Math 639: Lecture 21

Brownian motion and random walk

Bob Hough

April 27, 2017

Bob Hough

Math 639: Lecture 21

April 27, 2017 1 / 48

-

3

Brownian motion and random walk

This lecture follows Mörters and Peres, Chapter 5.

-

• • • • • • • • • • • •

Theorem

Suppose $\{B(t) : t \ge 0\}$ is a standard linear Brownian motion. Then, almost surely,

$$\limsup_{t \to \infty} \frac{B(t)}{\sqrt{2t \log \log t}} = 1.$$

- **4 ∃ ≻** 4

Proof.

• Fix $\epsilon > 0$ and q > 1. Let $\psi(t) = \sqrt{2t \log \log t}$ and

$$A_n = \left\{ \max_{0 \le t \le q^n} B(t) \ge (1+\epsilon)\psi(q^n) \right\}.$$

Since the distribution of the maximum up to time t is the same as for |B(t)|,

$$\mathsf{Prob}(A_n) = \mathsf{Prob}\left\{\frac{|B(q^n)|}{\sqrt{q^n}} \ge (1+\epsilon)\frac{\psi(q^n)}{\sqrt{q^n}}\right\}$$

• For Z standard normal, $\operatorname{Prob}(Z > x) \leqslant e^{-x^2/2}$, so

$$\operatorname{Prob}(A_n) \leqslant 2 \exp\left(-(1+\epsilon)^2 \log \log q^n\right) = \frac{2}{(n \log q)^{(1+\epsilon)^2}}.$$

Proof.

- Since the bound is summable in *n* we get that, almost surely, *A_n* occurs only finitely often.
- For large t, $q^{n-1} \leq t < q^n$, we have

$$rac{B(t)}{\psi(t)} = rac{B(t)}{\psi(q^n)} rac{\psi(q^n)}{q^n} rac{t}{\psi(t)} rac{q^n}{t} \leqslant (1+\epsilon)q,$$

so that

$$\limsup \frac{B(t)}{\psi(t)} \leqslant (1+\epsilon)q, \ \textit{a.s.}$$

Letting $\epsilon \downarrow 0$ and $q \downarrow 1$ we get the upper bound.

· D -			
00	0	-10	nan
			-0

Proof.

• For the lower bound, let q > 1.

Let

$$D_n = \left\{ B(q^n) - B(q^{n-1}) \ge \psi(q^n - q^{n-1}) \right\}.$$

• For a standard normal, there is c > 0 such that, for large x, $Prob(Z > x) \ge \frac{ce^{-x^2/2}}{x}$. Thus

$$\operatorname{Prob}(D_n) \ge \operatorname{Prob}\left(Z \ge \frac{\psi(q^n - q^{n-1})}{\sqrt{q^n - q^{n-1}}}\right) \ge c \frac{e^{-\log\log(q^n - q^{n-1})}}{\sqrt{2\log\log(q^n - q^{n-1})}}$$
$$\ge \frac{ce^{-\log(n\log q)}}{\sqrt{2\log(n\log q)}} > \frac{\tilde{c}}{n\log n}.$$

Since $\sum \operatorname{Prob}(D_n) = \infty$, D_n occurs i.o. almost surely.

Proof.

• Using the upper bound for $-B(q^{n-1})$, a.s. i.o.

$$\begin{aligned} \frac{B(q^{n})}{\psi(q^{n})} &\ge \frac{-2\psi(q^{n-1}) + \psi(q^{n} - q^{n-1})}{\psi(q^{n})} \\ &\ge \frac{-2}{\sqrt{q}} + \frac{q^{n} - q^{n-1}}{q^{n}} = 1 - \frac{2}{\sqrt{q}} - \frac{1}{q} \end{aligned}$$

• Letting $q \uparrow \infty$ concludes the proof.

• • • • • • • • • • • •

Corollary

Suppose $\{B(t) : t \ge 0\}$ is a standard Brownian motion. Then a.s.

$$\limsup_{h\downarrow 0} \frac{|B(h)|}{\sqrt{2h\log\log(1/h)}} = 1.$$

Proof.

This follows on using the time inversion X(t) = tB(1/t).

D-		ы.		
во	D	пс	ווכ	øη
				o

→ ∃ →

Lemma

If $\{T_n : n \ge 1\}$ is a sequence of random times (not necessarily stopping times) satisfying $T_n \to \infty$ and $\frac{T_{n+1}}{T_n} \to 1$ a.s., then

$$\limsup_{n\to\infty}\frac{B(T_n)}{\psi(T_n)}=1 \ a.s.$$

Also, if $\frac{T_n}{n} \rightarrow a > 0$ a.s. then

$$\limsup_{n\to\infty}\frac{B(T_n)}{\psi(an)}=1 \ a.s.$$

	~	. 1	ш.	~	~	h
0	υı			Ju	IY.	

