Math 639: Lecture 3

The law of large numbers

Bob Hough

January 31, 2017

Bo	ЬΙ	ц,	~	i m	h
00			υL	ъ	

Math 639: Lecture 3

Convergence in probability

Definition

A sequence of random variables $\{Y_n\}$ converges to Y in probability if for all $\epsilon > 0$,

$$\mathsf{Prob}(|Y_n - Y| > \epsilon) \to 0$$

as $n \to \infty$.

3

- 4 同 6 4 日 6 4 日 6

Recall that random variables X_1, X_2 are said to be uncorrelated if $E[X_1^2] < \infty$, $E[X_2^2] < \infty$ and $E[X_1X_2] = E[X_1]E[X_2]$.

Theorem

Let $X_1, ..., X_n$ be uncorrelated random variables satisfying $E[X_i^2] < \infty$. Then

$$\mathsf{Var}(X_1+\dots+X_n)=\mathsf{Var}(X_1)+\dots+\mathsf{Var}(X_n).$$

A (10) A (10)

Uncorrelated variables

Proof.

- We may assume that each variable is mean 0, since both sides of the equation are unchanged under translation.
- We have

$$\mathsf{E}\left[(X_1+\cdots+X_n)^2\right]=\mathsf{E}\left[X_1^2\right]+\cdots+\mathsf{E}\left[X_n^2\right]$$

since the cross-terms vanish.

В	ob	۶ŀ	lou	g	٦ I

Lemma

If p > 0 and $E[|Z_n|^p] \to 0$ as $n \to \infty$ then $Z_n \to 0$ in probability.

Proof.

By Markov's inequality, for each $\epsilon > 0$, $Prob(|Z_n| \ge \epsilon) \le \epsilon^{-p} E[|Z_n|^p]$, which gives the claim.

Bo	h l	Ho	ııσ	h
00		10	чъ	

- 4 同 6 4 日 6 4 日 6

Theorem (L^2 weak law)

Let $X_1, X_2, ...$ be uncorrelated random variables satisfying $E[X_i] = \mu$ and $Var(X_i) \leq C < \infty$. If $S_n = X_1 + ... + X_n$ then as $n \to \infty$, $\frac{S_n}{n} \to \mu$ in L^2 and in probability.

· < /⊒ > < ∃ >

L^2 weak law

Proof.

Observe

$$\mathsf{E}\left[\left(\frac{S_n}{n}-\mu\right)^2\right] = \mathsf{Var}\left(\frac{S_n}{n}\right) = \frac{1}{n^2}\left(\mathsf{Var}(X_1) + \dots + \mathsf{Var}(X_n)\right) \le \frac{Cn}{n^2} \to 0.$$

This proves convergence in L^2 . Convergence in probability follows from the previous lemma.

3

-

A (10) < A (10) </p>

Definition

A sequence of random variables $X_1, X_2, X_3, ...$ which have the same distribution and are independent are called *independent and identically distributed* or *i.i.d.*.

The L^2 weak law applies to i.i.d. variables of finite variance.

Example

Let f be a continuous function on [0, 1]. The Bernstein polynomial of degree n associated to f is

$$f_n(x) = \sum_{m=0}^n \binom{n}{m} x^m (1-x)^{n-m} f\left(\frac{m}{n}\right).$$

As a consequence of the weak law, we show that $f_n(x) \rightarrow f(x)$ uniformly as $n \to \infty$.

- 4 週 ト - 4 三 ト - 4 三 ト

Weierstrass approximation theorem

Proof.

• Let S_n be the sum of n i.i.d. random variables satisfying $Prob(X_i = 1) = p$, $Prob(X_i = 0) = 1 - p$. Thus $E[X_i] = p$, $Var[X_i] = p - p^2$.

Note

$$\operatorname{Prob}(S_n = m) = \binom{n}{m} p^m (1-p)^{n-m},$$

thus $E\left[f\left(\frac{S_n}{n}\right)\right] = f_n(p).$ • Given $\delta > 0$, by Chebyshev's inequality, $Prob\left(\left|S_n - p\right| > \delta\right) < Var\left(\frac{S_n}{n}\right) = p(1-p) < 1$

$$\operatorname{Prob}\left(\left|\frac{S_n}{n}-p\right|>\delta\right)\leq \frac{\operatorname{var}\left(\frac{n}{n}\right)}{\delta^2}=\frac{p(1-p)}{n\delta^2}\leq \frac{1}{4n\delta^2}.$$

3

(日) (同) (三) (三)

Weierstrass approximation theorem

Proof.

• Let $\delta > 0$ be such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$, and let $M = \sup_{x \in [0,1]} |f(x)|$.

