Math 639: Lecture 4

Convergence of random series and large deviations

Bob Hough

February 2, 2017

Bob Hough

Math 639: Lecture 4

February 2, 2017 1 / 56

Renewal theory

Let X_1, X_2, \dots be i.i.d. with $0 < X_i < \infty$. Let $T_n = X_1 + \dots + X_n$ and

$$N_t = \sup\{n : T_n \le t\}.$$

Given a sequence of events which happen in succession with waiting time X_n on the *n*th event, we think of N_t as the number of events which have happened up to time t.

Theorem If $E[X_1] = \mu \le \infty$, then as $t \to \infty$, $\frac{N_t}{t} \to \frac{1}{\mu}$ a.s..

В	30	b	н	o	u,	g	

Proof.

Since $T(N_t) \leq t < T(N_t + 1)$, dividing through by N_t gives

$$\frac{T(N_t)}{N_t} \leq \frac{t}{N_t} \leq \frac{T(N_t+1)}{N_t+1} \frac{N_t+1}{N_t}$$

We have $N_t
ightarrow \infty$ a.s.. Hence, by the strong law,

$$rac{T_{N_t}}{N_t}
ightarrow \mu, \qquad rac{N_t+1}{N_t}
ightarrow 1$$

Bo	h ŀ	Hou	ισh

3

Empirical distribution functions

Let $X_1, X_2, ...$ be i.i.d. with distribution F and let

$$F_n(x)=\frac{1}{n}\sum_{m=1}^n\mathbf{1}_{(X_m\leq x)}.$$

Theorem (Glivenko-Cantelli Theorem)
As
$$n \to \infty$$
,
$$\sup_{x} |F_n(x) - F(x)| \to 0 \text{ a.s.}.$$

Bo	h	н.	0.0	n or	h
50			υu	в	

3

(日) (同) (三) (三)

Proof.

Note that F is increasing, but can have jumps.

• For $k = 1, 2, ..., \text{ and } 1 \le j \le k - 1$, define $x_{j,k} = \inf\{x : F(x) \ge \frac{j}{k}\}$. Set $x_{0,k} = -\infty$, $x_{k,k} = \infty$.

• Write
$$F(x-) = \lim_{y \uparrow x} F(y)$$
.

• Since each of $F_n(x_{j,k}-)$ and $F_n(x_{j,k})$ converges by the strong law, and $F_n(x_{j,k}-) - F_n(x_{j-1,k}) \leq \frac{1}{k}$, the uniform convergence follows.

- 4 同 6 4 日 6 4 日 6

- Let X₁, X₂,... be i.i.d., taking values in {1, 2, ..., r} with all possibilities of positive probability. Set Prob(X_i = k) = p(k) > 0.
- Let $\pi_n(\omega) = p(X_1(\omega))p(X_2(\omega))...p(X_n(\omega))$. By the strong law, a.s.

$$-\frac{1}{n}\log \pi_n \to H \equiv -\sum_{k=1}^r p(k)\log p(k).$$

The constant H is called the *entropy*.

(日) (同) (三) (三)

Definition

Let $X_1, X_2, ...$ be a sequence of random variables. Their *tail* σ -algebra is

$$\mathscr{T} = \bigcap_{n=1}^{\infty} \sigma(X_n, X_{n+1}, \dots).$$

Bo	ьι			h
Ъυ	וט	10	ug	

Example

• If
$$\{B_n\}$$
 is a sequence from the Borel σ -algebra \mathscr{B} , then $\{X_n \in B_n \ i.o.\} \in \mathscr{T}$.

• Let
$$S_n = X_1 + X_2 + \cdots + X_n$$
. We have

► {
$$\lim_{n\to\infty} S_n \text{ exists}$$
} $\in \mathscr{T}$,
► { $\lim_{n\to\infty} S_n > 0$ } $\notin \mathscr{T}$

$$\{\limsup_{n\to\infty}\frac{S_n}{c_n}>x\}\in\mathscr{T} \text{ if } c_n\to\infty.$$

3

イロト イヨト イヨト イヨト

Theorem

If $X_1, X_2, ...$ are independent and $A \in \mathscr{T}$ then Prob(A) = 0 or Prob(A) = 1.

Bob Hough

Math 639: Lecture 4

 Image: Image:

・ロン ・四 ・ ・ ヨン ・ ヨン

Proof.

