Math 639: Lecture 23

Stochastic integrals and applications

Bob Hough

May 9, 2017

Stochastic integrals

This lecture follows Mörters and Peres, Chapter 7.

Downcrossings

Definition

Given $a<b$ define a sequence of stopping times $\tau_{0}=0$ and, for $j \geqslant 1$,

$$
\sigma_{j}=\inf \left\{t>\tau_{j-1}: B(t)=b\right\}, \quad \tau_{j}=\inf \left\{t>\sigma_{j}: B(t)=a\right\}
$$

We call the random function

$$
B^{(j)}:\left[0, \tau_{j}-\sigma_{j}\right] \rightarrow \mathbb{R}, \quad B^{(j)}(s)=B\left(\sigma_{j}+s\right)
$$

the j th downcrossing of $[a, b]$. For every $t>0$, denote

$$
D(a, b, t)=\max \left\{j \in \mathbb{N}: \tau_{j} \leqslant t\right\}
$$

the number of downcrossings of the interval $[a, b]$ before time t.

Local time at 0

Theorem

There exists a stochastic process $\{L(t): t \geqslant 0\}$ called the local time at zero such that for all sequences $a_{n} \uparrow 0$ and $b_{n} \downarrow 0$ with $a_{n}<b_{n}$, a.s.

$$
\lim _{n \rightarrow \infty} 2\left(b_{n}-a_{n}\right) D\left(a_{n}, b_{n}, t\right)=L(t) \quad \forall t>0 .
$$

Moreover, this process is almost surely locally α-Hölder continuous for any $\alpha<1 / 2$.

Lévy's theorem

Theorem (Lévy)
The local time at zero $\{L(t): t \geqslant 0\}$ and the maximum process $\{M(t): t \geqslant 0\}$ of a standard Brownian motion have the same distribution.

Occupation measure

Theorem
For all sequences $a_{n} \uparrow 0$ and $b_{n} \downarrow 0$ with $a_{n}<b_{n}$, a.s.

$$
\lim _{n \rightarrow \infty} \frac{1}{b_{n}-a_{n}} \int_{0}^{t} \mathbf{1}\left(a_{n} \leqslant B(s) \leqslant b_{n}\right) d s=L(t), \quad \forall t>0
$$

Occupation measure

Theorem

For linear Brownian motion $\{B(t): t \geqslant 0\}$, almost surely, for any bounded measurable $g: \mathbb{R} \rightarrow \mathbb{R}$ and $t>0$,

$$
\int g(a) d \mu_{t}(a)=\int_{0}^{t} g(B(s)) d s=\int_{-\infty}^{\infty} g(a) L^{a}(t) d a
$$

Trotter's theorem

Given $a \in \mathbb{R}$ and integer n, let $I(a, n)=\left[j(a) 2^{-n},(j(a)+1) 2^{-n}\right)$ be the unique dyadic interval containing a. For a standard Brownian motion $\{B(t): t \geqslant 0\}$ denote by $D^{(n)}(a, t)$ the number of downcrossings of the interval $I(a, n)$ before time t.

Theorem (Trotter's theorem)

Let $\{B(t): t \geqslant 0\}$ be a standard linear Brownian motion and let $D^{(n)}(a, t)$ be the number of downcrossings before time t of the nth stage dyadic interval containing a. Then, a.s.

$$
L^{a}(t)=\lim _{n \rightarrow \infty} 2^{-n+1} D^{(n)}(a, t)
$$

exists for all $a \in \mathbb{R}$ and $t \geqslant 0$. Moreover, for every $\gamma<\frac{1}{2}$, the random field $\left\{L^{a}(t): a \in \mathbb{R}, t \geqslant 0\right\}$ is a.s. locally γ-Hölder continuous.

Ray-Knight Theorem

Theorem (Ray-Knight Theorem)

Suppose $a>0$ and $\{B(t): 0 \leqslant t \leqslant T\}$ is a linear Brownian motion started at a and stopped at time $T=\inf \{t \geqslant 0: B(t)=0\}$, when it reaches level zero for the first time. Then

$$
\left\{L^{x}(T): 0 \leqslant x \leqslant a\right\} \stackrel{d}{=}\left\{|W(x)|^{2}: 0 \leqslant x \leqslant a\right\}
$$

where $\{W(x): x \geqslant 0\}$ is a standard planar Brownian motion.

Stochastic integrals

Since the Brownian motion a.s. has unbounded variation it is not possible to define integrals $\int_{0}^{t} f(s) d B(s)$ by Lebesgue-Stieltjes integration. Thus stochastic integration is needed.

Stochastic integrals

Definition

Assume the filtration $(\mathscr{F}(t): t \geqslant 0)$ is complete in the sense that it contains all null sets of \mathscr{A}. A process $\{X(t, \omega): t \geqslant 0, \omega \in \Omega\}$ is called progressively measurable if for each $t \geqslant 0$ the mapping $X:[0, t] \times \Omega \rightarrow \mathbb{R}$ is measurable w.r.t. the σ-algebra $\mathscr{B}([0, t]) \otimes \mathscr{F}(t)$.

Stochastic integrals

Lemma

Any process $\{X(t): t \geqslant 0\}$ which is adapted and either right or left continuous is also progressively measurable.

Stochastic integrals

Proof.