We have

$$\left| \mathsf{E}\left[f\left(\frac{S_n}{n}\right) \right] - f(p) \right| \le \mathsf{E}\left[\left| f\left(\frac{S_n}{n}\right) - f(p) \right| \right]$$
$$\le \epsilon + 2M \operatorname{Prob}\left(\left| \frac{S_n}{n} - p \right| > \delta \right)$$
$$\le \epsilon + \frac{M}{2n\delta^2}.$$

The claim follows.

3

(日) (同) (三) (三)

Concentration of the 2-norm

Example

- Let $X_1, ..., X_n$ be independent and uniformly distributed on (-1, 1). Their joint distribution is uniform measure on the cube $(-1, 1)^n$.
- Let Y_i = X²_i. These variables are independent and satisfy E[Y_i] = ¹/₃ and Var[Y_i] ≤ E [Y²_i] ≤ 1.
- The weak law implies $\frac{1}{n} (X_1^2 + \dots + X_n^2) \to \frac{1}{3}$ in probability, as $n \to \infty$.
- Given $0 < \epsilon < 1$, let

$$\mathsf{A}_{n,\epsilon} = \left\{ x \in \mathbb{R}^n : (1-\epsilon) \sqrt{rac{n}{3}} < \|x\|_2 < (1+\epsilon) \sqrt{rac{n}{3}}
ight\}.$$

• By the weak law,
$$\frac{|A_{n,\epsilon}\cap(-1,1)^n|}{2^n} \to 1.$$

(日) (周) (三) (三)

L^2 weak law, again

A slightly stronger variant of the L^2 weak law is as follows.

Theorem (L^2 weak law)

Let $X_1, X_2, ..., X_n$ be random variables satisfying $E[X_i^2] < \infty$, and let $S_n = X_1 + \cdots + X_n$. Let $\mu_n = E[S_n]$ and $\sigma_n^2 = Var(S_n)$. Let $\{b_n\}$ be a sequence of non-zero numbers such that $\frac{\sigma_n^2}{b_n^2} \to 0$. Then $\frac{S_n - \mu_n}{b_n} \to 0$ in probability.

Proof.

Since $E\left[\left(\frac{S_n-\mu_n}{b_n}\right)^2\right] = \frac{Var[S_n]}{b_n^2} \to 0$, the conclusion follows from Chebyshev's inequality.

Bo			

イロト 不得下 イヨト イヨト 二日

- Let $X_1, X_2, ...$ be i.i.d. on $\{1, 2, ..., n\}$
- Let τⁿ_k = inf{m : |{X₁,...,X_m}| = k} be the waiting time until collecting the kth distinct coupon. Set τⁿ₀ = 0.
- We are interested in $T_n = \tau_n^n$, the waiting time until collecting a complete set of coupons.

イロト 不得下 イヨト イヨト

Coupon collector's problem

- Let $Y_{n,k} = \tau_k^n \tau_{k-1}^n$ be the incremental waiting time to collect the *k*th coupon. $Y_{n,k}$ has a geometric distribution with parameter $1 \frac{k-1}{n}$.
- A geometric distribution with parameter p has mean $\frac{1}{p}$ and variance $\leq \frac{1}{p^2}$.
- Hence $T_n = \sum_{k=1}^n Y_{n,k}$ satisfies

$$E[T_n] = \sum_{k=1}^n \left(1 - \frac{k-1}{n}\right)^{-1} = n \sum_{k=1}^n \frac{1}{k} \sim n \log n$$
$$Var[T_n] \le \sum_{k=1}^n \left(1 - \frac{k-1}{n}\right)^2 < n^2 \sum_{m=1}^\infty \frac{1}{m^2}.$$

• Taking $b_n = n \log n$ in the previous theorem proves $\frac{T_n - n \sum_{m=1}^n \frac{1}{m}}{n \log n} \to 0$ in probability, or $\frac{T_n}{n \log n} \to 1$ in probability.

Random permutations

The cycle representation of a permutation π on $\{1, 2, ..., n\}$ is found by writing

$$(1, \pi(1), \pi^2(1), ..., \pi^{k-1}(1))$$

where k is the least positive integer such that $\pi^{k}(1) = 1$, then repeating this process starting with the least number not contained in $1, \pi(1), ..., \pi^{k-1}(1)$, and iterating. For example, the permutation

i	1	2	3	4	5	6	7	8	9
$\pi(i)$	3	9	6	8	2	1	5	4	7

has cycle structure (1, 3, 6)(2, 9, 7, 5)(4, 8).

- Let π be chosen at uniform from the symmetric group \mathfrak{S}_n on n letters.
- Let $X_{n,k}$ indicate the event that the *k*th letter in the cycle structure of π closes a cycle, and let $S_n = \sum_{k=1}^n X_{n,k}$ denote the number of cycles.

