# Math 639: Lecture 4 <br> Convergence of random series and large deviations 

Bob Hough

February 2, 2017

## Renewal theory

Let $X_{1}, X_{2}, \ldots$ be i.i.d. with $0<X_{i}<\infty$. Let $T_{n}=X_{1}+\cdots+X_{n}$ and

$$
N_{t}=\sup \left\{n: T_{n} \leq t\right\} .
$$

Given a sequence of events which happen in succession with waiting time $X_{n}$ on the $n$th event, we think of $N_{t}$ as the number of events which have happened up to time $t$.

Theorem
If $\mathrm{E}\left[X_{1}\right]=\mu \leq \infty$, then as $t \rightarrow \infty$,

$$
\frac{N_{t}}{t} \rightarrow \frac{1}{\mu} \text { a.s.. }
$$

## Renewal theory

## Proof.

Since $T\left(N_{t}\right) \leq t<T\left(N_{t}+1\right)$, dividing through by $N_{t}$ gives

$$
\frac{T\left(N_{t}\right)}{N_{t}} \leq \frac{t}{N_{t}} \leq \frac{T\left(N_{t}+1\right)}{N_{t}+1} \frac{N_{t}+1}{N_{t}} .
$$

We have $N_{t} \rightarrow \infty$ a.s.. Hence, by the strong law,

$$
\frac{T_{N_{t}}}{N_{t}} \rightarrow \mu, \quad \frac{N_{t}+1}{N_{t}} \rightarrow 1
$$

## Empirical distribution functions

Let $X_{1}, X_{2}, \ldots$ be i.i.d. with distribution $F$ and let

$$
F_{n}(x)=\frac{1}{n} \sum_{m=1}^{n} \mathbf{1}_{\left(X_{m} \leq x\right)}
$$

Theorem (Glivenko-Cantelli Theorem)
As $n \rightarrow \infty$,

$$
\sup _{x}\left|F_{n}(x)-F(x)\right| \rightarrow 0 \text { a.s.. }
$$

## Empirical distribution functions

## Proof.

Note that $F$ is increasing, but can have jumps.

- For $k=1,2, \ldots$, and $1 \leq j \leq k-1$, define $x_{j, k}=\inf \left\{x: F(x) \geq \frac{j}{k}\right\}$. Set $x_{0, k}=-\infty, x_{k, k}=\infty$.
- Write $F(x-)=\lim _{y \uparrow x} F(y)$.
- Since each of $F_{n}\left(x_{j, k}-\right)$ and $F_{n}\left(x_{j, k}\right)$ converges by the strong law, and $F_{n}\left(x_{j, k}-\right)-F_{n}\left(x_{j-1, k}\right) \leq \frac{1}{k}$, the uniform convergence follows.


## Entropy

- Let $X_{1}, X_{2}, \ldots$ be i.i.d., taking values in $\{1,2, \ldots, r\}$ with all possibilities of positive probability. Set $\operatorname{Prob}\left(X_{i}=k\right)=p(k)>0$.
- Let $\pi_{n}(\omega)=p\left(X_{1}(\omega)\right) p\left(X_{2}(\omega)\right) \ldots p\left(X_{n}(\omega)\right)$. By the strong law, a.s.

$$
-\frac{1}{n} \log \pi_{n} \rightarrow H \equiv-\sum_{k=1}^{r} p(k) \log p(k)
$$

The constant $H$ is called the entropy.

## The tail $\sigma$-algebra

## Definition

Let $X_{1}, X_{2}, \ldots$ be a sequence of random variables. Their tail $\sigma$-algebra is

$$
\mathscr{T}=\bigcap_{n=1}^{\infty} \sigma\left(X_{n}, X_{n+1}, \ldots\right) .
$$

## The tail $\sigma$-algebra

## Example

- If $\left\{B_{n}\right\}$ is a sequence from the Borel $\sigma$-algebra $\mathscr{B}$, then $\left\{X_{n} \in B_{n}\right.$ i.o. $\} \in \mathscr{T}$.
- Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. We have $\left\{\lim _{n \rightarrow \infty} S_{n}\right.$ exists $\} \in \mathscr{T}$, $\left\{\lim \sup _{n \rightarrow \infty} S_{n}>0\right\} \notin \mathscr{T}$ $\left\{\lim \sup _{n \rightarrow \infty} \frac{S_{n}}{c_{n}}>x\right\} \in \mathscr{T}$ if $c_{n} \rightarrow \infty$.


## Kolmogorov's 0-1 law

## Theorem

If $X_{1}, X_{2}, \ldots$ are independent and $A \in \mathscr{T}$ then $\operatorname{Prob}(A)=0$ or $\operatorname{Prob}(A)=1$.

