Math 639: Lecture 22

Concentration of measure

Bob Hough

May 5, 2017

Concentration of measure

This lecture is drawn from:

- M. Ledoux. The concentration of measure phenomenon. AMS 89, 2001.
- M. Ledoux and M. Talagrand. Probability in Banach spaces. Springer, 1991.
- N. Alon and J. Spencer. The probabilistic method. Wiley, 2016.

Chernoff's inequality

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be jointly independent random variables with mean 0 and such that $\left|X_{i}\right| \leqslant 1$. Let

$$
X:=X_{1}+\cdots+X_{n}
$$

and let $\sigma=\sqrt{\operatorname{Var}[X]}$ the standard deviation. Then for any $\lambda>0$,

$$
\operatorname{Prob}(|X|>\lambda \sigma) \leqslant 2 \max \left(e^{-\lambda^{2} / 4}, e^{-\lambda \sigma / 2}\right)
$$

The concentration of measure phenomenon seeks to obtain 'Gaussian-type' tail decay in circumstances with less independence.

Chernoff's inequality

Lemma

Let X be a random variable with $|X| \leqslant 1$ and $\mathrm{E}[X]=0$. Then for any $-1 \leqslant t \leqslant 1$ we have $\mathrm{E}\left[e^{t X}\right] \leqslant \exp \left(t^{2} \operatorname{Var}[X]\right)$.

Proof.

By Taylor expansion, $e^{t X} \leqslant 1+t X+t^{2} X^{2}$. Thus

$$
\mathrm{E}\left[e^{t X}\right] \leqslant 1+t^{2} \operatorname{Var}[X] \leqslant \exp \left(t^{2} \operatorname{Var}[X]\right) .
$$

Chernoff's inequality

Proof of Chernoff's inequality.

- By symmetry it suffices to prove $\operatorname{Prob}(X \geqslant \lambda \sigma) \leqslant e^{-t \lambda \sigma / 2}$ where $t=\min (\lambda / 2 \sigma, 1)$.
- Use $\operatorname{Prob}(X \geqslant \lambda)=\operatorname{Prob}\left(e^{t X} \geqslant e^{t \lambda}\right) \leqslant \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t \lambda}}$.
- Thus

$$
\begin{aligned}
\operatorname{Prob}(X \geqslant \lambda \sigma) & \leqslant e^{-t \lambda \sigma} \mathrm{E}\left[e^{t X_{1}} \cdots e^{t X_{n}}\right] \\
& =e^{-t \lambda \sigma} \mathrm{E}\left[e^{t X_{1}}\right] \cdots \mathrm{E}\left[e^{t X_{n}}\right] \\
& \leqslant e^{-t \lambda \sigma} \exp \left(t^{2}\left(\operatorname{Var}\left[X_{1}\right]+\cdots+\operatorname{Var}\left[X_{n}\right]\right)\right) \\
& =\exp \left(t^{2} \sigma^{2}-t \lambda \sigma\right)
\end{aligned}
$$

- The claim follows, since $t \leqslant \lambda / 2 \sigma$.

Azuma's inequality

The following is a martingale variant of Chernoff's bound.
Theorem (Azuma's inequality)
Let $0=X_{0}, X_{1}, \ldots, X_{m}$ be a martingale sequence, with $\mathscr{F}_{i}=\sigma\left(X_{0}, \ldots, X_{i}\right)$ and $\mathrm{E}\left[X_{i} \mid \mathscr{F}_{i-1}\right]=X_{i-1}$. Assume

$$
\left|X_{i}-X_{i-1}\right| \leqslant 1
$$

for all $1 \leqslant i \leqslant m$. Let $\lambda>0$. Then

$$
\operatorname{Prob}\left[X_{m}>\lambda \sqrt{m}\right]<e^{-\lambda^{2} / 2} .
$$

Azuma's inequality

Proof.

- Set $\alpha=\lambda / \sqrt{m}$.
- Let $Y_{i}=X_{i}-X_{i-1}$, so $\left|Y_{i}\right| \leqslant 1$ and $\mathrm{E}\left[Y_{i} \mid X_{0}, \ldots, X_{i-1}\right]=0$.
- By convexity we have

$$
\mathrm{E}\left[e^{\alpha Y_{i}} \mid X_{0}, \ldots, X_{i-1}\right] \leqslant \cosh (\alpha) \leqslant e^{\alpha^{2} / 2}
$$

Azuma's inequality

Proof.

- Setting apart one variable at a time,

$$
\begin{aligned}
\mathrm{E}\left[e^{a X_{m}}\right] & =\mathrm{E}\left[\prod_{i=1}^{m} e^{\alpha Y_{i}}\right] \\
& =\mathrm{E}\left[\left(\prod_{i=1}^{m-1} e^{\alpha Y_{i}}\right) \mathrm{E}\left[e^{\alpha Y_{m}} \mid X_{0}, \ldots, X_{m-1}\right]\right] \\
& \leqslant e^{\alpha^{2} / 2} \mathrm{E}\left[\prod_{i=1}^{m-1} e^{\alpha Y_{i}}\right] \leqslant e^{\alpha^{2} m / 2} .
\end{aligned}
$$

Azuma's inequality

Proof.