- Assume that $\{X(t): t \geqslant 0\}$ is right-continuous. Let $t>0$ and, for a positive integer n and $0 \leqslant s \leqslant t$ set $X_{n}(0, \omega)=X(0, \omega)$

$$
X_{n}(s, \omega)=X\left(\frac{(k+1) t}{2^{n}}, \omega\right), \quad k t 2^{-n}<s \leqslant(k+1) t 2^{-n}
$$

- $(s, \omega) \mapsto X_{n}(s, \omega)$ is $\mathscr{B}([0, t]) \otimes \mathscr{F}(t)$ measurable. By right-continuity we have $\lim _{n \uparrow \infty} X_{n}(s, \omega)=X(s, \omega)$ for all $s \in[0, t]$ and $\omega \in \Omega$.
- Thus the limit map $(s, \omega) \mapsto X(s, \omega)$ is also $\mathscr{B}([0, t]) \otimes \mathscr{F}(t)$.
- The claim in case of left continuity is similar.

Stochastic integrals

A progressively measurable step function $\{H(t, \omega): t \geqslant 0, \omega \in \Omega\}$ is a function of the form

$$
H(t, \omega)=\sum_{i=1}^{k} A_{i}(\omega) \mathbf{1}_{\left(t_{i}, t_{i+1}\right]}, \quad 0 \leqslant t_{1} \leqslant \ldots \leqslant t_{k+1}
$$

and $\mathscr{F}\left(t_{i}\right)$-measurable A_{i}. For such functions, define

$$
\int_{0}^{\infty} H(s) d B(s):=\sum_{i=1}^{k} A_{i}\left(B\left(t_{i+1}\right)-B\left(t_{i}\right)\right)
$$

Stochastic integrals

For a progressively measurable process H, define

$$
\|H\|_{2}^{2}:=\mathrm{E} \int_{0}^{\infty} H(s)^{2} d s
$$

Lemma

For every progressively measurable process $\{H(s, \omega): s \geqslant 0, \omega \in \Omega\}$ satisfying $\mathrm{E} \int_{0}^{\infty} H(s)^{2} d s<\infty$ there exists a sequence $\left\{H_{n}: n \in \mathbb{N}\right\}$ of progressively measurable step processes such that $\lim _{n \rightarrow \infty}\left\|H_{n}-H\right\|_{2}=0$.

Stochastic integrals

Proof.

- First truncate $H(s, \omega)$ by setting $H_{n}(s, \omega)=0$ for $s>n$, $H_{n}(s, \omega)=H(s, \omega)$ for $s \leqslant n$.
- Next replace $H_{n}(s, \omega)=H(s, \omega) \wedge n$.
- Next replace $H_{n}(s, \omega)=n \int_{s-1 / n}^{s} H(t, \omega) d t$, which makes H continuous.
- Finally set $H_{n}(s, \omega)=H(j / n, \omega)$ for $j / n \leqslant s<(j+1) / n$.

Stochastic integrals

Lemma

Let H be a progressively measurable step process and $\mathrm{E} \int_{0}^{\infty} H(s)^{2} d s<\infty$, then

$$
\mathrm{E}\left[\left(\int_{0}^{\infty} H(s) d B(s)\right)^{2}\right]=\mathrm{E} \int_{0}^{\infty} H(s)^{2} d s .
$$

Stochastic integrals

Proof.

Write $H=\sum_{i=1}^{k} A_{i} \mathbf{1}_{\left(a_{i}, a_{i+1}\right]}$ and expand the square

$$
\begin{aligned}
& \mathrm{E}\left[\left(\int_{0}^{\infty} H(s) d B(s)\right)^{2}\right] \\
& =\mathrm{E}\left[\sum_{i, j=1}^{k} A_{i} A_{j}\left(B\left(a_{i+1}\right)-B\left(a_{i}\right)\right)\left(B\left(a_{j+1}\right)-B\left(a_{j}\right)\right)\right] \\
& =2 \sum_{i=1}^{k} \sum_{j=i+1}^{k} \mathrm{E}\left[A_{i} A_{j}\left(B\left(a_{i+1}\right)-B\left(a_{i}\right)\right) \mathrm{E}\left[B\left(a_{j+1}\right)-B\left(a_{j}\right) \mid \mathscr{F}\left(a_{j}\right)\right]\right] \\
& \quad+\sum_{i=1}^{k} \mathrm{E}\left[A_{i}^{2}\left(B\left(a_{i+1}\right)-B\left(a_{i}\right)\right)^{2}\right]
\end{aligned}
$$

Stochastic integrals

Proof.

Only the diagonal terms survive, leaving

$$
\sum_{i=1}^{k} \mathrm{E}\left[A_{i}^{2}\right]\left(a_{i+1}-a_{i}\right)=\mathrm{E} \int_{0}^{\infty} H(s)^{2} d s
$$

Stochastic integrals

Theorem

Suppose $\left\{H_{n}: n \in \mathbb{N}\right\}$ is a sequence of progressively measurable step processes and H a progressively measurable process such that

$$
\lim _{n \rightarrow \infty} E \int_{0}^{\infty}\left(H_{n}(s)-H(s)\right)^{2} d s=0
$$

then

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} H_{n}(s) d B(s)=: \int_{0}^{\infty} H(s) d B(s)
$$

exists as a limit in the L^{2}-sense and is independent of the choice of $\left\{H_{n}: n \in \mathbb{N}\right\}$. Moreover, we have

$$
\mathrm{E}\left[\left(\int_{0}^{\infty} H(s) d B(s)\right)^{2}\right]=\mathrm{E} \int_{0}^{\infty} H(s)^{2} d s
$$

Stochastic integrals

Proof.