## Kolmogorov's 0-1 law

## Proof.

We show that $A$ is independent of itself, so that $\operatorname{Prob}(A)=\operatorname{Prob}(A \cap A)=\operatorname{Prob}(A)^{2}$.

- Observe that for each $k, \sigma\left(X_{1}, \ldots, X_{k}\right)$ and $\sigma\left(X_{k+1}, X_{k+2}, \ldots\right)$ are independent. This follows, since $\sigma\left(X_{k+1}, X_{k+2}, \ldots\right)$ is generated by $\sigma\left(X_{k+1}, \ldots, X_{k+m}\right)$ for $m=1,2,3, \ldots$, whose union forms a $\pi$-system.
- Since $\mathscr{T} \subset \sigma\left(X_{k+1}, X_{k+1}, \ldots\right), \mathscr{T}$ is independent of $\sigma\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ for each $k$, and hence of $\sigma\left(X_{1}, X_{2}, \ldots\right)$.


## Kolmogorov's 0-1 law

## Example

If $A_{1}, A_{2}, \ldots$ are independent then

- $\operatorname{Prob}\left(A_{n}\right.$ i.o. $)$ is 0 or 1
- $\operatorname{Prob}\left(\lim _{n \rightarrow \infty} S_{n}\right.$ exists) is 0 or 1 .


## Kolmogorov's maximal inequality

Theorem (Kolmogorov's maximal inequality)
Suppose $X_{1}, \ldots, X_{n}$ are independent with $\mathrm{E}\left[X_{i}\right]=0$ and $\operatorname{Var}\left(X_{i}\right)<\infty$. If $S_{k}=X_{1}+\cdots+X_{k}$, then

$$
\operatorname{Prob}\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq x\right) \leq x^{-2} \operatorname{Var}\left(S_{n}\right) .
$$

## Kolmogorov's maximal inequality

## Proof.

- Let $A_{k}=\left\{\left|S_{k}\right| \geq x\right\} \backslash \bigcup_{j=1}^{k-1}\left\{\left|S_{j}\right| \geq x\right\}$ be those trials for which the sum first exceeds $x$ at step $k$.
- We have

$$
\begin{aligned}
\mathrm{E}\left[S_{n}^{2}\right] & \geq \sum_{k=1}^{n} \int_{A_{k}} S_{n}^{2} d P=\sum_{k=1}^{n} \int_{A_{k}}\left(S_{k}+\left(S_{n}-S_{k}\right)\right)^{2} d P \\
& \geq \sum_{k=1}^{n} \int_{A_{k}} S_{k}^{2} d P+\sum_{k=1}^{n} \int 2 S_{k} \mathbf{1}_{A_{k}}\left(S_{n}-S_{k}\right) d P .
\end{aligned}
$$

- Since $S_{k} \mathbf{1}_{A_{k}} \in \sigma\left(X_{1}, \ldots, X_{k}\right)$, it is independent of $S_{n}-S_{k}$, so that the second sum above is 0 . Since $\left|S_{k}\right| \geq x$ on $A_{k}$, it follows that $\mathrm{E}\left[S_{n}^{2}\right] \geq x^{2} \operatorname{Prob}\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq x\right)$.


## Convergence of series

Theorem
Let $X_{1}, X_{2}, \ldots$ be independent, have $\mathrm{E}\left[X_{i}\right]=0$ and

$$
\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n}\right)<\infty
$$

With probability $1, \sum_{n=1}^{\infty} X_{n}$ converges.

## Convergence of series

## Proof.

- Let $S_{N}=\sum_{n=1}^{N} X_{n}$.
- By Kolmogorov's maximal theorem,

$$
\operatorname{Prob}\left(\max _{M \leq m \leq N}\left|S_{m}-S_{N}\right|>\epsilon\right) \leq \epsilon^{-2} \sum_{n=M+1}^{N} \operatorname{Var}\left(X_{n}\right)
$$

so

$$
\operatorname{Prob}\left(\sup _{m \geq M}\left|S_{m}-S_{M}\right|>\epsilon\right) \leq \epsilon^{-2} \sum_{n=M+1}^{\infty} \operatorname{Var}\left(X_{n}\right)
$$

## Convergence of series

## Proof.

- Let $w_{M}=\sup _{m, n \geq M}\left|S_{m}-S_{n}\right|$. We have

$$
\operatorname{Prob}\left(w_{M}>2 \epsilon\right) \leq \operatorname{Prob}\left(\sup _{m \geq M}\left|S_{m}-S_{M}\right|>\epsilon\right) \rightarrow 0
$$

as $M \rightarrow \infty$, so $w_{M} \downarrow 0$ a.s..

- Hence $\sum X_{n}$ is a.s. Cauchy, hence convergent.


