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Stochastic integrals

This lecture follows Mörters and Peres, Chapter 7.
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Downcrossings

Definition

Given a ă b define a sequence of stopping times τ0 “ 0 and, for j ě 1,

σj “ inftt ą τj´1 : Bptq “ bu, τj “ inftt ą σj : Bptq “ au.

We call the random function

Bpjq : r0, τj ´ σj s Ñ R, Bpjqpsq “ Bpσj ` sq

the jth downcrossing of ra, bs. For every t ą 0, denote

Dpa, b, tq “ maxtj P N : τj ď tu

the number of downcrossings of the interval ra, bs before time t.

Bob Hough Math 639: Lecture 23 May 9, 2017 3 / 66



Local time at 0

Theorem

There exists a stochastic process tLptq : t ě 0u called the local time at
zero such that for all sequences an Ò 0 and bn Ó 0 with an ă bn, a.s.

lim
nÑ8

2pbn ´ anqDpan, bn, tq “ Lptq @ t ą 0.

Moreover, this process is almost surely locally α-Hölder continuous for any
α ă 1{2.

Bob Hough Math 639: Lecture 23 May 9, 2017 4 / 66



Lévy’s theorem

Theorem (Lévy)

The local time at zero tLptq : t ě 0u and the maximum process
tMptq : t ě 0u of a standard Brownian motion have the same distribution.
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Occupation measure

Theorem

For all sequences an Ò 0 and bn Ó 0 with an ă bn, a.s.

lim
nÑ8

1

bn ´ an

ż t

0
1pan ď Bpsq ď bnqds “ Lptq, @t ą 0.
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Occupation measure

Theorem

For linear Brownian motion tBptq : t ě 0u, almost surely, for any bounded
measurable g : RÑ R and t ą 0,

ż

gpaqdµtpaq “

ż t

0
gpBpsqqds “

ż 8

´8

gpaqLaptqda.
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Trotter’s theorem

Given a P R and integer n, let I pa, nq “ rjpaq2´n, pjpaq ` 1q2´nq be the
unique dyadic interval containing a. For a standard Brownian motion
tBptq : t ě 0u denote by Dpnqpa, tq the number of downcrossings of the
interval I pa, nq before time t.

Theorem (Trotter’s theorem)

Let tBptq : t ě 0u be a standard linear Brownian motion and let Dpnqpa, tq
be the number of downcrossings before time t of the nth stage dyadic
interval containing a. Then, a.s.

Laptq “ lim
nÑ8

2´n`1Dpnqpa, tq,

exists for all a P R and t ě 0. Moreover, for every γ ă 1
2 , the random field

tLaptq : a P R, t ě 0u is a.s. locally γ-Hölder continuous.
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Ray-Knight Theorem

Theorem (Ray-Knight Theorem)

Suppose a ą 0 and tBptq : 0 ď t ď T u is a linear Brownian motion started
at a and stopped at time T “ inftt ě 0 : Bptq “ 0u, when it reaches level
zero for the first time. Then

tLxpT q : 0 ď x ď au
d
“ t|W pxq|2 : 0 ď x ď au,

where tW pxq : x ě 0u is a standard planar Brownian motion.
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Stochastic integrals

Since the Brownian motion a.s. has unbounded variation it is not possible
to define integrals

şt
0 f psqdBpsq by Lebesgue-Stieltjes integration. Thus

stochastic integration is needed.
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Stochastic integrals

Definition

Assume the filtration pF ptq : t ě 0q is complete in the sense that it
contains all null sets of A . A process tX pt, ωq : t ě 0, ω P Ωu is called
progressively measurable if for each t ě 0 the mapping X : r0, ts ˆ Ω Ñ R
is measurable w.r.t. the σ-algebra Bpr0, tsq bF ptq.
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Stochastic integrals

Lemma

Any process tX ptq : t ě 0u which is adapted and either right or left
continuous is also progressively measurable.
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Stochastic integrals

Proof.

