Math 639: Lecture 23

Stochastic integrals and applications

Bob Hough

May 9, 2017

Ro	h I	H.	~		h
50			υu	'B'	

-

This lecture follows Mörters and Peres, Chapter 7.

-

• • • • • • • • • • • •

Downcrossings

Definition

Given a < b define a sequence of stopping times $\tau_0 = 0$ and, for $j \ge 1$,

$$\sigma_j = \inf\{t > \tau_{j-1} : B(t) = b\}, \qquad \tau_j = \inf\{t > \sigma_j : B(t) = a\}.$$

We call the random function

$$B^{(j)}: [0, \tau_j - \sigma_j] \to \mathbb{R}, \qquad B^{(j)}(s) = B(\sigma_j + s)$$

the *jth downcrossing* of [a, b]. For every t > 0, denote

$$D(a, b, t) = \max\{j \in \mathbb{N} : \tau_j \leq t\}$$

the number of downcrossings of the interval [a, b] before time t.

(日) (同) (三) (三)

Theorem

There exists a stochastic process $\{L(t) : t \ge 0\}$ called the local time at zero such that for all sequences $a_n \uparrow 0$ and $b_n \downarrow 0$ with $a_n < b_n$, a.s.

$$\lim_{n\to\infty} 2(b_n-a_n)D(a_n,b_n,t) = L(t) \qquad \forall \ t>0.$$

Moreover, this process is almost surely locally $\alpha\text{-H\"older}$ continuous for any $\alpha < 1/2.$

Theorem (Lévy)

The local time at zero $\{L(t) : t \ge 0\}$ and the maximum process $\{M(t) : t \ge 0\}$ of a standard Brownian motion have the same distribution.

(日) (同) (三) (三)

Theorem

For all sequences $a_n \uparrow 0$ and $b_n \downarrow 0$ with $a_n < b_n$, a.s.

$$\lim_{n\to\infty}\frac{1}{b_n-a_n}\int_0^t\mathbf{1}(a_n\leqslant B(s)\leqslant b_n)ds=L(t),\qquad\forall t>0.$$

Bob Hough

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ May 9, 2017 6 / 66

(日) (同) (三) (三)

Theorem

For linear Brownian motion $\{B(t) : t \ge 0\}$, almost surely, for any bounded measurable $g : \mathbb{R} \to \mathbb{R}$ and t > 0,

$$\int g(a)d\mu_t(a) = \int_0^t g(B(s))ds = \int_{-\infty}^\infty g(a)L^a(t)da.$$

→ 3 → 4 3

Trotter's theorem

Given $a \in \mathbb{R}$ and integer *n*, let $I(a, n) = [j(a)2^{-n}, (j(a) + 1)2^{-n})$ be the unique dyadic interval containing *a*. For a standard Brownian motion $\{B(t) : t \ge 0\}$ denote by $D^{(n)}(a, t)$ the number of downcrossings of the interval I(a, n) before time *t*.

Theorem (Trotter's theorem)

Let $\{B(t) : t \ge 0\}$ be a standard linear Brownian motion and let $D^{(n)}(a, t)$ be the number of downcrossings before time t of the nth stage dyadic interval containing a. Then, a.s.

$$L^{\mathbf{a}}(t) = \lim_{n \to \infty} 2^{-n+1} D^{(n)}(\mathbf{a}, t),$$

exists for all $a \in \mathbb{R}$ and $t \ge 0$. Moreover, for every $\gamma < \frac{1}{2}$, the random field $\{L^a(t) : a \in \mathbb{R}, t \ge 0\}$ is a.s. locally γ -Hölder continuous.

Theorem (Ray-Knight Theorem)

Suppose a > 0 and $\{B(t) : 0 \le t \le T\}$ is a linear Brownian motion started at a and stopped at time $T = \inf\{t \ge 0 : B(t) = 0\}$, when it reaches level zero for the first time. Then

$$\{L^{x}(T): 0 \leq x \leq a\} \stackrel{d}{=} \{|W(x)|^{2}: 0 \leq x \leq a\},\$$

where $\{W(x) : x \ge 0\}$ is a standard planar Brownian motion.

(日本) (日本) (日本)

Since the Brownian motion a.s. has unbounded variation it is not possible to define integrals $\int_0^t f(s) dB(s)$ by Lebesgue-Stieltjes integration. Thus stochastic integration is needed.

Definition

Assume the filtration $(\mathscr{F}(t): t \ge 0)$ is *complete* in the sense that it contains all null sets of \mathscr{A} . A process $\{X(t,\omega): t \ge 0, \omega \in \Omega\}$ is called *progressively measurable* if for each $t \ge 0$ the mapping $X : [0, t] \times \Omega \to \mathbb{R}$ is measurable w.r.t. the σ -algebra $\mathscr{B}([0, t]) \otimes \mathscr{F}(t)$.