## Convergence of series

## Example

Let $X_{1}, X_{2}, \ldots$ be i.i.d., taking values $\pm 1$ with probability $\frac{1}{2}$. The series

$$
\sum_{n=1}^{\infty} \frac{X_{n}}{n^{\sigma}}
$$

converges a.s. if $\sigma>\frac{1}{2}$ and diverges a.s. if $\sigma \leq \frac{1}{2}$.

## Kolmogorov's three-series theorem

Theorem
Let $X_{1}, X_{2}, \ldots$ be independent. Let $A>0$ and let $Y_{i}=X_{i} \mathbf{1}_{\left(\left|X_{i}\right| \leq A\right)}$. In order that $\sum_{n=1}^{\infty} X_{n}$ converge a.s. it is necessary and sufficient that
(1) $\sum_{n=1}^{\infty} \operatorname{Prob}\left(\left|X_{n}\right|>A\right)<\infty$
(2) $\sum_{n=1}^{\infty} \mathrm{E}\left[Y_{n}\right]$ converges
(3) $\sum_{n=1}^{\infty} \operatorname{Var}\left(Y_{n}\right)<\infty$.

## Kolmogorov's three-series theorem

## Proof.

- We postpone the proof of necessity.
- To prove that the condition is sufficient, note that item 1 implies that $X_{n} \neq Y_{n}$ finitely often with probability 1.
- The a.s. convergence of $\sum_{n} Y_{n}$ is now guaranteed by the previous theorem.


## Kronecker's lemma

Theorem
If $a_{n} \geq 0$ is an increasing sequence, $a_{n} \uparrow \infty$ and $\sum_{n=1}^{\infty} \frac{x_{n}}{a_{n}}$ converges then

$$
\frac{1}{a_{n}} \sum_{m=1}^{n} x_{m} \rightarrow 0
$$

## Kronecker's lemma

## Proof.

Let $a_{0}=b_{0}=0$ and $b_{m}=\sum_{k=1}^{m} \frac{x_{k}}{a_{k}}$. By summation by parts,

$$
\begin{aligned}
\frac{1}{a_{n}} \sum_{m=1}^{n} x_{m} & =\frac{1}{a_{n}}\left\{\sum_{m=1}^{n} a_{m}\left(b_{m}-b_{m-1}\right)\right\} \\
& =b_{n}-\sum_{m=1}^{n} \frac{\left(a_{m}-a_{m-1}\right)}{a_{n}} b_{m-1}
\end{aligned}
$$

Since $b_{n}$ tends to a limit, and $a_{n} \uparrow \infty$,

$$
\lim _{n \rightarrow \infty} b_{n}-\sum_{m=1}^{n} \frac{\left(a_{m}-a_{m-1}\right)}{a_{n}} b_{m-1}=0
$$

## Rates of convergence

The following is a cheap version of the law of the iterated logarithm.
Theorem
Let $X_{1}, X_{2}, \ldots$ be i.i.d. random variables satisfying $\mathrm{E}\left[X_{i}\right]=0$ and $\mathrm{E}\left[X_{i}^{2}\right]=\sigma^{2}<\infty$. Let $S_{n}=X_{1}+\cdots+X_{n}$. Then for $\epsilon>0$

$$
\frac{S_{n}}{n^{\frac{1}{2}}(\log n)^{\frac{1}{2}+\epsilon}} \rightarrow 0 \quad \text { a.s.. }
$$

## Rates of convergence

## Proof.

Let $a_{n}=n^{\frac{1}{2}}(\log n)^{\frac{1}{2}+\epsilon}$ for $n \geq 2$ and $a_{1}=1$. Then

$$
\sum_{n=1}^{\infty} \operatorname{Var}\left(\frac{X_{n}}{a_{n}}\right)=\sigma^{2}\left(1+\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{1+2 \epsilon}}\right)<\infty
$$

so $\sum_{n=1}^{\infty} \frac{X_{n}}{a_{n}}$ converges a.s.. The claim now follows from Kronecker's lemma.

## Random Dirichlet series

## Example

- Form a 'random multiplicative function' by setting $X(1)=1$, choosing $X(p)$, $p$ prime to be i.i.d. $\pm 1$ with equal probability, and declaring for all $m, n, X(m n)=X(m) X(n)$.
- For $\Re(s)>1$, the Dirichlet series

$$
L(s, X)=\sum_{n=1}^{\infty} \frac{X(n)}{n^{s}}=\prod_{p}\left(1-\frac{X(p)}{p^{s}}\right)^{-1}
$$

converges absolutely and has an absolutely convergent Euler product.

- With probability $1, \log L(s, X)$ has a holomorphic continuation to $\Re(s)>\frac{1}{2}$, so $L(s, X) \neq 0$ there.


