Math 639: Lecture 7

Stein's method

Bob Hough

February 16, 2017

Conditional expectation

Definition

Let X be a random variable on a probability space (Ω, \mathscr{F}_{0}, Prob) satisfying $\mathrm{E}[|X|]<\infty$ and let \mathscr{F} be a σ-algebra, $\mathscr{F} \subset \mathscr{F} 0$. The conditional expectation of X given $\mathscr{F}, \mathrm{E}[X \mid \mathscr{F}]$ is any random variable Y such that
(1) $Y \in \mathscr{F}$, that is, is \mathscr{F} measurable
(2) For all $A \in \mathscr{F}, \int_{A} X d P=\int_{A} Y d P$.

Conditional expectation

Lemma

If Y is a conditional expectation of integrable variable X then Y is integrable.

Proof.

Let $A=\{Y>0\} \in \mathscr{F}$. Then

$$
\begin{aligned}
\int_{A} Y d P & =\int_{A} X d p \leqslant \int_{A}|X| d P \\
\int_{A^{c}}-Y d P & =\int_{A^{c}}-X d P \leqslant \int_{A^{c}}|X| d P .
\end{aligned}
$$

Thus $\mathrm{E}[|Y|] \leqslant \mathrm{E}[|X|]$.

Conditional expectation

Lemma

Let X be an integrable random variable on probability space (Ω, \mathscr{F}_{0}, Prob), with σ-field $\mathscr{F} \subset \mathscr{F}_{0}$, and let Y and Y^{\prime} be two conditional expectations of X given \mathscr{F}. Then $Y=Y^{\prime} \mathscr{F}$-a.s.

Conditional expectation

Proof.

For each set $A \in \mathscr{F}, \int_{A} Y d P=\int_{A} Y^{\prime} d P$. Given $\epsilon>0$, let $A=\left\{Y-Y^{\prime} \geqslant \epsilon\right\}$. One finds

$$
0=\int_{A} X-X d P=\int_{A} Y-Y^{\prime} d P \geqslant \epsilon \operatorname{Prob}(A)
$$

Conditional expectation

Lemma
 Let X be an integrable random variable on probability space (Ω, \mathscr{F}_{0}, Prob), and let $\mathscr{F} \subset \mathscr{F}_{0}$ be a σ-algebra. Then there exists $Y=\mathrm{E}[X \mid \mathscr{F}]$.

Conditional expectation

Proof.

- By splitting X into its positive and negative parts, we may assume that $X \geqslant 0$.
- Let $\mu=$ Prob and let ν be the measure on \mathscr{F} defined by

$$
\nu(A)=\int_{A} X d P, \quad A \in \mathscr{F} .
$$

- By the definition of the integral, $\nu \ll \mu$.
- Let $Y=\frac{d \nu}{d \mu}$ be the Radon-Nikodym derivative of ν with respect to μ, which is \mathscr{F}-measurable. We have, for $A \in \mathscr{F}$,

$$
\int_{A} X d P=\nu(A)=\int_{A} Y d P
$$

Stein's method of Poisson Approximation

- Stein has given a general method of proving limit theorems via a perturbative method which avoids the use of characteristic functions and handles dependence
- The following discussion of Poisson Approximation is based on the article
'Two moments suffice for Poisson approximations: the Chen-Stein method' by R. Arratia, L. Goldstein, L. Gordon

Set-up

- Let I be an arbitrary index set, and for $\alpha \in I$, let X_{α} be a Bernoulli random variable with

$$
p_{\alpha}=\operatorname{Prob}\left(X_{\alpha}=1\right)=1-\operatorname{Prob}\left(X_{\alpha}=0\right)>0
$$

- Set

$$
W=\sum_{\alpha \in I} X_{\alpha}, \quad \lambda=\mathrm{E}[W]=\sum_{\alpha \in I} p_{\alpha}, \quad \lambda \in(0, \infty) .
$$

Set-up

- For $\alpha \in I$, let $B_{\alpha} \subset I, \alpha \in B_{\alpha}$ be a 'neighborhood of dependence.'
- Set

$$
\begin{aligned}
b_{1} & =\sum_{\alpha \in I} \sum_{\beta \in B_{\alpha}} p_{\alpha} p_{\beta} \\
b_{2} & =\sum_{\alpha \in I} \sum_{\alpha \neq \beta \in B_{\alpha}} p_{\alpha \beta}, \quad p_{\alpha \beta}=\mathrm{E}\left[X_{\alpha} X_{\beta}\right] \\
b_{3} & =\sum_{\alpha \in I} s_{\alpha} . \\
s_{\alpha} & =\mathrm{E}\left[\left|\mathrm{E}\left[X_{\alpha}-p_{\alpha} \mid \sigma\left(X_{\beta}: \beta \in I-B_{\alpha}\right)\right]\right|\right] .
\end{aligned}
$$

Set-up

Recall the definition of the total variation norm.

Definition

If Z, W are two $\mathbb{Z}_{\geqslant 0}$ valued random variables with distributions (laws) $\mathscr{L}(Z), \mathscr{L}(W)$. The total variation distance between $\mathscr{L}(Z)$ and $\mathscr{L}(W)$ is

$$
\begin{aligned}
\|\mathscr{L}(Z)-\mathscr{L}(W)\|_{\mathrm{TV}} & =\frac{1}{2} \sup _{\|h\|_{\infty}=1}|\mathrm{E}[h(W)]-\mathrm{E}[h(Z)]| \\
& =\sup _{A \subset \mathbb{Z}^{+}}|\operatorname{Prob}(W \in A)-\operatorname{Prob}(Z \in A)| .
\end{aligned}
$$

Stein's method of Poisson approximation

The following theorem is due to Chen.

