Math 639: Lecture 3

The law of large numbers

Bob Hough

January 31, 2017

Convergence in probability

Definition

A sequence of random variables $\left\{Y_{n}\right\}$ converges to Y in probability if for all $\epsilon>0$,

$$
\operatorname{Prob}\left(\left|Y_{n}-Y\right|>\epsilon\right) \rightarrow 0
$$

as $n \rightarrow \infty$.

Uncorrelated variables

Recall that random variables X_{1}, X_{2} are said to be uncorrelated if $\mathrm{E}\left[X_{1}^{2}\right]<\infty, \mathrm{E}\left[X_{2}^{2}\right]<\infty$ and $\mathrm{E}\left[X_{1} X_{2}\right]=\mathrm{E}\left[X_{1}\right] \mathrm{E}\left[X_{2}\right]$.

Theorem
Let X_{1}, \ldots, X_{n} be uncorrelated random variables satisfying $\mathrm{E}\left[X_{i}^{2}\right]<\infty$.
Then

$$
\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)
$$

Uncorrelated variables

Proof.

- We may assume that each variable is mean 0 , since both sides of the equation are unchanged under translation.
- We have

$$
\mathrm{E}\left[\left(X_{1}+\cdots+X_{n}\right)^{2}\right]=\mathrm{E}\left[X_{1}^{2}\right]+\cdots+\mathrm{E}\left[X_{n}^{2}\right]
$$

since the cross-terms vanish.

Convergence in probability

Lemma

If $p>0$ and $\mathrm{E}\left[\left|Z_{n}\right|^{p}\right] \rightarrow 0$ as $n \rightarrow \infty$ then $Z_{n} \rightarrow 0$ in probability.

Proof.

By Markov's inequality, for each $\epsilon>0, \operatorname{Prob}\left(\left|Z_{n}\right| \geq \epsilon\right) \leq \epsilon^{-p} E\left[\left|Z_{n}\right|^{p}\right]$, which gives the claim.

Theorem (L^{2} weak law)
Let X_{1}, X_{2}, \ldots be uncorrelated random variables satisfying $\mathrm{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right) \leq C<\infty$. If $S_{n}=X_{1}+\ldots+X_{n}$ then as $n \rightarrow \infty, \frac{S_{n}}{n} \rightarrow \mu$ in L^{2} and in probability.
L^{2} weak law

Proof.
 Observe

$\mathrm{E}\left[\left(\frac{S_{n}}{n}-\mu\right)^{2}\right]=\operatorname{Var}\left(\frac{S_{n}}{n}\right)=\frac{1}{n^{2}}\left(\operatorname{Var}\left(X_{1}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)\right) \leq \frac{C_{n}}{n^{2}} \rightarrow 0$.
This proves convergence in L^{2}. Convergence in probability follows from the previous lemma.

Independent and identically distributed

Definition

A sequence of random variables $X_{1}, X_{2}, X_{3}, \ldots$ which have the same distribution and are independent are called independent and identically distributed or i.i.d..

The L^{2} weak law applies to i.i.d. variables of finite variance.

Weierstrass approximation theorem

Example

Let f be a continuous function on $[0,1]$. The Bernstein polynomial of degree n associated to f is

$$
f_{n}(x)=\sum_{m=0}^{n}\binom{n}{m} x^{m}(1-x)^{n-m} f\left(\frac{m}{n}\right) .
$$

As a consequence of the weak law, we show that $f_{n}(x) \rightarrow f(x)$ uniformly as $n \rightarrow \infty$.

Weierstrass approximation theorem

Proof.

- Let S_{n} be the sum of n i.i.d. random variables satisfying $\operatorname{Prob}\left(X_{i}=1\right)=p, \operatorname{Prob}\left(X_{i}=0\right)=1-p$. Thus $\mathrm{E}\left[X_{i}\right]=p$, $\operatorname{Var}\left[X_{i}\right]=p-p^{2}$.
- Note

$$
\operatorname{Prob}\left(S_{n}=m\right)=\binom{n}{m} p^{m}(1-p)^{n-m},
$$

thus $\mathrm{E}\left[f\left(\frac{S_{n}}{n}\right)\right]=f_{n}(p)$.

- Given $\delta>0$, by Chebyshev's inequality,

$$
\operatorname{Prob}\left(\left|\frac{S_{n}}{n}-p\right|>\delta\right) \leq \frac{\operatorname{Var}\left(\frac{S_{n}}{n}\right)}{\delta^{2}}=\frac{p(1-p)}{n \delta^{2}} \leq \frac{1}{4 n \delta^{2}}
$$

Weierstrass approximation theorem

Proof.

- Let $\delta>0$ be such that $|x-y|<\delta$ implies $|f(x)-f(y)|<\epsilon$, and let $M=\sup _{x \in[0,1]}|f(x)|$.
- We have

$$
\begin{aligned}
\left|\mathrm{E}\left[f\left(\frac{S_{n}}{n}\right)\right]-f(p)\right| & \leq \mathrm{E}\left[\left|f\left(\frac{S_{n}}{n}\right)-f(p)\right|\right] \\
& \leq \epsilon+2 M \operatorname{Prob}\left(\left|\frac{S_{n}}{n}-p\right|>\delta\right) \\
& \leq \epsilon+\frac{M}{2 n \delta^{2}} .
\end{aligned}
$$

The claim follows.