Lemma

Any process $\{X(t) : t \ge 0\}$ which is adapted and either right or left continuous is also progressively measurable.

Bob Hough

(日) (同) (三) (三)

Proof.

• Assume that $\{X(t) : t \ge 0\}$ is right-continuous. Let t > 0 and, for a positive integer n and $0 \le s \le t$ set $X_n(0, \omega) = X(0, \omega)$

$$X_n(s,\omega) = X\left(\frac{(k+1)t}{2^n},\omega\right), \qquad kt2^{-n} < s \leq (k+1)t2^{-n}.$$

- $(s,\omega) \mapsto X_n(s,\omega)$ is $\mathscr{B}([0,t]) \otimes \mathscr{F}(t)$ measurable. By right-continuity we have $\lim_{n\uparrow\infty} X_n(s,\omega) = X(s,\omega)$ for all $s \in [0,t]$ and $\omega \in \Omega$.
- Thus the limit map $(s,\omega) \mapsto X(s,\omega)$ is also $\mathscr{B}([0,t]) \otimes \mathscr{F}(t)$.
- The claim in case of left continuity is similar.

(日) (周) (三) (三)

A progressively measurable step function $\{H(t,\omega) : t \ge 0, \omega \in \Omega\}$ is a function of the form

$$H(t,\omega) = \sum_{i=1}^{k} A_i(\omega) \mathbf{1}_{(t_i,t_{i+1}]}, \qquad 0 \leq t_1 \leq \ldots \leq t_{k+1}$$

and $\mathscr{F}(t_i)$ -measurable A_i . For such functions, define

$$\int_0^\infty H(s) dB(s) := \sum_{i=1}^k A_i (B(t_{i+1}) - B(t_i)).$$

(日) (周) (三) (三)

For a progressively measurable process H, define

$$||H||_2^2 := \mathsf{E} \int_0^\infty H(s)^2 ds.$$

Lemma

For every progressively measurable process $\{H(s,\omega) : s \ge 0, \omega \in \Omega\}$ satisfying $E \int_0^\infty H(s)^2 ds < \infty$ there exists a sequence $\{H_n : n \in \mathbb{N}\}$ of progressively measurable step processes such that $\lim_{n\to\infty} ||H_n - H||_2 = 0$.

Proof.

- First truncate $H(s, \omega)$ by setting $H_n(s, \omega) = 0$ for s > n, $H_n(s, \omega) = H(s, \omega)$ for $s \le n$.
- Next replace $H_n(s, \omega) = H(s, \omega) \wedge n$.
- Next replace $H_n(s, \omega) = n \int_{s-1/n}^{s} H(t, \omega) dt$, which makes H continuous.
- Finally set $H_n(s,\omega) = H(j/n,\omega)$ for $j/n \leq s < (j+1)/n$.

(日) (周) (三) (三)

Lemma

Let H be a progressively measurable step process and $E \int_0^\infty H(s)^2 ds < \infty$, then $E\left[\left(\int_0^\infty H(s)dB(s)\right)^2\right] = E \int_0^\infty H(s)^2 ds.$

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Proof.

Write
$$H = \sum_{i=1}^{k} A_i \mathbf{1}_{(a_i, a_{i+1}]}$$
 and expand the square

$$E\left[\left(\int_{0}^{\infty} H(s)dB(s)\right)^{2}\right]$$

= $E\left[\sum_{i,j=1}^{k} A_{i}A_{j}(B(a_{i+1}) - B(a_{i}))(B(a_{j+1}) - B(a_{j}))\right]$
= $2\sum_{i=1}^{k}\sum_{j=i+1}^{k} E\left[A_{i}A_{j}(B(a_{i+1}) - B(a_{i})) E\left[B(a_{j+1}) - B(a_{j})\middle|\mathscr{F}(a_{j})\right]$
+ $\sum_{i=1}^{k} E\left[A_{i}^{2}(B(a_{i+1}) - B(a_{i}))^{2}\right]$

Proof.

Only the diagonal terms survive, leaving

$$\sum_{i=1}^{k} \mathsf{E}\left[A_{i}^{2}\right]\left(a_{i+1}-a_{i}\right) = \mathsf{E}\int_{0}^{\infty} H(s)^{2} ds.$$

D-		ы.		
во	D	пс	ווכ	øη
				o

Theorem

Suppose $\{H_n : n \in \mathbb{N}\}$ is a sequence of progressively measurable step processes and H a progressively measurable process such that

$$\lim_{n\to\infty}\mathsf{E}\int_0^\infty(H_n(s)-H(s))^2ds=0,$$

then

$$\lim_{n\to\infty}\int_0^\infty H_n(s)dB(s)=:\int_0^\infty H(s)dB(s)$$

exists as a limit in the L²-sense and is independent of the choice of $\{H_n : n \in \mathbb{N}\}$. Moreover, we have

$$\mathsf{E}\left[\left(\int_0^\infty H(s)dB(s)\right)^2\right] = \mathsf{E}\int_0^\infty H(s)^2 ds.$$

Proof.