Theorem

Let W be the number of occurrences of dependent events, and let b_{1}, b_{2}, b_{3} be as in the set-up. Let Z be a Poisson (λ) random variable. Then

$$
\|\mathscr{L}(W)-\mathscr{L}(Z)\|_{\mathrm{TV}} \leqslant b_{1}+b_{2}+b_{3} .
$$

Stein's operators

Let λ be a parameter, let $Z \sim \operatorname{Poisson}(\lambda)$ and define linear operators S, T on functions on $\mathbb{Z}_{\geqslant 0}$ by

$$
\begin{aligned}
T f(w) & =w f(w)-\lambda f(w+1) \\
S f(w+1) & =-\frac{E\left[f(Z) \mathbf{1}_{(Z \leqslant w)}\right]}{\lambda \operatorname{Prob}(Z=w)}, \quad S f(0)=0 .
\end{aligned}
$$

Stein's operators

Lemma

T and S are inverse, in the sense that $T S f=f$.

Stein's operators

Proof.

We have, for $x \neq 0$,

$$
\begin{aligned}
T S f(x) & =x S f(x)-\lambda S f(x+1) \\
& =x S f(x)+\frac{\mathrm{E}\left[h\left(Z \mathbf{1}_{(Z \leqslant x)}\right)\right]}{\operatorname{Prob}(Z=x)} \\
& =-\frac{x \mathrm{E}\left[f(Z) \mathbf{1}_{(Z \leqslant x-1)}\right]}{\lambda \operatorname{Prob}(Z=x-1)}+\frac{\mathrm{E}\left[f(Z) \mathbf{1}_{(Z \leqslant x)}\right]}{\operatorname{Prob}(Z=x)} \\
& =f(x)
\end{aligned}
$$

For $x=0, x \operatorname{Sf}(x)=0$, the result is the same.

Stein's criterion

Lemma

Let λ be a parameter, and let Z be a $\mathbb{Z}_{\geqslant 0}$ valued random variable. $Z \sim \operatorname{Poisson}(\lambda)$ if and only if for all bounded f,

$$
\mathrm{E}[T f(Z)]=0
$$

Stein's criterion

Proof.

- To check the necessity, write

$$
\begin{aligned}
E[T f(Z)] & =e^{-\lambda} \sum_{n \geqslant 0} T f(n) \frac{\lambda^{n}}{n!} \\
& =e^{-\lambda} \sum_{n \geqslant 0}(n f(n)-\lambda f(n+1)) \frac{\lambda^{n}}{n!} \\
& =e^{-\lambda} \sum_{n \geqslant 1}(f(n)-f(n)) \frac{\lambda^{n}}{(n-1)!}=0 .
\end{aligned}
$$

Stein's criterion

Proof.

- To prove the sufficiency, set $f(x)=\mathbf{1}_{(x=n)}$ for $n=1,2, \ldots$ to obtain

$$
\operatorname{Prob}(Z=n-1)=\frac{n}{\lambda} \operatorname{Prob}(Z=n) .
$$

The result follows.

Bounding the Stein operator

Define $\Delta f(n)=f(n+1)-f(n)$.

Lemma

Suppose that $\forall w \geqslant 0, h(w) \in[0,1]$ and $f=S(h(\cdot)-\mathrm{E}[h(Z)])$. Then

$$
\|\Delta f\|_{\infty} \leqslant \frac{1-e^{-\lambda}}{\lambda} \text { and }\|f\|_{\infty} \leqslant \min \left(1, \frac{1.4}{\lambda^{\frac{1}{2}}}\right)
$$

Furthermore, if $h(w)=\mathbf{1}(w=0)-e^{-\lambda}$ then $\|f\|_{\infty}=\frac{1-e^{-\lambda}}{\lambda}$.

Bounding the Stein operator

Proof.

- Observe

$$
\begin{aligned}
f(m+1)= & \frac{\mathrm{E}[h(Z)] \operatorname{Prob}(Z \leqslant m)}{\lambda \operatorname{Prob}(Z=m)}-\frac{\mathrm{E}[h(Z) \mathbf{1}(Z \leqslant m)]}{\lambda \operatorname{Prob}(Z=m)} \\
= & \frac{\mathrm{E}[h(Z) \mathbf{1}(Z>m)] \operatorname{Prob}(Z \leqslant m)}{\lambda \operatorname{Prob}(Z=m)} \\
& -\frac{\mathrm{E}[h(Z) \mathbf{1}(Z \leqslant m)] \operatorname{Prob}(Z>m)}{\lambda \operatorname{Prob}(Z=m)} .
\end{aligned}
$$

Hence $|f(m+1)| \leqslant \frac{\operatorname{Prob}(Z \leqslant m) \operatorname{Prob}(Z>m)}{\lambda \operatorname{Prob}(Z=m)}$.

Bounding the Stein operator

Proof.

- For $m<\lambda$,

$$
\begin{aligned}
|f(m+1)| & \leqslant \frac{\operatorname{Prob}(Z \leqslant m)}{\lambda \operatorname{Prob}(Z=m)}=\frac{1}{\lambda} \sum_{j=0}^{m} \frac{m!}{\lambda^{j}(m-j)!} \\
& \leqslant \frac{1}{\lambda} \sum_{j=0}^{m}\left(\frac{m}{\lambda}\right)^{j} \leqslant(\lambda-m)^{-1}
\end{aligned}
$$

Hence $|f(m)| \leqslant 1$ if $m \leqslant \lambda$.