By the previous lemma, the sequence of step functions have integrals that are Cauchy in L^{2}, hence converge there. The last statement is the convergence of L^{2} norms.

Stochastic integrals

If

$$
\sum_{n=1}^{\infty} \mathrm{E} \int_{0}^{\infty}\left(H_{n}(s)-H(s)\right)^{2} d s<\infty
$$

then a.s.

$$
\sum_{n=1}^{\infty}\left[\int_{0}^{\infty} H_{n}(s) d B(s)-\int_{0}^{\infty} H(s) d B(s)\right]^{2}<\infty
$$

which implies $\lim _{n \rightarrow \infty} \int_{0}^{\infty} H_{n}(s) d B(s)=\int_{0}^{\infty} H(s) d B(s)$ a.s.

Stochastic integrals

Definition

Suppose $\{H(s, \omega): s \geqslant 0, \omega \in \Omega\}$ is progressively measurable with $\mathrm{E} \int_{0}^{\infty} H(s, \omega)^{2} d s<\infty$. Define the progressively measurable process $\left\{H^{t}(s, \omega): s \geqslant 0, \omega \in \Omega\right\}$ by

$$
H^{t}(s, \omega)=H(s, \omega) \mathbf{1}(s \leqslant t)
$$

The stochastic integral up to t is defined as,

$$
\int_{0}^{t} H(s) d B(s):=\int_{0}^{\infty} H^{t}(s) d B(s) .
$$

Stochastic integrals

Definition

We say that a stochastic process $\{X(t): t \geqslant 0\}$ is a modification of a process $\{Y(t): t \geqslant 0\}$ if, for every $t \geqslant 0$, we have

$$
\operatorname{Prob}(X(t)=Y(t))=1
$$

Stochastic integrals

Theorem

Suppose the process $\{H(s, \omega): s \geqslant 0, \omega \in \Omega\}$ is progressively measurable with

$$
\mathrm{E} \int_{0}^{t} H(s, \omega)^{2} d s<\infty, \quad t \geqslant 0
$$

Then there exists an almost surely continuous modification of $\left\{\int_{0}^{t} H(s) d B(s): t \geqslant 0\right\}$. Moreover, this process is a martingale and hence

$$
\mathrm{E} \int_{0}^{t} H(s) d B(s)=0, \quad t \geqslant 0
$$

Stochastic integrals

Proof.

- Let t_{0} be a large integer and let H_{n} be a sequence of step processes with $\left\|H_{n}-H^{t_{0}}\right\|_{2} \rightarrow 0$. Then

$$
\mathrm{E}\left[\left(\int_{0}^{\infty}\left(H_{n}(s)-H^{t_{0}}(s)\right) d B(s)\right)^{2}\right] \rightarrow 0
$$

- Since $\int_{0}^{s} H_{n}(u) d B(u)$ is $\mathscr{F}(s)$-measurable and $\int_{s}^{t} H_{n}(u) d B(u)$ is independent of $\mathscr{F}(s)$,

$$
\left\{\int_{0}^{t} H_{n}(u) d B(u): 0 \leqslant t \leqslant t_{0}\right\}
$$

is a martingale.

Stochastic integrals

Proof.

- Define

$$
X(t)=\mathrm{E}\left[\int_{0}^{t_{0}} H(s) d B(s) \mid \mathscr{F}(t)\right]
$$

so that $\left\{X(t): 0 \leqslant t \leqslant t_{0}\right\}$ is also a martingale.

- By Doob's maximal inequality,

$$
\begin{aligned}
& \mathrm{E}\left[\sup _{0 \leqslant t \leqslant t_{0}}\left(\int_{0}^{t} H_{n}(s) d B(s)-X(t)\right)^{2}\right] \\
& \leqslant 4 \mathrm{E}\left[\left(\int_{0}^{t_{0}}\left(H_{n}(s)-H(s)\right) d B(s)\right)^{2}\right] .
\end{aligned}
$$

- This exhibits $X(t)$ as the uniform limit of continuous processes, as wanted.

Stochastic integrals

Theorem

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $t>0$ and $0=t_{1}^{(n)}<\ldots<t_{n}^{(n)}=t$ are partitions of the interval $[0, t]$, such that the mesh converges to 0 . Then, in probability,

$$
\sum_{j=1}^{n-1} f\left(B\left(t_{j}^{(n)}\right)\right)\left(B\left(t_{j+1}^{(n)}\right)-B\left(t_{j}^{(n)}\right)\right)^{2} \rightarrow \int_{0}^{t} f(B(s)) d s .
$$

Stochastic integrals

Proof.

- Let T be the first exit time from a compact interval. It suffices to prove the statement for Brownian motion stopped at T, as the interval may be chosen to make $\operatorname{Prob}(T<t)$ arbitarily small.
- By continuity of f, a.s.

