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Conditional expectation

Definition

Let X be a random variable on a probability space (£2,.%p, Prob) satisfying
E[|X|] < o0 and let .Z be a o-algebra, .# < .%y. The conditional
expectation of X given %, E[X|.#] is any random variable Y such that

@ Y c.%, that is, is % measurable
@ Forall Ac Z, {, XdP =, YdP.
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Conditional expectation

Lemma

If Y is a conditional expectation of integrable variable X then Y is
integrable.

Proof.
Let A={Y >0} e.#. Then

J Yszf Xdp<f X|dP
A A A

f —YdP:f —Xdng 1 X|dP.
c Ac Ac

Thus E[|Y|] < E[|X]]. O

Bob Hough Math 639: Lecture 7 February 16, 2017 3/61



Conditional expectation

Lemma

Let X be an integrable random variable on probability space
(Q, Fo, Prob), with o-field % < Fy, and let Y and Y' be two conditional
expectations of X given .%. Then Y = Y' Z-a.s.
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Conditional expectation

Proof.

For each set Ae .#, {, YdP = {, Y'dP. Given € > 0, let
A={Y —Y'>¢€}. One finds

ozf X—Xszj Y — Y'dP > ¢ Prob(A).
A A
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Conditional expectation

Lemma

Let X be an integrable random variable on probability space (X2, .7y, Prob),
and let % < Fy be a o-algebra. Then there exists Y = E[X|.Z].
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Conditional expectation

Proof.

@ By splitting X into its positive and negative parts, we may assume
that X > 0.

@ Let y = Prob and let v be the measure on .# defined by
v(A) =f XdP, Ae F.
A

@ By the definition of the integral, v « p.

o Let Y = % be the Radon-Nikodym derivative of v with respect to p,
which is .%-measurable. We have, for A e .7,

L XdP = v(A) = L YdP.

Ol
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Stein’s method of Poisson Approximation

@ Stein has given a general method of proving limit theorems via a
perturbative method which avoids the use of characteristic functions
and handles dependence

@ The following discussion of Poisson Approximation is based on the
article
‘Two moments suffice for Poisson approximations: the Chen-Stein
method’ by R. Arratia, L. Goldstein, L. Gordon
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Set-up

@ Let / be an arbitrary index set, and for a € I, let X, be a Bernoulli
random variable with

Po = Prob(X, =1) =1 — Prob(X, =0) > 0.
@ Set

W=>Xe, A=E[W]=>ps, Ae(0,0).

ael ael
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Set-up

@ Forael, let B, c I, a€ B, be a ‘neighborhood of dependence.’
@ Set

by = Z Z PaPp

a€el BeBy,

by=>" D Pags  Pap = E[XaXs]
ael a#BeBy

b3 = Z So-
ael

5o = EHE[Xa—pa

a(xﬁzﬁe/—Ba)m.
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Set-up

Recall the definition of the total variation norm.
Definition

If Z, W are two Zxq valued random variables with distributions (laws)
Z(Z), L(W). The total variation distance between .Z(Z) and Z(W) is

|2(2) — ZW)|rv = = sup |E[A(W)] — E[A(2)]

= sup |Prob(W € A) — Prob(Z € A)|.
AcZ+
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Stein’s method of Poisson approximation

The following theorem is due to Chen.

Theorem

Let W be the number of occurrences of dependent events, and let

b1, by, b3 be as in the set-up. Let Z be a Poisson(\) random variable.
Then

|£ (W) — Z(Z)|tv < by + by + bs.
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Stein's operators

Let A be a parameter, let Z ~ Poisson(\) and define linear operators S, T
on functions on Zxg by

Tf(w) = wf(w) — M (w + 1)

E [f(Z)l(st)]

ST H1) = = pobZ = w)’

SF(0) = 0.

Bob Hough Math 639: Lecture 7 February 16, 2017 13 / 61



Stein's operators

Lemma J

T and S are inverse, in the sense that TSf = f.
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Stein's operators

Proof.
We have, for x # 0,
TSf(x) = xSf(x) — ASf(x + 1)
E[h(Z1(z<)]
= X509 + BropZ = x)
_ xE[f(D)1z<—y] | Elf (Z)l(z<x)]
AProb(Z =x—1)  Prob(Z = x)
= f(x)
For x = 0, xSf(x) = 0, the result is the same. O
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Stein’s criterion

Lemma

Let \ be a parameter, and let Z be a Zxq valued random variable.
Z ~ Poisson(\) if and only if for all bounded f,

E[Tf(Z)] = 0.
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Stein’s criterion

Proof.