Bounding the Stein operator

Proof.

- For $m \geqslant \lambda-3$

$$
\begin{aligned}
|f(m+1)| & \leqslant \frac{\operatorname{Prob}(Z>m)}{\lambda \operatorname{Prob}(Z=m)}=\sum_{j=0}^{\infty} \frac{\lambda^{j} m!}{(m+1+j)!} \\
& \leqslant \frac{1}{m+1}\left[1+\frac{\lambda}{m+2} \sum_{j=0}^{\infty}\left(\frac{\lambda}{m+3}\right)^{j}\right] \\
& =\frac{(m+2)(m+3)+\lambda}{(m+1)(m+2)(m+3-\lambda)}
\end{aligned}
$$

This restricts bounding $|f(m)|<1$ to a finite check, which we'll ignore.

Bounding the Stein operator

Proof.

- Using $\operatorname{Prob}(Z \leqslant m) \operatorname{Prob}(Z>m) \leqslant \frac{1}{4}$ and Stirling's approximation

$$
\begin{aligned}
|f(m+1)| & \leqslant \frac{1}{4 \lambda \operatorname{Prob}(Z=m)} \\
& \leqslant \frac{\sqrt{2 \pi}}{4 \lambda^{\frac{1}{2}}}\left(\frac{m}{\lambda}\right)^{m+\frac{1}{2}} \exp \left(\lambda-m+\frac{1}{12 m}\right) \\
& \leqslant \frac{\sqrt{2 \pi}}{4} \lambda^{-\frac{1}{2}} \exp \left(\frac{(m-\lambda)\left(m-\lambda+\frac{1}{2}\right)}{\lambda}+\frac{1}{12 m}\right)
\end{aligned}
$$

Using this for $|\lambda-m| \leqslant \lambda^{\frac{1}{2}}$ and the previous inequalities otherwise obtains the bound $|f(m+1)| \leqslant \frac{c}{\lambda^{\frac{1}{2}}}$.

Bounding the Stein operator

Proof.

- Define f_{j} by taking $h(x)=\mathbf{1}(x=j)$. Hence

$$
f_{j}(m+1)=\left\{\begin{array}{cl}
\lambda^{j-m-1} \frac{m!}{j!} \operatorname{Prob}(Z>m) & m \geqslant j \\
-\lambda^{j-m-1} \frac{m!}{j!} \operatorname{Prob}(Z \leqslant m) & m<j
\end{array} .\right.
$$

- One easily checks that f_{j} is positive and decreasing in $m \geqslant j+1$ and is negative and decreasing in $m \leqslant j$.
- The only positive value of $f_{j}(m+1)-f_{j}(m)$ is

$$
\begin{aligned}
f_{j}(j+1)-f_{j}(j) & =\frac{e^{-\lambda}}{\lambda}\left[\sum_{r=j+1}^{\infty} \frac{\lambda^{r}}{r!}+\sum_{r=1}^{j} \frac{\lambda^{r}}{r!} \frac{r}{j}\right] \\
& \leqslant \frac{e^{-\lambda}}{\lambda}\left(e^{\lambda}-1\right)=\frac{1-e^{-\lambda}}{\lambda}
\end{aligned}
$$

Bounding the Stein operator

Proof.

- Writing the general f as $f=\sum_{j} h(j) f_{j}$ proves

$$
f(m+1)-f(m) \leqslant f_{m}(m+1)-f_{m}(m) \leqslant \frac{1-e^{-\lambda}}{\lambda}
$$

- This last calculation contains the claim that $\left\|f_{0}\right\|=\frac{1-e^{-\lambda}}{\lambda}$ as this is the value at 1 .

Proof of Stein's Poisson approximation

Proof of Stein's Poisson approximation theorem.

- Let h be given with $\|h\|_{\infty}=1$ and let $Z \sim \operatorname{Poisson}(\lambda)$.
- Let $\bar{h}(\cdot)=h(\cdot)-\mathrm{E}[h(Z)], f=S \bar{h}$ and $T f=\bar{h}$, so

$$
\mathrm{E}[T f(W)]=\mathrm{E}[h(W)-h(Z)] .
$$

Proof of Stein's Poisson approximation

Proof of Stein's Poisson approximation theorem.

- Let $V_{\alpha}=\sum_{\beta \in I-B_{\alpha}} X_{\beta}$ and $W_{\alpha}=W-X_{\alpha}$. We have $X_{\alpha} f(W)=X_{\alpha} f\left(W_{\alpha}+1\right)$ and $f\left(W_{\alpha}+1\right)-f(W+1)=X_{\alpha}\left[f\left(W_{\alpha}+1\right)-f\left(W_{\alpha}+2\right)\right]$.
- Calculate

$$
\begin{aligned}
\mathrm{E}[h(W)-h(Z)]= & \mathrm{E}[W f(W)-\lambda f(W+1)] \\
= & \sum_{\alpha \in I} \mathrm{E}\left[X_{\alpha} f(W)-p_{\alpha} f(W+1)\right] \\
= & \sum_{\alpha \in I} \mathrm{E}\left[p_{\alpha} f\left(W_{\alpha}+1\right)-p_{\alpha} f(W+1)\right] \\
& +\sum_{\alpha \in I} \mathrm{E}\left[X_{\alpha} f\left(W_{\alpha}+1\right)-p_{\alpha} f\left(W_{\alpha}+1\right)\right]
\end{aligned}
$$

Proof of Stein's Poisson approximation

Proof of Stein's Poisson approximation theorem.