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{n-1} f\left(B\left(t_{j}^{(n)} \wedge T\right)\right)\left(t_{j+1}^{(n)} \wedge T-t_{j}^{(n)} \wedge T\right)=\int_{0}^{t \wedge T} f(B(s)) d s
$$

Stochastic integrals

Proof.

Since $\left\{B(t)^{2}-t: t \geqslant 0\right\}$ is a martingale, for all $r \leqslant s$,

$$
\begin{gathered}
\mathrm{E}\left[(B(s)-B(r))^{2}-(s-r) \mid \mathscr{F}(r)\right]=0, \\
\mathrm{E}\left[\left(\sum_{j=1}^{n-1} f\left(B\left(t_{j} \wedge T\right)\right)\right.\right. \\
\left.\left.\quad\left(\left(B\left(t_{j+1} \wedge T\right)-B\left(t_{j} \wedge T\right)\right)^{2}-\left(t_{j+1} \wedge T-t_{j} \wedge T\right)\right)\right)^{2}\right] \\
=\sum_{j=1}^{n-1} \mathrm{E}\left[f\left(B\left(t_{j} \wedge T\right)\right)^{2}\right. \\
\left.\quad\left(\left(B\left(t_{j+1} \wedge T\right)-B\left(t_{j} \wedge T\right)\right)^{2}-\left(t_{j+1} \wedge T-t_{j} \wedge T\right)\right)^{2}\right]
\end{gathered}
$$

Stochastic integrals

Proof.

Bound f in sup norm by a constant and bound the remaining part of the sum by

$$
\sum_{j=1}^{n-1} \mathrm{E}\left[\left(B\left(t_{j+1} \wedge T\right)-B\left(t_{j} \wedge T\right)\right)^{4}\right]+\sum_{j=1}^{n-1} \mathrm{E}\left[\left(t_{j+1} \wedge T-t_{j} \wedge T\right)^{2}\right],
$$

which, by Brownian scaling, is bounded by a constant times

$$
\sum_{j=1}^{n-1}\left(t_{j+1}-t_{j}\right)^{2} \leqslant t \Delta(n)
$$

which tends to zero as the mesh does.

Itô's formula I

Theorem

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice continuously differentiable such that $\mathrm{E} \int_{0}^{t} f^{\prime}(B(s))^{2} d s<\infty$ for some $t>0$. Then, almost surely, for all $0 \leqslant s \leqslant t$,

$$
f(B(s))-f(B(0))=\int_{0}^{s} f^{\prime}(B(u)) d B(u)+\frac{1}{2} \int_{0}^{s} f^{\prime \prime}(B(u)) d u .
$$

Itô's formula I

Proof.

- Denote the modulus of continuity of $f^{\prime \prime}$ on $[-M, M]$ by

$$
\omega(\delta, M):=\sup _{\substack{x, y \in[-M, M] \\|x-y|<\delta}}\left|f^{\prime \prime}(x)-f^{\prime \prime}(y)\right| .
$$

By Taylor's formula, for any $x, y \in[-M, M]$ with $|x-y|<\delta$,

$$
\left|f(y)-f(x)-f^{\prime}(x)(y-x)-\frac{1}{2} f^{\prime \prime}(x)(y-x)^{2}\right| \leqslant \omega(\delta, M)(y-x)^{2}
$$

Itô's formula I

Proof.

- For any sequence $0=t_{1}<\ldots<t_{n}=t$ with

$$
\delta_{B}:=\max _{1 \leqslant i \leqslant n-1}\left|B\left(t_{i+1}\right)-B\left(t_{i}\right)\right| \text { and } M_{B}=\max _{0 \leqslant s \leqslant t}|B(s)|,
$$

$$
\begin{aligned}
& \mid \sum_{i=1}^{n-1}\left(f\left(B\left(t_{i+1}\right)\right)-f\left(B\left(t_{i}\right)\right)\right)-\sum_{i=1}^{n-1} f^{\prime}\left(B\left(t_{i}\right)\right)\left(B\left(t_{i+1}\right)-B\left(t_{i}\right)\right) \\
& \left.-\sum_{i=1}^{n-1} \frac{1}{2} f^{\prime \prime}\left(B\left(t_{i}\right)\right)\left(B\left(t_{i+1}\right)-B\left(t_{i}\right)\right)^{2} \right\rvert\, \\
& \leqslant \omega\left(\delta_{B}, M_{B}\right) \sum_{i=1}^{n-1}\left(B\left(t_{i+1}\right)-B\left(t_{i}\right)\right)^{2} .
\end{aligned}
$$

Itô's formula I

Proof.

- Choosing a sequence of partitions with mesh size going to 0 , the sums converge to integrals on the left, and the sum on the right converges to t a.s., while ω converges to 0 .
- This gives the formula at rational t, and everywhere by continuity.

Itô's formula II

Theorem

Suppose $\{\zeta(s): s \geqslant 0\}$ is an increasing, continuous adapted stochastic process. Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be twice continuously differentiable in the x-coordinate, and once continuously differentiable in the y-coordinate.
Assume that

$$
\mathrm{E} \int_{0}^{t}\left[\partial_{x} f(B(s), \zeta(s))\right]^{2} d s<\infty
$$

for some $t>0$. Then, a.s. for all $0 \leqslant s \leqslant t$,

$$
\begin{aligned}
f(B(s), \zeta(s)) & -f(B(0), \zeta(0))=\int_{0}^{s} \partial_{x} f(B(u), \zeta(u)) d B(u) \\
& +\int_{0}^{s} \partial_{y} f(B(u), \zeta(u)) d \zeta(u)+\frac{1}{2} \int_{0}^{s} \partial_{x x} f(B(u), \zeta(u)) d u
\end{aligned}
$$

There is also a multi-dimensional version, see MP pp. 197-200.