Concentration of the 2 -norm

Example

- Let X_{1}, \ldots, X_{n} be independent and uniformly distributed on $(-1,1)$. Their joint distribution is uniform measure on the cube $(-1,1)^{n}$.
- Let $Y_{i}=X_{i}^{2}$. These variables are independent and satisfy $\mathrm{E}\left[Y_{i}\right]=\frac{1}{3}$ and $\operatorname{Var}\left[Y_{i}\right] \leq \mathrm{E}\left[Y_{i}^{2}\right] \leq 1$.
- The weak law implies $\frac{1}{n}\left(X_{1}^{2}+\cdots+X_{n}^{2}\right) \rightarrow \frac{1}{3}$ in probability, as $n \rightarrow \infty$.
- Given $0<\epsilon<1$, let

$$
A_{n, \epsilon}=\left\{x \in \mathbb{R}^{n}:(1-\epsilon) \sqrt{\frac{n}{3}}<\|x\|_{2}<(1+\epsilon) \sqrt{\frac{n}{3}}\right\} .
$$

- By the weak law, $\frac{\left|A_{n, \epsilon} \cap(-1,1)^{n}\right|}{2^{n}} \rightarrow 1$.
L^{2} weak law, again

A slightly stronger variant of the L^{2} weak law is as follows.
Theorem (L^{2} weak law)
Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables satisfying $\mathrm{E}\left[X_{i}^{2}\right]<\infty$, and let $S_{n}=X_{1}+\cdots+X_{n}$. Let $\mu_{n}=\mathrm{E}\left[S_{n}\right]$ and $\sigma_{n}^{2}=\operatorname{Var}\left(S_{n}\right)$. Let $\left\{b_{n}\right\}$ be a sequence of non-zero numbers such that $\frac{\sigma_{n}^{2}}{b_{n}^{2}} \rightarrow 0$. Then $\frac{S_{n}-\mu_{n}}{b_{n}} \rightarrow 0$ in probability.

Proof.

Since E $\left[\left(\frac{S_{n}-\mu_{n}}{b_{n}}\right)^{2}\right]=\frac{\operatorname{Var}\left[S_{n}\right]}{b_{n}^{2}} \rightarrow 0$, the conclusion follows from
Chebyshev's inequality.

Coupon collector's problem

- Let X_{1}, X_{2}, \ldots be i.i.d. on $\{1,2, \ldots, n\}$
- Let $\tau_{k}^{n}=\inf \left\{m:\left|\left\{X_{1}, \ldots, X_{m}\right\}\right|=k\right\}$ be the waiting time until collecting the k th distinct coupon. Set $\tau_{0}^{n}=0$.
- We are interested in $T_{n}=\tau_{n}^{n}$, the waiting time until collecting a complete set of coupons.

Coupon collector's problem

- Let $Y_{n, k}=\tau_{k}^{n}-\tau_{k-1}^{n}$ be the incremental waiting time to collect the k th coupon. $Y_{n, k}$ has a geometric distribution with parameter $1-\frac{k-1}{n}$.
- A geometric distribution with parameter p has mean $\frac{1}{p}$ and variance $\leq \frac{1}{p^{2}}$.
- Hence $T_{n}=\sum_{k=1}^{n} Y_{n, k}$ satisfies

$$
\begin{aligned}
\mathrm{E}\left[T_{n}\right] & =\sum_{k=1}^{n}\left(1-\frac{k-1}{n}\right)^{-1}=n \sum_{k=1}^{n} \frac{1}{k} \sim n \log n \\
\operatorname{Var}\left[T_{n}\right] & \leq \sum_{k=1}^{n}\left(1-\frac{k-1}{n}\right)^{2}<n^{2} \sum_{m=1}^{\infty} \frac{1}{m^{2}}
\end{aligned}
$$

- Taking $b_{n}=n \log n$ in the previous theorem proves $\frac{T_{n}-n \sum_{m=1}^{n} \frac{1}{m}}{n \log n} \rightarrow 0$ in probability, or $\frac{T_{n}}{n \log n} \rightarrow 1$ in probability.

Random permutations

The cycle representation of a permutation π on $\{1,2, \ldots, n\}$ is found by writing

$$
\left(1, \pi(1), \pi^{2}(1), \ldots, \pi^{k-1}(1)\right)
$$

where k is the least positive integer such that $\pi^{k}(1)=1$, then repeating this process starting with the least number not contained in $1, \pi(1), \ldots, \pi^{k-1}(1)$, and iterating. For example, the permutation

$$
\begin{array}{cccccccccc}
i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\pi(i) & 3 & 9 & 6 & 8 & 2 & 1 & 5 & 4 & 7
\end{array}
$$

has cycle structure $(1,3,6)(2,9,7,5)(4,8)$.

Random permutations

- Let π be chosen at uniform from the symmetric group \mathfrak{S}_{n} on n letters.
- Let $X_{n, k}$ indicate the event that the k th letter in the cycle structure of π closes a cycle, and let $S_{n}=\sum_{k=1}^{n} X_{n, k}$ denote the number of cycles.

Random permutations

Lemma

The events $X_{n, 1}, \ldots, X_{n, n}$ are independent, and $\operatorname{Prob}\left(X_{n, j}=1\right)=\frac{1}{n-j+1}$.