Lemma

The events $X_{n,1}, ..., X_{n,n}$ are independent, and $\operatorname{Prob}(X_{n,j} = 1) = \frac{1}{n-i+1}$.

Proof.

- Build the cycle structure at random left to right, starting from 1, by assigning $\pi(i)$ only once *i* is reached in the cycle structure.
- The number of choices for $\pi(i)$ is n k + 1 where k is the position of i in the cycle structure, and exactly one choice leads to completing a cycle.

イロト 不得下 イヨト イヨト

Random permutations

By the previous lemma,

$$E[S_n] = \frac{1}{n} + \frac{1}{n-1} + \dots + 1$$

$$Var[S_n] = \sum_{k=1}^n Var[X_{n,k}] \le \sum_{k=1}^n E[X_{n,k}^2] \le E[S_n].$$

It follows that for $\epsilon > 0$,

$$\frac{S_n - \sum_{m=1}^n \frac{1}{m}}{(\log n)^{\frac{1}{2} + \epsilon}} \to 0$$

in probability.

Poh	Hough
DOD	Hough

- ∢ 🗇 እ

3

- Suppose that *r* balls are dropped independently at random in *n* boxes, so that each of *n^r* assignments is equally likely.
- Let A_i be the event that box *i* is empty, and $N = \sum_i A_i$ the number of empty boxes.
- We have

$$\operatorname{Prob}[A_i] = \left(1 - \frac{1}{n}\right)^r, \qquad \operatorname{E}[N] = n\left(1 - \frac{1}{n}\right)^r.$$

• If $r/n \to c$ then $\frac{1}{n} \mathbb{E}[N] \to e^{-c}$.

3

イロト 不得下 イヨト イヨト

Occupancy

• Calculate

$$E[N^{2}] = E\left[\left(\sum_{m=1}^{n} \mathbf{1}_{A_{m}}\right)^{2}\right] = \sum_{1 \le k, m \le n} \operatorname{Prob}(A_{k} \cap A_{m})$$
$$\operatorname{Var}[N] = E[N^{2}] - E[N]^{2}$$
$$= \sum_{1 \le k, m \le n} \operatorname{Prob}(A_{k} \cap A_{m}) - \operatorname{Prob}(A_{k}) \operatorname{Prob}(A_{m})$$
$$= n(n-1)\left[\left(1 - \frac{2}{n}\right)^{r} - \left(1 - \frac{1}{n}\right)^{2r}\right] + O(n)$$
$$= O(n).$$

• It follows that $\frac{N}{n} \rightarrow e^{-c}$ in probability.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Definition

A *triangular array* of random variables is a collection $\{X_{n,k}\}_{1 \le k \le n}$. Many classical limit theorems of probability theory apply to the row sums

$$S_n=\sum_{1\leq k\leq n}X_{n,k}.$$

Bol	6	ы,	· · ·	~	
50	וט	110	Ju	g١	

Definition

Let M > 0. The *truncation* at height M of random variable X is

$$\overline{X} = X \mathbf{1}_{(|X| \le M)} = \begin{cases} X & |X| \le M \\ 0 & |X| > M \end{cases}$$

Bol	<u>ч</u> Ц		~h
BOI	וו כ	υuį	зu

3

•

イロト イヨト イヨト イヨト

Theorem (Weak law for triangular arrays)

For each n let $X_{n,k}$, $1 \le k \le n$, be independent. Let $b_n > 0$ with $b_n \to \infty$, and let $\overline{X}_{n,k} = X_{n,k} \mathbf{1}_{(|X_{n,k}| \le b_n)}$. Suppose that as $n \to \infty$,

• $\sum_{k=1}^{n} \operatorname{Prob}(|X_{n,k}| > b_n) \rightarrow 0$, and

•
$$b_n^{-2} \sum_{k=1}^n \mathsf{E}\left[\overline{X}_{n,k}^2\right] \to 0.$$

Set $S_n = X_{n,1} + X_{n,2} + ... + X_{n,n}$ and $a_n = \sum_{k=1}^n E[\overline{X}_{n,k}]$. Then $\frac{S_n - a_n}{b_n} \to 0$ in probability.

- 本間 と えき と えき とうき

Weak law for triangular arrays

Proof.
• Let
$$\overline{S}_n = \overline{X}_{n,1} + \dots + \overline{X}_{n,n}$$
. Bound
 $\operatorname{Prob}\left(\left|\frac{S_n - a_n}{b_n}\right| > \epsilon\right) \le \operatorname{Prob}(S_n \neq \overline{S}_n) + \operatorname{Prob}\left(\left|\frac{\overline{S}_n - a_n}{b_n}\right| > \epsilon\right)$.
• Use a union bound to estimate
 $\operatorname{Prob}(S_n \neq \overline{S}_n) \le \operatorname{Prob}\left(\bigcup_{k=1}^n \{X_{n,k} \neq \overline{X}_{n,k}\}\right)$

 $\leq \sum_{k=1}^{n} \operatorname{Prob}(|X_{n,k}| > b_n) \to 0.$

Math 639: Lecture 3

3

(日) (同) (日) (日) (日)

Weak law for triangular arrays

Proof.