@ To check the necessity, write

E[Tf

—AZ Tf(n

n=0

_)‘Z (nf(n

n=0

— e D (F() -

n>=1

n

— A n—l—l)))\
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Stein’s criterion

Proof.

o To prove the sufficiency, set f(x) = 1(,_p) for n = 1,2, ... to obtain
Prob(Z=n-1) = ;Prob(Z =n).

The result follows.
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Bounding the Stein operator

Define Af(n) = f(n+1)—f(n).
Lemma
Suppose that Yw > 0, h(w) € [0,1] and f = S(h(-) — E[h(Z)]). Then
1—e 1.4
d|flew <min(1,-2).
3 and | fl|e mln( )\;>

Furthermore, if h(w) = 1(w = 0) — e then |f] = l_i_k‘

[Afle <
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Bounding the Stein operator

Proof.
@ Observe
E[h(Z)]Prob(Z < m) E[h(Z2)1(Z < m)]
flm+1) = AProb(Z=m)  AProb(Z = m)
_ E[h(Z2)1(Z > m)]Prob(Z < m)
B AProb(Z = m)
E[h(Z2)1(Z < m)] Prob(Z > m)
B AProb(Z = m) '

Hence |[f(m+1)| < PrOb(fFfr;ng(PZri:(r)Z>m)'
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Bounding the Stein operator

Proof.

e For m < ),

1 m!
F(m+1)| < -
(m+ DI < SprobZ = m) A;N(m—m
18 /m\i
<3u(3) <G-m™
j=0
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Bounding the Stein operator

Proof.
@ Form=>=M\-3

M m!
(m+1+))!

1 A&7 A Y
< 1
m+1[+m+2§)<m+3)]

B (m+2)(m+3)+ A
S (m+)(m+2)(m+3-N)

Prob(Z > m)
f €S —=—F—F+==
[#(m +1) AProb(Z = m)

I8

This restricts bounding |f(m)| < 1 to a finite check, which we'll
ignore. L]
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Bounding the Stein operator

Proof.
e Using Prob(Z < m)Prob(Z > m) < }

1
4\ Prob(Z = m)

[f(m+1)| <

< Y2 (M) ™ o

Toaaz (A

1
A—m+——

and Stirling's approximation

)

2
< VT3 exp
4

NoYs <(m—/\)(m—)\+;) 1 )

Using this for [\ — m| < A2 and the previous inequalities otherwise

obtains the bound |f(m+ 1)| < )\%
2

* 12m

Ol
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Bounding the Stein operator

Proof.
o Define f; by taking h(x) = 1(x = j). Hence

N=m=1m prob(Z > m) m=j
: — ) J! -
6(’7’1 + 1) { _Aj—m—l% PI’Ob(Z < m) e

@ One easily checks that f; is positive and decreasing in m > j + 1 and
is negative and decreasing in m < j.

@ The only positive value of fj(m + 1) — f;(m) is

e © r J ry
GU+1)—GU)=A[Z )+ZA]

*
P LA A
A A
e A 1—e
< — —1)= .
(e b X\

4
Bob Hough Math 639: Lecture 7 February 16, 2017 24 / 61




Bounding the Stein operator

Proof.
o Writing the general f as f =} . h(j)f; proves
1—e?
f(m+1)—f(m) < fp(m+1) — f(m) < S
@ This last calculation contains the claim that |fy| = 1_§_A as this is

the value at 1.
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Proof of Stein's Poisson approximation

Proof of Stein’s Poisson approximation theorem.
@ Let h be given with |h|, = 1 and let Z ~ Poisson ().
o Let h(-) = h(-) —E[h(Z)], f = Shand Tf = h, so

E[TF(W)] = E[A(W) — h(Z)].
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Proof of Stein's Poisson approximation

Proof of Stein’s Poisson approximation theorem.
o Let V, = ZﬁG,_Ba Xg and W, = W — X,,. We have
Xof (W) = Xof (W, + 1) and
f(Wo+1)—Ff(W+1) =X, [f(Ws +1) — F(W, + 2)].
o Calculate
E[h(W) — h(Z)] = E[WF(W) — Af(W + 1)]
= D E[Xuf (W) = paf (W +1)]

ael
= Y E[paf(Wa + 1) — paf (W + 1)]
ael
+ > E[Xaf (Wa +1) — pof (Wa + 1)]
a€el

Ol

v
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Proof of Stein's Poisson approximation