- Thus

$$
\begin{aligned}
\operatorname{Prob}\left(X_{m}>\lambda \sqrt{m}\right) & =\operatorname{Prob}\left(e^{\alpha X_{m}}>e^{\alpha \lambda \sqrt{m}}\right) \\
& <\mathrm{E}\left[e^{\alpha X_{m}}\right] e^{-\alpha \lambda \sqrt{m}} \\
& \leqslant e^{\alpha^{2} m / 2-\alpha \lambda \sqrt{m}}=e^{-\lambda^{2} / 2}
\end{aligned}
$$

Edge exposure martingale

- Let $n \geqslant 1$ be an integer and $0<p<1$. The random graph $G(n, p)$ is a graph on n vertices $\{1,2, \ldots, n\}$ with each edge appearing i.i.d. with probability p.
- Let $m=\binom{n}{2}$ and let the potential edges be e_{1}, \ldots, e_{m}.
- Let f be a function on graphs, and define a martingale $X_{0}, X_{1}, X_{2}, \ldots$ by setting X_{0} to be the expectation of $f(G)$ when graph G is sampled from $G(n, p)$.
- Let X_{i} be determined by deciding whether e_{1}, \ldots, e_{i} belongs to G, then taking the expectation of $f(G)$ where the remaining edges are random.

Vertex exposure martingale

- Let f be a function on graphs as before, and let $X_{1}=\mathrm{E}[f(G)]$ when G is sampled from $G(n, p)$
- Define martingale X_{1}, \ldots, X_{n} by letting X_{i} be the conditional expectation in which all edges between vertices $j, k \leqslant i$ are deterministic, and all other edges are random.

The chromatic number of a random graph

The chromatic number $\chi(G)$ of a graph G is the least number of colors needed to color the vertices of G so that no edge is monochromatic.

Theorem (Shamir and Spencer, 1987)
Let $n \geqslant 1$ and $0<p<1$. Set $c=\mathrm{E}[\chi(G)]$ when G is sampled from $G(n, p)$. Then

$$
\operatorname{Prob}[|\chi(G)-c|>\lambda \sqrt{n-1}]<2 e^{-\lambda^{2} / 2}
$$

The chromatic number of a random graph

Proof.

- Let $f(G)=\chi(G)$ be the chromatic number, and let $c=X_{1}, X_{2}, \ldots, X_{n}$ be the corresponding vertex exposure martingale.
- The bounded difference condition applies, since a single vertex can be given a new color.
- Hence the result follows from Azuma's inequality.

Azuma's inequality variant

The following slight generalization of Azuma's inequality is sometimes useful.

Theorem (Azuma's inequality variant)
Let $0=X_{0}, X_{1}, \ldots, X_{m}$ be a martingale sequence, with differences
$Y_{i}=X_{i}-X_{i-1}$. Assume that $\left\|Y_{i}\right\|_{\infty}<\infty$. Let

$$
a=\left(\sum_{i=1}^{m}\left\|Y_{i}\right\|_{\infty}^{2}\right)^{\frac{1}{2}}
$$

Let $\lambda>0$. Then

$$
\operatorname{Prob}\left[\left|X_{m}\right|>\lambda\right]<2 e^{-\lambda^{2} /\left(2 a^{2}\right)}
$$

The proof is essentially the same.

Khintchine's inequality

Let $\epsilon_{1}, \ldots, \epsilon_{n}$ be i.i.d. Rademacher random variables (± 1 with equal probability) and let $\alpha_{1}, \ldots, \alpha_{n}$ be real constants. By independence,

$$
\mathrm{E}\left[\left|\sum_{i=1}^{n} \epsilon_{i} \alpha_{i}\right|^{2}\right]=\sum_{i=1}^{n} \alpha_{i}^{2}
$$

Khintchine's inequality gives the following approximate orthogonality in L^{p}.

Theorem (Khintchine's inequality)

For any $0<p<\infty$, there exist positive finite constants A_{p} and B_{p} depending on p only such that for any finite sequence $\left(\alpha_{i}\right)$ of real numbers,

$$
A_{p}\left\|\alpha_{i}\right\|_{2} \leqslant\left(\mathrm{E}\left|\sum_{i} \epsilon_{i} \alpha_{i}\right|^{p}\right)^{\frac{1}{p}} \leqslant B_{p}\left\|\alpha_{i}\right\|_{2}
$$

Khintchine's inequality

Proof.

- Rescale so $\sum_{i} \alpha_{i}^{2}=1$.
- By the variant of Azuma,

$$
\begin{aligned}
\mathrm{E}\left|\sum_{i} \epsilon_{i} \alpha_{i}\right|^{p} & =\int_{0}^{\infty} \operatorname{Prob}\left(\left|\sum_{i} \epsilon_{i} \alpha_{i}\right|>t\right) d t^{p} \\
& \leqslant 2 \int_{0}^{\infty} \exp \left(-t^{2} / 2\right) d t^{p}=B_{p}^{p}
\end{aligned}
$$

Khintchine's inequality

Proof.