## Random Dirichlet series

## Example

To check the last statement, write

$$
\begin{aligned}
\log L(s, X) & =\sum_{p} \frac{X(p)}{p^{s}}+\text { absolutely convergent in } \Re(s)>\frac{1}{2} . \\
\sum_{p} \frac{X(p)}{p^{s}} & =\int_{0}^{\infty} \frac{1}{x^{s}} d\left(\sum_{p \leq x} X(p)\right) \\
& =s \int_{0}^{\infty} \frac{\sum_{p \leq x} X(p)}{x^{s+1}} d x .
\end{aligned}
$$

With probability 1 , for any $\epsilon>0$ the numerator is $O_{\epsilon}\left(X^{\frac{1}{2}+\epsilon}\right)$, so that the integral converges absolutely in $\Re(s)>\frac{1}{2}$, giving the holomorphic extension.

## Rates of convergence

Theorem (Marcinkiewicz, Zygmund)
Let $X_{1}, X_{2}, \ldots$ be i.i.d. with $\mathrm{E}\left[X_{1}\right]=0$ and $\mathrm{E}\left[\left|X_{1}\right|^{p}\right]<\infty$ where $1<p<2$. If $S_{n}=X_{1}+\cdots+X_{n}$ then $\frac{S_{n}}{n^{\frac{1}{\rho}}} \rightarrow 0$ a.s.

## Rates of convergence

## Proof.

- Let $Y_{k}=X_{k} \mathbf{1}_{\left(\left|X_{k}\right| \leq k^{\frac{1}{p}}\right)}$ and $T_{n}=Y_{1}+\cdots+Y_{n}$.
- We have

$$
\sum_{k=1}^{\infty} \operatorname{Prob}\left(Y_{k} \neq X_{k}\right)=\sum_{k=1}^{\infty} \operatorname{Prob}\left(\left|X_{k}\right|^{p}>k\right) \leq \mathrm{E}\left[\left|X_{k}\right|^{p}\right]<\infty
$$

Thus $\operatorname{Prob}\left(Y_{k} \neq X_{k}\right.$ i.o. $)=0$ by Borel-Cantelli.

## Rates of convergence

## Proof.

- Calculate

$$
\begin{aligned}
\sum_{m=1}^{\infty} \operatorname{Var}\left(\frac{Y_{m}}{m^{\frac{1}{p}}}\right) & \leq \sum_{m=1}^{\infty} \mathrm{E}\left[\frac{Y_{m}^{2}}{m^{\frac{2}{p}}}\right] \\
& \leq \sum_{m=1}^{\infty} \int_{0}^{m^{\frac{1}{p}}} \frac{2 y}{m^{\frac{2}{p}}} \operatorname{Prob}\left(\left|X_{1}\right|>y\right) d y \\
& =\int_{0}^{\infty} \sum_{m>y^{p}} \frac{2 y}{m^{\frac{2}{p}}} \operatorname{Prob}\left(\left|X_{1}\right|>y\right) d y \\
& \ll \int_{0}^{\infty} y^{p-1} \operatorname{Prob}\left(\left|X_{1}\right|>y\right) d y=\mathrm{E}\left[\left|X_{1}\right|^{p}\right]<\infty
\end{aligned}
$$

## Rates of convergence

## Proof.

- Applying the theorem on convergence of series and Kronecker's lemma,

$$
n^{-\frac{1}{p}} \sum_{k=1}^{n}\left(Y_{m}-\mathrm{E}\left[Y_{m}\right]\right) \rightarrow 0, \text { a.s. }
$$

- It remains to verify that $n^{-\frac{1}{p}} \sum_{m=1}^{n} \mathrm{E}\left[Y_{m}\right] \rightarrow 0$. To check this, write $\mathrm{E}\left[Y_{m}\right]=-\mathrm{E}\left[X_{1} \cdot \mathbf{1}\left(\left|X_{1}\right|>m^{\frac{1}{p}}\right)\right]$, so $\left|E\left[Y_{m}\right]\right|$ is bounded by

$$
\mathrm{E}\left[\left|X_{1}\right| \cdot \mathbf{1}\left(\left|X_{1}\right|>m^{\frac{1}{p}}\right)\right] \leq m^{-1+\frac{1}{p}} \mathrm{E}\left[\left|X_{1}\right|^{p} \cdot \mathbf{1}\left(\left|X_{1}\right|>m^{\frac{1}{p}}\right)\right]
$$

Since $\sum_{m \leq n} m^{-1+\frac{1}{p}} \ll n^{\frac{1}{p}}$ and the expectation tends to 0 as $m \rightarrow \infty$, the claim follows.

## Infinite mean

## Theorem

Let $X_{1}, X_{2}, \ldots$ be i.i.d. with $\mathrm{E}\left[\left|X_{1}\right|\right]=\infty$ and let $S_{n}=X_{1}+\cdots+X_{n}$. Let $a_{n}$ be a sequence of positive numbers with $\frac{a_{n}}{n}$ increasing. Then $\lim \sup _{n \rightarrow \infty} \frac{\left|S_{n}\right|}{a_{n}}=0$ or $\infty$ according as $\sum_{n} \operatorname{Prob}\left(\left|X_{1}\right| \geq a_{n}\right)<\infty$ or $=\infty$.