By the previous lemma, the sequence of step functions have integrals that are Cauchy in L^2 , hence converge there. The last statement is the convergence of L^2 norms.

lf

$$\sum_{n=1}^{\infty}\mathsf{E}\int_{0}^{\infty}(H_{n}(s)-H(s))^{2}ds<\infty,$$

then a.s.

$$\sum_{n=1}^{\infty}\left[\int_0^{\infty}H_n(s)dB(s)-\int_0^{\infty}H(s)dB(s)\right]^2<\infty.$$

which implies $\lim_{n\to\infty}\int_0^\infty H_n(s)dB(s)=\int_0^\infty H(s)dB(s)$ a.s.

• • • • • • • • • • • •

Definition

Suppose $\{H(s,\omega): s \ge 0, \omega \in \Omega\}$ is progressively measurable with $\mathsf{E}\int_0^\infty H(s,\omega)^2 ds < \infty$. Define the progressively measurable process $\{H^t(s,\omega): s \ge 0, \omega \in \Omega\}$ by

$$H^{t}(s,\omega) = H(s,\omega)\mathbf{1}(s \leq t).$$

The stochastic integral up to t is defined as,

$$\int_0^t H(s)dB(s) := \int_0^\infty H^t(s)dB(s).$$

Definition

We say that a stochastic process $\{X(t) : t \ge 0\}$ is a *modification* of a process $\{Y(t) : t \ge 0\}$ if, for every $t \ge 0$, we have

Prob(X(t) = Y(t)) = 1.

D			
RO	h F		uan
00		10	

< ロ > < 同 > < 三 > < 三

Theorem

Suppose the process $\{H(s,\omega) : s \ge 0, \omega \in \Omega\}$ is progressively measurable with

$$\mathsf{E}\int_0^t H(s,\omega)^2 ds < \infty, \qquad t \ge 0.$$

Then there exists an almost surely continuous modification of $\{\int_0^t H(s)dB(s) : t \ge 0\}$. Moreover, this process is a martingale and hence

$$\mathsf{E}\int_0^t H(s)dB(s)=0, \qquad t \ge 0.$$

Ro	h	н	0.1	at	
50	0		υu	g,	ł

Proof.

 Let t₀ be a large integer and let H_n be a sequence of step processes with ||H_n − H^{t₀}||₂ → 0. Then

$$\mathsf{E}\left[\left(\int_0^\infty (H_n(s) - H^{t_0}(s))dB(s)\right)^2\right] \to 0$$

• Since $\int_0^s H_n(u) dB(u)$ is $\mathscr{F}(s)$ -measurable and $\int_s^t H_n(u) dB(u)$ is independent of $\mathscr{F}(s)$,

$$\left\{\int_0^t H_n(u)dB(u): 0 \leqslant t \leqslant t_0\right\}$$

is a martingale.

Proof.

Define

$$X(t) = \mathsf{E}\left[\int_0^{t_0} H(s) dB(s) \Big| \mathscr{F}(t)\right],$$

so that $\{X(t) : 0 \leq t \leq t_0\}$ is also a martingale.

• By Doob's maximal inequality,

$$\mathsf{E}\left[\sup_{0\leqslant t\leqslant t_{0}}\left(\int_{0}^{t}H_{n}(s)dB(s)-X(t)\right)^{2}\right]$$
$$\leqslant 4\,\mathsf{E}\left[\left(\int_{0}^{t_{0}}(H_{n}(s)-H(s))dB(s)\right)^{2}\right]$$

• This exhibits *X*(*t*) as the uniform limit of continuous processes, as wanted.

Theorem

Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous, t > 0 and $0 = t_1^{(n)} < ... < t_n^{(n)} = t$ are partitions of the interval [0, t], such that the mesh converges to 0. Then, in probability,

$$\sum_{j=1}^{n-1} f(B(t_j^{(n)})) \left(B(t_{j+1}^{(n)}) - B(t_j^{(n)}) \right)^2 \to \int_0^t f(B(s)) ds.$$

Proof.

- Let T be the first exit time from a compact interval. It suffices to prove the statement for Brownian motion stopped at T, as the interval may be chosen to make Prob(T < t) arbitarily small.
- By continuity of f, a.s.

$$\lim_{n\to\infty}\sum_{j=1}^{n-1}f(B(t_j^{(n)}\wedge T))\left(t_{j+1}^{(n)}\wedge T-t_j^{(n)}\wedge T\right)=\int_0^{t\wedge T}f(B(s))ds.$$

Proof.