- Calculate further

$$
\begin{aligned}
\mathrm{E}[h(W)-h(Z)]= & \sum_{\alpha \in I} \mathrm{E}\left[p_{\alpha} X_{\alpha}\left[f\left(W_{\alpha}+1\right)-f\left(W_{\alpha}+2\right)\right]\right] \\
& +\sum_{\alpha \in I} \mathrm{E}\left[\left(X_{\alpha}-p_{\alpha}\right)\left[f\left(W_{\alpha}+1\right)-f\left(V_{\alpha}+1\right)\right]\right] \\
& +\sum_{\alpha \in I} \mathrm{E}\left[\left(X_{\alpha}-p_{\alpha}\right) f\left(V_{\alpha}+1\right)\right]
\end{aligned}
$$

- The first term may be bounded by $\|\Delta f\|_{\infty} \sum_{\alpha \in I} p_{\alpha}^{2}$.

Proof of Stein's Poisson approximation

Proof of Stein's Poisson approximation theorem.

- To bound $\sum_{\alpha \in I} \mathrm{E}\left[\left(X_{\alpha}-p_{\alpha}\right)\left[f\left(W_{\alpha}+1\right)-f\left(V_{\alpha}+1\right)\right]\right]$, write $\mathrm{E}\left[\left(X_{\alpha}-p_{\alpha}\right)\left[f\left(W_{\alpha}+1\right)-f\left(V_{\alpha}+1\right)\right]\right]$ as a telescoping sum of $\left|B_{\alpha}\right|-1$ terms of the form

$$
\begin{aligned}
& \mathrm{E}\left[\left(X_{\alpha}-p_{\alpha}\right)\left(f\left(U+X_{\beta}\right)-f(U)\right)\right] \\
& =\mathrm{E}\left[\left(X_{\alpha}-p_{\alpha}\right) X_{\beta}(f(U+1)-f(U))\right] \\
& =\mathrm{E}\left[X_{\alpha} X_{\beta} \Delta f(U)\right]-\mathrm{E}\left[p_{\alpha} X_{\beta} \Delta f(U)\right] \\
& \leqslant\|\Delta f\|_{\infty}\left(p_{\alpha \beta}+p_{\alpha} p_{\beta}\right) .
\end{aligned}
$$

- Thus the second term is bounded by

$$
\|\Delta f\|_{\infty} \sum_{\alpha \in I} \sum_{\alpha \neq \beta \in B_{\alpha}}\left(p_{\alpha \beta}+p_{\alpha} p_{\beta}\right) .
$$

Proof of Stein's Poisson approximation

Proof of Stein's Poisson approximation theorem.

- The third term is bounded by

$$
\begin{aligned}
& \left|\sum_{\alpha \in I} \mathrm{E}\left[\left(X_{\alpha}-p_{\alpha}\right) f\left(V_{\alpha}+1\right)\right]\right| \\
& \leqslant\|f\|_{\infty} \sum_{\alpha \in I} \mathrm{E}\left[\left|\mathrm{E}\left[X_{\alpha}-p_{\alpha} \mid \sum_{\beta \in I-B_{\alpha}} X_{\beta}\right]\right|\right]=\|f\|_{\infty} b_{3}^{\prime} .
\end{aligned}
$$

- This completes the proof.

A random graph problem

Example

- On the hypercube $\{0,1\}^{n}$, assume each of the $n 2^{n-1}$ edges is assigned a random direction by tossing a fair coin, and let W be the number of vertices at which all n edges point inward.
- Let I be the set of all 2^{n} vertices, and X_{α} the indicator that vertex α has all edges pointing inward. Thus $p_{\alpha}=2^{-n}$. Set $\lambda=1$, $Z=$ Poisson(1).
- $B_{\alpha}=\{\beta:|\alpha-\beta| \leqslant 1\}$.

A random graph problem

Example

- Calculate

$$
b_{1}=\sum_{\alpha \in I} \sum_{\beta \in B_{\alpha}} p_{\alpha} p_{\beta}=|I|(n+1) 2^{-2 n}=\frac{n+1}{2^{n}} .
$$

- Calculate

$$
b_{2}=\sum_{\alpha \in I} \sum_{\alpha \neq \beta \in B_{\alpha}} \mathrm{E}\left[X_{\alpha} X_{\beta}\right]=0,
$$

since the events $\left\{X_{\alpha}=1\right\}$ and $\left\{X_{\beta}=1\right\}$ are mutually exclusive.

- $b_{3}=0$ since X_{α} is independent of $\sigma\left(X_{\beta}: \beta \in I-B_{\alpha}\right)$.
- $\|\mathscr{L}(W)-\mathscr{L}(Z)\|_{\mathrm{TV}} \leqslant(n+1) 2^{-n}$.

The birthday problem

Example

- Suppose n balls (people) are uniformly and independently distributed into d boxes (days of the year). We seek an estimate for the probability that at least one box contains k or more balls for $k=2,3,4, \ldots$
- Let $I=\{\alpha \subset\{1,2,3, \ldots, n\}:|\alpha|=k\}$, and let X_{α} be the event that each ball in α goes into the same box.
- Set $W=\sum_{\alpha \in I} X_{\alpha}, p_{\alpha}=\operatorname{Prob}\left(X_{\alpha}=1\right)=d^{1-k}, \lambda=\binom{n}{k} d^{1-k}$ and $Z \sim \operatorname{Poisson}(\lambda)$.
- The goal is to approximate $W \Rightarrow Z$ as $n \rightarrow \infty$. To do so, we assume that λ is held essentially fixed, so that $d=n^{\frac{k}{k-1}}$ as $n \rightarrow \infty$.