## Infinite mean

## Proof.

First suppose $\sum_{n} \operatorname{Prob}\left(\left|X_{1}\right| \geq a_{n}\right)=\infty$.

- Since $\frac{a_{n}}{n}$ is increasing

$$
\begin{aligned}
\sum_{n=1}^{\infty} \operatorname{Prob}\left(\left|X_{1}\right| \geq k a_{n}\right) & \geq \sum_{n=1}^{\infty} \operatorname{Prob}\left(\left|X_{1}\right| \geq a_{k n}\right) \\
& \geq \frac{1}{k} \sum_{m=k}^{\infty} \operatorname{Prob}\left(\left|X_{1}\right| \geq a_{m}\right)=\infty
\end{aligned}
$$

In particular, $\lim \sup _{n \rightarrow \infty} \frac{\left|X_{n}\right|}{a_{n}}=\infty$ with probability 1 by Borel-Cantelli.

- Since $\max \left(\left|S_{n-1}\right|,\left|S_{n}\right|\right) \geq \frac{\left|X_{n}\right|}{2}$, the claim follows.


## Infinite mean

## Proof.

Now suppose $\sum_{n} \operatorname{Prob}\left(\left|X_{1}\right| \geq a_{n}\right)<\infty$.

- Define $Y_{n}=X_{n} \mathbf{1}\left(\left|X_{n}\right|<a_{n}\right)$. Since $X_{n} \neq Y_{n}$ finitely often a.s., the proof consists in checking that $\sum \operatorname{Var}\left(\frac{Y_{n}}{a_{n}}\right)<\infty$ and $\frac{1}{a_{n}} \sum_{m=1}^{n} \mathrm{E}\left[Y_{m}\right] \rightarrow 0$.
- Calculate

$$
\begin{aligned}
\sum_{n=1}^{\infty} \operatorname{Var}\left(\frac{Y_{n}}{a_{n}}\right) & \leq \sum_{n=1}^{\infty} \frac{\mathrm{E}\left[Y_{n}^{2}\right]}{a_{n}^{2}} \\
& =\sum_{m=1}^{\infty} \int_{\left[a_{m-1}, a_{m}\right)} y^{2} d F(y) \sum_{n=m}^{\infty} a_{n}^{-2} .
\end{aligned}
$$

## Infinite mean

## Proof.

Now suppose $\sum_{n} \operatorname{Prob}\left(\left|X_{1}\right| \geq a_{n}\right)<\infty$.

- Since $a_{n} \geq \frac{n a_{m}}{m}, \sum_{n=m}^{\infty} a_{n}^{-2} \leq \frac{m^{2}}{a_{m}^{2}} \sum_{n=m}^{\infty} n^{-2} \ll \frac{m}{a_{m}^{2}}$.
- Thus

$$
\begin{aligned}
\sum_{m=1}^{\infty} \operatorname{Var}\left(\frac{Y_{n}}{a_{n}}\right) & \ll \sum_{m=1}^{\infty} m \operatorname{Prob}\left(a_{m-1} \leq\left|X_{i}\right|<a_{m}\right) \\
& =\sum_{m=1}^{\infty} \operatorname{Prob}\left(\left|X_{1}\right|>a_{m-1}\right)<\infty
\end{aligned}
$$

## Infinite mean

## Proof.

- To prove the mean condition, first, since $\mathrm{E}\left[\left|X_{i}\right|\right]=\infty$ and $\sum_{n=1}^{\infty} \operatorname{Prob}\left(\left|X_{i}\right|>a_{n}\right)<\infty$, we have $\frac{a_{n}}{n} \uparrow \infty$.
- Bound

$$
\begin{aligned}
\left|\frac{1}{a_{n}} \sum_{m=1}^{n} \mathrm{E}\left[Y_{m}\right]\right| & \leq \frac{1}{a_{n}} \sum_{m=1}^{n} \mathrm{E}\left[\left|X_{m}\right| \cdot \mathbf{1}\left(\left|X_{m}\right|<a_{m}\right)\right] \\
& \leq \frac{n a_{N}}{a_{n}}+\frac{n}{a_{n}} \mathrm{E}\left[\left|X_{1}\right| \cdot \mathbf{1}\left(a_{N} \leq\left|X_{1}\right| \leq a_{n}\right)\right]
\end{aligned}
$$

- If $N$ grows sufficiently slowly, the first term tends to 0 .


