z | ă z0. It
follows that ρpzq “ logωpzq for |z | ă z0.

After passing to a subsequence, we can find ρ such that for all z

nk rφnk pzq ´ 1s Ñ ρpzq.

This implies φnknk pzq Ñ eρpzq, so ρ “ logω. But the limit now holds for
the full sequence.
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Infinitely divisible distributions

Theorem

For ω to be an infinitely divisible characteristic function it is necessary and
sufficient that there exist a canonical measure µ and a real number b such
that ω “ eρ with

ρpzq “ ψpzq ` ibz

ψpzq “

ż 8

´8

e izx ´ 1´ iz sin x

x2
dµpxq.
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Infinitely divisible distributions

Proof.

First suppose ω is infinitely divisible with ωn
n “ ω. Then

nrωnpzq ´ 1s Ñ ρpzq, which is the special case cn “ n, βn “ 0 of the
previous theorem. The existence of canonical measure µ with ψ and b
as defined there follows.

Now suppose that ω “ eρ is of the described form. First, suppose
that the canonical measure µ is concentrated on |x | ą δ. Let

dµpxq “ cx2dνpxq.

where ν is a probability distribution with characteristic function γ.

We have ecpγpzq´1q is the characteristic function of a distribution of
compound Poisson type, and hence is infinitely divisible. It differs
from eρ by the centering factor e iβz , so that eρ is infinitely divisible.
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Infinitely divisible distributions

Proof.

Now set, for δ ą 0, µδ the measure µ1p|x | ě δq and let ψδpzq be the
corresponding integral.

Let σ2 ě 0 be the mass assigned by µ to 0. Hence, as δ Ñ 0,

´
1

2
σ2z2 ` ψδpzq Ñ ψpzq.

The left hand side is the logarithm of a characteristic function, hence
so is the right. Since ψ

n is obtained by replacing µ with µ
n , the claim

follows on setting ωn “ e
ψ
n , ω “ eψ.
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Random walk

Definition

Let X1,X2, ... be i.i.d. taking values in Rd , and let Sn “ X1 ` ¨ ¨ ¨ ` Xn. Sn
is a random walk.

In studying random walk we work on the product probability space
pΩ,F ,Probq from Kolmogorov’s extension theorem,

Ω “ tpω1, ω2, ...q : ωi P Rdu

F “ B ˆB ˆ ...

Prob “ µˆ µˆ ..., µ is the distribution of Xi

Xnpωq “ ωn.
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Permutable variables

Definition

A finite permutation of N “ t1, 2, ...u is a map π from N to N so that
πpiq ‰ i for only finitely many i . An event A is permutable if
π´1A “ tω : πω P Au “ A for all finite permutations π. The collection of
permutable events is a σ-field, called the exchangeable σ-field, E .

The tail σ-algebra is contained in E , as are the events

tω : Snpωq P B i.o.u.

tω : lim supnÑ8 Snpωq{cn ě 1u.
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Hewitt-Savage 0-1 Law

Theorem (Hewitt-Savage 0-1 Law)

If X1,X2, ... are i.i.d. and A P E then ProbpAq P t0, 1u.
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Hewitt-Savage 0-1 Law

Let A P E

Let An P σpX1, ...,Xnq so that ProbpAn∆Aq Ñ 0 as nÑ8. Here
A∆B “ pA´ Bq Y pB ´ Aq is the symmetric difference.

Define π “ πn by πpjq “ n` j if j ď n, πpjq “ j ´ n if n` 1 ď j ď 2n
and πpjq “ j otherwise. Note π2 is the identity.

Write An “ Bn ˆ RN where Bn Ă Rn. We have

ProbpAn∆Aq “ Probpω : πω P An∆Aq

and
tω : πω P Anu “ tω : pωn`1, ..., ω2nq P Bnu

Write A1n for this event.
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Hewitt-Savage 0-1 Law

Use ProbpAn∆Aq “ ProbpA1n∆Aq, so

ProbpAn∆A1nq ď ProbpAn∆Aq ` ProbpA1n∆Aq Ñ 0.

The implies

0 ď ProbpAnq ´ ProbpAn X A1nq

ď ProbpAn Y A1nq ´ ProbpAn X A1nq “ ProbpAn∆A1nq Ñ 0,

so ProbpAn X A1nq Ñ ProbpAq.

By independence

ProbpAn X A1nq “ ProbpAnqProbpA1nq Ñ ProbpAq2.

