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Brownian motion and random walk

This lecture follows Mörters and Peres, Chapter 5.
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Law of the iterated logarithm

Theorem

Suppose tBptq : t ě 0u is a standard linear Brownian motion. Then,
almost surely,

lim sup
tÑ8

Bptq
?

2t log log t
“ 1.
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Law of the iterated logarithm

Proof.

Fix ε ą 0 and q ą 1. Let ψptq “
?

2t log log t and

An “

"

max
0ďtďqn

Bptq ě p1` εqψpqnq

*

.

Since the distribution of the maximum up to time t is the same as for
|Bptq|,

ProbpAnq “ Prob

"

|Bpqnq|
?

qn
ě p1` εq

ψpqnq
?

qn

*

.

For Z standard normal, ProbpZ ą xq ď e´x
2{2, so

ProbpAnq ď 2 exp
`

´p1` εq2 log log qn
˘

“
2

pn log qqp1`εq2
.
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Law of the iterated logarithm

Proof.

Since the bound is summable in n we get that, almost surely, An

occurs only finitely often.

For large t, qn´1 ď t ă qn, we have

Bptq

ψptq
“

Bptq

ψpqnq

ψpqnq

qn

t

ψptq

qn

t
ď p1` εqq,

so that

lim sup
Bptq

ψptq
ď p1` εqq, a.s.

Letting ε Ó 0 and q Ó 1 we get the upper bound.
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Law of the iterated logarithm

Proof.

For the lower bound, let q ą 1.

Let
Dn “

 

Bpqnq ´ Bpqn´1q ě ψpqn ´ qn´1q
(

.

For a standard normal, there is c ą 0 such that, for large x ,

ProbpZ ą xq ě ce´x2{2

x . Thus

ProbpDnq ě Prob

˜

Z ě
ψpqn ´ qn´1q
a

qn ´ qn´1

¸

ě c
e´ log logpqn´qn´1q

a

2 log logpqn ´ qn´1q

ě
ce´ logpn log qq

a

2 logpn log qq
ą

c̃

n log n
.

Since
ř

ProbpDnq “ 8, Dn occurs i.o. almost surely.
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Law of the iterated logarithm

Proof.

Using the upper bound for ´Bpqn´1q, a.s. i.o.

Bpqnq

ψpqnq
ě
´2ψpqn´1q ` ψpqn ´ qn´1q

ψpqnq

ě
´2
?

q
`

qn ´ qn´1

qn
“ 1´

2
?

q
´

1

q
.

Letting q Ò 8 concludes the proof.
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Law of the iterated logarithm

Corollary

Suppose tBptq : t ě 0u is a standard Brownian motion. Then a.s.

lim sup
hÓ0

|Bphq|
a

2h log logp1{hq
“ 1.

Proof.

This follows on using the time inversion X ptq “ tBp1{tq.
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Law of the iterated logarithm

Lemma

If tTn : n ě 1u is a sequence of random times (not necessarily stopping

times) satisfying Tn Ñ8 and Tn`1

Tn
Ñ 1 a.s., then

lim sup
nÑ8

BpTnq

ψpTnq
“ 1 a.s.

Also, if Tn
n Ñ a ą 0 a.s. then

lim sup
nÑ8

BpTnq

ψpanq
“ 1 a.s.
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Law of the iterated logarithm

Proof.

The upper bound follows from the previous theorem.

Define, for q ą 4,

Dk “ tBpq
kq ´ Bpqk´1q ě ψpqk ´ qk´1qu

Ωk “

"

min
qkďtďqk`1

Bptq ´ Bpqkq ě ´
a

qk

*

, D˚k “ Dk X Ωk .

Note Dk and Ωk are independent.

ProbpDkq “ Prob

#

Bp1q ě
ψpqk ´ qk´1q
a

qk ´ qk´1

+

ě
c

k log k
.

Also ProbpΩkq “: cq ą 0.
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Law of the iterated logarithm

Proof.

