Math 639: Lecture 7

Stein's method

Bob Hough

February 16, 2017

Bob Hough

Math 639: Lecture 7

February 16, 2017 1 / 61

< 🗗 🕨

3

Definition

Let X be a random variable on a probability space $(\Omega, \mathscr{F}_0, \text{Prob})$ satisfying $E[|X|] < \infty$ and let \mathscr{F} be a σ -algebra, $\mathscr{F} \subset \mathscr{F}_0$. The *conditional* expectation of X given \mathscr{F} , $E[X|\mathscr{F}]$ is any random variable Y such that **1** $Y \in \mathscr{F}$, that is, is \mathscr{F} measurable **2** For all $A \in \mathscr{F}$, $\int_A XdP = \int_A YdP$.

Conditional expectation

Lemma

If Y is a conditional expectation of integrable variable X then Y is integrable.

Proof.

Let $A = \{Y > 0\} \in \mathscr{F}$. Then $\int_{A} Y dP = \int_{A} X dp \leq \int_{A} |X| dP$ $\int_{A^{c}} -Y dP = \int_{A^{c}} -X dP \leq \int_{A^{c}} |X| dP.$ The Efford A

Thus $E[|Y|] \leq E[|X|]$.

Lemma

Let X be an integrable random variable on probability space $(\Omega, \mathscr{F}_0, \operatorname{Prob})$, with σ -field $\mathscr{F} \subset \mathscr{F}_0$, and let Y and Y' be two conditional expectations of X given \mathscr{F} . Then $Y = Y' \mathscr{F}$ -a.s.

Bob Hough

イロト 不得下 イヨト イヨト

Proof.

For each set $A \in \mathscr{F}$, $\int_A Y dP = \int_A Y' dP$. Given $\epsilon > 0$, let $A = \{Y - Y' \ge \epsilon\}$. One finds

$$0 = \int_{A} X - XdP = \int_{A} Y - Y'dP \ge \epsilon \operatorname{Prob}(A).$$

D					
RO	h I	=	\sim		h
00				- 5	

(日) (周) (三) (三)

Lemma

Let X be an integrable random variable on probability space $(\Omega, \mathscr{F}_0, \mathsf{Prob})$, and let $\mathscr{F} \subset \mathscr{F}_0$ be a σ -algebra. Then there exists $Y = \mathsf{E}[X|\mathscr{F}]$.

3

(日) (周) (三) (三)

Conditional expectation

Proof.

- By splitting X into its positive and negative parts, we may assume that X ≥ 0.
- Let $\mu = \mathsf{Prob}$ and let ν be the measure on \mathscr{F} defined by

$$u(A) = \int_A X dP, \qquad A \in \mathscr{F}.$$

- By the definition of the integral, $\nu \ll \mu$.
- Let $Y = \frac{d\nu}{d\mu}$ be the Radon-Nikodym derivative of ν with respect to μ , which is \mathscr{F} -measurable. We have, for $A \in \mathscr{F}$,

$$\int_A X dP = \nu(A) = \int_A Y dP.$$

- ∢ ⊢⊒ →

- Stein has given a general method of proving limit theorems via a perturbative method which avoids the use of characteristic functions and handles dependence
- The following discussion of Poisson Approximation is based on the article

'Two moments suffice for Poisson approximations: the Chen-Stein method' by R. Arratia, L. Goldstein, L. Gordon

• Let I be an arbitrary index set, and for $\alpha \in I$, let X_{α} be a Bernoulli random variable with

$$p_{\alpha} = \operatorname{Prob}(X_{\alpha} = 1) = 1 - \operatorname{Prob}(X_{\alpha} = 0) > 0.$$

Set

$$W = \sum_{\alpha \in I} X_{\alpha}, \qquad \lambda = \mathsf{E}[W] = \sum_{\alpha \in I} p_{\alpha}, \qquad \lambda \in (0, \infty).$$

3

э.

Image: A match a ma

Set-up

For α ∈ I, let B_α ⊂ I, α ∈ B_α be a 'neighborhood of dependence.'
Set

$$b_{1} = \sum_{\alpha \in I} \sum_{\beta \in B_{\alpha}} p_{\alpha} p_{\beta}$$

$$b_{2} = \sum_{\alpha \in I} \sum_{\alpha \neq \beta \in B_{\alpha}} p_{\alpha\beta}, \qquad p_{\alpha\beta} = \mathsf{E}[X_{\alpha} X_{\beta}]$$

$$b_{3} = \sum_{\alpha \in I} s_{\alpha}.$$

$$s_{\alpha} = \mathsf{E}\left[\left|\mathsf{E}\left[X_{\alpha} - p_{\alpha} \middle| \sigma\left(X_{\beta} : \beta \in I - B_{\alpha}\right)\right]\right|\right].$$

3

(日) (周) (三) (三)

Recall the definition of the total variation norm.