Assume that tX ptq : t ě 0u is right-continuous. Let t ą 0 and, for a
positive integer n and 0 ď s ď t set Xnp0, ωq “ X p0, ωq

Xnps, ωq “ X

ˆ

pk ` 1qt

2n
, ω

˙

, kt2´n ă s ď pk ` 1qt2´n.

ps, ωq ÞÑ Xnps, ωq is Bpr0, tsqbF ptq measurable. By right-continuity
we have limnÒ8 Xnps, ωq “ X ps, ωq for all s P r0, ts and ω P Ω.

Thus the limit map ps, ωq ÞÑ X ps, ωq is also Bpr0, tsq bF ptq.

The claim in case of left continuity is similar.
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Stochastic integrals

A progressively measurable step function tHpt, ωq : t ě 0, ω P Ωu is a
function of the form

Hpt, ωq “
k
ÿ

i“1

Ai pωq1pti ,ti`1s
, 0 ď t1 ď ... ď tk`1

and F pti q-measurable Ai . For such functions, define

ż 8

0
HpsqdBpsq :“

k
ÿ

i“1

Ai pBpti`1q ´ Bpti qq.
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Stochastic integrals

For a progressively measurable process H, define

}H}22 :“ E

ż 8

0
Hpsq2ds.

Lemma

For every progressively measurable process tHps, ωq : s ě 0, ω P Ωu
satisfying E

ş8

0 Hpsq2ds ă 8 there exists a sequence tHn : n P Nu of
progressively measurable step processes such that limnÑ8 }Hn ´ H}2 “ 0.
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Stochastic integrals

Proof.

First truncate Hps, ωq by setting Hnps, ωq “ 0 for s ą n,
Hnps, ωq “ Hps, ωq for s ď n.

Next replace Hnps, ωq “ Hps, ωq ^ n.

Next replace Hnps, ωq “ n
şs
s´1{n Hpt, ωqdt, which makes H

continuous.

Finally set Hnps, ωq “ Hpj{n, ωq for j{n ď s ă pj ` 1q{n.
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Stochastic integrals

Lemma

Let H be a progressively measurable step process and E
ş8

0 Hpsq2ds ă 8,
then

E

«

ˆ
ż 8

0
HpsqdBpsq

˙2
ff

“ E

ż 8

0
Hpsq2ds.
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Stochastic integrals

Proof.

Write H “
řk

i“1 Ai1pai ,ai`1s
and expand the square

E

«

ˆ
ż 8

0
HpsqdBpsq

˙2
ff

“ E

«

k
ÿ

i ,j“1

AiAjpBpai`1q ´ Bpai qqpBpaj`1q ´ Bpajqq

ff

“ 2
k
ÿ

i“1

k
ÿ

j“i`1

E
”

AiAjpBpai`1q ´ Bpai qqE
”

Bpaj`1q ´ Bpajq
ˇ

ˇ

ˇ
F pajq

ıı

`

k
ÿ

i“1

E
“

A2
i pBpai`1q ´ Bpai qq

2
‰
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Stochastic integrals

Proof.

Only the diagonal terms survive, leaving

k
ÿ

i“1

E
“

A2
i

‰

pai`1 ´ ai q “ E

ż 8

0
Hpsq2ds.
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Stochastic integrals

Theorem

Suppose tHn : n P Nu is a sequence of progressively measurable step
processes and H a progressively measurable process such that

lim
nÑ8

E

ż 8

0
pHnpsq ´ Hpsqq2ds “ 0,

then

lim
nÑ8

ż 8

0
HnpsqdBpsq “:

ż 8

0
HpsqdBpsq

exists as a limit in the L2-sense and is independent of the choice of
tHn : n P Nu. Moreover, we have

E

«

ˆ
ż 8

0
HpsqdBpsq

˙2
ff

“ E

ż 8

0
Hpsq2ds.
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Stochastic integrals

Proof.

By the previous lemma, the sequence of step functions have integrals that
are Cauchy in L2, hence converge there. The last statement is the
convergence of L2 norms.
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Stochastic integrals

If
8
ÿ

n“1

E

ż 8

0
pHnpsq ´ Hpsqq2ds ă 8,

then a.s.
8
ÿ

n“1

„
ż 8

0
HnpsqdBpsq ´

ż 8

0
HpsqdBpsq

2

ă 8.

which implies limnÑ8

ş8

0 HnpsqdBpsq “
ş8

0 HpsqdBpsq a.s.
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Stochastic integrals

Definition

Suppose tHps, ωq : s ě 0, ω P Ωu is progressively measurable with
E
ş8

0 Hps, ωq2ds ă 8. Define the progressively measurable process
tHtps, ωq : s ě 0, ω P Ωu by

Htps, ωq “ Hps, ωq1ps ď tq.