Proof.

- Build the cycle structure at random left to right, starting from 1, by assigning $\pi(i)$ only once i is reached in the cycle structure.
- The number of choices for $\pi(i)$ is $n-k+1$ where k is the position of i in the cycle structure, and exactly one choice leads to completing a cycle.

Random permutations

By the previous lemma,

$$
\begin{aligned}
\mathrm{E}\left[S_{n}\right] & =\frac{1}{n}+\frac{1}{n-1}+\ldots+1 \\
\operatorname{Var}\left[S_{n}\right] & =\sum_{k=1}^{n} \operatorname{Var}\left[X_{n, k}\right] \leq \sum_{k=1}^{n} \mathrm{E}\left[X_{n, k}^{2}\right] \leq \mathrm{E}\left[S_{n}\right] .
\end{aligned}
$$

It follows that for $\epsilon>0$,

$$
\frac{S_{n}-\sum_{m=1}^{n} \frac{1}{m}}{(\log n)^{\frac{1}{2}+\epsilon}} \rightarrow 0
$$

in probability.

Occupancy

- Suppose that r balls are dropped independently at random in n boxes, so that each of n^{r} assignments is equally likely.
- Let A_{i} be the event that box i is empty, and $N=\sum_{i} A_{i}$ the number of empty boxes.
- We have

$$
\operatorname{Prob}\left[A_{i}\right]=\left(1-\frac{1}{n}\right)^{r}, \quad \mathrm{E}[N]=n\left(1-\frac{1}{n}\right)^{r}
$$

- If $r / n \rightarrow c$ then $\frac{1}{n} \mathrm{E}[N] \rightarrow e^{-c}$.

Occupancy

- Calculate

$$
\begin{aligned}
\mathrm{E}\left[N^{2}\right] & =\mathrm{E}\left[\left(\sum_{m=1}^{n} \mathbf{1}_{A_{m}}\right)^{2}\right]=\sum_{1 \leq k, m \leq n} \operatorname{Prob}\left(A_{k} \cap A_{m}\right) \\
\operatorname{Var}[N] & =\mathrm{E}\left[N^{2}\right]-\mathrm{E}[N]^{2} \\
& =\sum_{1 \leq k, m \leq n} \operatorname{Prob}\left(A_{k} \cap A_{m}\right)-\operatorname{Prob}\left(A_{k}\right) \operatorname{Prob}\left(A_{m}\right) \\
& =n(n-1)\left[\left(1-\frac{2}{n}\right)^{r}-\left(1-\frac{1}{n}\right)^{2 r}\right]+O(n) \\
& =O(n) .
\end{aligned}
$$

- It follows that $\frac{N}{n} \rightarrow e^{-c}$ in probability.

Triangular arrays

Definition

A triangular array of random variables is a collection $\left\{X_{n, k}\right\}_{1 \leq k \leq n}$. Many classical limit theorems of probability theory apply to the row sums

$$
S_{n}=\sum_{1 \leq k \leq n} X_{n, k}
$$

Truncation

Definition

Let $M>0$. The truncation at height M of random variable X is

$$
\bar{X}=X \mathbf{1}_{(|X| \leq M)}=\left\{\begin{array}{cl}
X & |X| \leq M \\
0 & |X|>M
\end{array}\right.
$$

Weak law for triangular arrays

Theorem (Weak law for triangular arrays)

For each n let $X_{n, k}, 1 \leq k \leq n$, be independent. Let $b_{n}>0$ with $b_{n} \rightarrow \infty$, and let $\bar{X}_{n, k}=X_{n, k} \mathbf{1}_{\left(\left|X_{n, k}\right| \leq b_{n}\right)}$. Suppose that as $n \rightarrow \infty$,

- $\sum_{k=1}^{n} \operatorname{Prob}\left(\left|X_{n, k}\right|>b_{n}\right) \rightarrow 0$, and
- $b_{n}^{-2} \sum_{k=1}^{n} \mathrm{E}\left[\bar{X}_{n, k}^{2}\right] \rightarrow 0$.

Set $S_{n}=X_{n, 1}+X_{n, 2}+\ldots+X_{n, n}$ and $a_{n}=\sum_{k=1}^{n} \mathrm{E}\left[\bar{X}_{n, k}\right]$. Then $\frac{S_{n}-a_{n}}{b_{n}} \rightarrow 0$ in probability.

Weak law for triangular arrays

Proof.

- Let $\bar{S}_{n}=\bar{X}_{n, 1}+\cdots+\bar{X}_{n, n}$. Bound

$$
\operatorname{Prob}\left(\left|\frac{S_{n}-a_{n}}{b_{n}}\right|>\epsilon\right) \leq \operatorname{Prob}\left(S_{n} \neq \bar{S}_{n}\right)+\operatorname{Prob}\left(\left|\frac{\bar{S}_{n}-a_{n}}{b_{n}}\right|>\epsilon\right) .
$$

- Use a union bound to estimate

$$
\begin{aligned}
\operatorname{Prob}\left(S_{n} \neq \bar{S}_{n}\right) & \leq \operatorname{Prob}\left(\bigcup_{k=1}^{n}\left\{X_{n, k} \neq \bar{X}_{n, k}\right\}\right) \\
& \leq \sum_{k=1}^{n} \operatorname{Prob}\left(\left|X_{n, k}\right|>b_{n}\right) \rightarrow 0 .
\end{aligned}
$$

Weak law for triangular arrays

Proof.