- By Jensen, it suffices to prove the lower bound $p<2$

$$
\begin{aligned}
1=\mathrm{E}\left|\sum_{i} \epsilon_{i} \alpha_{i}\right|^{2} & =\mathrm{E}\left(\left|\sum_{i} \epsilon_{i} \alpha_{i}\right|^{2 p / 3}\left|\sum_{i} \epsilon_{i} \alpha_{i}\right|^{2-2 p / 3}\right) \\
& \leqslant\left(\mathrm{E}\left|\sum_{i} \epsilon_{i} \alpha_{i}\right|^{p}\right)^{2 / 3}\left(\mathrm{E}\left|\sum_{i} \epsilon_{i} \alpha_{i}\right|^{6-2 p}\right)^{1 / 3} \\
& \leqslant\left(\mathrm{E}\left|\sum_{i} \epsilon_{i} \alpha_{i}\right|^{p}\right)^{2 / 3} B_{6-2 p}^{2-2 p / 3}
\end{aligned}
$$

Metric examples

Definition

Let (X, d) be a finite metric space. We say (X, d) has length at most ℓ if there exists

- an increasing sequence

$$
\{X\}=\mathscr{X}^{0}, \mathscr{X}^{1}, \ldots, \mathscr{X}^{n}=\{\{x\}\}_{x \in X}
$$

of partitions of X, with \mathscr{X}^{i} a refinement of \mathscr{X}^{i-1}

- positive numbers a_{1}, \ldots, a_{n}, with $\ell=\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{\frac{1}{2}}$, such that if

$$
\mathscr{X}^{i}=\left\{A_{j}^{i}\right\}_{1 \leqslant j \leqslant m}
$$

then for all A_{j}^{i}, A_{k}^{i} contained in some A_{p}^{i-1} there exists a bijection $\phi: A_{j}^{i} \rightarrow A_{k}^{i}$ such that $d(x, \phi(x)) \leqslant a_{i}$ for all $x \in A_{j}^{i}$.

The length of a metric space is always at most its diameter.

Metric examples

Theorem

Let (X, d) be a finite metric space of length at most ℓ, and let μ be the uniform probability measure on X. For every 1-Lipschitz function F on (X, d) and every $r \geqslant 0$,

$$
\mu\left(\left\{F \geqslant \int F d \mu+r\right\}\right) \leqslant e^{-r^{2} / 2 \ell^{2}}
$$

Metric examples

Proof.

- Let \mathscr{F}_{i} be the σ-field generated by \mathscr{X}^{i}, and set $F_{i}=\mathrm{E}\left[F \mid \mathscr{F}_{i}\right]$, which is a martingale sequence with $F_{0}=\int F d \mu$.
- Let $B=A_{j}^{i}, C=A_{k}^{i}$ be distinct atoms of \mathscr{F}_{i} contained in a single atom A_{p}^{i-1} of \mathscr{F}_{i-1}.
- Thus F_{i} is constant on B, C, and

$$
F_{i} \left\lvert\, C=\frac{1}{|C|} \sum_{x \in C} F(x)=\frac{1}{|B|} \sum_{x \in B} F(\phi(x))\right.
$$

so that $\left|F_{i}\right| C-\left.F_{i}\right|_{B} \mid \leqslant a_{i}$ by the 1-Lipschitz property.

- The conclusion follows from the variant of Azuma's inequality.

Metric examples

- Consider the symmetric group \mathfrak{S}_{n} on n letters, given the metric, for $\sigma, \pi \in \mathfrak{S}_{n}$,

$$
d(\sigma, \pi)=\frac{1}{n} \#\{i: \sigma(i) \neq \pi(i)\}
$$

- Let \mathscr{X}_{i} be the partition consisting of sets

$$
A_{j_{1}, \ldots, j_{i}}=\left\{\sigma \in \mathfrak{S}_{n}: \sigma(1)=j_{1}, \ldots, \sigma(i)=j_{i}\right\}
$$

- If $B, C \in \mathscr{X}_{i}$ satisfy $B, C \subset A \in \mathscr{X}_{i-1}$ then B and C differ only at place i, given by j_{i}, j_{i}^{\prime}, say.
- Let ϕ be the relabeling that swaps j_{i} and j_{i}^{\prime} in the image of the permutation, so that we may take all $a_{i}=\frac{2}{n}$ and $\ell=\frac{2}{\sqrt{n}}$. Note that the diameter is 1 .

Metric examples

We obtain the following corollary for the symmetric group.
Theorem
Let μ be the uniform probability measure on $\left(\mathfrak{S}_{n}, d\right)$. For any 1-Lipschitz function F on $\left(\mathscr{F}_{n}, d\right)$ and any $r \geqslant 0$,

$$
\mu\left(\left\{F \geqslant \int F d \mu+r\right\}\right) \leqslant e^{-n r^{2} / 8}
$$

Metric examples

Example

Let $F(\sigma)$ be the number of transpositions (i, j) required to reach permutation σ from the identity. F is n-Lipschitz, as may be seen by moving one coordinate into correct position at a time. Hence

$$
\mu\left(\left\{F \geqslant \int F d \mu+r\right\}\right) \leqslant e^{-r^{2} / 8 n}
$$

so F is concentrated at a scale of \sqrt{n} about its mean.