The stochastic integral up to t is defined as,

ż t

0
HpsqdBpsq :“

ż 8

0
HtpsqdBpsq.
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Stochastic integrals

Definition

We say that a stochastic process tX ptq : t ě 0u is a modification of a
process tY ptq : t ě 0u if, for every t ě 0, we have

ProbpX ptq “ Y ptqq “ 1.
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Stochastic integrals

Theorem

Suppose the process tHps, ωq : s ě 0, ω P Ωu is progressively measurable
with

E

ż t

0
Hps, ωq2ds ă 8, t ě 0.

Then there exists an almost surely continuous modification of
t
şt
0 HpsqdBpsq : t ě 0u. Moreover, this process is a martingale and hence

E

ż t

0
HpsqdBpsq “ 0, t ě 0.
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Stochastic integrals

Proof.

Let t0 be a large integer and let Hn be a sequence of step processes
with }Hn ´ Ht0}2 Ñ 0. Then

E

«

ˆ
ż 8

0
pHnpsq ´ Ht0psqqdBpsq

˙2
ff

Ñ 0.

Since
şs
0 HnpuqdBpuq is F psq-measurable and

şt
s HnpuqdBpuq is

independent of F psq,

"
ż t

0
HnpuqdBpuq : 0 ď t ď t0

*

is a martingale.
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Stochastic integrals

Proof.

Define

X ptq “ E

„
ż t0

0
HpsqdBpsq

ˇ

ˇ

ˇ
F ptq



,

so that tX ptq : 0 ď t ď t0u is also a martingale.

By Doob’s maximal inequality,

E

«

sup
0ďtďt0

ˆ
ż t

0
HnpsqdBpsq ´ X ptq

˙2
ff

ď 4 E

«

ˆ
ż t0

0
pHnpsq ´ HpsqqdBpsq

˙2
ff

.

This exhibits X ptq as the uniform limit of continuous processes, as
wanted.
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Stochastic integrals

Theorem

Suppose f : RÑ R is continuous, t ą 0 and 0 “ t
pnq
1 ă ... ă t

pnq
n “ t are

partitions of the interval r0, ts, such that the mesh converges to 0. Then,
in probability,

n´1
ÿ

j“1

f pBpt
pnq
j qq

´

Bpt
pnq
j`1q ´ Bpt

pnq
j q

¯2
Ñ

ż t

0
f pBpsqqds.

Bob Hough Math 639: Lecture 23 May 9, 2017 28 / 66



Stochastic integrals

Proof.

Let T be the first exit time from a compact interval. It suffices to
prove the statement for Brownian motion stopped at T , as the
interval may be chosen to make ProbpT ă tq arbitarily small.

By continuity of f , a.s.

lim
nÑ8

n´1
ÿ

j“1

f pBpt
pnq
j ^ T qq

´

t
pnq
j`1 ^ T ´ t

pnq
j ^ T

¯

“

ż t^T

0
f pBpsqqds.
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Stochastic integrals

Proof.

Since tBptq2 ´ t : t ě 0u is a martingale, for all r ď s,

E
“

pBpsq ´ Bprqq2 ´ ps ´ rq|F prq
‰

“ 0,

E

„ˆn´1
ÿ

j“1

f pBptj ^ T qq

`

pBptj`1 ^ T q ´ Bptj ^ T qq2 ´ ptj`1 ^ T ´ tj ^ T q
˘

˙2

“

n´1
ÿ

j“1

E

„

f pBptj ^ T qq2

`

pBptj`1 ^ T q ´ Bptj ^ T qq2 ´ ptj`1 ^ T ´ tj ^ T q
˘2
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Stochastic integrals

Proof.