The events tD˚2k : k ě 1u are independent and
ř

k ProbpD˚2kq “ 8,
so they occur i.o. a.s., so that

min
qkďtďqk`1

Bptq ě ψpqk ´ qk´1q ´ 2ψpqk´1q ´
a

qk .

i.o., a.s. As q Ò 8, the RHS is ψpqkqp1` op1qq.

Now define npkq “ mintn : Tn ą qku. Since Tn`1{Tn Ñ 1, it follows
that qk ď Tnpkq ă qkp1` εq for all large k, so that

lim sup
nÑ8

BpTnq

ψpTnq
ě 1.
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Law of the iterated logarithm

Theorem

Let tSn : n ě 0u be a simple random walk. Then, almost surely,

lim sup
nÑ8

Sn
?

2n log log n
“ 1.
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Law of the iterated logarithm

Proof.

Let T0 “ 0, and, for n ě 1,

Tn “ minpt ą Tn´1 : |Bptq ´ BpTn´1q| “ 1q.

Evidently, BpTnq is simple random walk.

The waiting times Tn ´ Tn´1 are i.i.d. and ErTn ´ Tn´1s “ 1 so the
l.l.n. implies Tn

n Ñ 1 a.s., which reduces simple random walk to the
previous theorem.
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Skorokhod embedding theorem

Theorem (Skorokhod embedding theorem)

Let tBptq : t ě 0u be a standard Brownian motion and let X be a real
random variable with ErX s “ 0 and ErX 2s ă 8. Then there exists a
stopping time T , with respect to the natural filtration pF ptq : t ě 0q of
the Brownian motion, such that BpT q has the law of X and
ErT s “ ErX 2s.
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Hartman-Wintner law of the iterated logarithm

Combining the Skorokhod embedding theorem with the argument giving
the law of the iterated logarithm for simple random walk obtains the
following more general version.

Theorem (Hartman-Wintner law of the iterated logarithm)

Let tSn : n P Nu be a random walk with increments Sn ´ Sn´1 of zero
mean and finite variance σ2. Then

lim sup
nÑ8

Sn
a

2σ2n log log n
“ 1.
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Dubins’ embedding theorem

We say that a martingale tXn : n P Nu is a binary splitting if, whenever for
some x0, x1, ..., xn P R the event

Apx0, ..., xnq :“ tX0 “ x0,X1 “ x1, ...,Xn “ xnu

has positive probability, the random variable Xn`1 conditioned on
Apx0, ..., xnq takes on at most two values.
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Dubins’ embedding theorem

Lemma

Let X be a random variable with ErX 2s ă 8. Then there is a binary
splitting martingale tXn : n P Nu such that Xn Ñ X a.s. and in L2.
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Dubins’ embedding theorem

Proof.

Let X0 “ ErX s. Define, iteratively,

ξn “

"

1 X ě Xn

´1 X ă Xn

Gn “ σpξ0, ξ1, ..., ξn´1q

Xn “ ErX |Gns.

So defined, Xn is a binary splitting martingale. Also,

ErX 2s “ ErpX ´ Xnq
2s ` ErX 2

n s ě ErX 2
n s.
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Dubins’ embedding theorem

Proof.

Since tXnu is bounded in L2, it follows that

Xn Ñ X8 :“ ErX |G8s,

a.s. and in L2, where G8 “ σ
`
Ť8

i“0 Gi

˘

.

We claim
lim
nÒ8

ξnpX ´ Xn`1q “ |X ´ X8|.

This holds where X pωq “ X8pωq. If X pωq ă X8pwq then
Xnpωq ą X pωq for all n sufficiently large, so that, for these n,
ξnpωq “ ´1 and the claim holds. The case X pωq ą X8pωq is similar.
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Dubins’ embedding theorem

Proof.

We have

ErξnpX ´ Xn`1qs “ Erξn ErX ´ Xn`1|Gn`1ss “ 0.

Since ξnpX ´ Xn`1q is bounded in L2, Er|X ´ X8|s “ 0.
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Skorokhod embedding theorem

Proof of the Skorokhod embedding theorem.

Let tXn : n P Nu be a binary splitting martingale Xn Ñ X a.s. and in
L2.