The birthday problem

Example

- $B_{\alpha}=\{\beta \in I: \alpha \cap \beta \neq \varnothing\}$. Hence X_{α} is independent of $\sigma\left(X_{\beta}: \beta \in B_{\alpha}\right)$, so $b_{3}=0$.
- One has $\left|B_{\alpha}\right|=\binom{n}{k}-\binom{n-k}{k}$, so

$$
\begin{aligned}
b_{1} & =p_{\alpha}^{2}|I|\left|B_{\alpha}\right| \\
& =\lambda^{2} \frac{\left|B_{\alpha}\right|}{|I|} \\
& =\lambda^{2}\left(1-\frac{n-k}{n} \frac{n-k-1}{n-1} \cdots \frac{n-2 k+1}{n-k+1}\right) \\
& <\lambda^{2}\left(1-\left(1-\frac{k^{2}}{n-k+1}\right)\right)=\frac{\lambda^{2} k^{2}}{n-k+1} .
\end{aligned}
$$

- For λ and k fixed, this tends to 0 with increasing n.

The birthday problem

Example

- For fixed α,

$$
\sum_{\beta \in B_{\alpha} \backslash\{\alpha\}} \mathrm{E}\left[X_{\alpha} X_{\beta}\right]=\sum_{j=1}^{k-1}\binom{k}{j}\binom{n-k}{k-j} d^{1+j-2 k} .
$$

When $\frac{d}{n}$ is large, the dominant term comes from $j=k-1$, so that

$$
b_{2} \lesssim k\binom{n}{k}(n-k) d^{-k}=k \lambda \frac{n-k}{d} .
$$

- Recalling $d=n^{\frac{k}{k-1}}, b_{2} \rightarrow 0$.

The longest perfect head run

Example

- Let $0<p<1$ and Y_{1}, Y_{2}, \ldots be an i.i.d. sequence $p=\operatorname{Prob}\left(Y_{i}=1\right)=1-\operatorname{Prob}\left(Y_{i}=0\right)$.
- Let R_{n} be the length of the longest consecutive run of heads starting within the first n tosses.
- Let $I=\{1,2, \ldots, n\}$.
- Fix positive integer t and set $X_{1}=Y_{1} Y_{2} \cdots Y_{t}$, and for $2 \leqslant \alpha \leqslant n$,

$$
X_{\alpha}=\left(1-Y_{\alpha-1}\right) Y_{\alpha} Y_{\alpha+1} \cdots Y_{\alpha+t-1}
$$

The longest perfect head run

Example

- Let $B_{\alpha}=\{\beta \in I:|\alpha-\beta| \leqslant t\}$.
- One has $b_{3}=0$ by independence, and $b_{2}=0$, since for $\beta \neq \alpha$, $\beta \in B_{\alpha}$, the events $\left\{X_{\alpha}=1\right\}$ and $\left\{X_{\beta}=1\right\}$ are exclusive.
- We have

$$
b_{1}<p^{2 t}(1+2 t(1-p))+n(2 t+1) p^{2 t}(1-p)^{2}
$$

and

$$
\lambda=\lambda(n, t)=\mathrm{E}[W]=p^{t}[(n-1)(1-p)+1] .
$$

- Since $\left\{R_{n}<t\right\}=\{W=0\}$, with $Z \sim \operatorname{Poisson}(\lambda)$

$$
\left|\operatorname{Prob}\left(R_{n}<t\right)-e^{-\lambda(n, t)}\right| \leqslant\|W-Z\|_{\mathrm{TV}} \leqslant b_{1} \min \left(1, \lambda^{-1}\right)
$$

Keeping λ fixed as $n \rightarrow \infty, b_{1} \rightarrow 0$.

Stein's method of normal approximation

Our discussion of Stein's method of normal approximation is taken from Stein's 1986 monograph "Approximate computation of expectations." For the remainder of the lecture Z is a standard normal random variable.

Stein's operators

- Let \mathscr{X} be the space of all piecewise continuous $h: \mathbb{R} \rightarrow \mathbb{R}$ such that, for all $k>0$

$$
\int_{-\infty}^{\infty}|x|^{k}|h(x)| e^{-\frac{x^{2}}{2}} d x<\infty
$$

- Let \mathscr{F} be the space of all continuous and piecewise continuously differentiable $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f^{\prime} \in \mathscr{X}$.
- Define operators $T: \mathscr{F} \rightarrow \mathscr{X}, \operatorname{Tf}(w)=f^{\prime}(w)-w f(w)$ and $U: \mathscr{X} \rightarrow \mathscr{F}$,

$$
U h(w)=e^{\frac{w^{2}}{2}} \int_{-\infty}^{w}[h(x)-\mathrm{E}[h(Z)]] e^{-\frac{x^{2}}{2}} d x
$$

Stein's operators

Lemma

For all $f \in \mathscr{F}, T f \in \mathscr{X}$. For all $h \in \mathscr{X}, U h \in \mathscr{F}$. Let Z be standard normal. For $h \in \mathscr{X}, T \circ U h(w)=h(w)-E[h(Z)]$.

Stein's operators

Proof.