Proof of Stein's Poisson approximation theorem.
o Calculate further

E[A(W) = h(Z)] = > E [paXa [f(Wa + 1) — F(Wa + 2)]]

ael

+ ) E[(X ) [F(Wa + 1) — (Ve +1)]]
ael

+ > E[(X (Vo +1)].
ael

e The first term may be bounded by [Af|o Y. P2
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Proof of Stein's Poisson approximation

Proof of Stein’s Poisson approximation theorem.

@ To bound > ., E[(Xa — pa) [f(Wo + 1) — (Vo + 1)]], write
E[(Xa — pa) [f(Wo + 1) — f(V, + 1)]] as a telescoping sum of
|Ba| — 1 terms of the form

E[(Xa = pa)(f(U + Xg) — f(U))]

= E[(Xa — pa)Xp(f(U + 1) — f(U))]
= E[Xo XgAF(U)] — E[pa Xz AF(U)]
< |Af |l (Pas + PaPB)-

@ Thus the second term is bounded by

|AFlle D) D (Pap + Paps)-

ael a#PBeBy

O

v
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Proof of Stein's Poisson approximation

Proof of Stein's Poisson approximation theorem.
@ The third term is bounded by

DIE[(X, )F(Vy +1)]‘

a€el

<Ifle Y E|[E [ Xa=pa| D5 Xs ||| = I1Flcbh:
acl ﬁel—Ba

@ This completes the proof.
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A random graph problem

Example

@ On the hypercube {0,1}", assume each of the n2"~! edges is assigned
a random direction by tossing a fair coin, and let W be the number of
vertices at which all n edges point inward.

@ Let / be the set of all 27 vertices, and X, the indicator that vertex «
has all edges pointing inward. Thus p, = 27". Set A =1,
Z = Poisson(1).

e B,={f:|a—p| <1}.
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A random graph problem

Example
o Calculate
+1
b= ) paps = ll(n+1)272" = HT
ael BeBy
o Calculate

by=> > E[XaXs] =0,

ael a#pBeBy
since the events {X, = 1} and {X3 = 1} are mutually exclusive.
@ b3 = 0 since X, is independent of o(X5: B e | — B,).
° [Z(W)—-Z(Z2)|rv < (n+1)27".
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The birthday problem

Example

@ Suppose n balls (people) are uniformly and independently distributed
into d boxes (days of the year). We seek an estimate for the
probability that at least one box contains k or more balls for
k=2,3,4,...

o Let | = {ac{1,2,3,...,n} : |a] = k}, and let X, be the event that
each ball in a goes into the same box.

o Set W =3, Xa, pa = Prob(X, =1) = d*=% A= (})d'~* and
Z ~ Poisson(\).

@ The goal is to approximate W = Z as n — 0. To do so, we assume
k

that A is held essentially fixed, so that d = n¥-T as n — 0.
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The birthday problem

Example

e B,={f€el:anp # J} Hence X, is independent of
o(Xs:BeB,), sobs=0.

@ One has [By| = (}) — (";k), S0

b = p3|!|Bal
_ y2lBal
|/]
_ )2 (1_n—kn—k—1”.n—2k+1>
n n—1 n—k+1

<N (1-— 1_k72 :&.
n—k+1 n—k+1

@ For X and k fixed, this tends to 0 with increasing n.
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The birthday problem

Example

o For fixed «,
k—1
k — k 3
S OEXXe] = Y () ('; _)lerJZk'
BeBL\{a} =N -J
When % is large, the dominant term comes from j = k — 1, so that

n—k
d

by < k(Z)(n— KYd=% = k)

o Recalling d = n¥-1, by — 0,
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The longest perfect head run

Example
o Let 0 <p<1land Y, Yo,... beaniid. sequence
p = Prob(Y; =1) =1— Prob(Y; =0).

o Let R, be the length of the longest consecutive run of heads starting
within the first n tosses.

o Let / ={1,2,...,n}.

o Fix positive integer t and set X1 = Y1Y2--- Y:, and for 2 < a < n,

Xo = (1 - ch—l)Ya Ya+1 t Ya+t—1-
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The longest perfect head run

Example
o Let B, ={B€el:|a—p| <t}

@ One has b3 = 0 by independence, and b, = 0, since for 5 # a,
€ By, the events {X, = 1} and {X3 = 1} are exclusive.

o We have
by < p?t (1 +2t(1 — p)) + n(2t + 1)p** (1 — p)?

and
A= A(n,t) = E[W] = p[(n— 1)1 — p) + 1].