Definition

Bob Hough

If Z, W are two $\mathbb{Z}_{\geq 0}$ valued random variables with distributions (laws) $\mathscr{L}(Z), \mathscr{L}(W)$. The *total variation distance* between $\mathscr{L}(Z)$ and $\mathscr{L}(W)$ is

$$\begin{aligned} \|\mathscr{L}(Z) - \mathscr{L}(W)\|_{\mathsf{TV}} &= \frac{1}{2} \sup_{\|h\|_{\infty} = 1} |\mathsf{E}[h(W)] - \mathsf{E}[h(Z)]| \\ &= \sup_{A \subset \mathbb{Z}^+} |\operatorname{Prob}(W \in A) - \operatorname{Prob}(Z \in A)|. \end{aligned}$$

Math 639: Lecture 7	February 16, 2017 1

イロン イロン イヨン イヨン 三日

/ 61

The following theorem is due to Chen.

Theorem

Let W be the number of occurrences of dependent events, and let b_1, b_2, b_3 be as in the set-up. Let Z be a $Poisson(\lambda)$ random variable. Then

$$\|\mathscr{L}(W) - \mathscr{L}(Z)\|_{\mathsf{TV}} \leq b_1 + b_2 + b_3.$$

Let λ be a parameter, let $Z \sim \text{Poisson}(\lambda)$ and define linear operators S, Ton functions on $\mathbb{Z}_{\geq 0}$ by

$$Tf(w) = wf(w) - \lambda f(w+1)$$

$$Sf(w+1) = -\frac{\mathsf{E}\left[f(Z)\mathbf{1}_{(Z \le w)}\right]}{\lambda \operatorname{Prob}(Z = w)}, \qquad Sf(0) = 0.$$

3

(日) (周) (三) (三)

Lemma

T and S are inverse, in the sense that TSf = f.

D -				
во	D	HΟ	Πp	'n

3

∃ ► < ∃ ►</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Stein's operators

Proof.

We have, for $x \neq 0$,

$$TSf(x) = xSf(x) - \lambda Sf(x+1)$$

= $xSf(x) + \frac{E[h(Z\mathbf{1}_{(Z \le x)})]}{\operatorname{Prob}(Z = x)}$
= $-\frac{x E[f(Z)\mathbf{1}_{(Z \le x-1)}]}{\lambda \operatorname{Prob}(Z = x-1)} + \frac{E[f(Z)\mathbf{1}_{(Z \le x)}]}{\operatorname{Prob}(Z = x)}$
= $f(x)$

For x = 0, xSf(x) = 0, the result is the same.

and the second s
ugn

- 2

イロト イヨト イヨト

Lemma

Let λ be a parameter, and let Z be a $\mathbb{Z}_{\geq 0}$ valued random variable. Z ~ Poisson(λ) if and only if for all bounded f,

 $\mathsf{E}[Tf(Z)] = 0.$

D -				
во	D	HΟ	Πp	'n

3

- 4 回 ト - 4 回 ト

Stein's criterion

Proof.

• To check the necessity, write

$$E[Tf(Z)] = e^{-\lambda} \sum_{n \ge 0} Tf(n) \frac{\lambda^n}{n!}$$

= $e^{-\lambda} \sum_{n \ge 0} (nf(n) - \lambda f(n+1)) \frac{\lambda^n}{n!}$
= $e^{-\lambda} \sum_{n \ge 1} (f(n) - f(n)) \frac{\lambda^n}{(n-1)!} = 0.$

(日) (同) (三) (三) Math 639: Lecture 7 February 16, 2017 17 / 61

3

Proof.

• To prove the sufficiency, set $f(x) = \mathbf{1}_{(x=n)}$ for n = 1, 2, ... to obtain

$$\operatorname{Prob}(Z = n - 1) = \frac{n}{\lambda} \operatorname{Prob}(Z = n).$$

The result follows.

-			
20	b 1	101	1 mb
130		101	1 M H
	_	_	

- 3

(日) (周) (三) (三)

Define
$$\Delta f(n) = f(n+1) - f(n)$$
.

Lemma

Suppose that $\forall w \ge 0$, $h(w) \in [0,1]$ and $f = S(h(\cdot) - E[h(Z)])$. Then

$$\|\Delta f\|_{\infty} \leqslant rac{1-e^{-\lambda}}{\lambda} \text{ and } \|f\|_{\infty} \leqslant \min\left(1,rac{1.4}{\lambda^{rac{1}{2}}}
ight).$$

Furthermore, if $h(w) = \mathbf{1}(w = 0) - e^{-\lambda}$ then $||f||_{\infty} = \frac{1 - e^{-\lambda}}{\lambda}$.

Bob Hough

Proof.