Talagrand's inequality

- Consider (finite) probability spaces $\left(\Omega_{i}, \Sigma_{i}, \mu_{i}\right)_{i=1}^{n}$ with product measure $P=\mu_{1} \otimes \cdots \otimes \mu_{n}$ on $X=\Omega_{1} \times \cdots \times \Omega_{n}$.
- Consider weighted Hamming metrics. Let $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}_{+}^{n}$,

$$
|a|^{2}=\sum_{i=1}^{n} a_{i}^{2}
$$

and

$$
d_{a}(x, y)=\sum_{i=1}^{n} a_{i} \mathbf{1}\left(x_{i} \neq y_{i}\right)
$$

Talagrand's inequality

- Given a non-empty set $A \subset X$ and $x \in X$ define a distance

$$
D_{A}(x)=\sup _{|a|=1} d_{a}(x, A)
$$

- Let

$$
U_{A}(x)=\left\{s=\left(s_{i}\right)_{1 \leqslant i \leqslant n} \in\{0,1\}^{n}: \exists y \in A, y_{i}=x_{i} \text { if } s_{i}=0\right\}
$$

- Let $V_{A}(x)$ be the convex hull in $[0,1]^{n}$ of $U_{A}(x)$. Note that $0 \in V_{A}(x)$ if and only if $x \in A$.

Talagrand's inequality

Lemma
We have

$$
D_{A}(x)=d\left(0, V_{A}(x)\right)=\inf _{y \in V_{A}(x)}|y| .
$$

Talagrand's inequality

Proof.

- If $d\left(0, V_{A}(x)\right) \leqslant r$, there exists $z \in V_{A}(x)$ with $|z| \leqslant r$. Let $a \in \mathbb{R}_{+}^{n}$ with $|a|=1$. Then

$$
\inf _{y \in V_{A}(x)} a \cdot y \leqslant a \cdot z \leqslant|z| \leqslant r
$$

- Since

$$
\inf _{y \in V_{A}(x)} a \cdot y=\inf _{s \in U_{A}(x)} a \cdot s=d_{a}(x, A)
$$

this proves $D_{A}(x) \leqslant r$.

Talagrand's inequality

Proof.

- To prove the reverse direction, let $z \in V_{A}(x)$ such that $|z|=d\left(0, V_{A}(x)\right)>0$ and let $a=\frac{z}{\mid z}$.
- Let $y \in V_{A}(x)$. Then for $\theta \in[0,1], \theta y+(1-\theta) z \in V_{A}(x)$ so

$$
|z+\theta(y-z)|^{2}=|\theta y+(1-\theta) z|^{2} \geqslant|z|^{2} .
$$

- Letting $\theta \rightarrow 0,(y-z) \cdot z \geqslant 0$, so

$$
a \cdot y \geqslant|z|=d\left(0, V_{A}(x)\right) .
$$

- Hence

$$
D_{A}(x) \geqslant d_{a}(x, A)=\inf _{y \in V_{A}(x)} a \cdot y \geqslant d\left(0, V_{A}(x)\right) .
$$

Talagrand's inequality

Theorem (Talagrand's inequality)
For every measurable non-empty subset A of $X=\Omega^{1} \times \cdots \times \Omega^{n}$, and every product probability P on X,

$$
\int e^{D_{A}^{2} / 4} d P \leqslant \frac{1}{P(A)}
$$

In particular, for every $r \geqslant 0$,

$$
P\left(\left\{D_{A} \geqslant r\right\}\right) \leqslant \frac{e^{-r^{2} / 4}}{P(A)} .
$$

Talagrand's inequality

Proof.

- Without loss of generality, let (Ω, Σ, μ) be a prob. space and let $P=\mu^{n}$ be the n-fold product on $X=\Omega^{n}$.
- The proof is by induction. The case $n=1$ amounts to the inequality

$$
P(A)(1-P(A)) \leqslant \frac{1}{4}<e^{-1 / 4}
$$

- To make the inductive step, let $A \in \Omega^{n+1}$ and let B be the projection to Ω^{n}, forgetting the last coordinate.
- For $\omega \in \Omega$ let $A(\omega)$ be the section of A along ω

Talagrand's inequality

Proof.

- Given $x \in \Omega^{n}$ and $\omega \in \Omega$, write $z=(x, \omega)$.
- If $s \in U_{A(\omega)}$ then $(s, 0) \in U_{A}(z)$. If $t \in U_{B}(x)$ then $(t, 1) \in U_{A}(z)$.
- Hence if $\xi \in V_{A(\omega)}(x)$ and $\zeta \in V_{B}(x)$ and $0 \leqslant \theta \leqslant 1$ then $(\theta \xi+(1-\theta) \zeta, 1-\theta) \in V_{A}(z)$.
- By convexity,

$$
\begin{aligned}
D_{A}(z)^{2} & \leqslant(1-\theta)^{2}+|\theta \xi+(1-\theta) \zeta|^{2} \\
& \leqslant(1-\theta)^{2}+\theta|\xi|^{2}+(1-\theta)|\zeta|^{2}
\end{aligned}
$$

so

$$
D_{A}(z)^{2} \leqslant(1-\theta)^{2}+\theta D_{A(\omega)}(x)^{2}+(1-\theta) D_{B}(x)^{2} .
$$

Talagrand's inequality

Proof.