We show that A is independent of itself, so that $Prob(A) = Prob(A \cap A) = Prob(A)^2$.

- Observe that for each k, σ(X₁,...,X_k) and σ(X_{k+1}, X_{k+2},...) are independent. This follows, since σ(X_{k+1}, X_{k+2},...) is generated by σ(X_{k+1},...,X_{k+m}) for m = 1,2,3,..., whose union forms a π-system.
- Since $\mathscr{T} \subset \sigma(X_{k+1}, X_{k+1}, ...), \mathscr{T}$ is independent of $\sigma(X_1, X_2, ..., X_k)$ for each k, and hence of $\sigma(X_1, X_2, ...)$.

イロト 不得下 イヨト イヨト

Example

- If A_1, A_2, \dots are independent then
 - $Prob(A_n \text{ i.o.})$ is 0 or 1
 - $\operatorname{Prob}(\lim_{n\to\infty} S_n \text{ exists})$ is 0 or 1.

3

(日) (周) (三) (三)

Theorem (Kolmogorov's maximal inequality)

Suppose $X_1, ..., X_n$ are independent with $E[X_i] = 0$ and $Var(X_i) < \infty$. If $S_k = X_1 + \cdots + X_k$, then

$$\operatorname{Prob}\left(\max_{1\leq k\leq n}|S_k|\geq x\right)\leq x^{-2}\operatorname{Var}(S_n).$$

Bol	<u>ч</u> Ц		~h
BOI	וו כ	υuį	зu

イロト 不得下 イヨト イヨト

Kolmogorov's maximal inequality

Proof.

- Let A_k = {|S_k| ≥ x} \ U^{k-1}_{j=1}{|S_j| ≥ x} be those trials for which the sum first exceeds x at step k.
- We have

$$\mathsf{E}\left[S_{n}^{2}
ight] \geq \sum_{k=1}^{n} \int_{\mathcal{A}_{k}} S_{n}^{2} dP = \sum_{k=1}^{n} \int_{\mathcal{A}_{k}} (S_{k} + (S_{n} - S_{k}))^{2} dP \ \geq \sum_{k=1}^{n} \int_{\mathcal{A}_{k}} S_{k}^{2} dP + \sum_{k=1}^{n} \int 2S_{k} \mathbf{1}_{\mathcal{A}_{k}} (S_{n} - S_{k}) dP.$$

• Since $S_k \mathbf{1}_{A_k} \in \sigma(X_1, ..., X_k)$, it is independent of $S_n - S_k$, so that the second sum above is 0. Since $|S_k| \ge x$ on A_k , it follows that $E\left[S_n^2\right] \ge x^2 \operatorname{Prob}\left(\max_{1\le k\le n} |S_k| \ge x\right)$.

< 152 ▶

Theorem

Let $X_1, X_2, ...$ be independent, have $E[X_i] = 0$ and

$$\sum_{n=1}^{\infty} \operatorname{Var}(X_n) < \infty.$$

With probability 1, $\sum_{n=1}^{\infty} X_n$ converges.

Bo	b I	Ho	ugh

イロト イヨト イヨト イヨト

Convergence of series

Proof.

• Let $S_N = \sum_{n=1}^N X_n$.

• By Kolmogorov's maximal theorem,

$$\operatorname{Prob}\left(\max_{M\leq m\leq N}|S_m-S_N|>\epsilon\right)\leq \epsilon^{-2}\sum_{n=M+1}^N\operatorname{Var}(X_n),$$

SO

$$\operatorname{Prob}\left(\sup_{m\geq M}|S_m-S_M|>\epsilon
ight)\leq\epsilon^{-2}\sum_{n=M+1}^{\infty}\operatorname{Var}(X_n).$$

(日) (周) (三) (三)

Convergence of series

Proof.

• Let $w_M = \sup_{m,n \ge M} |S_m - S_n|$. We have

$$\operatorname{Prob}(w_M > 2\epsilon) \leq \operatorname{Prob}\left(\sup_{m \geq M} |S_m - S_M| > \epsilon\right) \to 0$$

as $M \to \infty$, so $w_M \downarrow 0$ a.s.. • Hence $\sum X_n$ is a.s. Cauchy, hence convergent.