- The second term is bounded by

$$
\begin{aligned}
\operatorname{Prob}\left(\left|\frac{\bar{S}_{n}-a_{n}}{b_{n}}\right|>\epsilon\right) & \leq \frac{\operatorname{Var}\left[\bar{S}_{n}\right]}{\epsilon^{2} b_{n}^{2}} \\
& \leq\left(b_{n} \epsilon\right)^{-2} \sum_{k=1}^{n} \mathrm{E}\left[\bar{X}_{n, k}^{2}\right] \rightarrow 0
\end{aligned}
$$

Moments

Lemma

If $Y \geq 0$ and $p>0$ then $\mathrm{E}\left[Y^{p}\right]=\int_{0}^{\infty} p y^{p-1} \operatorname{Prob}[Y>y] d y$.

Moments

Proof.

By Fubini's theorem for non-negative random variables,

$$
\begin{aligned}
\int_{0}^{\infty} p y^{p-1} \operatorname{Prob}[Y>y] d y & =\int_{0}^{\infty} \int_{\Omega} p y^{p-1} \mathbf{1}_{(Y>y)} d P d y \\
& =\int_{\Omega} \int_{0}^{\infty} p y^{p-1} \mathbf{1}_{(Y>y)} d y d P \\
& =\int_{\Omega} \int_{0}^{Y} p y^{p-1} d y d P=\int_{\Omega} Y^{p}=\mathrm{E}\left[Y^{p}\right]
\end{aligned}
$$

The weak law of large numbers

Theorem
Let X_{1}, X_{2}, \ldots be i.i.d. with

$$
x \operatorname{Prob}\left(\left|X_{i}\right|>x\right) \rightarrow 0, \quad x \rightarrow \infty
$$

Let $S_{n}=X_{1}+\cdots+X_{n}$ and let $\mu_{n}=\mathrm{E}\left[X_{1} \mathbf{1}_{\left(\left|X_{1}\right| \leq n\right)}\right]$. Then $\frac{S_{n}}{n}-\mu_{n} \rightarrow 0$
in probability.

The weak law of large numbers

Proof.

We apply the weak law for triangular arrays with $X_{n, k}=X_{n}$ and with $b_{n}=n$. There are two conditions to check. The first is satisfied, since

$$
\sum_{k=1}^{n} \operatorname{Prob}\left(\left|X_{n, k}\right|>n\right)=n \operatorname{Prob}\left(\left|X_{i}\right|>n\right) \rightarrow 0
$$

To prove the second condition, it suffices to check that $\frac{1}{n^{2}} \sum_{k=1}^{n} \mathrm{E}\left[\bar{X}_{n, k}^{2}\right]=\frac{1}{n} \mathrm{E}\left[\bar{X}_{n, 1}^{2}\right] \rightarrow 0$. This follows, since

$$
\frac{1}{n} \mathrm{E}\left[\bar{X}_{n, 1}^{2}\right] \leq \frac{1}{n} \int_{0}^{n} 2 y \operatorname{Prob}\left[\left|X_{1}\right|>y\right] d y \rightarrow 0 .
$$

The weak law of large numbers

Theorem
Let X_{1}, X_{2}, \ldots be i.i.d. with $\mathrm{E}\left[\left|X_{i}\right|\right]<\infty$. Let $S_{n}=X_{1}+\cdots+X_{n}$, and let $\mu=\mathrm{E}\left[X_{1}\right]$. Then $\frac{S_{n}}{n} \rightarrow \mu$ in probability.

Proof.

The condition of the previous weak law is met, since $x \operatorname{Prob}\left(\left|X_{i}\right|>x\right) \leq \mathrm{E}\left[\left|X_{i}\right| \mathbf{1}_{\left(\left|X_{i}\right|>x\right)}\right] \rightarrow 0$ as $x \rightarrow \infty$. The theorem now follows, since $\mu_{n} \rightarrow \mu$ as $n \rightarrow \infty$, by dominated convergence.

The Cauchy distribution

- The Cauchy distribution has density $\frac{1}{\pi\left(1+x^{2}\right)}$.
- If X_{1}, \ldots, X_{n} are i.i.d. Cauchy, then $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is again Cauchy of the same distribution. This may be readily checked with characteristic functions, we postpone the proof.
- Thus the Cauchy distribution is a distribution for which a weak law does not hold.

The "St. Petersburg paradox"

Theorem
Let X_{1}, X_{2}, \ldots be i.i.d., satisfying

$$
\operatorname{Prob}\left[X_{i}=2^{j}\right]=2^{-j}, \quad j \geq 1
$$

Let $S_{n}=X_{1}+\cdots+X_{n}$. We have $\frac{S_{n}}{n \log _{2} n} \rightarrow 1$ in probability as $n \rightarrow \infty$.

The "St. Petersburg paradox"

Proof.