Bound f in sup norm by a constant and bound the remaining part of the
sum by

n´1
ÿ

j“1

E
“

pBptj`1 ^ T q ´ Bptj ^ T qq4
‰

`

n´1
ÿ

j“1

E
“

ptj`1 ^ T ´ tj ^ T q2
‰

,

which, by Brownian scaling, is bounded by a constant times

n´1
ÿ

j“1

ptj`1 ´ tjq
2 ď t∆pnq

which tends to zero as the mesh does.
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Itô’s formula I

Theorem

Let f : RÑ R be twice continuously differentiable such that
E
şt
0 f 1pBpsqq2ds ă 8 for some t ą 0. Then, almost surely, for all

0 ď s ď t,

f pBpsqq ´ f pBp0qq “

ż s

0
f 1pBpuqqdBpuq `

1

2

ż s

0
f 2pBpuqqdu.
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Itô’s formula I

Proof.

Denote the modulus of continuity of f 2 on r´M,Ms by

ωpδ,Mq :“ sup
x ,yPr´M,Ms
|x´y |ăδ

|f 2pxq ´ f 2pyq|.

By Taylor’s formula, for any x , y P r´M,Ms with |x ´ y | ă δ,

ˇ

ˇ

ˇ

ˇ

f pyq ´ f pxq ´ f 1pxqpy ´ xq ´
1

2
f 2pxqpy ´ xq2

ˇ

ˇ

ˇ

ˇ

ď ωpδ,Mqpy ´ xq2.
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Itô’s formula I

Proof.

For any sequence 0 “ t1 ă ... ă tn “ t with
δB :“ max1ďiďn´1 |Bpti`1q ´ Bpti q| and MB “ max0ďsďt |Bpsq|,

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

i“1

pf pBpti`1qq ´ f pBpti qqq ´
n´1
ÿ

i“1

f 1pBpti qqpBpti`1q ´ Bpti qq

´

n´1
ÿ

i“1

1

2
f 2pBpti qqpBpti`1q ´ Bpti qq

2

ˇ

ˇ

ˇ

ˇ

ˇ

ď ωpδB ,MBq

n´1
ÿ

i“1

pBpti`1q ´ Bpti qq
2.
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Itô’s formula I

Proof.

Choosing a sequence of partitions with mesh size going to 0, the sums
converge to integrals on the left, and the sum on the right converges
to t a.s., while ω converges to 0.

This gives the formula at rational t, and everywhere by continuity.
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Itô’s formula II

Theorem

Suppose tζpsq : s ě 0u is an increasing, continuous adapted stochastic
process. Let f : Rˆ RÑ R be twice continuously differentiable in the
x-coordinate, and once continuously differentiable in the y-coordinate.
Assume that

E

ż t

0
rBx f pBpsq, ζpsqqs2 ds ă 8,

for some t ą 0. Then, a.s. for all 0 ď s ď t,

f pBpsq, ζpsqq ´ f pBp0q, ζp0qq “

ż s

0
Bx f pBpuq, ζpuqqdBpuq

`

ż s

0
By f pBpuq, ζpuqqdζpuq `

1

2

ż s

0
Bxx f pBpuq, ζpuqqdu.

There is also a multi-dimensional version, see MP pp. 197–200.
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Tanaka’s formula

Theorem (Tanaka’s formula)

Let tBptq : t ě 0u be linear Brownian motion. Then, for every a P R,
almost surely, for all t ą 0,

|Bptq ´ a| ´ |Bp0q ´ a| “

ż t

0
sgnpBpsq ´ aqdBpsq ` Laptq.
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Tanaka’s formula

Corollary

Suppose that f : RÑ R is twice differentiable such that f 1 has compact
support, but do not assume that f 2 is continuous. Then

f pBptqq ´ f pBp0qq “

ż t

0
f 1pBpsqqdBpsq `

1

2

ż t

0
f 2pBpsqqds.
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Tanaka’s formula

Proof.

Write

f 1pxq “
1

2

ż

sgnpx ´ aqf 2paqda` c, f pxq “
1

2

ż

|x ´ a|f 2paqda` cx ` b.

Multiply Tanaka’s formula by 1
2 f 2paqda and integrate to obtain

f pBptqq ´ f pBp0qq “

ż t

0
f 1pBpsqqdBpsq `

1

2

ż

Laptqf 2paqda.
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Tanaka’s formula

Define

L̃aptq :“ |Bptq ´ a| ´ |Bp0q ´ a| ´

ż t

0
sgnpBpsq ´ aqdBpsq.