Bo		

(日) (周) (三) (三)

Example

Let X_1, X_2, \dots be i.i.d., taking values ± 1 with probability $\frac{1}{2}$. The series

$$\sum_{n=1}^{\infty} \frac{X_n}{n^{\sigma}}$$

converges a.s. if $\sigma > \frac{1}{2}$ and diverges a.s. if $\sigma \le \frac{1}{2}$.

Bol	h F	lou	αh
00		iou	gu

- 4 個 ト - 4 三 ト - 4 三 ト

Theorem

Let $X_1, X_2, ...$ be independent. Let A > 0 and let $Y_i = X_i \mathbf{1}_{(|X_i| \le A)}$. In order that $\sum_{n=1}^{\infty} X_n$ converge a.s. it is necessary and sufficient that

- 2 $\sum_{n=1}^{\infty} E[Y_n]$ converges

イロト イポト イヨト イヨト 二日

Proof.

- We postpone the proof of necessity.
- To prove that the condition is sufficient, note that item 1 implies that $X_n \neq Y_n$ finitely often with probability 1.
- The a.s. convergence of $\sum_{n} Y_{n}$ is now guaranteed by the previous theorem.

Kronecker's lemma

Theorem

If $a_n \ge 0$ is an increasing sequence, $a_n \uparrow \infty$ and $\sum_{n=1}^{\infty} \frac{x_n}{a_n}$ converges then

$$\frac{1}{a_n}\sum_{m=1}^n x_m\to 0.$$

В	-		÷.,	_	ι.

(日) (周) (三) (三)

Kronecker's lemma

Proof.

Let $a_0 = b_0 = 0$ and $b_m = \sum_{k=1}^m \frac{x_k}{a_k}$. By summation by parts,

$$\frac{1}{a_n} \sum_{m=1}^n x_m = \frac{1}{a_n} \left\{ \sum_{m=1}^n a_m (b_m - b_{m-1}) \right\}$$
$$= b_n - \sum_{m=1}^n \frac{(a_m - a_{m-1})}{a_n} b_{m-1}.$$

Since b_n tends to a limit, and $a_n \uparrow \infty$,

$$\lim_{n\to\infty} b_n - \sum_{m=1}^n \frac{(a_m - a_{m-1})}{a_n} b_{m-1} = 0.$$

Bob Hough

The following is a cheap version of the law of the iterated logarithm.

Theorem

Let $X_1, X_2, ...$ be i.i.d. random variables satisfying $E[X_i] = 0$ and $E[X_i^2] = \sigma^2 < \infty$. Let $S_n = X_1 + \cdots + X_n$. Then for $\epsilon > 0$

$$\frac{S_n}{n^{\frac{1}{2}}(\log n)^{\frac{1}{2}+\epsilon}} \to 0 \qquad a.s..$$

Bo	ь I	ш.		~	h
Ъυ	יט		Ju	g	

(日) (周) (三) (三)

Proof.

Let
$$a_n = n^{\frac{1}{2}} (\log n)^{\frac{1}{2}+\epsilon}$$
 for $n \ge 2$ and $a_1 = 1$. Then

$$\sum_{n=1}^{\infty} \operatorname{Var}\left(\frac{X_n}{a_n}\right) = \sigma^2 \left(1 + \sum_{n=2}^{\infty} \frac{1}{n(\log n)^{1+2\epsilon}}\right) < \infty,$$

so $\sum_{n=1}^{\infty} \frac{X_n}{a_n}$ converges a.s.. The claim now follows from Kronecker's lemma.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Random Dirichlet series

Example

- Form a 'random multiplicative function' by setting X(1) = 1, choosing X(p), p prime to be i.i.d. ± 1 with equal probability, and declaring for all m, n, X(mn) = X(m)X(n).
- For $\Re(s) > 1$, the Dirichlet series

$$L(s,X) = \sum_{n=1}^{\infty} \frac{X(n)}{n^s} = \prod_{p} \left(1 - \frac{X(p)}{p^s}\right)^{-1}$$

converges absolutely and has an absolutely convergent Euler product. • With probability 1, log L(s, X) has a holomorphic continuation to $\Re(s) > \frac{1}{2}$, so $L(s, X) \neq 0$ there.