Choose a sequence of stopping times T0 ď T1 ď ... such that BpTnq

is distributed as Xn and ErTns “ ErX 2
n s.

As Tn is an increasing sequence, we have Tn Ò T a.s. for some
stopping time T . Moreover,

ErT s “ lim
nÒ8

ErTns “ lim
nÒ8

ErX 2
n s “ ErX 2s.

Since BpTnq converges in distribution to X , and converges a.s. to
BpT q by continuity, we have BpT q is distributed as X .
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The Donsker invariance principle

Let tXn : n ě 0u be a sequence of i.i.d. random variables with ErXns “ 0
and VarpXnq “ 1. Let

Sn “

n
ÿ

k“1

Xk .

Define
Sptq “ Srts ` pt ´ rtsqpSrts`1 ´ Srtsq.

Define a sequence tS˚n : n ě 1u of random functions in C r0, 1s by

S˚n ptq “
Spntq
?

n
, t P r0, 1s.
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The Donsker invariance principle

Theorem (Donsker’s invariance principle)

On the space C r0, 1s of continuous functions on the unit interval with sup
norm, the sequence tS˚n : n ě 1u converges in distribution to a standard
Brownian motion tBptq : t P r0, 1su.

This theorem is also known as the functional central limit theorem.
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The Donsker invariance principle

Lemma

Suppose tBptq : t ě 0u is a linear Brownian motion. Then, for any
random variable X with mean 0 and variance 1, there exists a sequence of
stopping times

0 “ T0 ď T1 ď T2 ď T3 ď ...

with respect to the Brownian motion, such that

1 The sequence tBpTnq : n ě 0u has the distribution of the random
walk with increments given by the law of X

2 The sequence of functions tS˚n : n ě 0u constructed from this random
walk satisfies

lim
nÑ8

Prob

ˆ

sup
0ďtď1

ˇ

ˇ

ˇ

ˇ

Bpntq
?

n
´ S˚n ptq

ˇ

ˇ

ˇ

ˇ

ą ε

˙

“ 0.

Bob Hough Math 639: Lecture 21 April 27, 2017 24 / 48



The Donsker invariance principle

Proof.

Let T1 be a stopping time with ErT1s “ 1, such that BpT1q “ X in
distribution.

By the strong Markov property,

tB2ptq : t ě 0u “ tBpT1 ` tq ´ BpT1q : t ě 0u

is a Brownian motion independent of F`pT1q.

It follows that there is a sequence of stopping times
0 “ T0 ď T1 ď T2 ď ... such that Sn “ BpTnq is the embedded
random walk and ErTns “ n.
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The Donsker invariance principle

Proof.

Define Wnptq “
Bpntq
?
n

and let An be the event that there exists

t P r0, 1q such that |S˚n ptq ´Wnptq| ą ε.

Let k “ kptq be the unique integer with k´1
n ď t ă k

n . Since S˚n
linearly interpolates values

An ĂtD t P r0, 1q, |Sk{
?

n ´Wnptq| ą εu

Y tD t P r0, 1q, |Sk´1{
?

n ´Wnptq| ą εu.

Recall Sk “ BpTkq “
?

nWnpTk{nq. For 0 ă δ ă 1, An is contained
in

tD s, t P r0, 2s, s.t. |s ´ t| ă δ, |Wnpsq ´Wnptq| ą εu

Y tD t P r0, 1q, s.t. |Tk{n ´ t| _ |Tk´1{n ´ t| ě δu.
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The Donsker invariance principle

Proof.

Since Brownian motion is uniformly continuous on r0, 2s, the first
item may be made arbitrarily small in probability by choosing δ
sufficiently small.

To bound the second set for fixed δ, note that

lim
nÑ8

Tn

n
“ lim

nÑ8

1

n

n
ÿ

k“1

pTk ´ Tk´1q “ 1 a.s.

Now check
řαn

k“1pTk ´ Tk´1q at rationals α “ a
M , 0 ď a ď M for

sufficiently large M, and use that the sum is increasing in α.
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The Donsker invariance principle

Proof of the Donsker invariance principle.