Lemma

For every t ě 0 and a P R,

L̃aptq “ lim
εÓ0

1

ε

ż t

0
1pa,a`εqpBpsqqds

in probability.
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Tanaka’s formula

Proof.

Using the strong Markov property, reduce to the case a “ 0.

Note that, for any δ ą 0 we can find smooth functions
g , h : RÑ r0, 1s with compact support such that g ď 1p0,1q ď h and
ş

g “ 1´ δ,
ş

h “ 1` δ.

Let f : RÑ r0, 1s smooth, compactly supported in r´1, 2s,
ş

f “ 1,
and let

fεpxq “ ε´1
ż

|x ´ a|f pε´1aqda “

ż

|x ´ εa|f paqda.

f 1ε pxq “

ż

sgnpx ´ εaqf paqda

f 2ε pxq “ 2ε´1f pε´1xq.
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Tanaka’s formula

Proof.

Itô’s formula gives

fεpBptqq ´ fεpBp0qq ´

ż t

0
f 1ε pBpsqqdBpsq “ ε´1

ż t

0
f pε´1Bpsqqds.

Since fεpxq Ñ |x | uniformly, we have

fεpBptqq ´ fεpBp0qq Ñ |Bptq| ´ |Bp0q|

in probability as εÑ 0.
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Tanaka’s formula

Proof.

By the isometry property,

E

«

ˆ
ż t

0
sgnpBpsqqdBpsq ´

ż t

0
f 1ε pBpsqqdBpsq

˙2
ff

“ E

ż t

0
psgnpBpsqq ´ f 1ε pBpsqqq

2ds.

This converges to 0 as ε Ó 0 by bounded convergence.

Meanwhile ε´1
şt
0 f pε´1Bpsqqds Ñ L̃0ptq.
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Tanaka’s formula

Proof of Tanaka’s formula.

Fix t ě 0 and recall that a.s. the occupation measure µt given by
µtpAq “

şt
0 1ApBpsqqds has a continuous density given by

tLaptq : a P Ru.
Thus, for every a P R,

Laptq “ lim
εÓ0

µtpa, a` εq

ε
“ lim

εÓ0

1

ε

ż t

0
1pa,a`εqpBpsqqds.

By the previous lemma, for every a P R and t ě 0, Laptq “ L̃aptq a.s.

Since, for any a P R, tLaptq : t ě 0u and tL̃aptq : t ě 0u are almost
surely continuous, so that they agree.
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Lévy’s theorem

Theorem (Lévy)

The processes

tp|Bptq|, L0ptqq : t ě 0u, tpMptq ´ Bptq,Mptqq : t ě 0u

have the same distribution.
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Lévy’s theorem

Lemma

For every a P R, the process tW ptq : t ě 0u given by

W ptq “

ż t

0
sgnpBpsq ´ aqdBpsq.
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Lévy’s theorem

Proof.

Suppose without loss that a ă 0.

Let T “ inftt ą 0 : Bptq “ au so that W ptq “ Bptq for all t ď T .

tB̃ptq : t ě 0u defined by B̃ptq “ Bpt ` T q ´ a is independent of
tW ptq : 0 ď t ď T u. We have

W pt ` T q ´W pT q “

ż t

0
sgnpB̃psqqdB̃psq,

so now assume a “ 0.
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Lévy’s theorem

Proof.

Choose s “ t
pnq
1 ă ¨ ¨ ¨ ă t

pnq
n “ t with mesh ∆pnq Ó 0 and

approximate the progressively measurable process sgnpBpuqq by the
step processes

Hnpuq “ sgnpBpt
pnq
j qq, t

pnq
j ă u ď t

pnq
j`1.

Since the zero set of Brownian motion is a closed set of measure 0,
lim E

şt
spHnpuq ´ Hpuqq2du “ 0.

It follows that W ptq ´W psq is the L2-limit

lim
nÑ8

ż t

s
HnpuqdBpuq “ lim

n´1
ÿ

j“1

sgn
´

Bpt
pnq
j q

¯´

Bpt
pnq
j`1q ´ Bpt

pnq
j q

¯

.
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Lévy’s theorem

Proof.