- We apply the weak law for triangular arrays with b_{n} tending to ∞ faster than n but slower than $n \log n$.
- Since $\operatorname{Prob}\left[X_{1} \geq 2^{m}\right]=\sum_{j=m}^{\infty} 2^{-j} \leq 2^{-m+1}$, this condition guarantees that $n \operatorname{Prob}\left[X_{1} \geq b_{n}\right] \rightarrow 0$ as $n \rightarrow \infty$.
- To check the second condition, note that $\bar{X}_{n, k}=X_{k} \mathbf{1}_{\left(\left|X_{k}\right| \leq b_{n}\right)}$ satisfies

$$
\mathrm{E}\left[\bar{X}_{n, k}^{2}\right]=\sum_{j: 2^{j} \leq b_{n}} 2^{2 j} 2^{-j} \leq 2 b_{n}
$$

In particular, $\frac{1}{b_{n}^{2}} \sum_{k=1}^{n} \mathrm{E}\left[\bar{X}_{n, k}^{2}\right]=O\left(\frac{n}{b_{n}}\right) \rightarrow 0$.

- We have $a_{n}=\mathrm{E}\left[\bar{X}_{n, k}\right]=\sum_{j: 2^{j} \leq b_{n}} 2^{j} 2^{-j} \sim \log _{2} b_{j} \sim \log _{2} n$.
- It follows that $\frac{S_{n}-n a_{n}}{b_{n}} \rightarrow 0$ and hence $\frac{S_{n}}{n \log _{2} n} \rightarrow 1$ in probability.

The Borel-Cantelli Lemmas

Definition

Given A_{n} a sequence of subsets of Ω, let

$$
\begin{aligned}
& \limsup A_{n}=\lim _{m \rightarrow \infty} \bigcup_{n=m}^{\infty} A_{n}=\left\{\omega \text { : in infinitely many } A_{n}\right\} \\
& \liminf A_{n}=\lim _{m \rightarrow \infty} \bigcap_{n=m}^{\infty} A_{n}=\left\{\omega: \text { in all but finitely many } A_{n}\right\} .
\end{aligned}
$$

First Borel-Cantelli Lemma

Theorem (First Borel-Cantelli lemma)
If $\sum_{n=1}^{\infty} \operatorname{Prob}\left[A_{n}\right]<\infty$ then $\operatorname{Prob}\left[A_{n}\right.$ i.o. $]=0$.

Proof.

Let $N=\sum_{k} \mathbf{1}_{A_{k}}$. Since $\mathrm{E}[N]=\sum_{k} \operatorname{Prob}\left[A_{k}\right]<\infty$, we have $N<\infty$ a.s..

Convergence in probability

Theorem
 $X_{n} \rightarrow X$ in probability if and only if for every subsequence $X_{n(m)}$ there is a further subsequence $X_{n\left(m_{k}\right)}$ that converges almost surely to X.

Convergence in probability

Proof.

- For the forward direction, for each k there is an $n\left(m_{k}\right)>n\left(m_{k-1}\right)$ so that Prob $\left[\left|X_{n\left(m_{k}\right)}-X\right|>\frac{1}{k}\right] \leq 2^{-k}$. Since

$$
\sum_{k=1}^{\infty} \operatorname{Prob}\left[\left|X_{n\left(m_{k}\right)}-X\right|>\frac{1}{k}\right]<\infty
$$

Thus only finitely many events occur a.s. so $X_{n\left(m_{k}\right)} \rightarrow X$ a.s..

- To prove the reverse direction, consider the sequence $y_{n}=\operatorname{Prob}\left(\left|X_{n}-X\right|>\delta\right)$. The conclusion follows from the observation that, in a topological space, if every subsequence of $\left\{y_{n}\right\}$ has a sub-subsequence converging to y, then $y_{n} \rightarrow y$.

Convergence of functions

Theorem

If f is continuous and $X_{n} \rightarrow X$ in probability then $f\left(X_{n}\right) \rightarrow f(X)$ in probability. If, in addition, f is bounded, then $\mathrm{E}\left[f\left(X_{n}\right)\right] \rightarrow \mathrm{E}[f(X)]$.

Convergence of functions

Proof.

- Let $X_{n(m)}$ be a subsequence, with sub-subsequence $X_{n\left(m_{k}\right)} \rightarrow X$ a.s.
- By continuity, $f\left(X_{n\left(m_{k}\right)}\right) \rightarrow f(X)$, a.s. which proves the convergence in probability.
- When f is bounded, $\mathrm{E}\left[f\left(X_{n\left(m_{k}\right)}\right)\right] \rightarrow \mathrm{E}[f(X)]$, which suffices for the second claim.

Strong law of large numbers

Theorem
Let X_{1}, X_{2}, \ldots be an i.i.d. sequence satisfying $\mathrm{E}\left[X_{i}\right]=\mu$ and $\mathrm{E}\left[X_{i}^{4}\right]<\infty$. If $S_{n}=X_{1}+\cdots+X_{n}$ then $\frac{S_{n}}{n} \rightarrow \mu$ a.s.

Strong law of large numbers

Proof.

- We can assume $\mu=0$ by making a translation.
- Expand

$$
\mathrm{E}\left[S_{n}^{4}\right]=\mathrm{E}\left[\sum_{1 \leq i, j, k, l \leq n} X_{i} X_{j} X_{k} X_{l}\right]
$$

- Since $\mathrm{E}\left[X_{i}\right]=0$, the only terms which survive the expectation are of the form X_{i}^{4} or $X_{i}^{2} X_{j}^{2}, i \neq j$. Thus $\mathrm{E}\left[S_{n}^{4}\right]=O\left(n^{2}\right)$.
- It follows that $\operatorname{Prob}\left[\left|S_{n}\right|>n \epsilon\right]=O\left(\frac{1}{n^{2} \epsilon^{4}}\right)$, so only finitely many of these events occur by Borel-Cantelli.