This shows ProbpAq “ ProbpAq2 so ProbpAq P t0, 1u.
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Hewitt-Savage 0-1 Law

Theorem

For a random walk on R, there are only four possibilities, of which one has
probability 1:

Sn “ 0 for all n

limnÑ8 Sn “ 8

limnÑ8 Sn “ ´8

´8 “ lim inf Sn ă lim supSn “ 8.

Bob Hough Math 639: Lecture 8 February 21, 2017 40 / 59



Hewitt-Savage 0-1 Law

Proof.

The Hewitt-Savage 0-1 Law implies that lim supSn is a constant
c P r´8,8s.

Let S 1n “ Sn`1 ´ X1, which has the same distribution. Thus
c “ c ´ X1, so that if c is finite, then X1 “ 0.

The remaining cases are obvious.
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Stopping times

Definition

Let Fn “ σpX1, ...,Xnq. A random variable N taking values in
t1, 2, ...u Y t8u is said to be a stopping time or an optional random
variable if for every n ă 8, tN “ nu P Fn. The σ-algebra generated by
stopping time N is

FN “ tA P σpX1,X2, ...q : @n, AX tN “ nu P Fnu.

Given a set A, the hitting time of A is N “ inftn : Sn P Au. This is a
stopping time.
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Stopping times

Theorem

Let X1,X2, ... be i.i.d., Fn “ σpX1, ...,Xnq and let N be a stopping time
with ProbpN ă 8q ą 0. Conditional on tN ă 8u, tXN`n, n ě 1u is
independent of FN and has the same distribution as the original sequence.

Bob Hough Math 639: Lecture 8 February 21, 2017 43 / 59



Stopping times

Proof.

It suffices to show that if A P FN and Bj P B for 1 ď j ď k, then

ProbpA,N ă 8,XN`j P Bj , 1 ď j ď kq

“ ProbpAX tN ă 8uq
k
ź

j“1

µpBjq.

For each fixed n

ProbpA,N “ n,XN`j P Bj , 1 ď j ď kq

“ ProbpAX tN “ nuq
k
ź

j“1

µpBjq.

since AX tN “ nu P Fn. This suffices.
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Shift

Definition

Let Ω “ RN, and define the shift θ : Ω Ñ Ω by

pθωqpnq “ ωpn ` 1q, n “ 1, 2, ....

Define, iteratively, θ1 “ θ and, for k ą 1, θk “ θ ˝ θk´1. If N is a stopping
time, define

θNω “

"

θnω tN “ nu
∆ tN “ 8u

where ∆ is an extra point added to Ω.
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Stopping times

Example

The stopping time

τpωq “ inftn ą 0 : ω1 ` ¨ ¨ ¨ ` ωn “ 0u

is the time of the first return to 0. Set τp∆q “ 8. Define τ1 “ τ and, for
n ą 1,

τnpωq “ τn´1pωq ` τpθ
τn´1pωqq.

This records the time of the nth return to 0.
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Stopping times

In general, the iterates of a stopping time T are defined by T0 “ 0 and

Tnpωq “ Tn´1pωq ` T pθTn´1ωq, n ě 1.

One can check by induction that ProbpTn ă 8q “ ProbpT ă 8qn.
Let tn “ T pθTn´1q.

Theorem

Suppose ProbpT ă 8q “ 1. The random vectors

Vn “ ptn,XTn´1`1, ...,XTnq

are independent and identically distributed.

This follows since V1, ...,Vn´1 P F pTn´1q.
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Wald’s equation

Theorem (Wald’s equation)

Let X1,X2, ... be i.i.d. with Er|Xi |s ă 8. If N is a stopping time with
ErNs ă 8, then ErSN s “ ErX1sErNs.
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Wald’s equation

Proof.

First suppose the Xi ě 0.

ErSN s “

ż

SNdP “
8
ÿ

n“1

ż

Sn1pN“nqdP “
8
ÿ

n“1

n
ÿ

m“1

ż

Xm1pN“nqdP.

By Fubini

“

8
ÿ

m“1

8
ÿ

n“m

ż

Xm1pN“nqdP “
8
ÿ

m“1

ż

Xm1pNěmqdP.

Since tN ě mu “ tN ď m ´ 1uc P Fm´1 it is independent of Xm, the last
expression is

8
ÿ

m“1

ErXmsProbpN ě mq “ ErX1sErNs.

Bob Hough Math 639: Lecture 8 February 21, 2017 49 / 59



Wald’s equation

Proof.

To handle the general case, use

8 ą

8
ÿ

m“1

Er|Xm|sProbpN ě mq “
8
ÿ

m“1

8
ÿ

n“m

ż

|Xm|1pN“nqdP,

which justifies the application of Fubini.
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Wald’s equation

Example

Let X1,X2, ... be i.i.d. with ProbpXi “ 1q “ ProbpXi “ ´1q “ 1
2 .