Proof.

- The upper bound follows from the previous theorem.
- Define, for q > 4,

$$D_{k} = \{B(q^{k}) - B(q^{k-1}) \ge \psi(q^{k} - q^{k-1})\}$$

$$\Omega_{k} = \left\{\min_{q^{k} \le t \le q^{k+1}} B(t) - B(q^{k}) \ge -\sqrt{q^{k}}\right\}, \ D_{k}^{*} = D_{k} \cap \Omega_{k}.$$

• Note D_k and Ω_k are independent.

$$\operatorname{Prob}(D_k) = \operatorname{Prob}\left\{B(1) \geqslant \frac{\psi(q^k - q^{k-1})}{\sqrt{q^k - q^{k-1}}}\right\} \geqslant \frac{c}{k \log k}.$$

Also $\operatorname{Prob}(\Omega_k) =: c_q > 0.$

Proof.

The events {D^{*}_{2k} : k ≥ 1} are independent and ∑_k Prob(D^{*}_{2k}) = ∞, so they occur i.o. a.s., so that

$$\min_{q^k \leqslant t \leqslant q^{k+1}} B(t) \geqslant \psi(q^k - q^{k-1}) - 2\psi(q^{k-1}) - \sqrt{q^k}.$$

i.o., a.s. As $q \uparrow \infty$, the RHS is $\psi(q^k)(1 + o(1))$.

• Now define $n(k) = \min\{n : T_n > q^k\}$. Since $T_{n+1}/T_n \to 1$, it follows that $q^k \leq T_{n(k)} < q^k(1+\epsilon)$ for all large k, so that

$$\limsup_{n\to\infty}\frac{B(T_n)}{\psi(T_n)} \ge 1.$$

(日) (同) (三) (三)

Theorem

Let $\{S_n : n \ge 0\}$ be a simple random walk. Then, almost surely,

$$\limsup_{n \to \infty} \frac{S_n}{\sqrt{2n \log \log n}} = 1.$$

-

3

Proof.

• Let $T_0 = 0$, and, for $n \ge 1$,

$$T_n = \min(t > T_{n-1} : |B(t) - B(T_{n-1})| = 1).$$

- Evidently, $B(T_n)$ is simple random walk.
- The waiting times $T_n T_{n-1}$ are i.i.d. and $E[T_n T_{n-1}] = 1$ so the l.l.n. implies $\frac{T_n}{n} \rightarrow 1$ a.s., which reduces simple random walk to the previous theorem.

イロト イヨト イヨト

Theorem (Skorokhod embedding theorem)

Let $\{B(t) : t \ge 0\}$ be a standard Brownian motion and let X be a real random variable with E[X] = 0 and $E[X^2] < \infty$. Then there exists a stopping time T, with respect to the natural filtration ($\mathscr{F}(t) : t \ge 0$) of the Brownian motion, such that B(T) has the law of X and $E[T] = E[X^2]$. Combining the Skorokhod embedding theorem with the argument giving the law of the iterated logarithm for simple random walk obtains the following more general version.

Theorem (Hartman-Wintner law of the iterated logarithm)

Let $\{S_n : n \in \mathbb{N}\}\$ be a random walk with increments $S_n - S_{n-1}$ of zero mean and finite variance σ^2 . Then

$$\limsup_{n\to\infty}\frac{S_n}{\sqrt{2\sigma^2 n\log\log n}}=1.$$

Ro	Ы	н,	211	πh
00			Ju,	gu

We say that a martingale $\{X_n : n \in \mathbb{N}\}$ is a *binary splitting* if, whenever for some $x_0, x_1, ..., x_n \in \mathbb{R}$ the event

$$A(x_0,...,x_n) := \{X_0 = x_0, X_1 = x_1,...,X_n = x_n\}$$

has positive probability, the random variable X_{n+1} conditioned on $A(x_0, ..., x_n)$ takes on at most two values.

イロン 不聞と 不同と 不同と

Lemma

Let X be a random variable with $E[X^2] < \infty$. Then there is a binary splitting martingale $\{X_n : n \in \mathbb{N}\}$ such that $X_n \to X$ a.s. and in L^2 .

Bob Hough

イロト イヨト イヨト

Dubins' embedding theorem

Proof.