@ Since {R, < t} = {W = 0}, with Z ~ Poisson(\)
Prob(R, < t) — e M™)| < |W — Z|tv < by min(1,A71).

Keeping A fixed as n — o0, by — 0.
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Stein’s method of normal approximation

Our discussion of Stein's method of normal approximation is taken from
Stein’s 1986 monograph "Approximate computation of expectations.”
For the remainder of the lecture Z is a standard normal random variable.
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Stein's operators

o Let 2 be the space of all piecewise continuous h : R — R such that,
forall k>0

00] 2
J x[¥|h(x)|e” 7 dx < co.
0

@ Let .Z be the space of all continuous and piecewise continuously
differentiable f : R — R with f' € 2 .

o Define operators T : % — 2, Tf(w) = f'(w) — wf(w) and
U: ¥ - 7,
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Stein's operators

Lemma

Forallfe %, Tfe . Forallhe ', Uhe %. Let Z be standard
normal. For he 2, T o Uh(w) = h(w) — E[h(Z)].
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Stein's operators

Proof.
e For fe.# and k > 0,

Q0 w2 Q0
J wk L f(w) — F(0)]e™ 2 dw = f wh+l
0 0

o0 Q0 2l
< f |f’(x)|f wkle™"2 dwdx
0 X

2

e 2 dw

f " (x)dx

0

o0 X2
S f 1£'(x)|C(1 + |x]¥)e~ T dx < 0.
0

w2
Similarly SEOO |w| 1 f(w) — f(0)]e” 2 dw < o0. Hence
w— wf(w)e 2, so Tf € Z".
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Stein's operators

Proof.
@ Given he 2, k= 0,

2

Q0
wk T Uh(w)|e™ 7 dw
0

- a - X) — eféxw
<LW fw Ih(x) — E[A(Z)]|e~ % dxd

00 Xk+2 2
= L [h(x) = E[M(Z)]| e 7 dx < o0.

W2
Similarly §° _ |w|**1|Uh(w)|e~"> dw < 0, so that
w — wUh(w) e 2.
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Stein's operators

Proof.
o Differentiate

to obtain (UhY(w) — w(Uh)(w) = h(w) — E[h(Z)].
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Stein’s method of normal approximation

Lemma

In order that the real random variable W has a standard normal
distribution, it is necessary and sufficient that, for all continuous and
piecewise continuously differentiable functions f : R — R with
E[|f'(Z)|] < o, Z standard normal, we have

E[f'(W)] = E[WF(W)].
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Stein’s method of normal approximation

Proof of necessity.

Let W have a standard normal distribution. Then

E[f"(W)] =

L J f'(w)e
\/271' —00
0

1
= — dw
V2
J W dw
\/ 2
Ul

”
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Stein’s method of normal approximation

Proof of necessity.

+ \/% LOO (JOZ f'(w)dw) ze~ 22dz
_ sz fooo[f(z) — £(0)]ze~ 7 dz = E[WF(W)].
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Stein’s method of normal approximation

Proof of sufficiency.
o Given wp € R, let f,, = UL(w < wp).

@ Hence

E[fu (W) = Wha(W)] = E[L(W < wo) — E[1(Z < wo)]]
Z

= Prob(W < wp) — Prob(Z < wp).

Hence, if this is zero for all wy then W has a standard normal
distribution.
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Explicit estimates

The special functions f,,, = Ul(w < wp) are given by

o (W) = { \/ﬂe%icb(w)[l — d(wp)] w < wp
\/%eWTCD(WO)[l — d(w)] w > wo
where ®(w) = \/% S‘i’oo efédx,
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Explicit estimates

Lemma

The functions f,, satisfies

s

0 < fyp(w) < |wao( )| <1, |fv’l,0(w)| <1

for all real wy, w

We omit this explicit calculation.
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Bounds for the Stein operator

Lemma
For bounded absolutely continuous h: R — R,

|Uhllp < \f Ih = E[H(Z)]lko

|UR o < 2]lh = E[A(Z)]|eo
| UR" oo < 2]l
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Bounds for the Stein operator

and, for w > 0,

x=0

\Uh(w)| < [sup Ih(x) — E[h(Z)]|] o foo ke

W2 XZ 5 5
The first claim follows since the maximum of e 2° S'LVOO e 2dxinw<0is
attained at 0. O

v
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Bounds for the Stein operator

Proof.