Since $\{B(t)^2 - t : t \ge 0\}$ is a martingale, for all $r \le s$,

$$\mathsf{E}\left[(B(s)-B(r))^2-(s-r)|\mathscr{F}(r)\right]=0,$$

$$E\left[\left(\sum_{j=1}^{n-1} f(B(t_{j} \wedge T))\right) \\ \left((B(t_{j+1} \wedge T) - B(t_{j} \wedge T))^{2} - (t_{j+1} \wedge T - t_{j} \wedge T)\right)^{2}\right] \\ = \sum_{j=1}^{n-1} E\left[f(B(t_{j} \wedge T))^{2} \\ \left((B(t_{j+1} \wedge T) - B(t_{j} \wedge T))^{2} - (t_{j+1} \wedge T - t_{j} \wedge T)\right)^{2}\right]$$

Proof.

Bound f in sup norm by a constant and bound the remaining part of the sum by

$$\sum_{j=1}^{n-1} \mathsf{E}\left[(B(t_{j+1} \land T) - B(t_j \land T))^4 \right] + \sum_{j=1}^{n-1} \mathsf{E}\left[(t_{j+1} \land T - t_j \land T)^2 \right].$$

which, by Brownian scaling, is bounded by a constant times

$$\sum_{j=1}^{n-1} (t_{j+1} - t_j)^2 \leq t\Delta(n)$$

which tends to zero as the mesh does.

R	٥ŀ	h	н	Ö	in,	σ	h
~	۰.	•		۰.	-	ь	

Theorem

Let $f : \mathbb{R} \to \mathbb{R}$ be twice continuously differentiable such that $E \int_0^t f'(B(s))^2 ds < \infty$ for some t > 0. Then, almost surely, for all $0 \leq s \leq t$,

$$f(B(s)) - f(B(0)) = \int_0^s f'(B(u)) dB(u) + \frac{1}{2} \int_0^s f''(B(u)) du.$$

(日) (周) (三) (三)

ltô's formula l

Proof.

• Denote the modulus of continuity of f'' on [-M, M] by

$$\omega(\delta, M) := \sup_{\substack{x, y \in [-M,M] \\ |x-y| < \delta}} |f''(x) - f''(y)|.$$

By Taylor's formula, for any $x,y\in [-M,M]$ with $|x-y|<\delta$,

$$\left|f(y) - f(x) - f'(x)(y - x) - \frac{1}{2}f''(x)(y - x)^{2}\right| \le \omega(\delta, M)(y - x)^{2}.$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

ltô's formula l

Proof.

• For any sequence $0 = t_1 < ... < t_n = t$ with $\delta_B := \max_{1 \le i \le n-1} |B(t_{i+1}) - B(t_i)|$ and $M_B = \max_{0 \le s \le t} |B(s)|$,

$$\left| \sum_{i=1}^{n-1} (f(B(t_{i+1})) - f(B(t_i))) - \sum_{i=1}^{n-1} f'(B(t_i))(B(t_{i+1}) - B(t_i)) - \sum_{i=1}^{n-1} \frac{1}{2} f''(B(t_i))(B(t_{i+1}) - B(t_i))^2 \right|$$

$$\leq \omega(\delta_B, M_B) \sum_{i=1}^{n-1} (B(t_{i+1}) - B(t_i))^2.$$

• • • • • • • • • • • •

Proof.

- Choosing a sequence of partitions with mesh size going to 0, the sums converge to integrals on the left, and the sum on the right converges to t a.s., while ω converges to 0.
- This gives the formula at rational t, and everywhere by continuity.

ltô's formula II

Theorem

Suppose $\{\zeta(s) : s \ge 0\}$ is an increasing, continuous adapted stochastic process. Let $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be twice continuously differentiable in the *x*-coordinate, and once continuously differentiable in the *y*-coordinate. Assume that

$$\mathsf{E}\int_0^t \left[\partial_x f(B(s),\zeta(s))\right]^2 ds < \infty,$$

for some t > 0. Then, a.s. for all $0 \leq s \leq t$,

$$f(B(s),\zeta(s)) - f(B(0),\zeta(0)) = \int_0^s \partial_x f(B(u),\zeta(u)) dB(u) + \int_0^s \partial_y f(B(u),\zeta(u)) d\zeta(u) + \frac{1}{2} \int_0^s \partial_{xx} f(B(u),\zeta(u)) du.$$

There is also a multi-dimensional version, see MP pp. 197-200.

・ロト ・ 同ト ・ ヨト ・ ヨ

Theorem (Tanaka's formula)

Let $\{B(t) : t \ge 0\}$ be linear Brownian motion. Then, for every $a \in \mathbb{R}$, almost surely, for all t > 0,

$$|B(t) - a| - |B(0) - a| = \int_0^t \operatorname{sgn}(B(s) - a) dB(s) + L^a(t).$$

R.	h	. н	10		۳h
	υL	· ·	10	ч	вu

A (10) A (10) A (10)

Corollary

Suppose that $f : \mathbb{R} \to \mathbb{R}$ is twice differentiable such that f' has compact support, but do not assume that f'' is continuous. Then

$$f(B(t)) - f(B(0)) = \int_0^t f'(B(s)) dB(s) + \frac{1}{2} \int_0^t f''(B(s)) ds.$$

→ Ξ →

Proof.