- By Hölder's inequality and the induction hypothesis, for fixed $\omega \in \Omega$,

$$
\begin{aligned}
\int_{\Omega^{n}} e^{D_{A}(x, \omega)^{2} / 4} d P(x) & \leqslant e^{\frac{(1-\theta)^{2}}{4}}\left(\int_{\Omega^{n}} e^{D_{A(\omega)}^{2} / 4} d P\right)^{\theta}\left(\int_{\Omega^{n}} e^{D_{B}^{2} / 4} d P\right)^{1-\theta} \\
& \leqslant e^{\frac{(1-\theta)^{2}}{4}}\left(\frac{1}{P(A(\omega))}\right)^{\theta}\left(\frac{1}{P(B)}\right)^{1-\theta} \\
& =\frac{1}{P(B)} e^{\frac{(1-\theta)^{2}}{4}}\left(\frac{P(A(\omega))}{P(B)}\right)^{-\theta} .
\end{aligned}
$$

- Use $\inf _{\theta \in[0,1]} \frac{(1-\theta)^{2}}{4} u^{-\theta} \leqslant 2-u$, so

$$
\int_{\Omega^{n}} e^{D_{A}(x, \omega)^{2} / 4} d P(x) \leqslant \frac{1}{P(B)}\left(2-\frac{P(A(\omega))}{P(B)}\right) .
$$

Talagrand's inequality

Proof.

- Use $u(2-u) \leqslant 1$ and integrate in ω to find

$$
\begin{aligned}
\int_{\Omega^{n+1}} e^{D_{A}(x, \omega)^{2} / 4} d P(x) d \mu(\omega) & \leqslant \frac{1}{P(B)}\left(2-\frac{P \otimes \mu(A)}{P(B)}\right) \\
& \leqslant \frac{1}{P \otimes \mu(A)}
\end{aligned}
$$

Longest increasing subsequence

- Consider points $x_{1}, \ldots, x_{n} \in[0,1]$.
- Denote by $L_{n}\left(x_{1}, \ldots, x_{n}\right)=L_{n}(x)$ the length of the longest increasing subsequence, that is, the largest p so that there exist $i_{1}<i_{2}<\ldots<i_{p}$ with

$$
x_{i_{1}}<x_{i_{2}}<\cdots<x_{i_{p}}
$$

- When U_{1}, \ldots, U_{n} are i.i.d. uniform on $[0,1], L_{n}\left(U_{1}, \ldots, U_{n}\right)$ has the same distribution as the longest increasing sequence in a random permutation.

Longest increasing subsequence

Lemma
Given $s \geqslant 0$, let $A=A_{s}=\left\{x \in[0,1]^{n}: L_{n}(x) \leqslant s\right\}$. We have

$$
s \geqslant L_{n}(x)-D_{A}(x) \sqrt{L_{n}(x)}
$$

In particular,

$$
D_{A}(x) \geqslant \frac{u}{\sqrt{s+u}}
$$

whenever $L_{n}(x) \geqslant s+u$.

Longest increasing subsequence

Proof.

- Let $I \subset\{1,2, \ldots, n\}$ with $|I|=L_{n}(x)$ such that if $i, j \in I$ with $i<j$ then $x_{i}<x_{j}$.
- Choose a supported on I with value $\left.a\right|_{I} \equiv \frac{1}{\sqrt{L_{n}(x)}}$ to find that there exists $y \in A$ such that $J=\left\{i \in I: y_{i} \neq x_{i}\right\}$ satisfies

$$
|J| \leqslant D_{A} \sqrt{L_{n}(x)}
$$

- It follows that $\left(x_{i}\right)_{i \in \Lambda \backslash J}$ is an increasing subsequence of y, which proves the first part of the lemma.
- The second part of the lemma follows from $D_{A} \geqslant \frac{L_{n}(x)-s}{\sqrt{L_{n}(x)}}$ since $u \mapsto \frac{u-s}{\sqrt{u}}$ is increasing in $u \geqslant s$.

Longest increasing subsequence

Theorem
Let m_{n} be a median of $L_{n}=L_{n}\left(U_{1}, \ldots, U_{n}\right)$, so $P\left(L_{n}>m_{n}\right) \leqslant 1 / 2$ and $P\left(L_{n}<m_{n}\right) \leqslant 1 / 2$. For every $r \geqslant 0$,

$$
\begin{aligned}
& P\left(\left\{L_{n} \geqslant m_{n}+r\right\}\right) \leqslant 2 e^{-r^{2} / 4\left(m_{n}+r\right)} \\
& P\left(\left\{L_{n} \leqslant m_{n}-r\right\}\right) \leqslant 2 e^{-r^{2} / 4 m_{n}}
\end{aligned}
$$

so, in particular, for $0 \leqslant r \leqslant m_{n}$,

$$
P\left(\left\{\left|L_{n}-m_{n}\right| \geqslant r\right\}\right) \leqslant 4 e^{-r^{2} / 8 m_{n}}
$$

Longest increasing subsequence

Proof.