Tanaka's formula

Theorem (Tanaka's formula)
Let $\{B(t): t \geqslant 0\}$ be linear Brownian motion. Then, for every $a \in \mathbb{R}$, almost surely, for all $t>0$,

$$
|B(t)-a|-|B(0)-a|=\int_{0}^{t} \operatorname{sgn}(B(s)-a) d B(s)+L^{a}(t)
$$

Tanaka's formula

Corollary

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is twice differentiable such that f^{\prime} has compact support, but do not assume that $f^{\prime \prime}$ is continuous. Then

$$
f(B(t))-f(B(0))=\int_{0}^{t} f^{\prime}(B(s)) d B(s)+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}(B(s)) d s
$$

Tanaka's formula

Proof.

Write
$f^{\prime}(x)=\frac{1}{2} \int \operatorname{sgn}(x-a) f^{\prime \prime}(a) d a+c, \quad f(x)=\frac{1}{2} \int|x-a| f^{\prime \prime}(a) d a+c x+b$.
Multiply Tanaka's formula by $\frac{1}{2} f^{\prime \prime}(a) d a$ and integrate to obtain

$$
f(B(t))-f(B(0))=\int_{0}^{t} f^{\prime}(B(s)) d B(s)+\frac{1}{2} \int L^{a}(t) f^{\prime \prime}(a) d a .
$$

Tanaka's formula

Define

$$
\tilde{L}^{a}(t):=|B(t)-a|-|B(0)-a|-\int_{0}^{t} \operatorname{sgn}(B(s)-a) d B(s)
$$

Lemma

For every $t \geqslant 0$ and $a \in \mathbb{R}$,

$$
\tilde{L}^{a}(t)=\lim _{\epsilon \downarrow 0} \frac{1}{\epsilon} \int_{0}^{t} \mathbf{1}_{(a, a+\epsilon)}(B(s)) d s
$$

in probability.

Tanaka's formula

Proof.

- Using the strong Markov property, reduce to the case $a=0$.
- Note that, for any $\delta>0$ we can find smooth functions $g, h: \mathbb{R} \rightarrow[0,1]$ with compact support such that $g \leqslant 1_{(0,1)} \leqslant h$ and $\int g=1-\delta, \int h=1+\delta$.
- Let $f: \mathbb{R} \rightarrow[0,1]$ smooth, compactly supported in $[-1,2], \int f=1$, and let

$$
\begin{gathered}
f_{\epsilon}(x)=\epsilon^{-1} \int|x-a| f\left(\epsilon^{-1} a\right) d a=\int|x-\epsilon a| f(a) d a \\
f_{\epsilon}^{\prime}(x)=\int \operatorname{sgn}(x-\epsilon a) f(a) d a \\
f_{\epsilon}^{\prime \prime}(x)=2 \epsilon^{-1} f\left(\epsilon^{-1} x\right)
\end{gathered}
$$

Tanaka's formula

Proof.

- Itô's formula gives

$$
f_{\epsilon}(B(t))-f_{\epsilon}(B(0))-\int_{0}^{t} f_{\epsilon}^{\prime}(B(s)) d B(s)=\epsilon^{-1} \int_{0}^{t} f\left(\epsilon^{-1} B(s)\right) d s
$$

- Since $f_{\epsilon}(x) \rightarrow|x|$ uniformly, we have

$$
f_{\epsilon}(B(t))-f_{\epsilon}(B(0)) \rightarrow|B(t)|-|B(0)|
$$

in probability as $\epsilon \rightarrow 0$.

Tanaka's formula

Proof.

- By the isometry property,

$$
\begin{aligned}
& \mathrm{E}\left[\left(\int_{0}^{t} \operatorname{sgn}(B(s)) d B(s)-\int_{0}^{t} f_{\epsilon}^{\prime}(B(s)) d B(s)\right)^{2}\right] \\
& =\mathrm{E} \int_{0}^{t}\left(\operatorname{sgn}(B(s))-f_{\epsilon}^{\prime}(B(s))\right)^{2} d s
\end{aligned}
$$

This converges to 0 as $\epsilon \downarrow 0$ by bounded convergence.

- Meanwhile $\epsilon^{-1} \int_{0}^{t} f\left(\epsilon^{-1} B(s)\right) d s \rightarrow \tilde{L}^{0}(t)$.

Tanaka's formula

Proof of Tanaka's formula.