## Infinite mean

## Proof.

- Bound $\frac{n}{a_{n}} \mathrm{E}\left[\left|X_{1}\right| \cdot \mathbf{1}\left(a_{N} \leq\left|X_{1}\right| \leq a_{n}\right)\right]$ by

$$
\begin{aligned}
& \sum_{m=N+1}^{n} \frac{m}{a_{m}} \mathrm{E}\left[\left|X_{1}\right| \cdot \mathbf{1}\left(a_{m-1} \leq\left|X_{1}\right|<a_{m}\right)\right] \\
& \leq \sum_{m=N+1}^{\infty} m \operatorname{Prob}\left(a_{m-1} \leq\left|X_{1}\right|<a_{m}\right)
\end{aligned}
$$

Since

$$
\sum_{m=1}^{\infty} m \operatorname{Prob}\left(a_{m-1} \leq\left|X_{1}\right|<a_{m}\right)=\sum_{n=1}^{\infty} \operatorname{Prob}\left(\left|X_{1}\right| \geq a_{n-1}\right)<\infty
$$

the latter tends to 0 as $N \rightarrow \infty$.

## Large deviations

Let $X_{1}, X_{2}, \ldots$ be i.i.d., $\mathrm{E}\left[X_{1}\right]=\mu,|\mu|<\infty$. We are interested in the tail probability

$$
\operatorname{Prob}\left(S_{n}>n a\right)
$$

for $a>\mu$. Define $\pi_{n}=\operatorname{Prob}\left(S_{n}>n a\right)$ and $\gamma_{n}=\log \pi_{n}$.

## Lemma

For $m, n \geq 1$,

$$
\pi_{m+n} \geq \pi_{m} \pi_{n}
$$

## Proof.

This follows from the independence, since

$$
\pi_{m+n} \geq \operatorname{Prob}\left(S_{m} \geq m a, S_{n+m}-S_{m} \geq n a\right)=\pi_{m} \pi_{n}
$$

## Large deviations

## Lemma

Let $a_{n}$ be a sequence satisfying $a_{m+n} \geq a_{m}+a_{n}$. Then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n} \rightarrow \sup _{n} \frac{a_{n}}{n}
$$

## Proof.

- Since $\lim \sup \frac{a_{n}}{n} \leq \sup \frac{a_{n}}{n}$ it suffices to check $\lim \inf \frac{a_{n}}{n} \geq \frac{a_{n}}{n}$.
- Given $n>m$, write $n=k m+\ell, 0 \leq \ell<m$. We have

$$
\frac{a_{n}}{n} \geq\left(\frac{k m}{k m+\ell}\right) \frac{a_{m}}{m}+\frac{a_{\ell}}{n}
$$

Letting $n \rightarrow \infty$ proves the claim.

## Large deviations

Define $\gamma(a)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \operatorname{Prob}\left(S_{n} \geq n a\right)$. This exists by the previous lemma. Furthermore,

$$
\operatorname{Prob}\left(S_{n} \geq n a\right) \leq e^{n \gamma(a)}
$$

## Moment generating function

## Definition

The moment generating function for a random variable $X$ is $\phi(\theta)=\mathrm{E}\left[e^{\theta X}\right]$.

## Moment generating function

We assume that $\phi(\theta)<\infty$ for some $\theta>0$. By Markov's inequality,

$$
\begin{aligned}
e^{\theta n a} \operatorname{Prob}\left(S_{n} \geq n a\right) & \leq \mathrm{E}\left[\exp \left(\theta S_{n}\right)\right]=\phi(\theta)^{n} \\
\operatorname{Prob}\left(S_{n} \geq n a\right) & \leq \exp (-n(\theta a-\log \phi(\theta)))
\end{aligned}
$$

Let $\theta_{+}=\sup \{\theta: \phi(\theta)<\infty\}$.
Lemma
$\log \phi(\theta)$ is continuous at 0 , differentiable on $\left(0, \theta_{+}\right)$and satisfies $\lim _{\theta \downarrow 0} \frac{\phi^{\prime}(\theta)}{\phi(\theta)}=\mathrm{E}[X]$.

## Moment generating function

## Proof.

Each of the statements follows by dominated convergence.

- For instance, to prove the continuity at 0 , for $0<\theta<\theta_{0}<\theta_{+}$use $e^{\theta x} \leq 1+e^{\theta_{0} x}$ to take the limit as $\theta \downarrow 0$.
- We proved in Lecture 2 that it's possible to differentiate under the expectation, from which the remaining two claims follow.


## Weighted distribution

To prove the lower bound, consider the distribution function

$$
F_{\lambda}(x)=\frac{1}{\phi(\lambda)} \int_{-\infty}^{x} e^{\lambda y} d F(y)
$$

Note that this distribution has mean

$$
\frac{1}{\phi(\lambda)} \int_{-\infty}^{\infty} y e^{\lambda y} d F(y)=\frac{\phi^{\prime}(\lambda)}{\phi(\lambda)}
$$

## Lemma

We have $\frac{d F^{n}}{d F_{\lambda}^{n}}=e^{-\lambda x} \phi(\lambda)^{n}$.