The second Borel-Cantelli lemma

Theorem
If events A_{n} are independent, the $\sum_{n=1}^{\infty} \operatorname{Prob}\left[A_{n}\right]=\infty$ implies $\operatorname{Prob}\left[A_{n}\right.$ i.o. $]=1$.

The second Borel-Cantelli lemma

Proof.

Let $M<N<\infty$. By independence and the inequality $(1-x) \leq e^{-x}$,

$$
\operatorname{Prob}\left(\bigcap_{n=M}^{N} A_{n}^{c}\right)=\prod_{n=M}^{N}\left(1-\operatorname{Prob}\left(A_{n}\right)\right) \leq \exp \left(-\sum_{n=M}^{N} \operatorname{Prob}\left(A_{n}\right)\right) \rightarrow 0
$$

as $N \rightarrow \infty$. Thus $\operatorname{Prob}\left(\cup_{n=M}^{\infty} A_{n}\right)=1$ for all M. Since $\bigcup_{n=M}^{\infty} A_{n} \downarrow \lim \sup A_{n}$ we obtain $\operatorname{Prob}\left(\lim \sup A_{n}\right)=1$.

Failure of the strong law

Corollary

If X_{1}, X_{2}, \ldots are i.i.d. with $\mathrm{E}\left[\left|X_{i}\right|\right]=\infty$, then
$\operatorname{Prob}\left[\lim _{n} \frac{S_{n}}{n}\right.$ exists $\left.\in(-\infty, \infty)\right]=0$.

Proof.

We have

$$
\mathrm{E}\left[\left|X_{1}\right|\right]=\int_{0}^{\infty} \operatorname{Prob}\left(\left|X_{1}\right|>x\right) d x \leq \sum_{n=0}^{\infty} \operatorname{Prob}\left(\left|X_{1}\right|>n\right)
$$

Thus, by independence and the second Borel-Cantelli lemma, the event $\left|X_{n}\right|>n$ occurs infinitely often with probability 1 , which is sufficient to guarantee the non-convergence.

Stronger Borel-Cantelli

Theorem

If A_{1}, A_{2}, \ldots are pairwise independent and $\sum_{n=1}^{\infty} \operatorname{Prob}\left(A_{n}\right)=\infty$, then as $n \rightarrow \infty$

$$
\sum_{m=1}^{n} \mathbf{1}_{A_{m}} / \sum_{m=1}^{n} \operatorname{Prob}\left(A_{m}\right) \rightarrow 1 \text { a.s. }
$$

Stronger Borel-Cantelli

Proof.

- Let $X_{m}=\mathbf{1}_{A_{m}}$ and $S_{n}=X_{1}+\ldots+X_{n}$.
- By pairwise independence, $\operatorname{Var}\left(S_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)$. Since each X_{n} is an indicator variable, $\operatorname{Var}\left(S_{n}\right) \leq \mathrm{E}\left[S_{n}\right]$. Thus,

$$
\operatorname{Prob}\left(\left|S_{n}-\mathrm{E}\left[S_{n}\right]\right|>\delta \mathrm{E}\left[S_{n}\right]\right) \leq \frac{1}{\delta^{2} \mathrm{E}\left[S_{n}\right]}
$$

- Let $n_{k}=\inf \left\{n: \mathrm{E}\left[S_{n}\right]>k^{2}\right\}$ and let $T_{k}=S_{n_{k}}$. By summability of $\sum_{k} \frac{1}{\mathrm{E}\left[T_{k}\right]}$ we find that $T_{k} / \mathrm{E}\left[T_{k}\right] \rightarrow 1$ a.s.
- To conclude the theorem in general, note that for $n_{k}<n<n_{k+1}$, use

$$
\frac{T_{k}}{\mathrm{E}\left[T_{k+1}\right]} \leq \frac{S_{n}}{\mathrm{E}\left[S_{n}\right]} \leq \frac{T_{k+1}}{\mathrm{E}\left[T_{k}\right]}
$$

and $\frac{\mathrm{E}\left[T_{k+1}\right]}{\mathrm{E}\left[T_{k}\right]} \rightarrow 1$.