Random Dirichlet series

Example

To check the last statement, write

$$\log L(s, X) = \sum_{p} \frac{X(p)}{p^{s}} + \text{absolutely convergent in } \Re(s) > \frac{1}{2}.$$
$$\sum_{p} \frac{X(p)}{p^{s}} = \int_{0}^{\infty} \frac{1}{x^{s}} d\left(\sum_{p \le x} X(p)\right)$$
$$= s \int_{0}^{\infty} \frac{\sum_{p \le x} X(p)}{x^{s+1}} dx.$$

With probability 1, for any $\epsilon > 0$ the numerator is $O_{\epsilon}(X^{\frac{1}{2}+\epsilon})$, so that the integral converges absolutely in $\Re(s) > \frac{1}{2}$, giving the holomorphic extension.

Bo	Ы	Ha		h
50		i ic	'ug	

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (Marcinkiewicz, Zygmund) Let $X_1, X_2, ...$ be *i.i.d.* with $E[X_1] = 0$ and $E[|X_1|^p] < \infty$ where 1 . $If <math>S_n = X_1 + \cdots + X_n$ then $\frac{S_n}{n^{\frac{1}{p}}} \to 0$ a.s.

Proof.

• Let
$$Y_k = X_k \mathbf{1}_{\left(|X_k| \le k^{\frac{1}{p}}\right)}$$
 and $T_n = Y_1 + \dots + Y_n$.

We have

$$\sum_{k=1}^{\infty} \operatorname{Prob}(Y_k \neq X_k) = \sum_{k=1}^{\infty} \operatorname{Prob}(|X_k|^p > k) \leq \operatorname{E}[|X_k|^p] < \infty.$$

Thus $Prob(Y_k \neq X_k \text{ i.o.}) = 0$ by Borel-Cantelli.

Bo	h	н.	~	i m	h
50			υı	чs	

-2

(日) (周) (三) (三)

Proof.

Calculate

$$\begin{split} \sum_{m=1}^{\infty} \operatorname{Var}\left(\frac{Y_m}{m^{\frac{1}{p}}}\right) &\leq \sum_{m=1}^{\infty} \operatorname{E}\left[\frac{Y_m^2}{m^p}\right] \\ &\leq \sum_{m=1}^{\infty} \int_0^{m^{\frac{1}{p}}} \frac{2y}{m^p} \operatorname{Prob}\left(|X_1| > y\right) dy \\ &= \int_0^{\infty} \sum_{m > y^p} \frac{2y}{m^p} \operatorname{Prob}(|X_1| > y) dy \\ &\ll \int_0^{\infty} y^{p-1} \operatorname{Prob}(|X_1| > y) dy = \operatorname{E}[|X_1|^p] < \infty. \end{split}$$

Math 639: Lecture 4

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Proof.

• Applying the theorem on convergence of series and Kronecker's lemma,

$$n^{-\frac{1}{p}}\sum_{k=1}^{n}(Y_m-\mathsf{E}[Y_m])\to 0, \ a.s.$$

• It remains to verify that $n^{-\frac{1}{p}} \sum_{m=1}^{n} E[Y_m] \to 0$. To check this, write $E[Y_m] = -E\left[X_1 \cdot \mathbf{1}\left(|X_1| > m^{\frac{1}{p}}\right)\right]$, so $|E[Y_m]|$ is bounded by

$$\mathsf{E}\left[|X_1|\cdot \mathbf{1}\left(|X_1|>m^{\frac{1}{p}}\right)\right] \le m^{-1+\frac{1}{p}} \mathsf{E}\left[|X_1|^p \cdot \mathbf{1}\left(|X_1|>m^{\frac{1}{p}}\right)\right]$$

Since $\sum_{m \le n} m^{-1 + \frac{1}{p}} \ll n^{\frac{1}{p}}$ and the expectation tends to 0 as $m \to \infty$, the claim follows.

Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[|X_1|] = \infty$ and let $S_n = X_1 + \cdots + X_n$. Let a_n be a sequence of positive numbers with $\frac{a_n}{n}$ increasing. Then $\limsup_{n\to\infty} \frac{|S_n|}{a_n} = 0$ or ∞ according as $\sum_n \operatorname{Prob}(|X_1| \ge a_n) < \infty$ or $= \infty$.

Proof.

First suppose $\sum_{n} \operatorname{Prob}(|X_1| \ge a_n) = \infty$.