For w > 0 use

2

(Uh)Y'(w) = h(w) — E[h(Z)] — we'Z J [h(x) — E[h(Z)]]e~% dx.

Hence

sup |[(Uh) (w)| < [sup |h — E[h(Z)]]] [1 + sup Wezf e2dx}
w=0 w=0
< 2sup |h—E[h(2)]].

The bound for w < 0 is similar.
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Bounds for the Stein operator

Proof.

The bound for ||(Uh)”|« in terms of |#| is a more involved
computation, which we omit. []

Bob Hough Math 639: Lecture 7 February 16, 2017 53 / 61



Exchangeable pairs

Definition

A pair (X, X’) of random variables on a probability space (22, %, Prob) is
called an exchangeable pair if, for all B, B/,

Prob(X € B, X' € B') = Prob(X € B/, X € B).
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Stein’s method for normal approximation

The following lemma is key.
Lemma

Let 0 < A <1 and let (W, W') be an exchangeable pair of real random
variables, such that

E[W/|W] = (1 - \)W.

Let h: R — R be a bounded continuous function with bounded piecewise
continuous derivative h'.

2\

E[h(W)] = E[h(Z)] + E [(Uh)’(W) {1 — v E[(W H +
e[ -w) (=YY 1 < wy -1 < ]d (2
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Stein’s method for normal approximation

Proof.
From the identity

0 = E[WE(W) — (W = W W) — (W)

= E[WF(W) —f'(W)] +E [f’(W) 1 (W — W)(f(W') — f(W))]

T2\
= E[h(2)] — E[h(W)] + E[f'(W)] — % E[(W' = W)(f(W') — f(W))]
obtain
E[h(W)] = E[h(2)] + E[f'(W)] - % E[(W — W)(f(W) — f(W))].

D)
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Stein’s method for normal approximation

Proof.
Rewrite part of the last line as

E| (W) = 3w = )W)~ ()|
—E [f’(W) {1 — % E[(W - W)Z\W]H
— o E[W — W) [F(W!) — (W) — (W = W) (W)]].
D)
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Stein’s method for normal approximation

Proof.
Write

FW') = F(W) = (W = W)F(W) = [ (W = y)f'(y)dy
- f (W' = )Ly < W') = 1(y < W)IF"(y)dy.

Take expectation and use the exchangeability of W, W’ to obtain the
claim. [

v
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Stein’s method for normal approximation
Theorem

Let h be a bounded continuous function with bounded piecewise
continuous derivative h'. Let W, W' as in the previous lemma. Then

| E[h(W Dl < Hh’Hoo (W' — wP]

2
+ 2Jh— E[H2)] o 1——E[<W wyiw)) ]
and for all real wy,
1 2
| Prob(W < wp) — ®(wp)| <2, |E [(1 ~ X E[(W'— W)2|W]) ]

+ (2@1\/; E[IW — W3]
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Stein’s method for normal approximation

Proof.

Eln(w)] ~ EIn2)] - E | Uk (W) |1 5 B[~ wyw] || +

% [W W/< W+W'> (Z<W,)—1(Z<W)]}

x (Uh)"(z)dz
so

[ELA(W)] ~ ELHZ)]] < [(URY L E | |1 55 B = w2
dz] .
[]

max(W, W) W+ W
/
f W — W||z—
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Stein’s method for normal approximation

Proof.
Recall ||(Uh)'||oo < 2||h — E[h(Z)]]s and |(Uh)"||ex < 2||A'|oo- Hence

|E[h(W)] = E[h(2)]] <

2/h — E[H(Z)] oy | E [(1 - oy ELW = W) ]

1 _[|w—-w)
2|lA|loo=~ E | ————|.
+ 2 logs €[
This proves the first bound.
To prove the second, bound 1(w < wy) from above and below using
piece-wise linear functions. We omit the details. [
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