## Weighted distribution

## Proof.

We check this by induction. For $n=1$ the claim holds by definition. Write

$$
\begin{aligned}
F^{n}(z) & =F^{n-1} * F(z)=\int_{-\infty}^{\infty} d F^{n-1}(x) \int_{-\infty}^{z-x} d F(y) \\
& =\phi(\lambda)^{n} \int_{-\infty}^{\infty} d F_{\lambda}^{n-1}(x) \int_{-\infty}^{\infty} \mathbf{1}_{(x+y \leq z)} e^{-\lambda(x+y)} d F_{\lambda}(y) \\
& =\phi(\lambda)^{n} E\left(\mathbf{1}_{\left(S_{n-1}^{\lambda}+X \lambda\right) \leq z} e^{-\lambda\left(S_{n-1}^{\lambda}+X_{n}^{\lambda}\right)}\right) \\
& =\phi(\lambda)^{n} \int_{-\infty}^{z} e^{-\lambda u} d F_{\lambda}^{n}(u)
\end{aligned}
$$

## Tail probability

Suppose that the distribution of $X$ is not a point mass at $\mu$. It follows that $\frac{\phi^{\prime}(\theta)}{\phi(\theta)}$ is strictly increasing by convexity. If $a>\mu$ then there is at most one solution to the 'saddle point' equation

$$
a=\frac{\phi^{\prime}\left(\theta_{a}\right)}{\phi\left(\theta_{a}\right)} .
$$

## Theorem

Suppose there is $\theta_{a} \in\left(0, \theta_{+}\right)$such that $a=\frac{\phi^{\prime}\left(\theta_{a}\right)}{\phi\left(\theta_{a}\right)}$. Then, as $n \rightarrow \infty$,

$$
\frac{1}{n} \log \operatorname{Prob}\left(S_{n} \geq n a\right) \rightarrow-a \theta_{a}+\log \phi\left(\theta_{a}\right) .
$$

## Tail probability

## Proof.

The upper bound in the limit follows from taking $\theta=\theta_{a}$ in the inequality

$$
\operatorname{Prob}\left(S_{n} \geq n a\right) \leq \exp (-n(a \theta-\log \phi(\theta)))
$$

## Tail probability

## Proof.

To prove the lower bound, use the weighted distribution $F_{\lambda}$,

$$
\begin{aligned}
\operatorname{Prob}\left(S_{n} \geq n a\right) & \geq \int_{n a}^{n b} e^{-\lambda x} \phi(\lambda)^{n} d F_{\lambda}^{n}(x) \\
& \geq \phi(\lambda)^{n} e^{-\lambda n b}\left(F_{\lambda}^{n}(n b)-F_{\lambda}^{n}(n a)\right)
\end{aligned}
$$

- Choose $\lambda$ such that $a<\frac{\phi^{\prime}(\lambda)}{\phi(\lambda)}<b$.
- By the weak law of large numbers, $F_{\lambda}^{n}(n b)-F_{\lambda}^{n}(n a) \rightarrow 1$ as $n \rightarrow \infty$. Letting $b \downarrow$ a proves the claim.


## Examples

## Example (Normal distribution)

The standard normal distribution has exponential generating function

$$
\begin{aligned}
\phi(\theta) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{\theta x} \exp \left(-\frac{x^{2}}{2}\right) d x \\
& =\frac{e^{\frac{\theta^{2}}{2}}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-\theta)^{2}}{2}} d x=e^{\frac{\theta^{2}}{2}}
\end{aligned}
$$

Hence $\theta_{a}=a$ and $\gamma_{a}=-a \theta_{a}+\log \phi\left(\theta_{a}\right)=-\frac{a^{2}}{2}$.

## Examples

## Example (Exponential distribution)

The exponential distribution with parameter 1 has exponential generating function

$$
\phi(\theta)=\int_{0}^{\infty} e^{\theta x} e^{-x} d x=\frac{1}{1-\theta}, \quad \theta<1
$$

Hence $\frac{\phi^{\prime}}{\phi}(\theta)=\frac{1}{1-\theta}$, so $\theta_{a}=1-\frac{1}{a}$ and

$$
\gamma(a)=-a \theta_{a}-\log \left(1-\theta_{a}\right)=-a+1+\log a .
$$

## Characteristic functions

## Definition

The characteristic function of random variable $X$ is

$$
\phi(t)=\mathrm{E}\left[e^{i t X}\right]
$$

For real valued random variables, the characteristic function exists for all real $t$, which gives the characteristic function an advantage over the moment generating function.

## Characteristic functions

Note the following easy properties of characteristic functions.