Let a ă 0 ă b be integers and let N “ inftn : Sn R pa, bqu.

Observe that if x P pa, bq, Probpx ` Sb´a R pa, bqq ě 2´pb´aq, since
b ´ a steps right land outside the interval. Hence

ProbpN ą npb ´ aqq ď
´

1´ 2´pb´aq
¯n

ñ ErNs ă 8.

By the previous theorem, ErSN s “ 0, so
b ProbpSN “ bq ` aProbpSN “ aq “ 0 and

ProbpSN “ bq “
´a

b ´ a
, ProbpSN “ aq “

b

b ´ a
.
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Wald’s second equation

Theorem

Let X1,X2, ... be i.i.d. with ErXns “ 0 and ErX 2
n s “ σ2 ă 8. If T is a

stopping time with ErT s ă 8, then ErS2
T s “ σ2 ErT s.

Bob Hough Math 639: Lecture 8 February 21, 2017 52 / 59



Wald’s second equation

Proof.

Since ErXns “ 0 and Xn is independent of Sn´1 and 1pTěnq P Fn´1,

S2
T^n “ S2

T^pn´1q ` p2XnSn´1 ` X 2
n q1pTěnq

ErS2
T^ns “ ErS2

T^pn´1qs ` σ
2 ProbpT ě nq.

Thus

ErS2
T^ns “ σ2

n
ÿ

m“1

ProbpT ě mq

ErpST^n ´ ST^mq
2s “ σ2

n
ÿ

k“m`1

ProbpT ě kq.

This shows that ST^n is a Cauchy sequence in L2, so the equality is
obtained by letting nÑ8.
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Small deviations

Theorem

Let X1,X2, ... be i.i.d. with ErXns “ 0 and ErX 2
n s “ 1, and let

Tc “ inftn ě 1 : |Sn| ą cn
1
2 u.

ErTc s

"

ă 8 c ă 1
“ 8 c ě 1

.
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Small deviations

Proof.

If ErTc s ă 8 then ErTc s “ ErS2
Tc
s ą c2 ErTc s, a contradiction if

c ě 1.

Now suppose c ă 1 and let τ “ Tc ^ n and observe
S2
τ´1 ď c2pτ ´ 1q, so by Cauchy-Schwarz

Erτ s “ ErS2
τ s “ ErS2

τ´1 ` 2 ErSτ´1Xτ s ` ErX 2
τ s

ď c2 Erτ s ` 2c
`

Erτ sErX 2
τ s
˘

1
2 ` ErX 2

τ s.

The proof is completed by the following lemma.
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Small deviations

Lemma

If T is a stopping time with ErT s “ 8, then

ErX 2
T^ns{E rT ^ ns Ñ 0

as nÑ8.

This suffices to show ErTc s ă 8, since otherwise, with 0 ă ε ă 1´ c2 and
n large one obtains Erτ s ď pc2 ` εqErτ s.
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Small deviations

Proof.

Write

ErX 2
T^ns “ ErX 2

T^n1pX
2
T^n ď εpT ^ nqqs

`

n
ÿ

j“1

ErX 2
j 1pT ^ n “ j ,X 2

j ą εjqs.

Bound the first term by ď εErT ^ ns.

To bound the second, choose N ě 1 so that for n ě N,

n
ÿ

j“1

ErX 2
j 1pX

2
j ą εjqs ă nε,

which is possible since ErX 2
j s ă 8.
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Small deviations

Proof.

Bound
N
ÿ

j“1

ErX 2
j 1pT ^ n,X 2

j ą εjqs ď N ErX 2
1 s,

and

n
ÿ

j“N

ErX 2
j 1pT ^ n,X 2

j ą εjqs ď
n
ÿ

j“N

ErX 2
j 1pT ^ n ě j ,X 2

j ą εjqs

“

n
ÿ

j“N

ProbpT ^ n ě jqErX 2
j 1pX

2
j ą εjqs

“

n
ÿ

j“N

8
ÿ

k“j

ProbpT ^ n “ kqErX 2
j 1pX

2
j ą εjqs
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Small deviations

Proof.

Bound the last sum by

ď

8
ÿ

k“N

k
ÿ

j“1

ProbpT ^ n “ kqErX 2
j 1pX

2
j ą εjqs

ď ε
8
ÿ

k“N

k ProbpT ^ n “ kq ď εEpT ^ nq.

We’ve checked

ErX 2
T^ns ď 2εErT ^ ns ` N ErX 2

1 s.

Since ErT ^ ns Ñ 8, the conclusion follows.
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