• Since $\frac{a_n}{n}$ is increasing

$$\sum_{n=1}^{\infty} \operatorname{Prob}(|X_1| \ge ka_n) \ge \sum_{n=1}^{\infty} \operatorname{Prob}(|X_1| \ge a_{kn})$$

 $\ge \frac{1}{k} \sum_{m=k}^{\infty} \operatorname{Prob}(|X_1| \ge a_m) = \infty.$

In particular, $\limsup_{n\to\infty} \frac{|X_n|}{a_n} = \infty$ with probability 1 by Borel-Cantelli.

• Since $\max(|S_{n-1}|, |S_n|) \geq \frac{|X_n|}{2}$, the claim follows.

Proof.

Now suppose $\sum_{n} \operatorname{Prob}(|X_1| \ge a_n) < \infty$.

- Define $Y_n = X_n \mathbf{1}(|X_n| < a_n)$. Since $X_n \neq Y_n$ finitely often a.s., the proof consists in checking that $\sum \operatorname{Var}\left(\frac{Y_n}{a_n}\right) < \infty$ and $\frac{1}{a_n} \sum_{m=1}^n \operatorname{E}[Y_m] \to 0$.
- Calculate

$$\sum_{n=1}^{\infty} \operatorname{Var}\left(\frac{Y_n}{a_n}\right) \leq \sum_{n=1}^{\infty} \frac{\mathsf{E}[Y_n^2]}{a_n^2}$$
$$= \sum_{m=1}^{\infty} \int_{[a_{m-1},a_m]} y^2 dF(y) \sum_{n=m}^{\infty} a_n^{-2}.$$

Bob Hough

(日) (周) (三) (三)

Proof.

Now suppose $\sum_{n} \operatorname{Prob}(|X_1| \ge a_n) < \infty$. • Since $a_n \ge \frac{na_m}{m}$, $\sum_{n=m}^{\infty} a_n^{-2} \le \frac{m^2}{a_m^2} \sum_{n=m}^{\infty} n^{-2} \ll \frac{m}{a_m^2}$. • Thus

$$\sum_{m=1}^{\infty} \operatorname{Var}\left(rac{Y_n}{a_n}
ight) \ll \sum_{m=1}^{\infty} m \operatorname{Prob}(a_{m-1} \le |X_i| < a_m)$$
 $= \sum_{m=1}^{\infty} \operatorname{Prob}(|X_1| > a_{m-1}) < \infty.$

Bo	h I	ш.	~	~	h
bu	U I		υu	g	

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Proof.

• To prove the mean condition, first, since $E[|X_i|] = \infty$ and $\sum_{n=1}^{\infty} Prob(|X_i| > a_n) < \infty$, we have $\frac{a_n}{n} \uparrow \infty$.

Bound

$$\left| \frac{1}{a_n} \sum_{m=1}^n \mathsf{E}[Y_m] \right| \leq \frac{1}{a_n} \sum_{m=1}^n \mathsf{E}\left[|X_m| \cdot \mathbf{1}(|X_m| < a_m) \right]$$
$$\leq \frac{na_N}{a_n} + \frac{n}{a_n} \mathsf{E}\left[|X_1| \cdot \mathbf{1} \left(a_N \leq |X_1| \leq a_n \right) \right].$$

• If N grows sufficiently slowly, the first term tends to 0.

	٩	< 🗗 >	₹ ≣ >	◆≣≯	æ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Bob Hough	Math 639: Lecture 4		Febru	ary 2, 201	7	34 / 56

Proof.

• Bound
$$\frac{n}{a_n} \mathbb{E}\left[|X_1| \cdot \mathbf{1} \left(a_N \leq |X_1| \leq a_n\right)\right]$$
 by

$$\sum_{m=N+1}^{n} \frac{m}{a_m} \operatorname{E} \left[|X_1| \cdot \mathbf{1} (a_{m-1} \leq |X_1| < a_m) \right]$$
$$\leq \sum_{m=N+1}^{\infty} m \operatorname{Prob}(a_{m-1} \leq |X_1| < a_m).$$

Since

$$\sum_{m=1}^\infty m\operatorname{Prob}(a_{m-1}\leq |X_1|< a_m)=\sum_{n=1}^\infty \operatorname{Prob}(|X_1|\geq a_{n-1})<\infty,$$

the latter tends to 0 as $N \to \infty$.