- Let $A=\left\{x: L_{n}(x) \leqslant m_{n}\right\}$ and let $B=\left\{x: L_{n}(x) \geqslant m_{n}+r\right\}$.
- By Talagrand's inequality,

$$
\int_{B} e^{D_{A}^{2} / 4} \leqslant \frac{1}{P(A)} \leqslant 2
$$

- $D_{A} \geqslant \frac{r}{\sqrt{m_{n}+r}}$ on B, the first bound follows.
- Now let $A=\left\{x: L_{n}(x) \leqslant m_{n}-r\right\}$ and $B=\left\{x: L_{n}(x) \geqslant m_{n}\right\}$ so that $D_{A}(x) \geqslant \frac{r}{\sqrt{m_{n}}}$ on B, so

$$
\frac{1}{2} \leqslant P(B) \leqslant \frac{e^{-r^{2} / 4 m_{n}}}{P(A)}
$$

Lipschitz functions

Definition

Let $X=\Omega_{1} \times \cdots \times \Omega_{n}$. We say that a function $F: X \rightarrow \mathbb{R}$ is 1 -Lipschitz in the sense of Talagrand, if for every $x \in X$ there exists $a=a(x)$ such that, for every $y \in X$,

$$
F(x) \leqslant F(y)+d_{a}(x, y)
$$

Talagrand's inequality for Lipschitz functions

Theorem

Let P be a product probability measure on the space $X=\Omega_{1} \times \cdots \times \Omega_{n}$, and let $F: X \rightarrow \mathbb{R}$ be 1-Lipschitz in the sense of Talagrand. Let m_{F} be a median for F, so that $P\left(F \geqslant m_{F}\right), P\left(F \leqslant m_{F}\right) \geqslant \frac{1}{2}$. Then, for every $r \geqslant 0$,

$$
P\left(\left\{\left|F-m_{F}\right| \geqslant r\right\}\right) \leqslant 4 e^{-r^{2} / 4} .
$$

Talagrand's inequality for Lipschitz functions

Proof.

- Let $A=\left\{F \leqslant m_{F}\right\}$.
- By the 1-Lipschitz property, for each x there exists $a=a(x)$ such that

$$
F(x) \leqslant m_{F}+d_{a}(x, A) \leqslant m_{F}+D_{A}(x) .
$$

- Hence, by Talagrand's inequality,

$$
P\left(\left\{F \geqslant m_{F}+r\right\}\right) \leqslant P\left(\left\{D_{A} \geqslant r\right\}\right) \leqslant \frac{e^{-r^{2} / 4}}{P(A)} \leqslant 2 e^{-r^{2} / 4} .
$$

- To bound the lower tail, argue similarly, replacing m_{F} with $m_{F}-r$.

Suprema of linear functionals

- Let Y_{1}, \ldots, Y_{n} be independent random variables taking values in $[0,1]$
- Let

$$
Z=\sup _{t \in \mathscr{T}} \sum_{i=1}^{n} t_{i} Y_{i}
$$

where \mathscr{T} is a finite family of vectors $t=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$.

- Let $\sigma=\sup _{t \in \mathscr{T}}|t|_{2}$.

Suprema of linear functionals

- Let $X=[0,1]^{n}$ with P the product measure of the laws of the Y_{i}, and, for $x \in X, F(x)=\sup _{t \in \mathscr{T}} \sum_{i=1}^{n} t_{i} x_{i}$.
- Given $x=\left(x_{1}, \ldots, x_{n}\right) \in X$, let $t=t(x)$ achieve the supremum of $F(x)$. Then, for all $y \in X$,

$$
\begin{aligned}
F(x)=\sum_{i=1}^{n} t_{i} x_{i} & \leqslant \sum_{i=1}^{n} t_{i} y_{i}+\sum_{i=1}^{n}\left|t_{i}\right|\left|x_{i}-y_{i}\right| \\
& \leqslant F(y)+\sigma \sum_{i=1}^{n} \frac{\left|t_{i}\right|}{\sigma} \mathbf{1}\left(x_{i} \neq y_{i}\right)
\end{aligned}
$$

It follows that $\sigma^{-1} F$ is 1-Lipschitz in the sense of Talagrand, by choosing $a=a(x)=\sigma^{-1}\left(\left|t_{1}\right|, \ldots,\left|t_{n}\right|\right)$.

Suprema of linear functionals

We obtain the following corollary.

Corollary

Let $\left\{Y_{i}\right\}_{i=1}^{n}$ be independent random variables taking values in $[0,1]$, let \mathscr{T} be a finite family of linear functionals on \mathbb{R}^{n} bounded in ℓ^{2} by σ, and let

$$
Z=\sup _{t \in \mathscr{T}} \sum_{i=1}^{n} t_{i} Y_{i}
$$

Let m_{Z} be a median of Z. Then, for every $r \geqslant 0$,

$$
P\left(\left\{\left|Z-m_{Z}\right| \geqslant r\right\}\right) \leqslant 4 e^{-r^{2} / 4 \sigma^{2}}
$$

First passage percolation

Theorem

Let $G=(V, E)$ be a graph. Let $\left(Y_{e}\right)_{e \in E}$ be i.i.d. random variables (passage times) taking values in $[0,1]$. Let \mathscr{T} be a set of subsets of E.
Given $T \in \mathscr{T}$, let $Y_{T}=\sum_{e \in T} Y_{e}$. Define

$$
Z_{\mathscr{T}}=\inf _{T \in \mathscr{T}} Y_{T}=\inf _{T \in \mathscr{T}} \sum_{e \in T} Y_{e} .
$$

Let $D=\sup _{T \in \mathscr{T}}|T|$ and let m be a median of $Z_{\mathscr{F}}$. Then, for each $r>0$,

$$
P\left(\left\{\left|Z_{\mathscr{T}}-m\right| \geqslant r\right\}\right) \leqslant 4 e^{-r^{2} / 4 D} .
$$

The set \mathscr{T} could be taken to be a collection of paths connecting a pair of vertices $x, y . Z_{\mathscr{F}}$ is then the lowest cost path among these.