- For $f \in \mathscr{F}$ and $k>0$,

$$
\begin{aligned}
& \int_{0}^{\infty} w^{k+1}|f(w)-f(0)| e^{-\frac{w^{2}}{2}} d w=\int_{0}^{\infty} w^{k+1}\left|\int_{0}^{w} f^{\prime}(x) d x\right| e^{-\frac{w^{2}}{2}} d w \\
& \leqslant \int_{0}^{\infty}\left|f^{\prime}(x)\right| \int_{x}^{\infty} w^{k+1} e^{-\frac{w^{2}}{2}} d w d x \\
& \leqslant \int_{0}^{\infty}\left|f^{\prime}(x)\right| C\left(1+|x|^{k}\right) e^{-\frac{x^{2}}{2}} d x<\infty
\end{aligned}
$$

Similarly $\int_{-\infty}^{0}|w|^{k+1}|f(w)-f(0)| e^{-\frac{w^{2}}{2}} d w<\infty$. Hence $w \mapsto w f(w) \in \mathscr{X}$, so $T f \in \mathscr{X}$.

Stein's operators

Proof.

- Given $h \in \mathscr{X}, k \geqslant 0$,

$$
\begin{aligned}
& \int_{0}^{\infty} w^{k+1}|U h(w)| e^{-\frac{w^{2}}{2}} d w \\
& \leqslant \int_{0}^{\infty} w^{k+1} \int_{w}^{\infty}|h(x)-\mathrm{E}[h(Z)]| e^{-\frac{x^{2}}{2}} d x d w \\
& =\int_{0}^{\infty}|h(x)-\mathrm{E}[h(Z)]| \frac{x^{k+2}}{k+2} e^{-\frac{x^{2}}{2}} d x<\infty
\end{aligned}
$$

Similarly $\int_{-\infty}^{0}|w|^{k+1}|U h(w)| e^{-\frac{w^{2}}{2}} d w<\infty$, so that $w \mapsto w U h(w) \in \mathscr{X}$.

Stein's operators

Proof.

- Differentiate

$$
U h(w)=e^{\frac{w^{2}}{2}} \int_{-\infty}^{w}[h(x)-E[h(Z)]] e^{-\frac{x^{2}}{2}} d x
$$

to obtain $(U h)^{\prime}(w)-w(U h)(w)=h(w)-\mathrm{E}[h(Z)]$.

Stein's method of normal approximation

Lemma

In order that the real random variable W has a standard normal distribution, it is necessary and sufficient that, for all continuous and piecewise continuously differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with $\mathrm{E}\left[\left|f^{\prime}(Z)\right|\right]<\infty, Z$ standard normal, we have

$$
\mathrm{E}\left[f^{\prime}(W)\right]=\mathrm{E}[W f(W)]
$$

Stein's method of normal approximation

Proof of necessity.

Let W have a standard normal distribution. Then

$$
\begin{aligned}
\mathrm{E}\left[f^{\prime}(W)\right]= & \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{\prime}(w) e^{-\frac{w^{2}}{2}} d w \\
= & \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0} f^{\prime}(w)\left(\int_{-\infty}^{w}(-z) e^{-\frac{z^{2}}{2}} d z\right) d w \\
& +\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} f^{\prime}(w)\left(\int_{w}^{\infty} z e^{-\frac{z^{2}}{2}} d z\right) d w
\end{aligned}
$$

Stein's method of normal approximation

Proof of necessity.

$$
\begin{aligned}
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0}\left(\int_{z}^{0} f^{\prime}(w) d w\right)(-z) e^{-\frac{z^{2}}{2}} d z \\
& \quad+\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty}\left(\int_{0}^{z} f^{\prime}(w) d w\right) z e^{-\frac{z^{2}}{2}} d z \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}[f(z)-f(0)] z e^{-\frac{z^{2}}{2}} d z=\mathrm{E}[W f(W)] .
\end{aligned}
$$

Stein's method of normal approximation

Proof of sufficiency.

- Given $w_{0} \in \mathbb{R}$, let $f_{w_{0}}=U \mathbf{1}\left(w \leqslant w_{0}\right)$.
- Hence

$$
\begin{aligned}
\mathrm{E}\left[f_{w_{0}}^{\prime}(W)-W f_{w_{0}}(W)\right] & =\mathrm{E}\left[\mathbf{1}\left(W \leqslant w_{0}\right)-\mathrm{E}\left[\mathbf{1}\left(Z \leqslant w_{0}\right)\right]\right] \\
& =\operatorname{Prob}\left(W \leqslant w_{0}\right)-\operatorname{Prob}\left(Z \leqslant w_{0}\right) .
\end{aligned}
$$

Hence, if this is zero for all w_{0} then W has a standard normal distribution.

Explicit estimates

The special functions $f_{w_{0}}=U \mathbf{1}\left(w \leqslant w_{0}\right)$ are given by

$$
f_{w_{0}}(w)= \begin{cases}\sqrt{2 \pi} e^{\frac{w^{2}}{2}} \Phi(w)\left[1-\Phi\left(w_{0}\right)\right] & w \leqslant w_{0} \\ \sqrt{2 \pi} e^{\frac{w^{2}}{2}} \Phi\left(w_{0}\right)[1-\Phi(w)] & w \geqslant w_{0}\end{cases}
$$

where $\Phi(w)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{w} e^{-\frac{x^{2}}{2}} d x$.

Explicit estimates

Lemma

The functions $f_{w_{0}}$ satisfies

$$
0<f_{w_{0}}(w) \leqslant \frac{\sqrt{2 \pi}}{4},\left|w f_{w_{0}}(w)\right|<1,\left|f_{w_{0}}^{\prime}(w)\right|<1
$$

for all real w_{0}, w.
We omit this explicit calculation.