Write

$$f'(x) = \frac{1}{2} \int \operatorname{sgn}(x-a) f''(a) da + c, \quad f(x) = \frac{1}{2} \int |x-a| f''(a) da + cx + b.$$

Multiply Tanaka's formula by $\frac{1}{2}f''(a)da$ and integrate to obtain

$$f(B(t)) - f(B(0)) = \int_0^t f'(B(s)) dB(s) + \frac{1}{2} \int L^a(t) f''(a) da.$$

<ロト </p>

Define

$$\widetilde{L}^{\boldsymbol{a}}(t) := |B(t) - \boldsymbol{a}| - |B(0) - \boldsymbol{a}| - \int_0^t \operatorname{sgn}(B(s) - \boldsymbol{a}) dB(s).$$

Lemma

For every $t \ge 0$ and $a \in \mathbb{R}$,

$$ilde{\mathcal{L}}^{\boldsymbol{a}}(t) = \lim_{\epsilon \downarrow 0} rac{1}{\epsilon} \int_0^t \mathbf{1}_{(\boldsymbol{a}, \boldsymbol{a} + \epsilon)}(B(\boldsymbol{s})) d\boldsymbol{s}$$

in probability.

イロト イ団ト イヨト イヨト

Proof.

- Using the strong Markov property, reduce to the case a = 0.
- Note that, for any $\delta > 0$ we can find smooth functions $g, h : \mathbb{R} \to [0, 1]$ with compact support such that $g \leq 1_{(0,1)} \leq h$ and $\int g = 1 \delta$, $\int h = 1 + \delta$.
- Let $f : \mathbb{R} \to [0,1]$ smooth, compactly supported in [-1,2], $\int f = 1$, and let

$$f_{\epsilon}(x) = \epsilon^{-1} \int |x - a| f(\epsilon^{-1}a) da = \int |x - \epsilon a| f(a) da.$$

$$\begin{split} f_{\epsilon}'(x) &= \int \mathrm{sgn}(x-\epsilon \mathbf{a})f(\mathbf{a})d\mathbf{a}\\ f_{\epsilon}''(x) &= 2\epsilon^{-1}f(\epsilon^{-1}x). \end{split}$$

Proof.

Itô's formula gives

$$f_{\epsilon}(B(t))-f_{\epsilon}(B(0))-\int_0^t f_{\epsilon}'(B(s))dB(s)=\epsilon^{-1}\int_0^t f(\epsilon^{-1}B(s))ds.$$

• Since $f_{\epsilon}(x) \rightarrow |x|$ uniformly, we have

$$f_{\epsilon}(B(t)) - f_{\epsilon}(B(0)) \rightarrow |B(t)| - |B(0)|$$

in probability as $\epsilon \rightarrow 0$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Proof.

• By the isometry property,

$$\begin{split} &\mathsf{E}\left[\left(\int_0^t \mathsf{sgn}(B(s))dB(s) - \int_0^t f_{\epsilon}'(B(s))dB(s)\right)^2\right] \\ &= \mathsf{E}\int_0^t (\mathsf{sgn}(B(s)) - f_{\epsilon}'(B(s)))^2 ds. \end{split}$$

This converges to 0 as $\epsilon \downarrow 0$ by bounded convergence.

• Meanwhile $\epsilon^{-1} \int_0^t f(\epsilon^{-1}B(s)) ds \to \tilde{L}^0(t)$.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Proof of Tanaka's formula.

- Fix $t \ge 0$ and recall that a.s. the occupation measure μ_t given by $\mu_t(A) = \int_0^t \mathbf{1}_A(B(s)) ds$ has a continuous density given by $\{L^a(t) : a \in \mathbb{R}\}.$
- Thus, for every $a \in \mathbb{R}$,

$$L^{a}(t) = \lim_{\epsilon \downarrow 0} \frac{\mu_{t}(a, a + \epsilon)}{\epsilon} = \lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \int_{0}^{t} \mathbf{1}_{(a, a + \epsilon)}(B(s)) ds.$$

By the previous lemma, for every a ∈ R and t ≥ 0, L^a(t) = L̃^a(t) a.s.
Since, for any a ∈ R, {L^a(t) : t ≥ 0} and {L̃^a(t) : t ≥ 0} are almost surely continuous, so that they agree.

Theorem (Lévy)

The processes

$$\{(|B(t)|, L^{0}(t)) : t \ge 0\}, \qquad \{(M(t) - B(t), M(t)) : t \ge 0\}$$

have the same distribution.

イロト イ団ト イヨト イヨト

Lemma

For every $a \in \mathbb{R}$, the process $\{W(t) : t \ge 0\}$ given by

$$W(t) = \int_0^t \operatorname{sgn}(B(s) - a) dB(s).$$

イロト イヨト イヨト イヨト

Lévy's theorem

Proof.