- Fix $t \geqslant 0$ and recall that a.s. the occupation measure μ_{t} given by $\mu_{t}(A)=\int_{0}^{t} \mathbf{1}_{A}(B(s)) d s$ has a continuous density given by $\left\{L^{a}(t): a \in \mathbb{R}\right\}$.
- Thus, for every $a \in \mathbb{R}$,

$$
L^{a}(t)=\lim _{\epsilon \downarrow 0} \frac{\mu_{t}(a, a+\epsilon)}{\epsilon}=\lim _{\epsilon \downarrow 0} \frac{1}{\epsilon} \int_{0}^{t} \mathbf{1}_{(a, a+\epsilon)}(B(s)) d s .
$$

- By the previous lemma, for every $a \in \mathbb{R}$ and $t \geqslant 0, L^{a}(t)=\tilde{L}^{a}(t)$ a.s.
- Since, for any $a \in \mathbb{R},\left\{L^{a}(t): t \geqslant 0\right\}$ and $\left\{\tilde{L}^{a}(t): t \geqslant 0\right\}$ are almost surely continuous, so that they agree.

Lévy's theorem

Theorem (Lévy)
The processes

$$
\left\{\left(|B(t)|, L^{0}(t)\right): t \geqslant 0\right\}, \quad\{(M(t)-B(t), M(t)): t \geqslant 0\}
$$

have the same distribution.

Lévy's theorem

Lemma

For every $a \in \mathbb{R}$, the process $\{W(t): t \geqslant 0\}$ given by

$$
W(t)=\int_{0}^{t} \operatorname{sgn}(B(s)-a) d B(s)
$$

Lévy's theorem

Proof.

- Suppose without loss that $a<0$.
- Let $T=\inf \{t>0: B(t)=a\}$ so that $W(t)=B(t)$ for all $t \leqslant T$.
- $\{\tilde{B}(t): t \geqslant 0\}$ defined by $\tilde{B}(t)=B(t+T)-a$ is independent of $\{W(t): 0 \leqslant t \leqslant T\}$. We have

$$
W(t+T)-W(T)=\int_{0}^{t} \operatorname{sgn}(\tilde{B}(s)) d \tilde{B}(s)
$$

so now assume $a=0$.

Lévy's theorem

Proof.

- Choose $s=t_{1}^{(n)}<\cdots<t_{n}^{(n)}=t$ with mesh $\Delta(n) \downarrow 0$ and approximate the progressively measurable process $\operatorname{sgn}(B(u))$ by the step processes

$$
H_{n}(u)=\operatorname{sgn}\left(B\left(t_{j}^{(n)}\right)\right), \quad t_{j}^{(n)}<u \leqslant t_{j+1}^{(n)} .
$$

- Since the zero set of Brownian motion is a closed set of measure 0 , $\lim E \int_{s}^{t}\left(H_{n}(u)-H(u)\right)^{2} d u=0$.
- It follows that $W(t)-W(s)$ is the L^{2}-limit

$$
\lim _{n \rightarrow \infty} \int_{s}^{t} H_{n}(u) d B(u)=\lim \sum_{j=1}^{n-1} \operatorname{sgn}\left(B\left(t_{j}^{(n)}\right)\right)\left(B\left(t_{j+1}^{(n)}\right)-B\left(t_{j}^{(n)}\right)\right)
$$

Lévy's theorem

Proof.

- Each term in the limit is a mean zero Gaussian of variance $t-s$, so the limit is also.

Lévy's theorem

Proof of Lévy's theorem.

- By Tanaka's formula,

$$
|B(t)|=\int_{0}^{t} \operatorname{sgn}(B(s)) d B(s)+L^{0}(t)=W(t)+L^{0}(t)
$$

- Let $\tilde{W}(t)=-W(t)$ and $\tilde{M}(t)$ be the associated maximal process.
- We claim that $\tilde{M}(t)=L^{0}(t)$, which suffices, since then

$$
\left\{\left(|B(t)|, L^{0}(t)\right): t \geqslant 0\right\}, \quad\{(\tilde{M}(t)-\tilde{W}(t), \tilde{M}(t)): t \geqslant 0\} .
$$

agree pointwise.

- To check the equality, first note that $\tilde{W}(s)=L^{0}(s)-|B(s)| \leqslant L^{0}(s)$, so that $\tilde{M}(t) \leqslant L^{0}(t)$. On the other hand, $L^{0}(t)$ increases only on $\{t: B(t)=0\}$ where we have $L^{0}(t)=\tilde{W}(t) \leqslant \tilde{M}(t)$.

Heat equation

Definition

Let $U \subset \mathbb{R}^{d}$ be either open and bounded, or $U=\mathbb{R}^{d}$. A twice differentiable function $u:(0, \infty) \times U \rightarrow[0, \infty)$ is said to solve the heat equation with heat dissipation rate $V: U \rightarrow \mathbb{R}$ and initial condition $f: U \rightarrow[0, \infty)$ on U if we have

- $\lim _{x \rightarrow x_{0}, t \downarrow 0} u(t, x)=f\left(x_{0}\right)$, whenever $x_{0} \in U$
- $\lim _{x \rightarrow x_{0}, t \rightarrow t_{0}} u(t, x)=0$, whenever $x_{0} \in \partial U$
- $\partial_{t} u(t, x)=\frac{1}{2} \Delta_{x} u(t, x)+V(x) u(t, x)$ on $(0, \infty) \times U$.

Here Δ_{x} is the Laplacian, acting on the space variables x.
This formula describes the temperature $u(t, x)$ at time t and location x, subject to heating rate V and with 0 boundary condition.

Heat equation

Theorem
Suppose $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is bounded. Then $u:[0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ defined by

$$
u(t, x)=\mathrm{E}_{x}\left\{\exp \left(\int_{0}^{t} V(B(r)) d r\right)\right\},
$$

solves the heat equation on \mathbb{R}^{d} with dissipative rate V and initial condition one.