• The second term is bounded by

$$\operatorname{Prob}\left(\left|\frac{\overline{S}_{n}-a_{n}}{b_{n}}\right| > \epsilon\right) \leq \frac{\operatorname{Var}[\overline{S}_{n}]}{\epsilon^{2}b_{n}^{2}} \leq (b_{n}\epsilon)^{-2}\sum_{k=1}^{n} \operatorname{E}\left[\overline{X}_{n,k}^{2}\right] \to 0.$$

イロト イ団ト イヨト イヨト 三日

Bob Hough	Math 639: Lecture 3	January 31, 2017	26 / 62

Lemma

If $Y \ge 0$ and p > 0 then $E[Y^p] = \int_0^\infty p y^{p-1} \operatorname{Prob}[Y > y] dy$.

Bo		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Moments

Proof.

By Fubini's theorem for non-negative random variables,

$$\int_{0}^{\infty} py^{p-1} \operatorname{Prob}[Y > y] dy = \int_{0}^{\infty} \int_{\Omega} py^{p-1} \mathbf{1}_{(Y > y)} dP dy$$
$$= \int_{\Omega} \int_{0}^{\infty} py^{p-1} \mathbf{1}_{(Y > y)} dy dP$$
$$= \int_{\Omega} \int_{0}^{Y} py^{p-1} dy dP = \int_{\Omega} Y^{p} = \mathsf{E}[Y^{p}].$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Bob Hough

Theorem

Let X_1, X_2, \dots be i.i.d. with

$$x \operatorname{Prob}(|X_i| > x) \to 0, \qquad x \to \infty.$$

Let $S_n = X_1 + \cdots + X_n$ and let $\mu_n = \mathbb{E} \left[X_1 \mathbf{1}_{(|X_1| \le n)} \right]$. Then $\frac{S_n}{n} - \mu_n \to 0$ in probability.

		· · · · · · · · · · · · · · · · · · ·
Bob Hough	Math 639: Lecture 3	January 31, 2017

29 / 62

The weak law of large numbers

Proof.

We apply the weak law for triangular arrays with $X_{n,k} = X_n$ and with $b_n = n$. There are two conditions to check. The first is satisfied, since

$$\sum_{k=1}^{n} \operatorname{Prob}(|X_{n,k}| > n) = n \operatorname{Prob}(|X_i| > n) \to 0.$$

To prove the second condition, it suffices to check that $\frac{1}{n^2} \sum_{k=1}^n \mathsf{E}\left[\overline{X}_{n,k}^2\right] = \frac{1}{n} \mathsf{E}\left[\overline{X}_{n,1}^2\right] \to 0$. This follows, since

$$\frac{1}{n} \mathsf{E}\left[\overline{X}_{n,1}^2\right] \leq \frac{1}{n} \int_0^n 2y \operatorname{Prob}[|X_1| > y] dy \to 0.$$

< 口 > < 同 > < 三 > < 三

Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[|X_i|] < \infty$. Let $S_n = X_1 + \cdots + X_n$, and let $\mu = E[X_1]$. Then $\frac{S_n}{n} \to \mu$ in probability.

Proof.

The condition of the previous weak law is met, since $x \operatorname{Prob}(|X_i| > x) \leq \operatorname{E}\left[|X_i|\mathbf{1}_{(|X_i| > x)}\right] \to 0$ as $x \to \infty$. The theorem now follows, since $\mu_n \to \mu$ as $n \to \infty$, by dominated convergence.

イロト 不得下 イヨト イヨト

- The Cauchy distribution has density $\frac{1}{\pi(1+x^2)}$.
- If X₁,..., X_n are i.i.d. Cauchy, then ¹/_n ∑ⁿ_{i=1} X_i is again Cauchy of the same distribution. This may be readily checked with characteristic functions, we postpone the proof.
- Thus the Cauchy distribution is a distribution for which a weak law does not hold.

Theorem

Let $X_1, X_2, ...$ be i.i.d., satisfying

$$Prob[X_i = 2^j] = 2^{-j}, \quad j \ge 1.$$

Let $S_n = X_1 + \cdots + X_n$. We have $\frac{S_n}{n \log_2 n} \to 1$ in probability as $n \to \infty$.

В	- 1	- 1		

The "St. Petersburg paradox"

Proof.