- Suppose without loss that a < 0.
- Let $T = \inf\{t > 0 : B(t) = a\}$ so that W(t) = B(t) for all $t \leq T$.
- $\{\tilde{B}(t) : t \ge 0\}$ defined by $\tilde{B}(t) = B(t + T) a$ is independent of $\{W(t) : 0 \le t \le T\}$. We have

$$W(t+T) - W(T) = \int_0^t \operatorname{sgn}(\tilde{B}(s)) d\tilde{B}(s),$$

so now assume a = 0.

(日) (同) (三) (三)

Lévy's theorem

Proof.

• Choose $s = t_1^{(n)} < \cdots < t_n^{(n)} = t$ with mesh $\Delta(n) \downarrow 0$ and approximate the progressively measurable process sgn(B(u)) by the step processes

$$H_n(u) = \text{sgn}(B(t_j^{(n)})), \qquad t_j^{(n)} < u \le t_{j+1}^{(n)}$$

- Since the zero set of Brownian motion is a closed set of measure 0, $\lim_{s \to 0} E \int_{s}^{t} (H_{n}(u) H(u))^{2} du = 0.$
- It follows that W(t) W(s) is the L^2 -limit

$$\lim_{n \to \infty} \int_{s}^{t} H_{n}(u) dB(u) = \lim \sum_{j=1}^{n-1} \operatorname{sgn} \left(B(t_{j}^{(n)}) \right) \left(B(t_{j+1}^{(n)}) - B(t_{j}^{(n)}) \right).$$

< (17) > < (17)

Proof.

• Each term in the limit is a mean zero Gaussian of variance t - s, so the limit is also.

- 4 同 ト 4 ヨ ト 4 ヨ

Lévy's theorem

Proof of Lévy's theorem.

• By Tanaka's formula,

$$|B(t)| = \int_0^t \operatorname{sgn}(B(s)) dB(s) + L^0(t) = W(t) + L^0(t).$$

- Let $ilde{W}(t) = -W(t)$ and $ilde{M}(t)$ be the associated maximal process.
- We claim that $\tilde{M}(t) = L^0(t)$, which suffices, since then

$$\{(|B(t)|, L^0(t)): t \ge 0\}, \qquad \{(\tilde{M}(t) - \tilde{W}(t), \tilde{M}(t)): t \ge 0\}.$$

agree pointwise.

• To check the equality, first note that $\tilde{W}(s) = L^0(s) - |B(s)| \leq L^0(s)$, so that $\tilde{M}(t) \leq L^0(t)$. On the other hand, $L^0(t)$ increases only on $\{t : B(t) = 0\}$ where we have $L^0(t) = \tilde{W}(t) \leq \tilde{M}(t)$.

Definition

Let $U \subset \mathbb{R}^d$ be either open and bounded, or $U = \mathbb{R}^d$. A twice differentiable function $u : (0, \infty) \times U \rightarrow [0, \infty)$ is said to solve the *heat equation with heat dissipation rate* $V : U \rightarrow \mathbb{R}$ and initial condition $f : U \rightarrow [0, \infty)$ on U if we have

•
$$\lim_{x\to x_0, t\downarrow 0} u(t,x) = f(x_0)$$
, whenever $x_0 \in U$

•
$$\lim_{x\to x_0, t\to t_0} u(t,x) = 0$$
, whenever $x_0 \in \partial U$

•
$$\partial_t u(t,x) = \frac{1}{2} \Delta_x u(t,x) + V(x)u(t,x)$$
 on $(0,\infty) \times U$.

Here Δ_x is the Laplacian, acting on the space variables *x*.

This formula describes the temperature u(t,x) at time t and location x, subject to heating rate V and with 0 boundary condition.

イロト イポト イヨト イヨト

Theorem

Suppose $V : \mathbb{R}^d \to \mathbb{R}$ is bounded. Then $u : [0, \infty) \times \mathbb{R}^d \to \mathbb{R}$ defined by

$$u(t,x) = \mathsf{E}_{x}\left\{\exp\left(\int_{0}^{t} V(B(r))dr\right)\right\},\,$$

solves the heat equation on \mathbb{R}^d with dissipative rate V and initial condition one.

Proof.

• Let
$$a_0(x,t) := 1$$
 and, for $n \ge 1$,

$$a_{n}(x,t) := \frac{1}{n!} \mathsf{E}_{x} \left[\int_{0}^{t} \cdots \int_{0}^{t} V(B(t_{1})) \cdots V(B(t_{n})) dt_{1} \dots dt_{n} \right]$$

= $\mathsf{E}_{x} \left[\int_{0}^{t} dt_{1} \int_{t_{1}}^{t} dt_{2} \cdots \int_{t_{n-1}}^{t} dt_{n} V(B(t_{1})) \cdots V(B(t_{n})) \right]$
= $\int dx_{1} \cdots \int dx_{n} \int_{0}^{t} dt_{1} \cdots \int_{t_{n-1}}^{t} dt_{n} \prod_{i=1}^{n} V(x_{i}) \prod_{i=1}^{n} p(t_{i} - t_{i-1}, x_{i-1}, x_{i})$
with $x_{0} = x$ and $t_{0} = 0$.