Observe

$$\begin{split} f(m+1) &= \frac{\mathsf{E}[h(Z)]\operatorname{Prob}(Z \leqslant m)}{\lambda\operatorname{Prob}(Z = m)} - \frac{\mathsf{E}[h(Z)\mathbf{1}(Z \leqslant m)]}{\lambda\operatorname{Prob}(Z = m)} \\ &= \frac{\mathsf{E}[h(Z)\mathbf{1}(Z > m)]\operatorname{Prob}(Z \leqslant m)}{\lambda\operatorname{Prob}(Z = m)} \\ - \frac{\mathsf{E}[h(Z)\mathbf{1}(Z \leqslant m)]\operatorname{Prob}(Z > m)}{\lambda\operatorname{Prob}(Z = m)}. \end{split}$$

Hence $|f(m+1)| \leqslant \frac{\operatorname{Prob}(Z \leqslant m)\operatorname{Prob}(Z > m)}{\lambda\operatorname{Prob}(Z = m)}. \end{split}$

Ro	5 F		ah
00	יט	101	igii

æ

- ∢ ≣ →

Image: A math a math

Proof.

• For $m < \lambda$,

$$\begin{split} |f(m+1)| &\leq \frac{\operatorname{Prob}(Z \leq m)}{\lambda \operatorname{Prob}(Z = m)} = \frac{1}{\lambda} \sum_{j=0}^{m} \frac{m!}{\lambda^{j}(m-j)!} \\ &\leq \frac{1}{\lambda} \sum_{j=0}^{m} \left(\frac{m}{\lambda}\right)^{j} \leq (\lambda - m)^{-1}. \end{split}$$

Hence $|f(m)| \leq 1$ if $m \leq \lambda$.

3

(日) (周) (三) (三)

Proof.

• For $m \ge \lambda - 3$

$$f(m+1)| \leq \frac{\operatorname{Prob}(Z > m)}{\lambda \operatorname{Prob}(Z = m)} = \sum_{j=0}^{\infty} \frac{\lambda^j m!}{(m+1+j)!}$$
$$\leq \frac{1}{m+1} \left[1 + \frac{\lambda}{m+2} \sum_{j=0}^{\infty} \left(\frac{\lambda}{m+3} \right)^j \right]$$
$$= \frac{(m+2)(m+3) + \lambda}{(m+1)(m+2)(m+3-\lambda)}.$$

This restricts bounding |f(m)| < 1 to a finite check, which we'll ignore.

D			
во	b⊦	lou	gh
			0

3

(日) (周) (三) (三)

Proof.

• Using $\operatorname{Prob}(Z \leq m) \operatorname{Prob}(Z > m) \leq \frac{1}{4}$ and Stirling's approximation

$$\begin{split} |f(m+1)| &\leq \frac{1}{4\lambda \operatorname{Prob}(Z=m)} \\ &\leq \frac{\sqrt{2\pi}}{4\lambda^{\frac{1}{2}}} \left(\frac{m}{\lambda}\right)^{m+\frac{1}{2}} \exp\left(\lambda - m + \frac{1}{12m}\right) \\ &\leq \frac{\sqrt{2\pi}}{4}\lambda^{-\frac{1}{2}} \exp\left(\frac{(m-\lambda)(m-\lambda+\frac{1}{2})}{\lambda} + \frac{1}{12m}\right). \end{split}$$

Using this for $|\lambda - m| \leq \lambda^{\frac{1}{2}}$ and the previous inequalities otherwise obtains the bound $|f(m+1)| \leq \frac{c}{\lambda^{\frac{1}{2}}}$.

(日) (同) (三) (三)

Proof.

• Define f_j by taking $h(x) = \mathbf{1}(x = j)$. Hence

$$f_j(m+1) = \begin{cases} \lambda^{j-m-1} \frac{m!}{j!} \operatorname{Prob}(Z > m) & m \ge j \\ -\lambda^{j-m-1} \frac{m!}{j!} \operatorname{Prob}(Z \le m) & m < j \end{cases}$$

- One easily checks that f_j is positive and decreasing in $m \ge j + 1$ and is negative and decreasing in $m \le j$.
- The only positive value of $f_j(m+1) f_j(m)$ is

$$\begin{split} f_{j}(j+1) - f_{j}(j) &= \frac{e^{-\lambda}}{\lambda} \left[\sum_{r=j+1}^{\infty} \frac{\lambda^{r}}{r!} + \sum_{r=1}^{j} \frac{\lambda^{r}}{r!} \frac{r}{j} \right] \\ &\leqslant \frac{e^{-\lambda}}{\lambda} (e^{\lambda} - 1) = \frac{1 - e^{-\lambda}}{\lambda}. \end{split}$$

Proof.

• Writing the general f as $f = \sum_j h(j) f_j$ proves

$$f(m+1) - f(m) \leq f_m(m+1) - f_m(m) \leq \frac{1 - e^{-\lambda}}{\lambda}.$$

• This last calculation contains the claim that $||f_0|| = \frac{1-e^{-\lambda}}{\lambda}$ as this is the value at 1.

P ₂	Ь	ш	~	а.	~	h
ЪU	υ		U	ч	в	

- 3

イロト 不得下 イヨト イヨト

Proof of Stein's Poisson approximation theorem.

• Let *h* be given with $||h||_{\infty} = 1$ and let $Z \sim \text{Poisson}(\lambda)$.

• Let
$$\overline{h}(\cdot) = h(\cdot) - \mathsf{E}[h(Z)]$$
, $f = S\overline{h}$ and $Tf = \overline{h}$, so

$$\mathsf{E}[Tf(W)] = \mathsf{E}[h(W) - h(Z)].$$

D HOUSU

Proof of Stein's Poisson approximation theorem.