Large deviations

Let $X_1, X_2, ...$ be i.i.d., $E[X_1] = \mu$, $|\mu| < \infty$. We are interested in the tail probability

 $\operatorname{Prob}(S_n > na)$

for $a > \mu$. Define $\pi_n = \operatorname{Prob}(S_n > na)$ and $\gamma_n = \log \pi_n$.

Lemma For $m, n \ge 1$, $\pi_{m+n} \ge \pi_m \pi_n$.

Proof.

This follows from the independence, since

$$\pi_{m+n} \geq \operatorname{Prob}\left(S_m \geq ma, S_{n+m} - S_m \geq na\right) = \pi_m \pi_n.$$

イロト イポト イヨト イヨト

Large deviations

Lemma

Let a_n be a sequence satisfying $a_{m+n} \ge a_m + a_n$. Then

n

$$\lim_{n\to\infty}\frac{a_n}{n}\to\sup_n\frac{a_n}{n}.$$

Proof.

- Since $\limsup \frac{a_n}{n} \le \sup \frac{a_n}{n}$ it suffices to check $\liminf \frac{a_n}{n} \ge \frac{a_n}{n}$.
- Given n > m, write $n = km + \ell$, $0 \le \ell < m$. We have

$$\frac{a_n}{n} \geq \left(\frac{km}{km+\ell}\right)\frac{a_m}{m} + \frac{a_\ell}{n}.$$

Letting $n \to \infty$ proves the claim.

(日) (同) (日) (日) (日)

Define $\gamma(a) = \lim_{n \to \infty} \frac{1}{n} \log \operatorname{Prob} (S_n \ge na)$. This exists by the previous lemma. Furthermore,

 $\operatorname{Prob}(S_n \geq na) \leq e^{n\gamma(a)}.$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Moment generating function

Definition

The moment generating function for a random variable X is $\phi(\theta) = \mathsf{E}[e^{\theta X}].$

Bo		

- 4 回 ト - 4 回 ト

We assume that $\phi(\theta) < \infty$ for some $\theta > 0$. By Markov's inequality,

$$e^{ heta na} \operatorname{Prob}(S_n \ge na) \le \operatorname{E}[\exp(heta S_n)] = \phi(heta)^n,$$

 $\operatorname{Prob}(S_n \ge na) \le \exp(-n(heta a - \log \phi(heta))).$

Let
$$\theta_+ = \sup\{\theta : \phi(\theta) < \infty\}.$$

Lemma

log $\phi(\theta)$ is continuous at 0, differentiable on $(0, \theta_+)$ and satisfies $\lim_{\theta \downarrow 0} \frac{\phi'(\theta)}{\phi(\theta)} = \mathsf{E}[X].$

Proof.

Each of the statements follows by dominated convergence.

- For instance, to prove the continuity at 0, for $0 < \theta < \theta_0 < \theta_+$ use $e^{\theta x} \leq 1 + e^{\theta_0 x}$ to take the limit as $\theta \downarrow 0$.
- We proved in Lecture 2 that it's possible to differentiate under the expectation, from which the remaining two claims follow.

Weighted distribution

To prove the lower bound, consider the distribution function

$$F_{\lambda}(x) = rac{1}{\phi(\lambda)} \int_{-\infty}^{x} e^{\lambda y} dF(y).$$

Note that this distribution has mean

$$\frac{1}{\phi(\lambda)}\int_{-\infty}^{\infty} y e^{\lambda y} dF(y) = \frac{\phi'(\lambda)}{\phi(\lambda)}.$$

Lemma

We have
$$\frac{dF^n}{dF^n_\lambda} = e^{-\lambda x} \phi(\lambda)^n$$
.

Bob Ho	ugn

3

(日) (同) (三) (三)

Weighted distribution

Proof.