Choose stopping times as in the proof of the previous lemma, and
recall that Wnptq “

Bpntq
?
n

is a standard Brownian motion.

Suppose K Ă C r0, 1s is closed and define

K rεs “ tf P C r0, 1s : }f ´ g}8 ď ε, some g P Ku.

Bound

ProbpS˚n P K q ď ProbpWn P K rεsq ` Probp}S˚n ´Wn}8 ą εq.

The second term tends to 0 as n Ñ8.
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The Donsker invariance principle

Proof of the Donsker invariance principle.

The first term is equal to ProbpB P K rεsq. Since

lim
εÓ0

ProbpB P K rεsq “ ProbpB P K q,

lim supnÑ8 ProbpS˚n P K q ď ProbpB P K q, which suffices to prove the
convergence in distribution.
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The Donsker invariance principle

As an example of the functional CLT we prove the following limit theorem.

Theorem

Suppose that tXk : k ě 1u is a sequence of i.i.d. random variables with
ErX1s “ 0 and ErX 2

1 s “ 1. Let tSn : n ě 0u be the associated random
walk and

Mn “ maxtSk : 0 ď k ď nu.

For all x ě 0,

lim
nÑ8

ProbpMn ě x
?

nq “
2
?

2π

ż 8

x
e´y

2{2dy .
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The Donsker invariance principle

Proof.

Let g : RÑ R be a bounded continuous function.

Define G : C r0, 1s Ñ R by

G pf q “ g

ˆ

max
xPr0,1s

f pxq

˙

.

This is continuous and bounded.

We have

ErG pS˚n qs “ E

„

g

ˆ

max0ďkďn Sk
?

n

˙

, ErG pBqs “ E

„

g

ˆ

max
0ďtď1

Bptq

˙
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The Donsker invariance principle

Proof.

By the functional CLT,

lim
nÑ8

E

„

g

ˆ

Mn
?

n

˙

“ E

„

g

ˆ

max
0ďtď1

Bptq

˙

.

Hence, by the reflection principle

lim
nÑ8

ProbpMn ě x
?

nq “ 2 Probp|Bp1q| ě xq.
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The arcsine laws

The arcsine distribution is the distribution on p0, 1q with density

1

π
a

xp1´ xq
.

The cumulative distribution function of a variable X with arcsine
distribution is given by

ProbpX ď xq “
2

π
arcsinp

?
xq, x P p0, 1q.
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The arcsine laws

Theorem (First arcsine law)

Let tBptq : t ě 0u be a standard linear Brownian motion. Then

1 The random variable L “ suptt P r0, 1s : Bptq “ 0u has an arcsine
distribution

2 The location M˚ of max Bpsq in r0, 1s has an arcsine distribution.
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The arcsine laws

Proof.

Let Mptq “ max0ďsďt Bpsq. Since Mptq ´ Bptq has the distribution
of |Bptq|, the two distributions in the theorem are the same, and it
suffices to prove the second claim.

We have

ProbpM˚ ă sq “ Probp max
0ďuďs

Bpuq ą max
sďvď1

Bpvqq

“ Probp max
0ďuďs

Bpuq ´ Bpsq ą max
sďvď1

Bpvq ´ Bpsqq

“ ProbpM1psq ą M2p1´ sqq

where M1 and M2 are independent maximum processes of Brownian
motion.
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The arcsine laws

Proof.

We have, for independent standard normals Z1,Z2,

ProbpM1psq ą M2p1´ sqq “ Probp|B1psq| ą |B2p1´ sq|q

“ Probp
?

s|Z1| ą
?

1´ s|Z2|q

“ Prob

¨

˝

|Z2|
b

Z 2
1 ` Z 2

2

ă
?

s

˛

‚.

Since the 2d Gaussian has spherical symmetry, this gives the arcsine
law.
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The arcsine laws

Theorem

Suppose that tXk : k ě 1u is a sequence of i.i.d. random variables with
ErX1s “ 0 and VarrX1s “ 1. Let tSn : n ě 0u be the associated random
walk and

Nn “ maxt1 ď k ď n : SkSk´1 ď 0u.