• Let
$$V_{\alpha} = \sum_{\beta \in I-B_{\alpha}} X_{\beta}$$
 and $W_{\alpha} = W - X_{\alpha}$. We have $X_{\alpha}f(W) = X_{\alpha}f(W_{\alpha} + 1)$ and $f(W_{\alpha} + 1) - f(W + 1) = X_{\alpha}[f(W_{\alpha} + 1) - f(W_{\alpha} + 2)]$

Calculate

$$E[h(W) - h(Z)] = E[Wf(W) - \lambda f(W + 1)]$$

= $\sum_{\alpha \in I} E[X_{\alpha}f(W) - p_{\alpha}f(W + 1)]$
= $\sum_{\alpha \in I} E[p_{\alpha}f(W_{\alpha} + 1) - p_{\alpha}f(W + 1)]$
+ $\sum_{\alpha \in I} E[X_{\alpha}f(W_{\alpha} + 1) - p_{\alpha}f(W_{\alpha} + 1)]$

Math 639: Lecture 7

< □ > < ---->

.

Proof of Stein's Poisson approximation theorem.

Calculate further

$$E[h(W) - h(Z)] = \sum_{\alpha \in I} E[p_{\alpha}X_{\alpha}[f(W_{\alpha} + 1) - f(W_{\alpha} + 2)]] + \sum_{\alpha \in I} E[(X_{\alpha} - p_{\alpha})[f(W_{\alpha} + 1) - f(V_{\alpha} + 1)]] + \sum_{\alpha \in I} E[(X_{\alpha} - p_{\alpha})f(V_{\alpha} + 1)].$$

• The first term may be bounded by $\|\Delta f\|_{\infty} \sum_{\alpha \in I} p_{\alpha}^2$.

Bob Hough	Math 639: Lecture 7	February 16, 2017	28 / 61

4 D N 4 D N 4 D N 4 D N

Proof of Stein's Poisson approximation theorem.

• To bound $\sum_{\alpha \in I} E[(X_{\alpha} - p_{\alpha}) [f(W_{\alpha} + 1) - f(V_{\alpha} + 1)]]$, write $E[(X_{\alpha} - p_{\alpha}) [f(W_{\alpha} + 1) - f(V_{\alpha} + 1)]]$ as a telescoping sum of $|B_{\alpha}| - 1$ terms of the form

$$E[(X_{\alpha} - p_{\alpha})(f(U + X_{\beta}) - f(U))]$$

= $E[(X_{\alpha} - p_{\alpha})X_{\beta}(f(U + 1) - f(U))]$
= $E[X_{\alpha}X_{\beta}\Delta f(U)] - E[p_{\alpha}X_{\beta}\Delta f(U)]$
 $\leq \|\Delta f\|_{\infty}(p_{\alpha\beta} + p_{\alpha}p_{\beta}).$

• Thus the second term is bounded by

$$\|\Delta f\|_{\infty} \sum_{\alpha \in I} \sum_{\alpha \neq \beta \in B_{\alpha}} (p_{\alpha\beta} + p_{\alpha}p_{\beta}).$$

Proof of Stein's Poisson approximation theorem.

• The third term is bounded by

$$\left| \sum_{\alpha \in I} \mathsf{E}[(X_{\alpha} - p_{\alpha})f(V_{\alpha} + 1)] \right|$$

$$\leq \|f\|_{\infty} \sum_{\alpha \in I} \mathsf{E}\left[\left| \mathsf{E}\left[X_{\alpha} - p_{\alpha} \Big| \sum_{\beta \in I - B_{\alpha}} X_{\beta} \right] \right| \right] = \|f\|_{\infty} b'_{3}.$$

• This completes the proof.

	- L	- 1	ш.			1
D	υι	וכ		υι	Ig.	
					•	

Example

- On the hypercube $\{0,1\}^n$, assume each of the $n2^{n-1}$ edges is assigned a random direction by tossing a fair coin, and let W be the number of vertices at which all n edges point inward.
- Let *I* be the set of all 2ⁿ vertices, and X_α the indicator that vertex α has all edges pointing inward. Thus p_α = 2⁻ⁿ. Set λ = 1, Z = Poisson(1).
- $B_{\alpha} = \{\beta : |\alpha \beta| \leq 1\}.$

イロト イポト イヨト イヨト 二日

A random graph problem

Example

Calculate

$$b_1 = \sum_{\alpha \in I} \sum_{\beta \in B_\alpha} p_\alpha p_\beta = |I|(n+1)2^{-2n} = \frac{n+1}{2^n}.$$

Calculate

$$b_2 = \sum_{\alpha \in I} \sum_{\alpha \neq \beta \in B_\alpha} \mathsf{E}[X_\alpha X_\beta] = 0,$$

since the events $\{X_{\alpha}=1\}$ and $\{X_{\beta}=1\}$ are mutually exclusive.