Bounds for the Stein operator

Lemma

For bounded absolutely continuous $h: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\|U h\|_{\infty} & \leqslant \sqrt{\frac{\pi}{2}}\|h-\mathrm{E}[h(Z)]\|_{\infty} \\
\left\|U h^{\prime}\right\|_{\infty} & \leqslant 2\|h-\mathrm{E}[h(Z)]\|_{\infty} \\
\left\|U h^{\prime \prime}\right\|_{\infty} & \leqslant 2\left\|h^{\prime}\right\|_{\infty}
\end{aligned}
$$

Bounds for the Stein operator

Proof.

For $w \leqslant 0$,

$$
|U h(w)| \leqslant\left[\sup _{x \leqslant 0}|h(x)-\mathrm{E}[h(Z)]|\right] e^{\frac{w^{2}}{2}} \int_{-\infty}^{w} e^{-\frac{x^{2}}{2}} d x
$$

and, for $w \geqslant 0$,

$$
|U h(w)| \leqslant\left[\sup _{x \geqslant 0}|h(x)-\mathrm{E}[h(Z)]|\right] e^{\frac{w^{2}}{2}} \int_{w}^{\infty} e^{-\frac{x^{2}}{2}} d x .
$$

The first claim follows since the maximum of $e^{\frac{w^{2}}{2}} \int_{-\infty}^{w} e^{-\frac{x^{2}}{2}} d x$ in $w \leqslant 0$ is attained at 0 .

Bounds for the Stein operator

Proof.

For $w \geqslant 0$ use

$$
(U h)^{\prime}(w)=h(w)-E[h(Z)]-w e^{\frac{w^{2}}{2}} \int_{w}^{\infty}[h(x)-E[h(Z)]] e^{-\frac{x^{2}}{2}} d x .
$$

Hence

$$
\begin{aligned}
\sup _{w \geqslant 0}\left|(U h)^{\prime}(w)\right| & \leqslant[\sup |h-\mathrm{E}[h(Z)]|]\left[1+\sup _{w \geqslant 0} w e^{\frac{w^{2}}{2}} \int_{w}^{\infty} e^{-\frac{x^{2}}{2}} d x\right] \\
& \leqslant 2 \sup |h-\mathrm{E}[h(Z)]| .
\end{aligned}
$$

The bound for $w \leqslant 0$ is similar.

Bounds for the Stein operator

Proof.

The bound for $\left\|(U h)^{\prime \prime}\right\|_{\infty}$ in terms of $\left\|h^{\prime}\right\|_{\infty}$ is a more involved computation, which we omit.

Exchangeable pairs

Definition

A pair $\left(X, X^{\prime}\right)$ of random variables on a probability space $(\Omega, \mathscr{B}, \operatorname{Prob})$ is called an exchangeable pair if, for all B, B^{\prime},

$$
\operatorname{Prob}\left(X \in B, X^{\prime} \in B^{\prime}\right)=\operatorname{Prob}\left(X \in B^{\prime}, X^{\prime} \in B\right)
$$

Stein's method for normal approximation

The following lemma is key.

Lemma

Let $0<\lambda<1$ and let $\left(W, W^{\prime}\right)$ be an exchangeable pair of real random variables, such that

$$
\mathrm{E}\left[W^{\prime} \mid W\right]=(1-\lambda) W
$$

Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded continuous function with bounded piecewise continuous derivative h^{\prime}.

$$
\begin{aligned}
& \mathrm{E}[h(W)]=\mathrm{E}[h(Z)]+\mathrm{E}\left[(U h)^{\prime}(W)\left[1-\frac{1}{2 \lambda} \mathrm{E}\left[\left(W^{\prime}-W\right)^{2} \mid W\right]\right]\right]+ \\
& \frac{1}{2 \lambda} \int \mathrm{E}\left[\left(W-W^{\prime}\right)\left(z-\frac{W+W^{\prime}}{2}\right)\left[\mathbf{1}\left(z \leqslant W^{\prime}\right)-\mathbf{1}(z \leqslant W)\right]\right] d(U h)^{\prime}(z)
\end{aligned}
$$

Stein's method for normal approximation

Proof.

From the identity

$$
\begin{aligned}
0 & =\mathrm{E}\left[W f(W)-\frac{1}{2 \lambda}\left(W^{\prime}-W\right)\left(f\left(W^{\prime}\right)-f(W)\right)\right] \\
& =\mathrm{E}\left[W f(W)-f^{\prime}(W)\right]+\mathrm{E}\left[f^{\prime}(W)-\frac{1}{2 \lambda}\left(W^{\prime}-W\right)\left(f\left(W^{\prime}\right)-f(W)\right)\right] \\
& =\mathrm{E}[h(Z)]-\mathrm{E}[h(W)]+E\left[f^{\prime}(W)\right]-\frac{1}{2 \lambda} \mathrm{E}\left[\left(W^{\prime}-W\right)\left(f\left(W^{\prime}\right)-f(W)\right)\right]
\end{aligned}
$$

obtain

$$
\mathrm{E}[h(W)]=\mathrm{E}[h(Z)]+\mathrm{E}\left[f^{\prime}(W)\right]-\frac{1}{2 \lambda} \mathrm{E}\left[\left(W-W^{\prime}\right)\left(f(W)-f\left(W^{\prime}\right)\right)\right]
$$

Stein's method for normal approximation

Proof.