Each term in the limit is a mean zero Gaussian of variance t ´ s, so
the limit is also.
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Lévy’s theorem

Proof of Lévy’s theorem.

By Tanaka’s formula,

|Bptq| “

ż t

0
sgnpBpsqqdBpsq ` L0ptq “ W ptq ` L0ptq.

Let W̃ ptq “ ´W ptq and M̃ptq be the associated maximal process.

We claim that M̃ptq “ L0ptq, which suffices, since then

tp|Bptq|, L0ptqq : t ě 0u, tpM̃ptq ´ W̃ ptq, M̃ptqq : t ě 0u.

agree pointwise.

To check the equality, first note that W̃ psq “ L0psq ´ |Bpsq| ď L0psq,
so that M̃ptq ď L0ptq. On the other hand, L0ptq increases only on
tt : Bptq “ 0u where we have L0ptq “ W̃ ptq ď M̃ptq.
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Heat equation

Definition

Let U Ă Rd be either open and bounded, or U “ Rd . A twice
differentiable function u : p0,8q ˆ U Ñ r0,8q is said to solve the heat
equation with heat dissipation rate V : U Ñ R and initial condition
f : U Ñ r0,8q on U if we have

limxÑx0,tÓ0 upt, xq “ f px0q, whenever x0 P U

limxÑx0,tÑt0 upt, xq “ 0, whenever x0 P BU

Btupt, xq “
1
2∆xupt, xq ` V pxqupt, xq on p0,8q ˆ U.

Here ∆x is the Laplacian, acting on the space variables x .

This formula describes the temperature upt, xq at time t and location x ,
subject to heating rate V and with 0 boundary condition.
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Heat equation

Theorem

Suppose V : Rd Ñ R is bounded. Then u : r0,8q ˆ Rd Ñ R defined by

upt, xq “ Ex

"

exp

ˆ
ż t

0
V pBprqqdr

˙*

,

solves the heat equation on Rd with dissipative rate V and initial
condition one.
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Heat equation

Proof.

We check this by Taylor expansion.

Let a0px , tq :“ 1 and, for n ě 1,

anpx , tq :“
1

n!
Ex

„
ż t

0
¨ ¨ ¨

ż t

0
V pBpt1qq ¨ ¨ ¨V pBptnqqdt1...dtn



“ Ex

«

ż t

0
dt1

ż t

t1

dt2 ¨ ¨ ¨

ż t

tn´1

dtnV pBpt1qq ¨ ¨ ¨V pBptnqq

ff

“

ż

dx1 ¨ ¨ ¨

ż

dxn

ż t

0
dt1 ¨ ¨ ¨

ż t

tn´1

dtn

n
ź

i“1

V pxi q
n
ź

i“1

ppti ´ ti´1, xi´1, xi q

with x0 “ x and t0 “ 0.
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Heat equation

Proof.

Using 1
2∆xppt1, x , x1q “ Bt1ppt1, x , x1q and integrating by parts

1

2
∆xanpx , tq “

ż

dx1V px1q

ż t

0
dt1Bt1ppt1, x , x1qan´1px1, t ´ t1q

“ ´

ż

dx1V px1q

ż t

0
dt1ppt1, x , x1qBt1an´1px , t ´ t1q

´ V pxqan´1px , tq

“ Btanpx , tq ´ V pxqan´1px , tq.

Adding terms justifies solution of the differential equation.
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Heat equation

Theorem

If u is a bounded, twice continuously differentiable solution of the heat
equation on the domain U, with zero dissipation rate and continuous
initial condition g, then

upt, xq “ Ex rgpBptqq1pt ă τqs ,

where τ is the first exit time from the domain U.
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Heat equation

Proof.

Let K Ă U be compact and let σ be the first exit time from K .

Fixing t ą 0 and applying Itô’s formula with f px , yq “ upt ´ y , xq and
ζpsq “ s gives, for s ă t

upt ´ s ^ σ,Bps ^ σqq ´ upt,Bp0qq “

ż s^σ

0
∇xupt ´ v ,Bpvqq ¨ dBpvq

´

ż s^σ

0
Btupt ´ v ,Bpvqqdv `

1

2

ż s^σ

0
∆xupt ´ v ,Bpvqqdv .