• $b_3 = 0$ since X_{α} is independent of $\sigma(X_{\beta} : \beta \in I - B_{\alpha})$.

•
$$\|\mathscr{L}(W) - \mathscr{L}(Z)\|_{\mathsf{TV}} \leq (n+1)2^{-n}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The birthday problem

Example

- Suppose n balls (people) are uniformly and independently distributed into d boxes (days of the year). We seek an estimate for the probability that at least one box contains k or more balls for k = 2, 3, 4,
- Let I = {α ⊂ {1, 2, 3, ..., n} : |α| = k}, and let X_α be the event that each ball in α goes into the same box.
- Set $W = \sum_{\alpha \in I} X_{\alpha}$, $p_{\alpha} = \operatorname{Prob}(X_{\alpha} = 1) = d^{1-k}$, $\lambda = {n \choose k} d^{1-k}$ and $Z \sim \operatorname{Poisson}(\lambda)$.
- The goal is to approximate W ⇒ Z as n → ∞. To do so, we assume that λ is held essentially fixed, so that d ≈ n^k/_{k-1} as n → ∞.

イロト イポト イヨト イヨト 二日

The birthday problem

Example

۵

۲

$B_{\alpha} = \{\beta \in I : \alpha \cap \beta \neq \emptyset\}$. Hence X_{α} is independent of
$\sigma(X_{eta}:eta\in B_{lpha})$, so $b_3=0.$
One has $ B_{lpha} = {n \choose k} - {n-k \choose k}$, so
$b_1 = p_\alpha^2 I B_\alpha $
$=\lambda^2 \frac{ B_{lpha} }{ I }$
$=\lambda^2\left(1-rac{n-k}{n}rac{n-k-1}{n-1}\cdotsrac{n-2k+1}{n-k+1} ight)$
$<\lambda^2\left(1-\left(1-rac{k^2}{n-k+1} ight) ight)=rac{\lambda^2k^2}{n-k+1}.$

• For λ and k fixed, this tends to 0 with increasing n.

Bob Hough

Math 639: Lecture 7

February 16, 2017 34 / 61

э

The birthday problem

Example

• For fixed α ,

$$\sum_{\beta \in \mathcal{B}_{\alpha} \setminus \{\alpha\}} \mathsf{E}[X_{\alpha} X_{\beta}] = \sum_{j=1}^{k-1} \binom{k}{j} \binom{n-k}{k-j} d^{1+j-2k}.$$

When $\frac{d}{n}$ is large, the dominant term comes from j = k - 1, so that

$$b_2 \lesssim k \binom{n}{k} (n-k) d^{-k} = k \lambda \frac{n-k}{d}.$$

• Recalling $d \simeq n^{\frac{k}{k-1}}, b_2 \rightarrow 0.$

(日) (周) (三) (三)

The longest perfect head run

Example

- Let $0 and <math>Y_1, Y_2, ...$ be an i.i.d. sequence $p = \text{Prob}(Y_i = 1) = 1 \text{Prob}(Y_i = 0)$.
- Let R_n be the length of the longest consecutive run of heads starting within the first *n* tosses.
- Let $I = \{1, 2, ..., n\}.$
- Fix positive integer t and set $X_1 = Y_1 Y_2 \cdots Y_t$, and for $2 \le \alpha \le n$,

$$X_{\alpha} = (1 - Y_{\alpha-1}) Y_{\alpha} Y_{\alpha+1} \cdots Y_{\alpha+t-1}.$$

イロト 不得下 イヨト イヨト

The longest perfect head run

Example

• Let
$$B_{\alpha} = \{\beta \in I : |\alpha - \beta| \leq t\}.$$

• One has $b_3 = 0$ by independence, and $b_2 = 0$, since for $\beta \neq \alpha$, $\beta \in B_{\alpha}$, the events $\{X_{\alpha} = 1\}$ and $\{X_{\beta} = 1\}$ are exclusive.

We have

$$b_1 < p^{2t} \left(1 + 2t(1-p) \right) + n(2t+1)p^{2t}(1-p)^2$$

and

$$\lambda = \lambda(n, t) = \mathsf{E}[W] = p^t \left[(n-1)(1-p) + 1 \right].$$

• Since $\{R_n < t\} = \{W = 0\}$, with $Z \sim \text{Poisson}(\lambda)$

$$\left|\operatorname{Prob}(R_n < t) - e^{-\lambda(n,t)}\right| \leq \|W - Z\|_{\mathsf{TV}} \leq b_1 \min(1,\lambda^{-1}).$$

Keeping λ fixed as $n \to \infty$, $b_1 \to 0$.

Bob Hough

Our discussion of Stein's method of normal approximation is taken from Stein's 1986 monograph "Approximate computation of expectations." For the remainder of the lecture Z is a standard normal random variable.