Record values

Example (Record values)

- Let X_{1}, X_{2}, \ldots be i.i.d. random variables having a continuous distribution.
- Let $A_{k}=\left\{X_{k}>\sup _{j<k} X_{j}\right\}$ be the event of a record at index k.
- Since the distributions are continuous, $X_{i} \neq X_{j}$ a.s.. The ordering of $X_{1}, X_{2}, \ldots, X_{k}$ induces the uniform measure on permutations in \mathfrak{S}_{k}, since for any permutation $\sigma,\left(X_{1}, \ldots, X_{k}\right)$ and $\left(X_{\sigma(1)}, \ldots, X_{\sigma(k)}\right)$ are equal in distribution.
- Hence A_{1}, A_{2}, \ldots are independent and $\operatorname{Prob}\left(A_{k}\right)=\frac{1}{k}$.
- By the strong law of large numbers, $R_{n}=\sum_{m=1}^{n} \mathbf{1}_{A_{m}}$ satisfies as $n \rightarrow \infty$

$$
\frac{R_{n}}{\log n} \rightarrow 1, \quad \text { a.s. }
$$

Head runs

Example (Head runs)

- Let $X_{n}, n \in \mathbb{Z}$ be i.i.d. with $\operatorname{Prob}\left(X_{n}=1\right)=\operatorname{Prob}\left(X_{n}=-1\right)=\frac{1}{2}$.
- Let $\ell_{n}=\max \left\{m: X_{n-m+1}=\cdots=X_{n}=1\right\}$ be the length of the run of 1 's at time n, and let $L_{n}=\max _{1 \leq m \leq n} \ell_{m}$. We show $\frac{L_{n}}{\log _{2} n} \rightarrow 1$, a.s.
- Since $\operatorname{Prob}\left(\ell_{n} \geq(1+\epsilon) \log _{2} n\right) \leq n^{-(1+\epsilon)}$ is summable, this event happens finitely often with probability 1 , by Borel-Cantelli.

Head runs

Example (Head runs)

- To prove the lower bound, let $n=2^{k}$ and split the block between $[n / 2, n)$ into pieces of length $\left[(1-\epsilon) \log _{2} n\right]+1$.
- Each of these is entirely 1 with probability $\gg n^{-1+\epsilon}$, and the events are independent.
- There are $\gg \frac{n}{\log n}$ events in the block, so that, summed over the block their probabilities sum to $\gg n^{\epsilon / 2}$.
- Summing in blocks, infinitely many of the events occur with probability 1, by Borel-Cantelli.

Strong law of large numbers

Theorem (Strong law of large numbers)
Let X_{1}, X_{2}, \ldots be pairwise independent identically distributed random variables with $\mathrm{E}\left[\left|X_{i}\right|\right]<\infty$. Let $\mathrm{E}\left[X_{i}\right]=\mu$ and $S_{n}=X_{1}+\cdots+X_{n}$. Then $\frac{S_{n}}{n} \rightarrow \mu$ a.s.

Strong law of large numbers

Lemma

Let $Y_{k}=X_{k} \mathbf{1}_{\left(\left|X_{k}\right| \leq k\right)}$ and $T_{n}=Y_{1}+\cdots+Y_{n}$. It is sufficient to prove that $T_{n} / n \rightarrow \mu$ a.s.

Proof.

Observe $\sum_{k} \operatorname{Prob}\left(\left|X_{k}\right|>k\right) \leq \int_{0}^{\infty} \operatorname{Prob}\left(\left|X_{1}\right|>t\right) d t=\mathrm{E}\left[\left|X_{1}\right|\right]<\infty$. Thus $\operatorname{Prob}\left(Y_{k} \neq X_{k}\right.$ i.o. $)=0$. It follows that

$$
\sup _{n}\left|T_{n}(\omega)-S_{n}(\omega)\right|<\infty, \text { a.s., }
$$

which suffices for the claim.

Strong law of large numbers

Lemma

We have $\sum_{k} \frac{\operatorname{Var}\left(Y_{k}\right)}{k^{2}}<\infty$.
Proof.
Write

$$
\begin{aligned}
\sum_{k} \frac{\mathrm{E}\left[Y_{k}^{2}\right]}{k^{2}} & \leq \sum_{k=1}^{\infty} k^{-2} \int_{0}^{\infty} \mathbf{1}_{(y<k)} 2 y \operatorname{Prob}\left(\left|X_{1}\right|>y\right) d y \\
& =\int_{0}^{\infty}\left\{\sum_{k=1}^{\infty} k^{-2} \mathbf{1}_{(y<k)}\right\} 2 y \operatorname{Prob}\left(\left|X_{1}\right|>y\right) d y \\
& \ll \int_{0}^{\infty} \operatorname{Prob}\left(\left|X_{1}\right|>y\right) d y=\mathrm{E}\left[\left|X_{1}\right|\right]<\infty
\end{aligned}
$$

Strong law of large numbers

Proof of the strong law.

It suffices to prove the theorem for $X_{n} \geq 0$, since the general case may be separated into positive and negative parts.

- Let $\alpha>1$ and set $k(n)=\left[\alpha^{n}\right]$. Recall $T_{n}=Y_{1}+\ldots+Y_{n}$.
- By Chebyshev's inequality, for $\epsilon>0$,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \operatorname{Prob}\left(\left|T_{k(n)}-\mathrm{E}\left[T_{k(n)}\right]\right|>\epsilon k(n)\right) \leq \epsilon^{-2} \sum_{n=1}^{\infty} \frac{\operatorname{Var}\left(T_{k(n)}\right)}{k(n)^{2}} \\
& =\epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}\left(Y_{m}\right)=\epsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}\left(Y_{m}\right) \sum_{n: k(n) \geq m} k(n)^{-2} \\
& \ll \epsilon^{-2} \sum_{m=1}^{\infty} \frac{\operatorname{Var}\left(Y_{m}\right)}{m^{2}}<\infty
\end{aligned}
$$

Strong law of large numbers

Proof of the strong law.