We check this by induction. For n = 1 the claim holds by definition. Write

$$F^{n}(z) = F^{n-1} * F(z) = \int_{-\infty}^{\infty} dF^{n-1}(x) \int_{-\infty}^{z-x} dF(y)$$

= $\phi(\lambda)^{n} \int_{-\infty}^{\infty} dF_{\lambda}^{n-1}(x) \int_{-\infty}^{\infty} \mathbf{1}_{(x+y\leq z)} e^{-\lambda(x+y)} dF_{\lambda}(y)$
= $\phi(\lambda)^{n} \operatorname{E} \left(\mathbf{1}_{(S_{n-1}^{\lambda}+X^{\lambda})\leq z} e^{-\lambda(S_{n-1}^{\lambda}+X_{n}^{\lambda})} \right)$
= $\phi(\lambda)^{n} \int_{-\infty}^{z} e^{-\lambda u} dF_{\lambda}^{n}(u).$

Bob Hough

(日) (同) (三) (三)

Tail probability

Suppose that the distribution of X is not a point mass at μ . It follows that $\frac{\phi'(\theta)}{\phi(\theta)}$ is strictly increasing by convexity. If $a > \mu$ then there is at most one solution to the 'saddle point' equation

$$\mathsf{a} = rac{\phi'(heta_\mathsf{a})}{\phi(heta_\mathsf{a})}.$$

Theorem

Suppose there is $\theta_a \in (0, \theta_+)$ such that $a = \frac{\phi'(\theta_a)}{\phi(\theta_a)}$. Then, as $n \to \infty$, $\frac{1}{n} \log \operatorname{Prob}(S_n \ge na) \to -a\theta_a + \log \phi(\theta_a)$.

Bo	b	Н	οι	ıg	h

イロト 不得下 イヨト イヨト 三日

Proof.

The upper bound in the limit follows from taking $\theta = \theta_a$ in the inequality

$$\operatorname{Prob}(S_n \geq na) \leq \exp(-n(a\theta - \log \phi(\theta))).$$

3

< ロ > < 同 > < 三 > < 三

Tail probability

Proof.

To prove the lower bound, use the weighted distribution F_{λ} ,

$$\mathsf{Prob}(S_n \ge na) \ge \int_{na}^{nb} e^{-\lambda x} \phi(\lambda)^n dF_\lambda^n(x)$$
$$\ge \phi(\lambda)^n e^{-\lambda nb} (F_\lambda^n(nb) - F_\lambda^n(na)).$$

• Choose
$$\lambda$$
 such that $a < rac{\phi'(\lambda)}{\phi(\lambda)} < b.$

 By the weak law of large numbers, Fⁿ_λ(nb) − Fⁿ_λ(na) → 1 as n → ∞. Letting b↓ a proves the claim.

Bo	ь L	l	~h
Ъυ	יט	iou	gп

(日) (周) (三) (三)

Examples

Example (Normal distribution)

The standard normal distribution has exponential generating function

$$b(\theta) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\theta x} \exp\left(-\frac{x^2}{2}\right) dx$$
$$= \frac{e^{\frac{\theta^2}{2}}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-\theta)^2}{2}} dx = e^{\frac{\theta^2}{2}}.$$

Hence $\theta_a = a$ and $\gamma_a = -a\theta_a + \log \phi(\theta_a) = -\frac{a^2}{2}$.

Example (Exponential distribution)

The exponential distribution with parameter 1 has exponential generating function

$$\phi(\theta) = \int_0^\infty e^{\theta x} e^{-x} dx = \frac{1}{1-\theta}, \qquad \theta < 1.$$

Hence $\frac{\phi'}{\phi}(\theta) = \frac{1}{1-\theta}$, so $\theta_a = 1 - \frac{1}{a}$ and
 $\gamma(a) = -a\theta_a - \log(1-\theta_a) = -a + 1 + \log a.$

Bo	b ŀ	Ho	ugh

3

-

• • • • • • • • • • • •

Definition

The characteristic function of random variable X is

$$\phi(t) = \mathsf{E}\left[e^{itX}\right].$$

For real valued random variables, the characteristic function exists for all real t, which gives the characteristic function an advantage over the moment generating function.

< 回 ト < 三 ト < 三 ト

Note the following easy properties of characteristic functions.

Theorem

The characteristic function $\phi(t)$ of X satisfies

•
$$\phi(-t) = \overline{\phi(t)}.$$

• $|\phi(t)| \leq 1$, with equality if and only if t = 0 or $\operatorname{supp}(X) \subset \frac{2\pi}{t}\mathbb{Z} + c$.

•
$$|\phi(t+h) - \phi(t)| \le \mathsf{E}[|e^{ihX} - 1|].$$

•
$$\mathsf{E}\left[e^{it(aX+b)}\right] = e^{itb}\phi(at).$$

Characteristic functions

Proof.