Stein's operators

• Let \mathscr{X} be the space of all piecewise continuous $h : \mathbb{R} \to \mathbb{R}$ such that, for all k > 0

$$\int_{-\infty}^{\infty} |x|^k |h(x)| e^{-\frac{x^2}{2}} dx < \infty.$$

- Let *F* be the space of all continuous and piecewise continuously differentiable *f* : ℝ → ℝ with *f'* ∈ *X*.
- Define operators $T : \mathscr{F} \to \mathscr{X}$, Tf(w) = f'(w) wf(w) and $U : \mathscr{X} \to \mathscr{F}$,

$$Uh(w) = e^{\frac{w^2}{2}} \int_{-\infty}^{w} [h(x) - \mathsf{E}[h(Z)]] e^{-\frac{x^2}{2}} dx.$$

Lemma

For all $f \in \mathscr{F}$, $Tf \in \mathscr{X}$. For all $h \in \mathscr{X}$, $Uh \in \mathscr{F}$. Let Z be standard normal. For $h \in \mathscr{X}$, $T \circ Uh(w) = h(w) - E[h(Z)]$.

Bob Hough

Math 639: Lecture 7

February 16, 2017 40 / 61

- 3

(日) (周) (三) (三)

Stein's operators

Proof.

• For $f \in \mathscr{F}$ and k > 0,

$$\int_{0}^{\infty} w^{k+1} |f(w) - f(0)| e^{-\frac{w^{2}}{2}} dw = \int_{0}^{\infty} w^{k+1} \left| \int_{0}^{w} f'(x) dx \right| e^{-\frac{w^{2}}{2}} dw$$
$$\leq \int_{0}^{\infty} |f'(x)| \int_{x}^{\infty} w^{k+1} e^{-\frac{w^{2}}{2}} dw dx$$
$$\leq \int_{0}^{\infty} |f'(x)| C(1+|x|^{k}) e^{-\frac{x^{2}}{2}} dx < \infty.$$

Similarly
$$\int_{-\infty}^{0} |w|^{k+1} |f(w) - f(0)| e^{-\frac{w^2}{2}} dw < \infty$$
. Hence $w \mapsto wf(w) \in \mathscr{X}$, so $Tf \in \mathscr{X}$.

Bob Hough

3

<ロ> (日) (日) (日) (日) (日)

Stein's operators

Proof.

• Given $h \in \mathscr{X}$, $k \ge 0$,

$$\int_{0}^{\infty} w^{k+1} |Uh(w)| e^{-\frac{w^{2}}{2}} dw$$

$$\leq \int_{0}^{\infty} w^{k+1} \int_{w}^{\infty} |h(x) - \mathsf{E}[h(Z)]| e^{-\frac{x^{2}}{2}} dx dw$$

$$= \int_{0}^{\infty} |h(x) - \mathsf{E}[h(Z)]| \frac{x^{k+2}}{k+2} e^{-\frac{x^{2}}{2}} dx < \infty.$$

Similarly
$$\int_{-\infty}^{0} |w|^{k+1} |Uh(w)| e^{-\frac{w^2}{2}} dw < \infty$$
, so that $w \mapsto wUh(w) \in \mathscr{X}$.

Bob Hough

3

<ロ> (日) (日) (日) (日) (日)

Proof.

Differentiate

$$Uh(w) = e^{\frac{w^2}{2}} \int_{-\infty}^{w} [h(x) - \mathsf{E}[h(Z)]] e^{-\frac{x^2}{2}} dx$$

to obtain $(Uh)'(w) - w(Uh)(w) = h(w) - \mathsf{E}[h(Z)].$

Ro	ЬΙ	He		αh	
50	יט	пc	'nU,	gп	

・ロン ・四 ・ ・ ヨン ・ ヨン

Lemma

In order that the real random variable W has a standard normal distribution, it is necessary and sufficient that, for all continuous and piecewise continuously differentiable functions $f : \mathbb{R} \to \mathbb{R}$ with $E[|f'(Z)|] < \infty$, Z standard normal, we have

 $\mathsf{E}[f'(W)] = \mathsf{E}[Wf(W)].$

Proof of necessity.

Let W have a standard normal distribution. Then

$$\mathsf{E}[f'(W)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(w) e^{-\frac{w^2}{2}} dw$$

= $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} f'(w) \left(\int_{-\infty}^{w} (-z) e^{-\frac{z^2}{2}} dz \right) dw$
+ $\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f'(w) \left(\int_{w}^{\infty} z e^{-\frac{z^2}{2}} dz \right) dw$

3

Proof of necessity.

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} \left(\int_{z}^{0} f'(w) dw \right) (-z) e^{-\frac{z^{2}}{2}} dz + \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \left(\int_{0}^{z} f'(w) dw \right) z e^{-\frac{z^{2}}{2}} dz = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [f(z) - f(0)] z e^{-\frac{z^{2}}{2}} dz = \mathsf{E}[Wf(W)].$$

P ₂	ы	ш.	~.	. ~	h
Ъυ	יט		υι	ıg	

< 🗗 🕨

Proof of sufficiency.

• Given $w_0 \in \mathbb{R}$, let $f_{w_0} = U\mathbf{1}(w \leq w_0)$.