- It follows that $\left(T_{k(n)}-\mathrm{E}\left[T_{k(n)}\right]\right) / k(n) \rightarrow 0$ a.s. Meanwhile, $\frac{\mathrm{E}\left[T_{k(n)}\right]}{k(n)} \rightarrow \mathrm{E}\left[X_{1}\right]$ by dominated convergence.
- For $k(n) \leq m<k(n+1)$

$$
\frac{T_{k(n)}}{k(n+1)} \leq \frac{T_{m}}{m} \leq \frac{T_{k(n+1)}}{k(n)} .
$$

- Since $\frac{k(n+1)}{k(n)} \rightarrow \alpha$, we have a.s.

$$
\frac{1}{\alpha} \mathrm{E}\left[X_{1}\right] \leq \liminf _{n \rightarrow \infty} \frac{T_{m}}{m} \leq \limsup _{m \rightarrow \infty} \frac{T_{m}}{m} \leq \alpha \mathrm{E}\left[X_{1}\right] .
$$

- Since $\alpha>1$ was arbitrary, the limit follows.

Strong law of large numbers

Theorem
Let X_{1}, X_{2}, \ldots be i.i.d. with $\mathrm{E}\left[X_{i}\right]=\infty$ and $\mathrm{E}\left[\left|X_{i}^{-}\right|\right]<\infty$. Let $S_{n}=X_{1}+\cdots+X_{n}$. Then $\frac{S_{n}}{n} \rightarrow \infty$ a.s.

Strong law of large numbers

Proof.

Let $M>0$ and set $X_{i}^{M}=\min \left(X_{i}, M\right)$. By the strong law, $\frac{1}{n} \sum_{i=1}^{n} X_{i}^{M} \rightarrow \mathrm{E}\left[X_{i}^{M}\right]$ a.s. as $n \rightarrow \infty$. Hence

$$
\liminf _{n \rightarrow \infty} \frac{S_{n}}{n} \geq \mathrm{E}\left[X_{i}^{M}\right] .
$$

Since $\mathrm{E}\left[X_{i}^{M}\right] \rightarrow \infty$ as $M \rightarrow \infty$, the claim follows.

Renewal theory

Let X_{1}, X_{2}, \ldots be i.i.d. with $0<X_{i}<\infty$. Let $T_{n}=X_{1}+\cdots+X_{n}$ and

$$
N_{t}=\sup \left\{n: T_{n} \leq t\right\} .
$$

Given a sequence of events which happen in succession with waiting time X_{n} to the nth event, we think of N_{t} as the number of events which have happened up to time t.

Theorem
If $\mathrm{E}\left[X_{1}\right]=\mu \leq \infty$, then as $t \rightarrow \infty$,

$$
\frac{N_{t}}{t} \rightarrow \frac{1}{\mu} \text { a.s.. }
$$

Renewal theory

Proof.

Since $T\left(N_{t}\right) \leq t<T\left(N_{t}+1\right)$, dividing through by N_{t} gives

$$
\frac{T\left(N_{t}\right)}{N_{t}} \leq \frac{t}{N_{t}} \leq \frac{T\left(N_{t}+1\right)}{N_{t}+1} \frac{N_{t}+1}{N_{t}} .
$$

We have $N_{t} \rightarrow \infty$ a.s.. Hence, by the strong law,

$$
\frac{T_{N_{t}}}{N_{t}} \rightarrow \mu, \quad \frac{N_{t}+1}{N_{t}} \rightarrow 1
$$

Empirical distribution functions

Let X_{1}, X_{2}, \ldots be i.i.d. with distribution F and let

$$
F_{n}(x)=\frac{1}{n} \sum_{m=1}^{n} \mathbf{1}_{\left(X_{m} \leq x\right)}
$$

Theorem (Glivenko-Cantelli Theorem)
As $n \rightarrow \infty$,

$$
\sup _{x}\left|F_{n}(x)-F(x)\right| \rightarrow 0 \text { a.s.. }
$$

Empirical distribution functions

Proof.

Note that F is increasing, but can have jumps.

- For $k=1,2, \ldots$, and $1 \leq j \leq k-1$, define $x_{j, k}=\inf \left\{x: F(x) \geq \frac{j}{k}\right\}$. Set $x_{0, k}=-\infty, x_{k, k}=\infty$.
- Write $F(x-)=\lim _{y \uparrow x} F(y)$.
- Since each of $F_{n}\left(x_{j, k}-\right)$ and $F_{n}\left(x_{j, k}\right)$ converges by the strong law, and $F_{n}\left(x_{j, k}-\right)-F_{n}\left(x_{j-1, k}\right) \leq \frac{1}{k}$, the uniform convergence follows.

Entropy

- Let X_{1}, X_{2}, \ldots be i.i.d., taking values in $\{1,2, \ldots, r\}$ with all possibilities of positive probability. Set $\operatorname{Prob}\left(X_{i}=k\right)=p(k)>0$.
- Let $\pi_{n}(\omega)=p\left(X_{1}(\omega)\right) p\left(X_{2}(\omega)\right) \ldots p\left(X_{n}(\omega)\right)$. By the strong law, a.s.

$$
-\frac{1}{n} \log \pi_{n} \rightarrow H \equiv-\sum_{k=1}^{r} p(k) \log p(k)
$$

The constant H is called the entropy.