- We apply the weak law for triangular arrays with b_n tending to ∞ faster than n but slower than $n \log n$.
- Since $\operatorname{Prob}[X_1 \ge 2^m] = \sum_{j=m}^{\infty} 2^{-j} \le 2^{-m+1}$, this condition guarantees that $n \operatorname{Prob}[X_1 \ge b_n] \to 0$ as $n \to \infty$.
- To check the second condition, note that $\overline{X}_{n,k} = X_k \mathbf{1}_{(|X_k| \le b_n)}$ satisfies

$$\mathsf{E}\left[\overline{X}_{n,k}^{2}\right] = \sum_{j:2^{j} \leq b_{n}} 2^{2j} 2^{-j} \leq 2b_{n}.$$

In particular, $\frac{1}{b_n^2} \sum_{k=1}^n \mathbb{E}\left[\overline{X}_{n,k}^2\right] = O\left(\frac{n}{b_n}\right) \to 0.$ • We have $a_n = \mathbb{E}\left[\overline{X}_{n,k}\right] = \sum_{j:2^j \le b_n} 2^j 2^{-j} \sim \log_2 b_j \sim \log_2 n.$

• It follows that $\frac{S_n - na_n}{b_n} \to 0$ and hence $\frac{S_n}{n \log_2 n} \to 1$ in probability.

Definition

Given A_n a sequence of subsets of Ω , let

$$\limsup A_n = \lim_{m \to \infty} \bigcup_{n=m}^{\infty} A_n = \{ \omega : \text{ in infinitely many } A_n \}$$
$$\liminf A_n = \lim_{m \to \infty} \bigcap_{n=m}^{\infty} A_n = \{ \omega : \text{ in all but finitely many } A_n \}.$$

Bol	h F	lou	αh
00		iou	gu

3

A (10) A (10) A (10)

Theorem (First Borel-Cantelli lemma) If $\sum_{n=1}^{\infty} \operatorname{Prob}[A_n] < \infty$ then $\operatorname{Prob}[A_n \ i.o.] = 0$.

Proof.

Let $N = \sum_{k} \mathbf{1}_{A_k}$. Since $E[N] = \sum_{k} Prob[A_k] < \infty$, we have $N < \infty$ a.s..

	4		590
Bob Hough	Math 639: Lecture 3	January 31, 2017	36 / 62

Convergence in probability

Theorem

 $X_n \rightarrow X$ in probability if and only if for every subsequence $X_{n(m)}$ there is a further subsequence $X_{n(m_{\nu})}$ that converges almost surely to X.

- 4 週 ト - 4 三 ト - 4 三 ト

Convergence in probability

Proof.

• For the forward direction, for each k there is an $n(m_k) > n(m_{k-1})$ so that Prob $[|X_{n(m_k)} - X| > \frac{1}{k}] \le 2^{-k}$. Since

$$\sum_{k=1}^{\infty} \operatorname{Prob}\left[\left|X_{n(m_k)} - X\right| > \frac{1}{k}\right] < \infty$$

Thus only finitely many events occur a.s. so $X_{n(m_k)} \rightarrow X$ a.s..

To prove the reverse direction, consider the sequence y_n = Prob(|X_n − X| > δ). The conclusion follows from the observation that, in a topological space, if every subsequence of {y_n} has a sub-subsequence converging to y, then y_n → y.

Bo	h I	H,	011	σh	

(日) (四) (日) (日) (日)

Theorem

If f is continuous and $X_n \to X$ in probability then $f(X_n) \to f(X)$ in probability. If, in addition, f is bounded, then $E[f(X_n)] \to E[f(X)]$.

Bo		

3

(日) (周) (三) (三)

Proof.

- Let $X_{n(m)}$ be a subsequence, with sub-subsequence $X_{n(m_k)} \rightarrow X$ a.s.
- By continuity, $f(X_{n(m_k)}) \rightarrow f(X)$, a.s. which proves the convergence in probability.
- When f is bounded, $E[f(X_{n(m_k)})] \rightarrow E[f(X)]$, which suffices for the second claim.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

Let $X_1, X_2, ...$ be an i.i.d. sequence satisfying $E[X_i] = \mu$ and $E[X_i^4] < \infty$. If $S_n = X_1 + \cdots + X_n$ then $\frac{S_n}{n} \to \mu$ a.s.

Bob Hough

(日) (四) (王) (王) (王)

Proof.

• We can assume $\mu = 0$ by making a translation.