▲□▶ ▲圖▶ ▲温▶ ▲温≯

Proof.

• Using
$$\frac{1}{2}\Delta_x p(t_1, x, x_1) = \partial_{t_1} p(t_1, x, x_1)$$
 and integrating by parts

$$\begin{split} \frac{1}{2}\Delta_{x}a_{n}(x,t) &= \int dx_{1}V(x_{1})\int_{0}^{t}dt_{1}\partial_{t_{1}}p(t_{1},x,x_{1})a_{n-1}(x_{1},t-t_{1})\\ &= -\int dx_{1}V(x_{1})\int_{0}^{t}dt_{1}p(t_{1},x,x_{1})\partial_{t_{1}}a_{n-1}(x,t-t_{1})\\ &- V(x)a_{n-1}(x,t)\\ &= \partial_{t}a_{n}(x,t) - V(x)a_{n-1}(x,t). \end{split}$$

• Adding terms justifies solution of the differential equation.

D -					
80	n.	н.	\sim	ισn	
	~		~~	_	
				•	

Theorem

If u is a bounded, twice continuously differentiable solution of the heat equation on the domain U, with zero dissipation rate and continuous initial condition g, then

$$u(t,x) = \mathsf{E}_{x}\left[g(B(t))\mathbf{1}(t < \tau)\right],$$

where τ is the first exit time from the domain U.

Proof.

- Let $K \subset U$ be compact and let σ be the first exit time from K.
- Fixing t > 0 and applying Itô's formula with f(x, y) = u(t y, x) and $\zeta(s) = s$ gives, for s < t

$$u(t-s\wedge\sigma,B(s\wedge\sigma))-u(t,B(0))=\int_0^{s\wedge\sigma}\nabla_x u(t-v,B(v))\cdot dB(v)$$
$$-\int_0^{s\wedge\sigma}\partial_t u(t-v,B(v))dv+\frac{1}{2}\int_0^{s\wedge\sigma}\Delta_x u(t-v,B(v))dv.$$

• Since *u* solves the heat equation, the latter two terms cancel. Take expectations, which eliminates the remaining stochastic integral, leaving

$$\mathsf{E}_{\mathsf{x}}\left[u(t-\mathsf{s}\wedge\sigma,B(\mathsf{s}\wedge\sigma))\right]=\mathsf{E}_{\mathsf{x}}\left[u(t,B(0))\right]=u(t,\mathsf{x}).$$

Proof.

- Let $K \subset U$ be compact and let σ be the first exit time from K.
- Fixing t > 0 and applying Itô's formula with f(x, y) = u(t y, x) and $\zeta(s) = s$ gives, for s < t

$$u(t-s\wedge\sigma,B(s\wedge\sigma))-u(t,B(0))=\int_0^{s\wedge\sigma}\nabla_x u(t-v,B(v))\cdot dB(v)$$
$$-\int_0^{s\wedge\sigma}\partial_t u(t-v,B(v))dv+\frac{1}{2}\int_0^{s\wedge\sigma}\Delta_x u(t-v,B(v))dv.$$

• Since *u* solves the heat equation, the latter two terms cancel. Take expectations, which eliminates the remaining stochastic integral, leaving

$$\mathsf{E}_{\mathsf{x}}\left[u(t-\mathsf{s}\wedge\sigma,B(\mathsf{s}\wedge\sigma))\right]=\mathsf{E}_{\mathsf{x}}\left[u(t,B(0))\right]=u(t,\mathsf{x}).$$

Proof.

• Exhaust U by compact sets, so that $\sigma \uparrow \tau$, which gives

$$\mathsf{E}_{\mathsf{x}}[u(t-s,B(s))\mathbf{1}(s<\tau)]=u(t,x).$$

Now let $t \uparrow s$.

D					
RO	h I	=	\sim	10	h
00			υı	- 5	

► < ∃ ►</p>

Let $\Phi(x)$ be the distribution function of a standard normal distribution.

Theorem Let 0 < x < a. Then $\operatorname{Prob}_{x}(B(s) \in (0, a), \forall 0 \leq s \leq t)$ $= \sum_{k=-\infty}^{\infty} \left(\Phi\left(\frac{2ka + a - x}{\sqrt{t}}\right) - \Phi\left(\frac{2ka - x}{\sqrt{t}}\right) - \Phi\left(\frac{2ka + x}{\sqrt{t}}\right) - \Phi\left(\frac{2ka + x}{\sqrt{t}}\right) + \Phi\left(\frac{2ka + x}{\sqrt{t}}\right) \right).$

イロト イポト イヨト イヨト 二日

Proof.