Then, for all x P p0, 1q,

lim
nÑ8

ProbpNn ď xnq “
2

π
arcsinp

?
xq.
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The arcsine laws

Proof.

Define bounded function g on C r0, 1s by

gpf q “ maxpt ď 1 : f ptq “ 0q

or 0 if no zero exists.

We have that gpS˚n q differs from Nn
n by an amount which is Op1{nq.

g is not continuous on C r0, 1s but it is continuous on the subset C of
functions f such that f p1q ‰ 0 and such that f takes positive and
negative values in every neighborhood of a zero. Note that B P C a.s.
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The arcsine laws

Proof.

By Donsker’s invariance principle, for every bounded continuous
function h : RÑ R,

lim
nÑ8

E

„

h

ˆ

Nn

n

˙

“ lim
nÑ8

Erh ˝ gpS˚n qs “ Erh ˝ gpBqs

so that the claim follows from the previous theorem.
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The second arcsine law

Theorem

Let tBptq : t ě 0u be a standard Brownian motion. Then
measpt P r0, 1s : Bptq ą 0q is arcsine distributed.
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The second arcsine law

Lemma

Let Sk be a simple symmetric random walk on the integers. Then
#tk P t1, ..., nu : Sk ą 0u is equal in distribution to
mintk P t0, ..., nu : Sk “ max0ďjďn Sju.

The proof is a bijection, see MP pp. 138-139.
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The second arcsine law

Proof of the second arcsine law.

Define
gpf q “ inftt P r0, 1s : f ptq “ sup

sPr0,1s
f psqu.

This is continuous on the set of f P C r0, 1s having a unique
maximum, which contains Brownian motion a.s.

By the Donsker invariant theorem

1

n
min

"

k P t0, ..., nu : Sk “ max
0ďjďn

Sj

*

converges in distribution to gpBq, which has an arcsine distribution.
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The second arcsine law

Proof of the second arcsine law.

Let
hpf q “ meastt P r0, 1s : f ptq ą 0u.

Then
1

n
#tk P t1, ..., nu : Sk ą 0u

is approximated by hpS˚n q in probability.

h is continuous on the set of f P C r0, 1s satisfying

lim
εÓ0

measpt P r0, 1s : |f ptq| ď εq “ 0

which holds for Brownian motion a.s. Thus, applying Donsker again,
one obtains the arcsine law.
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Excursions

Theorem

Let tBptq : t ě 0u be a standard linear Brownian motion and, for a ě 0,
let τa “ inftt ě 0 : Bptq “ au and σa “ inftt ě 0 : |Bptq| “ au. Then

ż τa

0
1p0 ď Bptq ď aqdt

d
“ σa.
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Excursions

Lemma

Let sptq “
şt
0 1pBpsq ě 0qds and let tpsq “ inftt ě 0 : sptq ě su its

right-continuous inverse. Then

tBptpsqq : s ě 0u
d
“ t|Bpsq| : s ě 0u.
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Excursions

Proof.

Let tSpnq : n “ 0, 1, ...u be simple random walk, and let
tS˚n psq : s ě 0u be defined by linear interpolation as in the functional
central limit theorem.

Define

spt, f q “

ż t

0
1pf psq ě 0qds, tps, f q “ infpt ě 0 : spt, f q ě sq

Removing the negative excursions from simple random walk gives
reflected random walk, so

tS˚n ptps, S
˚
n qq : s ě 0u

d
“ t|S˚n psq| : s ě 0u.
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Excursions

Proof.

Since the mapping f ÞÑ f ptp¨, f qq is continuous on the part of C r0, 1s
for which

lim
εÓ0

measps P r0, ts : ´ε ď f psq ď εq “ 0

which holds for Brownian motion with probability 1, the equality in
distribution for Brownian motion holds by the functional central limit
theorem.
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Excursions

Proof of theorem.

Observe
ż τa

0
1p0 ď Bpsq ď aqds “ infts ě 0 : Bptpsqq “ au.

Also,

infts ě 0 : Bptpsqq “ au
d
“ infts ě 0 : |Bpsq| “ au “ σa.
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