Rewrite part of the last line as

$$
\begin{aligned}
& \mathrm{E}\left[f^{\prime}(W)-\frac{1}{2 \lambda}\left(W^{\prime}-W\right)\left(f\left(W^{\prime}\right)-f(W)\right)\right] \\
& =\mathrm{E}\left[f^{\prime}(W)\left[1-\frac{1}{2 \lambda} \mathrm{E}\left[\left(W^{\prime}-W\right)^{2} \mid W\right]\right]\right] \\
& \quad-\frac{1}{2 \lambda} \mathrm{E}\left[\left(W^{\prime}-W\right)\left[f\left(W^{\prime}\right)-f(W)-\left(W^{\prime}-W\right) f^{\prime}(W)\right]\right]
\end{aligned}
$$

Stein's method for normal approximation

Proof.

Write

$$
\begin{aligned}
& f\left(W^{\prime}\right)-f(W)-\left(W^{\prime}-W\right) f^{\prime}(W)=\int_{W}^{W^{\prime}}\left(W^{\prime}-y\right) f^{\prime \prime}(y) d y \\
& =\int\left(W^{\prime}-y\right)\left[\mathbf{1}\left(y \leqslant W^{\prime}\right)-\mathbf{1}(y \leqslant W)\right] f^{\prime \prime}(y) d y
\end{aligned}
$$

Take expectation and use the exchangeability of W, W^{\prime} to obtain the claim.

Stein's method for normal approximation

Theorem

Let h be a bounded continuous function with bounded piecewise continuous derivative h^{\prime}. Let W, W^{\prime} as in the previous lemma. Then

$$
\begin{aligned}
& |\mathrm{E}[h(W)]-\mathrm{E}[h(Z)]| \leqslant \frac{1}{4 \lambda}\left\|h^{\prime}\right\|_{\infty} \mathrm{E}\left[\left|W^{\prime}-W\right|^{3}\right] \\
& +2\|h-\mathrm{E}[h(Z)]\|_{\infty} \sqrt{\mathrm{E}\left[\left(1-\frac{1}{2 \lambda} \mathrm{E}\left[\left(W^{\prime}-W\right)^{2} \mid W\right]\right)^{2}\right]}
\end{aligned}
$$

and for all real w_{0},

$$
\begin{aligned}
\left|\operatorname{Prob}\left(W \leqslant w_{0}\right)-\Phi\left(w_{0}\right)\right| \leqslant & \leqslant \sqrt{\mathrm{E}\left[\left(1-\frac{1}{2 \lambda} \mathrm{E}\left[\left(W^{\prime}-W\right)^{2} \mid W\right]\right)^{2}\right]} \\
& +(2 \pi)^{-\frac{1}{4}} \sqrt{\frac{1}{\lambda} \mathrm{E}\left[\left|W^{\prime}-W\right|^{3}\right]} .
\end{aligned}
$$

Stein's method for normal approximation

Proof.

$$
\begin{aligned}
& \mathrm{E}[h(W)]-\mathrm{E}[h(Z)]=\mathrm{E}\left[(U h)^{\prime}(W)\left[1-\frac{1}{2 \lambda} \mathrm{E}\left[\left(W^{\prime}-W\right)^{2} \mid W\right]\right]\right]+ \\
& \frac{1}{2 \lambda} \int \mathrm{E}\left[\left(W-W^{\prime}\right)\left(z-\frac{W+W^{\prime}}{2}\right)\left[\mathbf{1}\left(z \leqslant W^{\prime}\right)-\mathbf{1}(z \leqslant W)\right]\right] \\
& \quad \times(U h)^{\prime \prime}(z) d z
\end{aligned}
$$

SO

$$
\begin{aligned}
& |\mathrm{E}[h(W)]-\mathrm{E}[h(Z)]| \leqslant\left\|(U h)^{\prime}\right\|_{\infty} \mathrm{E}\left[\left|1-\frac{1}{2 \lambda} \mathrm{E}\left[\left(W-W^{\prime}\right)^{2} \mid W\right]\right|\right] \\
& +\left\|(U h)^{\prime \prime}\right\|_{\infty} \frac{1}{2 \lambda} \mathrm{E}\left[\int_{\min \left(W, W^{\prime}\right)}^{\max \left(W, W^{\prime}\right)}\left|W-W^{\prime}\right|\left|z-\frac{W+W^{\prime}}{2}\right| d z\right]
\end{aligned}
$$

Stein's method for normal approximation

Proof.

Recall $\left\|(U h)^{\prime}\right\|_{\infty} \leqslant 2\|h-\mathrm{E}[h(Z)]\|_{\infty}$ and $\left\|(U h)^{\prime \prime}\right\|_{\infty} \leqslant 2\left\|h^{\prime}\right\|_{\infty}$. Hence

$$
\begin{aligned}
& |\mathrm{E}[h(W)]-\mathrm{E}[h(Z)]| \leqslant \\
& 2\|h-\mathrm{E}[h(Z)]\|_{\infty} \sqrt{\mathrm{E}\left[\left(1-\frac{1}{2 \lambda} \mathrm{E}\left[\left(W-W^{\prime}\right)^{2} \mid W\right]\right)^{2}\right]} \\
& +2\left\|h^{\prime}\right\|_{\infty} \frac{1}{2 \lambda} \mathrm{E}\left[\frac{\left|W-W^{\prime}\right|^{3}}{4}\right] .
\end{aligned}
$$

This proves the first bound.
To prove the second, bound $\mathbf{1}\left(w \leqslant w_{0}\right)$ from above and below using piece-wise linear functions. We omit the details.