## Theorem

The characteristic function $\phi(t)$ of $X$ satisfies

- $\phi(0)=1$.
- $\phi(-t)=\overline{\phi(t)}$.
- $|\phi(t)| \leq 1$, with equality if and only if $t=0$ or $\operatorname{supp}(X) \subset \frac{2 \pi}{t} \mathbb{Z}+c$.
- $|\phi(t+h)-\phi(t)| \leq \mathrm{E}\left[\left|e^{i h X}-1\right|\right]$.
- $\mathrm{E}\left[e^{i t(a X+b)}\right]=e^{i t b} \phi(a t)$.


## Characteristic functions

## Proof.

- The first two items are immediate.
- For the third, if $t \neq 0$ and $\operatorname{supp}(X) \in \frac{2 \pi}{t} \mathbb{Z}+c$ then $e^{i t X}=e^{i t c}$ a.s.
- Going in the reverse direction, suppose $t \neq 0$ and $\phi(t)=e^{i \theta}$. Then $\tilde{X}=X-\frac{\theta}{t}$ has $\tilde{\phi}(t)=1$, from which it follows that $\tilde{X} \in \frac{2 \pi}{t} \mathbb{Z}$ a.s.

$$
\begin{aligned}
|\phi(t+h)-\phi(t)| & =\left|\mathrm{E}\left[e^{i(t+h) X}-e^{i t X}\right]\right| \\
& \leq \mathrm{E}\left[\left|e^{i(t+h) X}-e^{i t X}\right|\right]=\mathrm{E}\left[\left|e^{i h X}-1\right|\right]
\end{aligned}
$$

- $\mathrm{E}\left[e^{i t(a X+b)}\right]=e^{i t b} \mathrm{E}\left[e^{i t a X}\right]=e^{i t b} \phi(a t)$.


## Characteristic functions

## Theorem

If $X_{1}$ and $X_{2}$ are independent and have characteristic functions $\phi_{1}$ and $\phi_{2}$, then $X_{1}+X_{2}$ has characteristic function $\phi_{1}(t) \phi_{2}(t)$.

## Proof.

We have

$$
\mathrm{E}\left[e^{i t\left(X_{1}+X_{2}\right)}\right]=\mathrm{E}\left[e^{i t X_{1}} e^{i t X_{2}}\right]=\mathrm{E}\left[e^{i t X_{1}}\right] \mathrm{E}\left[e^{i t X_{2}}\right] .
$$

## Characteristic functions

## Example (Classical characteristic functions)

- (Coin flips) If $\operatorname{Prob}(X=1)=\operatorname{Prob}(X=-1)=\frac{1}{2}$, then

$$
\mathrm{E}\left[e^{i t X}\right]=\frac{e^{i t}+e^{-i t}}{2}=\cos t
$$

- (Poisson distribution) If $\operatorname{Prob}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}$ for $k=0,1,2, \ldots$, then

$$
E\left[e^{i t X}\right]=\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k} e^{i t k}}{k!}=\exp \left(\lambda\left(e^{i t}-1\right)\right) .
$$

## Characteristic functions

## Example (Classical characteristic functions)

- (Normal distribution) The standard normal with density $\frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}}$ has $\phi(t)=e^{-\frac{t^{2}}{2}}$. To check this,

$$
\begin{aligned}
\phi(t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}+i t x} d x \\
& =e^{-\frac{t^{2}}{2}} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-i t)^{2}}{2}} d x .
\end{aligned}
$$

The last integral may be treated as a complex contour to complete the evaluation.

## Characteristic functions

## Example (Classical characteristic functions)

- (Uniform distribution on $(a, b)$ ) The density $\frac{1}{b-a}$ on $(a, b)$ has $\phi(t)=\frac{e^{i t b}-e^{i t a}}{i t(b-a)}$.
- (Triangular distribution, or Féjer kernel) The density $1-|x|$ on $(-1,1)$ has characteristic function

$$
\phi(t)=\left(\frac{2 \sin \frac{t}{2}}{t}\right)^{2}
$$

To check this, note that the density is the sum of two independent variables which are uniform on $\left(-\frac{1}{2}, \frac{1}{2}\right)$.

## Characteristic functions

## Example (Classical characteristic functions)

- (Exponential distribution) The density $e^{-x}$ on $(0, \infty)$ has

$$
\phi(t)=\int_{0}^{\infty} e^{i t x-x} d x=\frac{1}{1-i t}
$$

- (Bilateral exponential) The density $\frac{1}{2} e^{-|x|}$ on $\mathbb{R}$ has $\phi(t)=\frac{1}{1+t^{2}}$.
- (Cauchy distribution) The density $\frac{1}{\pi\left(1+x^{2}\right)}$ has $\phi(t)=\exp (-|t|)$. This follows from the previous calculation and the fact that the Fourier transform is an involution $L^{2} \rightarrow L^{2}$.