Further applications

Talagrand's method may also be used to prove concentration for the traveling salesman problem, and minimum length spanning tree for random collections of points in $[0,1]^{2}$.

Concentration in Gauss space

Definition

Denote $\gamma_{N}(d x)=(2 \pi)^{-N / 2} \exp \left(-|x|^{2} / 2\right) d x$ the Gaussian measure on \mathbb{R}^{N}. Define the usual Lipschitz norm of a real function f on \mathbb{R}^{N},

$$
\|f\|_{\text {Lip }}=\sup \left\{\frac{|f(x)-f(y)|}{|x-y|}: x, y \in \mathbb{R}^{N}\right\} .
$$

We say a function is Lipschitz if it has finite Lipschitz norm.

Concentration in Gauss space

Theorem

Given Lipschitz function f, let

$$
E_{f}=\int_{\mathbb{R}^{N}} f(x) d \gamma_{N}
$$

For any $t \geqslant 0$,

$$
\gamma_{N}\left(\left|f-E_{f}\right|>t\right) \leqslant 2 \exp \left(-2 t^{2} / \pi^{2}\|f\|_{\text {Lip }}^{2}\right) .
$$

With more care, the constant $\frac{2}{\pi^{2}}$ can be replaced with $\frac{1}{2}$ in the exponential.

Concentration in Gauss space

Proof.

- Let f Lipschitz on \mathbb{R}^{N}, so f is a.e. differentiable and satisfies

$$
|\nabla f| \leqslant\|f\|_{\text {Lip }}
$$

- Shifting by a constant, assume $\int f d \gamma_{N}=0$.
- By convexity

$$
\begin{aligned}
\gamma_{N}(f>t) & \leqslant \exp (-\lambda t) \int \exp (\lambda f) d \gamma_{N} \\
& \leqslant \exp (-\lambda t) \iint \exp [\lambda(f(x)-f(y))] d \gamma_{N}(x) d \gamma_{N}(y)
\end{aligned}
$$

Concentration in Gauss space

Proof.

- Given $x, y \in \mathbb{R}^{n}$, let

$$
x(\theta)=x \sin \theta+y \cos \theta, \quad x^{\prime}(\theta)=x \cos \theta-y \sin \theta
$$

so that

$$
f(x)-f(y)=\int_{0}^{\pi / 2} \frac{d}{d \theta} f(x(\theta)) d \theta=\int_{0}^{\pi / 2}\left\langle\nabla f(x(\theta)), x^{\prime}(\theta)\right\rangle d \theta
$$

- By Jensen, $\gamma_{N}(f>t)$ is bounded by

$$
\exp (-\lambda t) \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \iint \exp \left[\frac{\lambda \pi}{2}\left\langle\nabla f(x(\theta)), x^{\prime}(\theta)\right\rangle\right] d \gamma_{N}(x) d \gamma_{N}(y) d \theta
$$

Concentration in Gauss space

Proof.

- For fixed θ, the distribution of $\left(x(\theta), x^{\prime}(\theta)\right)$ is the same as the distribution of x, y. Hence

$$
\begin{aligned}
\gamma_{N}(f>t) & \leqslant \exp (-\lambda t) \iint \exp \left[\frac{\lambda \pi}{2}\langle\nabla f(x), y\rangle\right] d \gamma_{N}(x) d \gamma_{N}(y) \\
& \leqslant \exp (-\lambda t) \int \exp \left(\frac{\lambda^{2} \pi^{2}}{8}|\nabla f|^{2}\right) d \gamma_{n} \\
& \leqslant \exp \left(-\lambda t+\frac{\lambda^{2} \pi^{2}}{8}\|f\|_{\text {Lip }}^{2}\right)
\end{aligned}
$$

- Choose $\lambda=\frac{4 t}{\pi^{2}\|f\|_{\text {Lip }}^{2}}$ to obtain

$$
\gamma_{N}(f>t) \leqslant \exp \left(-2 t^{2} / \pi^{2}\|f\|_{\text {Lip }}^{2}\right)
$$

Log Sobolev inequalities

Definition

Given a probability space (Ω, Σ, μ) and a non-negative measurable f, define it's entropy

$$
\operatorname{Ent}_{\mu}(f)=\int f \log f d \mu-\int f d \mu \log \int f d \mu
$$

where $\int f(\log 1+f) d \mu<\infty$ and ∞ otherwise.
This is homogeneous of degree 1 .

Log Sobolev inequalities

Definition

We say a Borel probability measure μ on \mathbb{R}^{n} satisfies a logarithmic Sobolev inequality with constant $C>0$ if, for all smooth enough functions f,

$$
\operatorname{Ent}_{\mu}\left(f^{2}\right) \leqslant 2 C \int|\nabla f|^{2} d \mu
$$

Log Sobolev inequalities

Abbreviate γ the Gaussian measure on \mathbb{R}^{n}.
Theorem
For every smooth enough function f on \mathbb{R}^{n},

$$
\operatorname{Ent}_{\gamma}\left(f^{2}\right) \leqslant 2 \int|\nabla f|^{2} d \gamma
$$

Log Sobolev inequalities

Proof.