Hence

$$\mathsf{E}[f'_{w_0}(W) - Wf_{w_0}(W)] = \mathsf{E}[\mathbf{1}(W \leq w_0) - \mathsf{E}[\mathbf{1}(Z \leq w_0)]]$$
$$= \mathsf{Prob}(W \leq w_0) - \mathsf{Prob}(Z \leq w_0).$$

Hence, if this is zero for all w_0 then W has a standard normal distribution.

3

(日) (同) (三) (三)

The special functions $f_{w_0} = U\mathbf{1}(w \leqslant w_0)$ are given by

$$f_{w_0}(w) = \begin{cases} \sqrt{2\pi} e^{\frac{w^2}{2}} \Phi(w) [1 - \Phi(w_0)] & w \le w_0 \\ \sqrt{2\pi} e^{\frac{w^2}{2}} \Phi(w_0) [1 - \Phi(w)] & w \ge w_0 \end{cases}$$

where $\Phi(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{w} e^{-\frac{x^2}{2}} dx$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Lemma

The functions f_{w_0} satisfies

$$0 < f_{w_0}(w) \leqslant rac{\sqrt{2\pi}}{4}, \ |wf_{w_0}(w)| < 1, \ \left|f_{w_0}'(w)\right| < 1$$

for all real w₀, w.

We omit this explicit calculation.

3

(日) (周) (三) (三)

Lemma

For bounded absolutely continuous $h : \mathbb{R} \to \mathbb{R}$,

$$\|Uh\|_{\infty} \leq \sqrt{\frac{\pi}{2}} \|h - \mathsf{E}[h(Z)]\|_{\infty}$$
$$\|Uh'\|_{\infty} \leq 2\|h - \mathsf{E}[h(Z)]\|_{\infty}$$
$$\|Uh''\|_{\infty} \leq 2\|h'\|_{\infty}.$$

D -				
во	D	HΟ	Πp	'n

-

< 67 ▶

Bounds for the Stein operator

Proof.

and, for

For $w \leq 0$,

$$|Uh(w)| \leq \left[\sup_{x\leq 0} |h(x) - \mathsf{E}[h(Z)]|\right] e^{\frac{w^2}{2}} \int_{-\infty}^{w} e^{-\frac{x^2}{2}} dx,$$

$$w \geq 0,$$

$$|Uh(w)| \leq \left[\sup_{x\geq 0} |h(x) - \mathsf{E}[h(Z)]|\right] e^{\frac{w^2}{2}} \int_{w}^{\infty} e^{-\frac{x^2}{2}} dx.$$

The first claim follows since the maximum of $e^{\frac{w^2}{2}} \int_{-\infty}^{w} e^{-\frac{x^2}{2}} dx$ in $w \leq 0$ is attained at 0.

		< □	► < [5 ►	${}^{*} \equiv {}^{*}$	★夏★	æ	୬୯୯
3ob Hough	Math 639: Lecture 7				Februar	y 16, 2017		51 / 61

Bounds for the Stein operator

Proof.

For $w \ge 0$ use

$$(Uh)'(w) = h(w) - \mathsf{E}[h(Z)] - we^{\frac{w^2}{2}} \int_w^\infty [h(x) - \mathsf{E}[h(Z)]] e^{-\frac{x^2}{2}} dx.$$

Hence

$$\sup_{w \ge 0} |(Uh)'(w)| \le [\sup |h - \mathsf{E}[h(Z)]|] \left[1 + \sup_{w \ge 0} w e^{\frac{w^2}{2}} \int_w^\infty e^{-\frac{x^2}{2}} dx \right]$$
$$\le 2 \sup |h - \mathsf{E}[h(Z)]|.$$

The bound for $w \leq 0$ is similar.

В	0	b	н	o	u	g	
						•	

イロト イヨト イヨト イヨト

Proof.

The bound for $||(Uh)''||_{\infty}$ in terms of $||h'||_{\infty}$ is a more involved computation, which we omit.

< 回 > < 三 > < 三 >

Definition

A pair (X, X') of random variables on a probability space $(\Omega, \mathcal{B}, \text{Prob})$ is called an *exchangeable pair* if, for all B, B',

 $Prob(X \in B, X' \in B') = Prob(X \in B', X' \in B).$

イロト 不得下 イヨト イヨト 二日

The following lemma is key.

Lemma

Let $0<\lambda<1$ and let (W,W') be an exchangeable pair of real random variables, such that

 $\mathsf{E}[W'|W] = (1-\lambda)W.$

Let $h : \mathbb{R} \to \mathbb{R}$ be a bounded continuous function with bounded piecewise continuous derivative h'.

$$\mathsf{E}[h(W)] = \mathsf{E}[h(Z)] + \mathsf{E}\left[(Uh)'(W)\left[1 - \frac{1}{2\lambda}\mathsf{E}\left[(W' - W)^2|W\right]\right]\right] + \frac{1}{2\lambda}\int\mathsf{E}\left[(W - W')\left(z - \frac{W + W'}{2}\right)\left[\mathbf{1}(z \leqslant W') - \mathbf{1}(z \leqslant W)\right]\right]d(Uh)'(z)$$

Proof.