Expand

$$\mathsf{E}\left[S_{n}^{4}\right] = \mathsf{E}\left[\sum_{1 \leq i, j, k, l \leq n} X_{i} X_{j} X_{k} X_{l}\right].$$

- Since E[X_i] = 0, the only terms which survive the expectation are of the form X⁴_i or X²_iX²_j, i ≠ j. Thus E [S⁴_n] = O(n²).
- It follows that $\operatorname{Prob}\left[|S_n| > n\epsilon\right] = O\left(\frac{1}{n^2\epsilon^4}\right)$, so only finitely many of these events occur by Borel-Cantelli.

Bo	ЬΙ	ц,	~	i m	h
00			υL	ъ	

Theorem

If events A_n are independent, the $\sum_{n=1}^{\infty} \text{Prob}[A_n] = \infty$ implies $\text{Prob}[A_n \text{ i.o.}] = 1$.

Bob Hough

Math 639: Lecture 3

January 31, 2017 43 / 62

3

< A > < > > <

Proof.

Let $M < N < \infty$. By independence and the inequality $(1 - x) \le e^{-x}$,

$$\operatorname{Prob}\left(igcap_{n=M}^{N}A_{n}^{c}
ight)=\prod_{n=M}^{N}(1-\operatorname{Prob}(A_{n}))\leq \exp\left(-\sum_{n=M}^{N}\operatorname{Prob}(A_{n})
ight)
ightarrow 0$$

as $N \to \infty$. Thus Prob $(\bigcup_{n=M}^{\infty} A_n) = 1$ for all M. Since $\bigcup_{n=M}^{\infty} A_n \downarrow \limsup A_n$ we obtain Prob $(\limsup A_n) = 1$.

イロト 不得下 イヨト イヨト 二日

Failure of the strong law

Corollary

If
$$X_1, X_2, ...$$
 are *i.i.d.* with $\mathsf{E}[|X_i|] = \infty$, then
Prob $[\lim_n \frac{S_n}{n} \text{ exists} \in (-\infty, \infty)] = 0.$

Proof.

We have

$$\mathsf{E}\left[|X_1|\right] = \int_0^\infty \mathsf{Prob}(|X_1| > x) dx \le \sum_{n=0}^\infty \mathsf{Prob}(|X_1| > n).$$

Thus, by independence and the second Borel-Cantelli lemma, the event $|X_n| > n$ occurs infinitely often with probability 1, which is sufficient to guarantee the non-convergence.

	oug	

Theorem

If $A_1, A_2, ...$ are pairwise independent and $\sum_{n=1}^{\infty} Prob(A_n) = \infty$, then as $n \to \infty$

$$\sum_{m=1}^{n} \mathbf{1}_{A_m} \Big/ \sum_{m=1}^{n} \mathsf{Prob}(A_m) o 1 \ a.s.$$

р.	эb	ы	

- 3

(日) (周) (三) (三)

Stronger Borel-Cantelli

Proof.

• Let
$$X_m = \mathbf{1}_{A_m}$$
 and $S_n = X_1 + ... + X_n$.

By pairwise independence, Var(S_n) = Var(X₁) + ... + Var(X_n). Since each X_n is an indicator variable, Var(S_n) ≤ E[S_n]. Thus,

$$\mathsf{Prob}\left(|S_n - \mathsf{E}[S_n]| > \delta \,\mathsf{E}[S_n]
ight) \leq rac{1}{\delta^2 \,\mathsf{E}[S_n]}.$$

- Let $n_k = \inf\{n : E[S_n] > k^2\}$ and let $T_k = S_{n_k}$. By summability of $\sum_k \frac{1}{E[T_k]}$ we find that $T_k / E[T_k] \to 1$ a.s.
- To conclude the theorem in general, note that for $n_k < n < n_{k+1}$, use

$$\frac{T_k}{\mathsf{E}[T_{k+1}]} \le \frac{S_n}{\mathsf{E}[S_n]} \le \frac{T_{k+1}}{\mathsf{E}[T_k]}$$

and
$$\frac{\mathsf{E}[\mathcal{T}_{k+1}]}{\mathsf{E}[\mathcal{T}_k]} \to 1.$$

Bob Hough

Math 639: Lecture 3

January 31, 2017

47

Record values

Example (Record values)

- Let X₁, X₂, ... be i.i.d. random variables having a continuous distribution.
- Let $A_k = \{X_k > \sup_{j < k} X_j\}$ be the event of a record at index k.
- Since the distributions are continuous, $X_i \neq X_j$ a.s.. The ordering of $X_1, X_2, ..., X_k$ induces the uniform measure on permutations in \mathfrak{S}_k , since for any permutation σ , $(X_1, ..., X_k)$ and $(X_{\sigma(1)}, ..., X_{\sigma(k)})$ are equal in distribution.
- Hence $A_1, A_2, ...$ are independent and $\operatorname{Prob}(A_k) = \frac{1}{k}$.
- By the strong law of large numbers, $R_n = \sum_{m=1}^n \mathbf{1}_{A_m}$ satisfies as $n \to \infty$

$$\frac{R_n}{\log n} \to 1, \qquad \text{a.s.}$$

イロト 不得下 イヨト イヨト 二日

Example (Head runs)