Heat equation

Proof.

- We check this by Taylor expansion.
- Let $a_{0}(x, t):=1$ and, for $n \geqslant 1$,

$$
\begin{aligned}
& a_{n}(x, t):=\frac{1}{n!} \mathrm{E}_{x}\left[\int_{0}^{t} \cdots \int_{0}^{t} V\left(B\left(t_{1}\right)\right) \cdots V\left(B\left(t_{n}\right)\right) d t_{1} \ldots d t_{n}\right] \\
& =\mathrm{E}_{x}\left[\int_{0}^{t} d t_{1} \int_{t_{1}}^{t} d t_{2} \cdots \int_{t_{n-1}}^{t} d t_{n} V\left(B\left(t_{1}\right)\right) \cdots V\left(B\left(t_{n}\right)\right)\right] \\
& =\int d x_{1} \cdots \int d x_{n} \int_{0}^{t} d t_{1} \cdots \int_{t_{n-1}}^{t} d t_{n} \prod_{i=1}^{n} V\left(x_{i}\right) \prod_{i=1}^{n} p\left(t_{i}-t_{i-1}, x_{i-1}, x_{i}\right)
\end{aligned}
$$

with $x_{0}=x$ and $t_{0}=0$.

Heat equation

Proof.

- Using $\frac{1}{2} \Delta_{x} p\left(t_{1}, x, x_{1}\right)=\partial_{t_{1}} p\left(t_{1}, x, x_{1}\right)$ and integrating by parts

$$
\begin{aligned}
\frac{1}{2} \Delta_{x} a_{n}(x, t)= & \int d x_{1} V\left(x_{1}\right) \int_{0}^{t} d t_{1} \partial_{t_{1}} p\left(t_{1}, x, x_{1}\right) a_{n-1}\left(x_{1}, t-t_{1}\right) \\
= & -\int d x_{1} V\left(x_{1}\right) \int_{0}^{t} d t_{1} p\left(t_{1}, x, x_{1}\right) \partial_{t_{1}} a_{n-1}\left(x, t-t_{1}\right) \\
& -V(x) a_{n-1}(x, t) \\
= & \partial_{t} a_{n}(x, t)-V(x) a_{n-1}(x, t)
\end{aligned}
$$

- Adding terms justifies solution of the differential equation.

Heat equation

Theorem

If u is a bounded, twice continuously differentiable solution of the heat equation on the domain U, with zero dissipation rate and continuous initial condition g, then

$$
u(t, x)=\mathrm{E}_{x}[g(B(t)) \mathbf{1}(t<\tau)]
$$

where τ is the first exit time from the domain U.

Heat equation

Proof.

- Let $K \subset U$ be compact and let σ be the first exit time from K.
- Fixing $t>0$ and applying Itô's formula with $f(x, y)=u(t-y, x)$ and $\zeta(s)=s$ gives, for $s<t$

$$
\begin{gathered}
u(t-s \wedge \sigma, B(s \wedge \sigma))-u(t, B(0))=\int_{0}^{s \wedge \sigma} \nabla_{x} u(t-v, B(v)) \cdot d B(v) \\
\quad-\int_{0}^{s \wedge \sigma} \partial_{t} u(t-v, B(v)) d v+\frac{1}{2} \int_{0}^{s \wedge \sigma} \Delta_{x} u(t-v, B(v)) d v
\end{gathered}
$$

- Since u solves the heat equation, the latter two terms cancel. Take expectations, which eliminates the remaining stochastic integral, leaving

$$
\mathrm{E}_{x}[u(t-s \wedge \sigma, B(s \wedge \sigma))]=\mathrm{E}_{x}[u(t, B(0))]=u(t, x)
$$

Heat equation

Proof.

- Let $K \subset U$ be compact and let σ be the first exit time from K.
- Fixing $t>0$ and applying Itô's formula with $f(x, y)=u(t-y, x)$ and $\zeta(s)=s$ gives, for $s<t$

$$
\begin{gathered}
u(t-s \wedge \sigma, B(s \wedge \sigma))-u(t, B(0))=\int_{0}^{s \wedge \sigma} \nabla_{x} u(t-v, B(v)) \cdot d B(v) \\
\quad-\int_{0}^{s \wedge \sigma} \partial_{t} u(t-v, B(v)) d v+\frac{1}{2} \int_{0}^{s \wedge \sigma} \Delta_{x} u(t-v, B(v)) d v
\end{gathered}
$$

- Since u solves the heat equation, the latter two terms cancel. Take expectations, which eliminates the remaining stochastic integral, leaving

$$
\mathrm{E}_{x}[u(t-s \wedge \sigma, B(s \wedge \sigma))]=\mathrm{E}_{x}[u(t, B(0))]=u(t, x)
$$

Heat equation

Proof.

- Exhaust U by compact sets, so that $\sigma \uparrow \tau$, which gives

$$
\mathrm{E}_{x}[u(t-s, B(s)) \mathbf{1}(s<\tau)]=u(t, x) .
$$

Now let $t \uparrow s$.