- The first two items are immediate.
- For the third, if $t \neq 0$ and $\operatorname{supp}(X) \in \frac{2\pi}{t}\mathbb{Z} + c$ then $e^{itX} = e^{itc}$ a.s.
- Going in the reverse direction, suppose $t \neq 0$ and $\phi(t) = e^{i\theta}$. Then $\tilde{X} = X \frac{\theta}{t}$ has $\tilde{\phi}(t) = 1$, from which it follows that $\tilde{X} \in \frac{2\pi}{t}\mathbb{Z}$ a.s.

$$egin{aligned} |\phi(t+h)-\phi(t)| &= |\operatorname{\mathsf{E}}[e^{i(t+h)X}-e^{itX}]| \ &\leq \operatorname{\mathsf{E}}[|e^{i(t+h)X}-e^{itX}|] = \operatorname{\mathsf{E}}[|e^{ihX}-1|] \end{aligned}$$

•
$$\mathsf{E}[e^{it(aX+b)}] = e^{itb} \mathsf{E}[e^{itaX}] = e^{itb} \phi(at).$$

Theorem

If X_1 and X_2 are independent and have characteristic functions ϕ_1 and ϕ_2 , then $X_1 + X_2$ has characteristic function $\phi_1(t)\phi_2(t)$.

Proof.

We have

$$\mathsf{E}\left[e^{it(X_1+X_2)}\right] = \mathsf{E}\left[e^{itX_1}e^{itX_2}\right] = \mathsf{E}\left[e^{itX_1}\right]\mathsf{E}\left[e^{itX_2}\right].$$

Bo	h I	H.	~	~	h
50	U I		υu	в	

3

- 4 回 ト - 4 回 ト

Example (Classical characteristic functions)

• (Coin flips) If $\operatorname{Prob}(X = 1) = \operatorname{Prob}(X = -1) = \frac{1}{2}$, then

$$\mathsf{E}[e^{itX}] = \frac{e^{it} + e^{-it}}{2} = \cos t.$$

• (Poisson distribution) If $Prob(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ for k = 0, 1, 2, ..., then

$$\mathsf{E}\left[e^{itX}\right] = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k e^{itk}}{k!} = \exp\left(\lambda(e^{it}-1)\right).$$

Bob Hough

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Characteristic functions

Example (Classical characteristic functions)

• (Normal distribution) The standard normal with density $\frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}$ has $\phi(t) = e^{-\frac{t^2}{2}}$. To check this,

$$egin{aligned} \phi(t) &= rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-rac{x^2}{2} + itx} dx \ &= e^{-rac{t^2}{2}} rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-rac{(x-it)^2}{2}} dx. \end{aligned}$$

The last integral may be treated as a complex contour to complete the evaluation.

		< 🗗 🕨	· · 문 · · 문 · · 문	*) Q (*
Bob Hough	Math 639: Lecture 4		February 2, 2017	54 / 56

Characteristic functions

Example (Classical characteristic functions)

- (Uniform distribution on (a, b)) The density $\frac{1}{b-a}$ on (a, b) has $\phi(t) = \frac{e^{itb} e^{ita}}{it(b-a)}$.
- (Triangular distribution, or Féjer kernel) The density 1-|x| on (-1,1) has characteristic function

$$\phi(t) = \left(rac{2\sinrac{t}{2}}{t}
ight)^2$$

To check this, note that the density is the sum of two independent variables which are uniform on $\left(-\frac{1}{2}, \frac{1}{2}\right)$.

Bo	ЬH	loug	h
	~ • •		

Example (Classical characteristic functions)

 \bullet (Exponential distribution) The density e^{-x} on $(0,\infty)$ has

$$\phi(t) = \int_0^\infty e^{itx-x} dx = \frac{1}{1-it}.$$

- (Bilateral exponential) The density $\frac{1}{2}e^{-|x|}$ on \mathbb{R} has $\phi(t) = \frac{1}{1+t^2}$.
- (Cauchy distribution) The density $\frac{1}{\pi(1+x^2)}$ has $\phi(t) = \exp(-|t|)$. This follows from the previous calculation and the fact that the Fourier transform is an involution $L^2 \to L^2$.

Bo	h I	Ц,	~		h
50			υu	чs	