From the identity

$$0 = \mathsf{E}\left[Wf(W) - \frac{1}{2\lambda}(W' - W)(f(W') - f(W))\right]$$

= $\mathsf{E}[Wf(W) - f'(W)] + \mathsf{E}\left[f'(W) - \frac{1}{2\lambda}(W' - W)(f(W') - f(W))\right]$
= $\mathsf{E}[h(Z)] - \mathsf{E}[h(W)] + \mathsf{E}[f'(W)] - \frac{1}{2\lambda}\mathsf{E}[(W' - W)(f(W') - f(W))]$

obtain

$$\mathsf{E}[h(W)] = \mathsf{E}[h(Z)] + \mathsf{E}[f'(W)] - \frac{1}{2\lambda} \mathsf{E}[(W - W')(f(W) - f(W'))].$$

Bob Hough

э

Proof.

Rewrite part of the last line as

$$\mathsf{E}\left[f'(W) - \frac{1}{2\lambda}(W' - W)(f(W') - f(W))\right]$$

= $\mathsf{E}\left[f'(W)\left[1 - \frac{1}{2\lambda}\mathsf{E}\left[(W' - W)^2|W\right]\right]\right]$
 $- \frac{1}{2\lambda}\mathsf{E}\left[(W' - W)\left[f(W') - f(W) - (W' - W)f'(W)\right]\right].$

3

< E

.⊒ . ►

< 🗗 🕨

Proof.

Write

$$f(W') - f(W) - (W' - W)f'(W) = \int_{W}^{W'} (W' - y)f''(y)dy$$

= $\int (W' - y)[\mathbf{1}(y \le W') - \mathbf{1}(y \le W)]f''(y)dy.$

Take expectation and use the exchangeability of W, W' to obtain the claim.

20	h l	_	 ~h
	•		 <u> </u>
			-

Theorem

Let h be a bounded continuous function with bounded piecewise continuous derivative h'. Let W, W' as in the previous lemma. Then

$$|\mathsf{E}[h(W)] - \mathsf{E}[h(Z)]| \leq \frac{1}{4\lambda} ||h'||_{\infty} \mathsf{E}\left[|W' - W|^{3}\right]$$
$$+ 2||h - \mathsf{E}[h(Z)]||_{\infty} \sqrt{\mathsf{E}\left[\left(1 - \frac{1}{2\lambda} \mathsf{E}\left[(W' - W)^{2}|W\right]\right)^{2}\right]}.$$

and for all real w_0 ,

$$|\operatorname{Prob}(W \leq w_0) - \Phi(w_0)| \leq 2\sqrt{\mathsf{E}\left[\left(1 - \frac{1}{2\lambda}\mathsf{E}\left[(W' - W)^2|W\right]\right)^2\right]} + (2\pi)^{-\frac{1}{4}}\sqrt{\frac{1}{\lambda}\mathsf{E}\left[|W' - W|^3\right]}.$$

Proof.

$$\begin{split} \mathsf{E}[h(W)] - \mathsf{E}[h(Z)] &= \mathsf{E}\left[(Uh)'(W)\left[1 - \frac{1}{2\lambda}\,\mathsf{E}\left[(W' - W)^2|W\right]\right]\right] + \\ \frac{1}{2\lambda}\int\mathsf{E}\left[(W - W')\left(z - \frac{W + W'}{2}\right)\left[\mathbf{1}(z \leqslant W') - \mathbf{1}(z \leqslant W)\right]\right] \\ &\times (Uh)''(z)dz \end{split}$$

SO

$$\begin{aligned} |\mathsf{E}[h(W)] - \mathsf{E}[h(Z)]| &\leq ||(Uh)'||_{\infty} \mathsf{E}\left[\left|1 - \frac{1}{2\lambda} \mathsf{E}[(W - W')^{2}|W]\right|\right] \\ &+ ||(Uh)''||_{\infty} \frac{1}{2\lambda} \mathsf{E}\left[\int_{\min(W,W')}^{\max(W,W')} |W - W'| \left|z - \frac{W + W'}{2}\right| dz\right]. \end{aligned}$$

Math 639: Lecture 7

Proof.

Recall $\|(Uh)'\|_{\infty} \leq 2\|h - \mathsf{E}[h(Z)]\|_{\infty}$ and $\|(Uh)''\|_{\infty} \leq 2\|h'\|_{\infty}$. Hence

$$\begin{split} |\mathsf{E}[h(W)] - \mathsf{E}[h(Z)]| &\leq \\ 2\|h - \mathsf{E}[h(Z)]\|_{\infty} \sqrt{\mathsf{E}\left[\left(1 - \frac{1}{2\lambda} \mathsf{E}\left[(W - W')^2 |W\right]\right)^2\right]} \\ &+ 2\|h'\|_{\infty} \frac{1}{2\lambda} \mathsf{E}\left[\frac{|W - W'|^3}{4}\right]. \end{split}$$

This proves the first bound.

To prove the second, bound $\mathbf{1}(w \leq w_0)$ from above and below using piece-wise linear functions. We omit the details.

b Hough	Math 639: Lecture 7	