Heat equation

Let $\Phi(x)$ be the distribution function of a standard normal distribution.
Theorem
Let $0<x<a$. Then

$$
\left.\begin{array}{l}
\operatorname{Prob}_{x}(B(s) \in(0, a), \forall 0 \leqslant s \leqslant t) \\
=\sum_{k=-\infty}^{\infty}\left(\Phi\left(\frac{2 k a+a-x}{\sqrt{t}}\right)-\Phi\left(\frac{2 k a-x}{\sqrt{t}}\right)\right. \\
\end{array} \quad-\Phi\left(\frac{2 k a+a+x}{\sqrt{t}}\right)+\Phi\left(\frac{2 k a+x}{\sqrt{t}}\right)\right) . . ~ \$ ~ . ~(\Phi)
$$

Heat equation

Proof.

- Letting $U=(0, a)$ and $g=1$, it suffices to show that the series solves the heat equation.
- The series vanishes at 0 and a, hence satisfies the boundary condition.
- Since

$$
\partial_{t} \Phi\left(\frac{2 k a+a-x}{\sqrt{t}}\right)=\frac{1}{2} \partial_{x x} \Phi\left(\frac{2 k a+a-x}{\sqrt{t}}\right)
$$

the sum satisfies the heat equation.

- To check the initial condition, let $t \downarrow 0$. All but $k=0$ terms vanish. The $k=0$ term tends to 1 .

Heat equation

Theorem
Let $d \geqslant 3$ and $V: \mathbb{R}^{d} \rightarrow[0, \infty)$ be bounded. Define

$$
h(x):=\mathrm{E}_{X}\left[\exp \left(-\int_{0}^{\infty} V(B(t)) d t\right)\right] .
$$

Then $h: \mathbb{R}^{d} \rightarrow[0, \infty)$ satisfies the equation

$$
h(x)=1-\int G(x, y) V(y) h(y) d y
$$

for all $x \in \mathbb{R}^{d}$.

Heat equation

Proof.

Define

$$
R_{\lambda}^{V} f(x):=\int_{0}^{\infty} e^{-\lambda t} \mathrm{E}_{x}\left[f(B(t)) e^{-\int_{0}^{t} V(B(s)) d s}\right] d t
$$

Calculate

$$
\begin{aligned}
& R_{\lambda}^{0} f(x)-R_{\lambda}^{V} f(x)=\mathrm{E}_{x} \int_{0}^{\infty} e^{-\lambda t-\int_{0}^{t} V(B(s)) d s} f(B(t))\left(e^{\int_{0}^{t} V(B(s)) d s}-1\right) d t \\
& =\mathrm{E}_{x} \int_{0}^{\infty} e^{-\lambda t-\int_{0}^{t} V(B(s)) d s} f(B(t)) \int_{0}^{t} V(B(s)) e^{\int_{0}^{s} V(B(r)) d r} d s d t \\
& =\mathrm{E}_{x} \int_{0}^{\infty} e^{-\lambda s} V(B(s)) \int_{0}^{\infty} e^{-\lambda t-\int_{0}^{t} V(B(s+u)) d u} f(B(s+t)) d t d s \\
& =\mathrm{E}_{X} \int_{0}^{\infty} e^{-\lambda s} V(B(s)) R_{\lambda}^{V} f(B(s)) d s=R_{\lambda}^{0}\left(V R_{\lambda}^{V} f\right)(x)
\end{aligned}
$$

Heat equation

Proof.

We have

$$
h(x)=\lim _{\lambda \downarrow 0} \lambda R_{\lambda}^{V} 1(x)
$$

Since $R_{\lambda}^{0} 1=\frac{1}{\lambda}$, we obtain

$$
1-\lambda R_{\lambda}^{V} 1=\lambda R_{\lambda}^{0}\left(V R_{\lambda}^{V} 1\right)
$$

Letting $\lambda \downarrow 0$,

$$
1-h(x)=R_{0}^{0}(V h)(x)=\int G(x, y) V(y) h(y) d y
$$

Occupation time

Theorem

For a standard Brownian motion $\{B(t): t \geqslant 0\}$ in dimension 3, let $T=\int_{0}^{\infty} \mathbf{1}(|B(t)|<1) d t$ be the total occupation time of the unit ball.
Then

$$
E\left[e^{-\lambda T}\right]=\operatorname{sech}(\sqrt{2 \lambda})
$$

Occupation time

Proof.

- Let $V(x)=\lambda \mathbf{1}_{B(0,1)}$ and define $h(x)=\mathrm{E}_{x}\left[e^{-\lambda T}\right]$.
- By the previous theorem

$$
h(x)=1-\lambda \int_{B(0,1)} G(x, y) h(y) d y
$$

Using the classical formula for the Green's function,

$$
1-h(x)=\frac{\lambda}{2 \pi|x|} \int_{B(0,|x|)} h(y) d y+\lambda \int_{B(0,1) \backslash B(0,|x|)} \frac{h(y)}{2 \pi|y|} d y .
$$

Occupation time

Proof.

- Set $u(r)=r h(x)$ for $|x|=r$ to obtain

$$
r-u(r)=2 \lambda \int_{0}^{r} s u(s) d s+2 \lambda r \int_{r}^{1} u(s) d s
$$

so u solves the ODE $u^{\prime \prime}=2 \lambda u$.

- Inserting the initial condition one can solve to find $h(0)=\operatorname{sech}(\sqrt{2 \lambda})$.