Since u solves the heat equation, the latter two terms cancel. Take
expectations, which eliminates the remaining stochastic integral,
leaving

Ex rupt ´ s ^ σ,Bps ^ σqqs “ Ex rupt,Bp0qqs “ upt, xq.
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Heat equation

Proof.

Exhaust U by compact sets, so that σ Ò τ , which gives

Ex rupt ´ s,Bpsqq1ps ă τqs “ upt, xq.

Now let t Ò s.
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Heat equation

Let Φpxq be the distribution function of a standard normal distribution.

Theorem

Let 0 ă x ă a. Then

ProbxpBpsq P p0, aq, @ 0 ď s ď tq

“

8
ÿ

k“´8

˜

Φ

ˆ

2ka` a´ x
?

t

˙

´ Φ

ˆ

2ka´ x
?

t

˙

´ Φ

ˆ

2ka` a` x
?

t

˙

` Φ

ˆ

2ka` x
?

t

˙

¸

.
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Heat equation

Proof.

Letting U “ p0, aq and g “ 1, it suffices to show that the series solves
the heat equation.

The series vanishes at 0 and a, hence satisfies the boundary condition.

Since

BtΦ

ˆ

2ka` a´ x
?

t

˙

“
1

2
BxxΦ

ˆ

2ka` a´ x
?

t

˙

the sum satisfies the heat equation.

To check the initial condition, let t Ó 0. All but k “ 0 terms vanish.
The k “ 0 term tends to 1.
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Heat equation

Theorem

Let d ě 3 and V : Rd Ñ r0,8q be bounded. Define

hpxq :“ Ex

„

exp

ˆ

´

ż 8

0
V pBptqqdt

˙

.

Then h : Rd Ñ r0,8q satisfies the equation

hpxq “ 1´

ż

G px , yqV pyqhpyqdy

for all x P Rd .
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Heat equation

Proof.

Define

RV
λ f pxq :“

ż 8

0
e´λt Ex rf pBptqqe

´
şt
0 V pBpsqqdssdt.

Calculate

R0
λf pxq ´ RV

λ f pxq “ Ex

ż 8

0
e´λt´

şt
0 V pBpsqqds f pBptqqpe

şt
0 V pBpsqqds ´ 1qdt

“ Ex

ż 8

0
e´λt´

şt
0 V pBpsqqds f pBptqq

ż t

0
V pBpsqqe

şs
0 V pBprqqdrdsdt

“ Ex

ż 8

0
e´λsV pBpsqq

ż 8

0
e´λt´

şt
0 V pBps`uqqduf pBps ` tqqdtds

“ Ex

ż 8

0
e´λsV pBpsqqRV

λ f pBpsqqds “ R0
λpVRV

λ f qpxq.
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Heat equation

Proof.

We have
hpxq “ lim

λÓ0
λRV

λ 1pxq.

Since R0
λ1 “ 1

λ , we obtain

1´ λRV
λ 1 “ λR0

λpVRV
λ 1q.

Letting λ Ó 0,

1´ hpxq “ R0
0 pVhqpxq “

ż

G px , yqV pyqhpyqdy .
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Occupation time

Theorem

For a standard Brownian motion tBptq : t ě 0u in dimension 3, let
T “

ş8

0 1p|Bptq| ă 1qdt be the total occupation time of the unit ball.
Then

E
”

e´λT
ı

“ sechp
?

2λq.
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Occupation time

Proof.

Let V pxq “ λ1Bp0,1q and define hpxq “ Ex

“

e´λT
‰

.

By the previous theorem

hpxq “ 1´ λ

ż

Bp0,1q
G px , yqhpyqdy .

Using the classical formula for the Green’s function,

1´ hpxq “
λ

2π|x |

ż

Bp0,|x |q
hpyqdy ` λ

ż

Bp0,1qzBp0,|x |q

hpyq

2π|y |
dy .
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Occupation time

Proof.

Set uprq “ rhpxq for |x | “ r to obtain

r ´ uprq “ 2λ

ż r

0
supsqds ` 2λr

ż 1

r
upsqds

so u solves the ODE u2 “ 2λu.

Inserting the initial condition one can solve to find hp0q “ sechp
?

2λq.
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