- Let X_n , $n \in \mathbb{Z}$ be i.i.d. with $\operatorname{Prob}(X_n = 1) = \operatorname{Prob}(X_n = -1) = \frac{1}{2}$.
- Let $\ell_n = \max\{m : X_{n-m+1} = \cdots = X_n = 1\}$ be the length of the run of 1's at time *n*, and let $L_n = \max_{1 \le m \le n} \ell_m$. We show $\frac{L_n}{\log_2 n} \to 1$, a.s.
- Since Prob(ℓ_n ≥ (1 + ϵ) log₂ n) ≤ n^{-(1+ϵ)} is summable, this event happens finitely often with probability 1, by Borel-Cantelli.

イロト 不得下 イヨト イヨト

Head runs

Example (Head runs)

- To prove the lower bound, let n = 2^k and split the block between [n/2, n) into pieces of length [(1 ε) log₂ n] + 1.
- Each of these is entirely 1 with probability $\gg n^{-1+\epsilon}$, and the events are independent.
- There are $\gg \frac{n}{\log n}$ events in the block, so that, summed over the block their probabilities sum to $\gg n^{\epsilon/2}$.
- Summing in blocks, infinitely many of the events occur with probability 1, by Borel-Cantelli.

イロト 不得下 イヨト イヨト 二日

Theorem (Strong law of large numbers)

Let $X_1, X_2, ...$ be pairwise independent identically distributed random variables with $E[|X_i|] < \infty$. Let $E[X_i] = \mu$ and $S_n = X_1 + \cdots + X_n$. Then $\frac{S_n}{n} \rightarrow \mu$ a.s.

イロト イポト イヨト イヨト 二日

Lemma

Let $Y_k = X_k \mathbf{1}_{(|X_k| \le k)}$ and $T_n = Y_1 + \cdots + Y_n$. It is sufficient to prove that $T_n/n \to \mu$ a.s.

Proof.

Observe $\sum_{k} \operatorname{Prob}(|X_{k}| > k) \leq \int_{0}^{\infty} \operatorname{Prob}(|X_{1}| > t) dt = \operatorname{E}[|X_{1}|] < \infty$. Thus $\operatorname{Prob}(Y_{k} \neq X_{k} \text{ i.o.}) = 0$. It follows that

$$\sup_{n}|T_{n}(\omega)-S_{n}(\omega)|<\infty, \ a.s.,$$

which suffices for the claim.

Bo	h I	Ho	IJØ	h
			- 6	

Lemma

We have
$$\sum_k \frac{\operatorname{Var}(Y_k)}{k^2} < \infty$$
.

Proof.

Write

$$\sum_{k} \frac{\mathsf{E}\left[Y_{k}^{2}\right]}{k^{2}} \leq \sum_{k=1}^{\infty} k^{-2} \int_{0}^{\infty} \mathbf{1}_{(y < k)} 2y \operatorname{Prob}(|X_{1}| > y) dy$$
$$= \int_{0}^{\infty} \left\{ \sum_{k=1}^{\infty} k^{-2} \mathbf{1}_{(y < k)} \right\} 2y \operatorname{Prob}(|X_{1}| > y) dy$$
$$\ll \int_{0}^{\infty} \operatorname{Prob}(|X_{1}| > y) dy = \mathsf{E}[|X_{1}|] < \infty.$$

Bob Hough

Math 639: Lecture 3

January 31, 2017 53 / 62

Proof of the strong law.

It suffices to prove the theorem for $X_n \ge 0$, since the general case may be separated into positive and negative parts.

- Let $\alpha > 1$ and set $k(n) = [\alpha^n]$. Recall $T_n = Y_1 + ... + Y_n$.
- By Chebyshev's inequality, for $\epsilon > 0$,

$$\sum_{n=1}^{\infty} \operatorname{Prob}\left(|T_{k(n)} - \mathsf{E}[T_{k(n)}]| > \epsilon k(n)\right) \le \epsilon^{-2} \sum_{n=1}^{\infty} \frac{\operatorname{Var}(T_{k(n)})}{k(n)^{2}}$$
$$= \epsilon^{-2} \sum_{n=1}^{\infty} k(n)^{-2} \sum_{m=1}^{k(n)} \operatorname{Var}(Y_{m}) = \epsilon^{-2} \sum_{m=1}^{\infty} \operatorname{Var}(Y_{m}) \sum_{n:k(n) \ge m} k(n)^{-2}$$
$$\ll \epsilon^{-2} \sum_{m=1}^{\infty} \frac{\operatorname{Var}(Y_{m})}{m^{2}} < \infty.$$

Proof of the strong law.