- Letting U = (0, a) and g = 1, it suffices to show that the series solves the heat equation.
- The series vanishes at 0 and a, hence satisfies the boundary condition.
- Since $(2k_2 + a x) = 1$ (2k_2 +

$$\partial_t \Phi\left(\frac{2ka+a-x}{\sqrt{t}}\right) = \frac{1}{2}\partial_{xx} \Phi\left(\frac{2ka+a-x}{\sqrt{t}}\right)$$

the sum satisfies the heat equation.

 To check the initial condition, let t ↓ 0. All but k = 0 terms vanish. The k = 0 term tends to 1.

P ₂	ь I	ш.	~.	. ~	h
Ъυ	יט		υι	ıg	

Theorem

Let $d \ge 3$ and $V : \mathbb{R}^d \rightarrow [0, \infty)$ be bounded. Define

$$h(x) := \mathsf{E}_{x}\left[\exp\left(-\int_{0}^{\infty} V(B(t))dt\right)\right]$$

Then $h : \mathbb{R}^d \to [0, \infty)$ satisfies the equation

$$h(x) = 1 - \int G(x, y) V(y) h(y) dy$$

for all $x \in \mathbb{R}^d$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Proof.

Define

$$R_{\lambda}^{V}f(x) := \int_{0}^{\infty} e^{-\lambda t} \mathsf{E}_{x}[f(B(t))e^{-\int_{0}^{t} V(B(s))ds}]dt.$$

Calculate

$$\begin{aligned} R_{\lambda}^{0}f(x) - R_{\lambda}^{V}f(x) &= \mathsf{E}_{x}\int_{0}^{\infty} e^{-\lambda t - \int_{0}^{t} V(B(s))ds} f(B(t))(e^{\int_{0}^{t} V(B(s))ds} - 1)dt \\ &= \mathsf{E}_{x}\int_{0}^{\infty} e^{-\lambda t - \int_{0}^{t} V(B(s))ds} f(B(t)) \int_{0}^{t} V(B(s))e^{\int_{0}^{s} V(B(r))dr} dsdt \\ &= \mathsf{E}_{x}\int_{0}^{\infty} e^{-\lambda s} V(B(s)) \int_{0}^{\infty} e^{-\lambda t - \int_{0}^{t} V(B(s+u))du} f(B(s+t))dtds \\ &= \mathsf{E}_{x}\int_{0}^{\infty} e^{-\lambda s} V(B(s))R_{\lambda}^{V}f(B(s))ds = R_{\lambda}^{0}(VR_{\lambda}^{V}f)(x). \end{aligned}$$

Proof.

We have

$$h(x) = \lim_{\lambda \downarrow 0} \lambda R_{\lambda}^{V} 1(x).$$

Since $R^0_{\lambda} 1 = \frac{1}{\lambda}$, we obtain

$$1 - \lambda R_{\lambda}^{V} 1 = \lambda R_{\lambda}^{0} (V R_{\lambda}^{V} 1).$$

Letting $\lambda \downarrow 0$,

$$1 - h(x) = R_0^0(Vh)(x) = \int G(x, y) V(y) h(y) dy.$$

<ロ> (日) (日) (日) (日) (日)

Theorem

For a standard Brownian motion $\{B(t) : t \ge 0\}$ in dimension 3, let $T = \int_0^\infty \mathbf{1}(|B(t)| < 1)dt$ be the total occupation time of the unit ball. Then

$$\mathsf{E}\left[e^{-\lambda T}\right] = \mathsf{sech}(\sqrt{2\lambda}).$$

- 4 同 ト - 4 三 ト - 4 三

Occupation time

Proof.

- Let $V(x) = \lambda \mathbf{1}_{B(0,1)}$ and define $h(x) = \mathsf{E}_x \left[e^{-\lambda T} \right]$.
- By the previous theorem

$$h(x) = 1 - \lambda \int_{B(0,1)} G(x,y)h(y)dy.$$

Using the classical formula for the Green's function,

$$1-h(x)=\frac{\lambda}{2\pi|x|}\int_{B(0,|x|)}h(y)dy+\lambda\int_{B(0,1)\setminus B(0,|x|)}\frac{h(y)}{2\pi|y|}dy.$$

(日) (同) (三) (三)

Occupation time

Proof.

• Set
$$u(r) = rh(x)$$
 for $|x| = r$ to obtain

$$r - u(r) = 2\lambda \int_0^r su(s)ds + 2\lambda r \int_r^1 u(s)ds$$

so *u* solves the ODE $u'' = 2\lambda u$.

• Inserting the initial condition one can solve to find $h(0) = \operatorname{sech}(\sqrt{2\lambda})$.

< ロ > < 同 > < 三 > < 三