- Let $\left(P_{t}\right)_{t \geqslant 0}$ denote the Ornstein-Uhlenbeck semigroup, which has integral representation

$$
P_{t} f(x)=\int f\left(e^{-t} x+\left(1-e^{-2 t}\right) y\right) d \gamma(y), \quad t \geqslant 0, x \in \mathbb{R}^{n}
$$

- Let f be smooth and non-negative, satisfying $\epsilon \leqslant f \leqslant 1 / \epsilon$.
- Since $P_{0} f=f$ and $\lim _{t \rightarrow \infty} P_{t} f=\int f d \gamma$,

$$
\operatorname{Ent}_{\gamma}(f)=-\int_{0}^{\infty} \frac{d}{d t}\left(\int P_{t} f \log P_{t} f d \gamma\right) d t
$$

Log Sobolev inequalities

Proof.

- We have $P_{t}=e^{t L}$ where $L=\Delta-x \cdot \nabla$. The second order differential operator L satisfies, for smooth f, g,

$$
\int f(L g) d \gamma=-\int \nabla f \cdot \nabla g d \gamma
$$

- Hence

$$
\begin{aligned}
\frac{d}{d t} \int P_{t} f \log P_{t} f d \gamma & =\int L P_{t} f \log P_{t} f d \gamma+\int L P_{t} f d \gamma \\
& =-\int \frac{\left|\nabla P_{t} f\right|^{2}}{P_{t} f} d \gamma
\end{aligned}
$$

Log Sobolev inequalities

Proof.

- Calculate, from the integral representation,

$$
\nabla P_{t} f=e^{-t} P_{t}(\nabla f) \Rightarrow\left|\nabla P_{t} f\right| \leqslant e^{-t} P_{t}(|\nabla f|)
$$

- By Cauchy-Schwarz,

$$
P_{t}(|\nabla f|)^{2} \leqslant P_{t}(f) P_{t}\left(\frac{|\nabla f|^{2}}{f}\right) .
$$

- Combining these steps,

$$
\operatorname{Ent}_{\gamma}(f) \leqslant \int_{0}^{\infty} e^{-2 t}\left(\int P_{t}\left(\frac{|\nabla f|^{2}}{f}\right) d \gamma\right) d t=\frac{1}{2} \int \frac{|\nabla f|^{2}}{f} d \gamma
$$

The conclusion follows on replacing f with f^{2} and letting $\epsilon \downarrow 0$.

Log Sobolev inequalities

We can now use the Log Sobolev inequality satisfied by Gaussian measure to obtain the sharper constant in Gaussian concentration.

Theorem
Let F be a 1-Lipschitz function on \mathbb{R}^{n}. Then

$$
\gamma\left(\left\{F \geqslant \int F d \gamma+r\right\}\right) \leqslant e^{-r^{2} / 2}
$$

Log Sobolev inequalities

The following argument is due to Herbst.

Proof.

- Let F be a 1-Lipschitz function, satisfying $|\nabla F| \leqslant\|F\|_{\text {Lip }}=1$ a.e.
- Assume, as we may, that $\int F d \gamma=0$.
- Consider $f^{2}=e^{\lambda F-\lambda^{2} / 2}$. We have

$$
\int|\nabla f|^{2} d \gamma=\frac{\lambda^{2}}{4} \int|\nabla F|^{2} e^{\lambda F-\lambda^{2} / 2} d \gamma \leqslant \frac{\lambda^{2}}{4} \int e^{\lambda F-\lambda^{2} / 2} d \gamma
$$

Log Sobolev inequalities

Proof.

- Let $\Lambda(\lambda)=\int e^{\lambda F-\lambda^{2} / 2} d \gamma$. By log-Sob,

$$
\int\left[\lambda F-\frac{\lambda^{2}}{2}\right] e^{\lambda F-\lambda^{2} / 2} d \gamma-\Lambda(\lambda) \log \Lambda(\lambda) \leqslant \frac{1}{2} \lambda^{2} \Lambda(\lambda)
$$

which rearranges to

$$
\lambda \Lambda^{\prime}(\lambda) \leqslant \Lambda(\lambda) \log \Lambda(\lambda) \Leftrightarrow \lambda \frac{\Lambda^{\prime}(\lambda)}{\Lambda(\lambda)} \leqslant \log \Lambda(\lambda)
$$

- It follows that $H(\lambda)=\frac{\log \Lambda(\lambda)}{\lambda}$ if $\lambda>0, H(0)=\frac{\Lambda^{\prime}(0)}{\Lambda(0)}=\int F d \gamma=0$ satisfies $H^{\prime}(\lambda) \leqslant 0$. Hence $\Lambda(\lambda) \leqslant 1$.

Log Sobolev inequalities

Proof.

- We've checked, for all λ,

$$
\int e^{\lambda F} d \gamma \leqslant e^{\frac{\lambda^{2}}{2}}
$$

- Hence $P(F \geqslant r) \leqslant e^{-\lambda r+\lambda^{2} / 2}$. Choosing $\lambda=r$ proves the claim.