- It follows that $(T_{k(n)} \mathbb{E}[T_{k(n)}])/k(n) \to 0$ a.s. Meanwhile, $\frac{\mathbb{E}[T_{k(n)}]}{k(n)} \to \mathbb{E}[X_1]$ by dominated convergence.
- For $k(n) \le m < k(n+1)$

$$\frac{T_{k(n)}}{k(n+1)} \le \frac{T_m}{m} \le \frac{T_{k(n+1)}}{k(n)}$$

• Since $\frac{k(n+1)}{k(n)} \to \alpha$, we have a.s.

$$\frac{1}{\alpha} \mathsf{E}[X_1] \le \liminf_{n \to \infty} \frac{T_m}{m} \le \limsup_{m \to \infty} \frac{T_m}{m} \le \alpha \, \mathsf{E}[X_1].$$

• Since $\alpha > 1$ was arbitrary, the limit follows.

Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_i] = \infty$ and $E[|X_i^-|] < \infty$. Let $S_n = X_1 + \cdots + X_n$. Then $\frac{S_n}{n} \to \infty$ a.s.

Bo			

(日) (四) (王) (王) (王)

Proof.

Let M > 0 and set $X_i^M = \min(X_i, M)$. By the strong law, $\frac{1}{n} \sum_{i=1}^n X_i^M \to \mathsf{E}[X_i^M]$ a.s. as $n \to \infty$. Hence

$$\liminf_{n\to\infty}\frac{S_n}{n}\geq \mathsf{E}\left[X_i^M\right].$$

Since $E[X_i^M] \to \infty$ as $M \to \infty$, the claim follows.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Renewal theory

Let X_1, X_2, \dots be i.i.d. with $0 < X_i < \infty$. Let $T_n = X_1 + \dots + X_n$ and

$$N_t = \sup\{n : T_n \le t\}.$$

Given a sequence of events which happen in succession with waiting time X_n to the *n*th event, we think of N_t as the number of events which have happened up to time t.

Theorem If $E[X_1] = \mu \le \infty$, then as $t \to \infty$, $\frac{N_t}{t} \to \frac{1}{\mu}$ a.s..

Bo	h	H	ou	σh
				ъ

Proof.

Since $T(N_t) \leq t < T(N_t + 1)$, dividing through by N_t gives

$$\frac{T(N_t)}{N_t} \leq \frac{t}{N_t} \leq \frac{T(N_t+1)}{N_t+1} \frac{N_t+1}{N_t}$$

We have $N_t
ightarrow \infty$ a.s.. Hence, by the strong law,

$$rac{T_{N_t}}{N_t}
ightarrow \mu, \qquad rac{N_t+1}{N_t}
ightarrow 1$$

		지 문 제 지 문 제
Bob Hough	Math 639: Lecture 3	January 31, 2017

59 / 62

Empirical distribution functions

Let $X_1, X_2, ...$ be i.i.d. with distribution F and let

$$F_n(x) = \frac{1}{n} \sum_{m=1}^n \mathbf{1}_{(X_m \leq x)}.$$

Theorem (Glivenko-Cantelli Theorem)
As
$$n \to \infty$$
,
$$\sup_{x} |F_n(x) - F(x)| \to 0 \text{ a.s.}.$$

Bo	ЬΙ	He	511	۳h	
50		10	Ju	gu	

(日) (同) (三) (三)

Proof.

Note that F is increasing, but can have jumps.

• For $k = 1, 2, ..., \text{ and } 1 \le j \le k - 1$, define $x_{j,k} = \inf\{x : F(x) \ge \frac{j}{k}\}$. Set $x_{0,k} = -\infty$, $x_{k,k} = \infty$.

• Write
$$F(x-) = \lim_{y \uparrow x} F(y)$$
.

• Since each of $F_n(x_{j,k}-)$ and $F_n(x_{j,k})$ converges by the strong law, and $F_n(x_{j,k}-) - F_n(x_{j-1,k}) \leq \frac{1}{k}$, the uniform convergence follows.

- 4 同 6 4 日 6 4 日 6

- Let X₁, X₂,... be i.i.d., taking values in {1, 2, ..., r} with all possibilities of positive probability. Set Prob(X_i = k) = p(k) > 0.
- Let $\pi_n(\omega) = p(X_1(\omega))p(X_2(\omega))...p(X_n(\omega))$. By the strong law, a.s.

$$-\frac{1}{n}\log \pi_n \to H \equiv -\sum_{k=1}^r p(k)\log p(k).$$

The constant H is called the *entropy*.

(日) (周) (三) (三)