• Let $X_0 = E[X]$. Define, iteratively,

$$\xi_n = \begin{cases} 1 & X \ge X_n \\ -1 & X < X_n \end{cases}$$
$$\mathscr{G}_n = \sigma(\xi_0, \xi_1, \dots, \xi_{n-1})$$
$$X_n = \mathsf{E}[X|\mathscr{G}_n].$$

So defined, X_n is a binary splitting martingale. Also,

$$\mathsf{E}[X^2] = \mathsf{E}[(X - X_n)^2] + \mathsf{E}[X_n^2] \ge \mathsf{E}[X_n^2].$$

(日) (同) (三) (三)

Dubins' embedding theorem

Proof.

• Since $\{X_n\}$ is bounded in L^2 , it follows that

$$X_n \to X_\infty := \mathsf{E}[X|\mathscr{G}_\infty],$$

a.s. and in L^2 , where $\mathscr{G}_{\infty} = \sigma \left(\bigcup_{i=0}^{\infty} \mathscr{G}_i \right)$.

We claim

$$\lim_{n\uparrow\infty}\xi_n(X-X_{n+1})=|X-X_{\infty}|.$$

This holds where $X(\omega) = X_{\infty}(\omega)$. If $X(\omega) < X_{\infty}(w)$ then $X_n(\omega) > X(\omega)$ for all *n* sufficiently large, so that, for these *n*, $\xi_n(\omega) = -1$ and the claim holds. The case $X(\omega) > X_{\infty}(\omega)$ is similar.

イロン イヨン イヨン

Dubins' embedding theorem

Proof.

• We have

$$E[\xi_n(X - X_{n+1})] = E[\xi_n E[X - X_{n+1}|\mathscr{G}_{n+1}]] = 0.$$

• Since $\xi_n(X - X_{n+1})$ is bounded in L^2 , $E[|X - X_{\infty}|] = 0$.

Bob Hough

- 32

(日) (周) (三) (三)

Skorokhod embedding theorem

Proof of the Skorokhod embedding theorem.

- Let $\{X_n : n \in \mathbb{N}\}$ be a binary splitting martingale $X_n \to X$ a.s. and in L^2 .
- Choose a sequence of stopping times $T_0 \leq T_1 \leq ...$ such that $B(T_n)$ is distributed as X_n and $E[T_n] = E[X_n^2]$.
- As T_n is an increasing sequence, we have T_n ↑ T a.s. for some stopping time T. Moreover,

$$\mathsf{E}[T] = \lim_{n \uparrow \infty} \mathsf{E}[T_n] = \lim_{n \uparrow \infty} \mathsf{E}[X_n^2] = \mathsf{E}[X^2].$$

 Since B(T_n) converges in distribution to X, and converges a.s. to B(T) by continuity, we have B(T) is distributed as X.

_					
_	\sim	<u> </u>	_	\sim	
_	۰.	•		۰.	

イロト イヨト イヨト イヨト

Let $\{X_n : n \ge 0\}$ be a sequence of i.i.d. random variables with $E[X_n] = 0$ and $Var(X_n) = 1$. Let

$$S_n=\sum_{k=1}^n X_k.$$

Define

$$S(t) = S_{[t]} + (t - [t])(S_{[t]+1} - S_{[t]}).$$

Define a sequence $\{S_n^*: n \ge 1\}$ of random functions in C[0,1] by

$$S_n^*(t) = \frac{S(nt)}{\sqrt{n}}, \qquad t \in [0,1].$$

Bob Hough

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem (Donsker's invariance principle)

On the space C[0,1] of continuous functions on the unit interval with sup norm, the sequence $\{S_n^* : n \ge 1\}$ converges in distribution to a standard Brownian motion $\{B(t) : t \in [0,1]\}$.

This theorem is also known as the functional central limit theorem.

Lemma

Suppose $\{B(t) : t \ge 0\}$ is a linear Brownian motion. Then, for any random variable X with mean 0 and variance 1, there exists a sequence of stopping times

 $0 = T_0 \leqslant T_1 \leqslant T_2 \leqslant T_3 \leqslant \dots$

with respect to the Brownian motion, such that

- The sequence {B(T_n) : n ≥ 0} has the distribution of the random walk with increments given by the law of X
- ② The sequence of functions {S^{*}_n : n ≥ 0} constructed from this random walk satisfies

$$\lim_{n\to\infty} \operatorname{Prob}\left(\sup_{0\leqslant t\leqslant 1}\left|\frac{B(nt)}{\sqrt{n}}-S_n^*(t)\right|>\epsilon\right)=0.$$

イロト イヨト イヨト

Proof.

- Let T_1 be a stopping time with $E[T_1] = 1$, such that $B(T_1) = X$ in distribution.
- By the strong Markov property,

$$\{B_2(t): t \ge 0\} = \{B(T_1 + t) - B(T_1): t \ge 0\}$$

is a Brownian motion independent of $\mathscr{F}^+(\mathcal{T}_1)$.

• It follows that there is a sequence of stopping times $0 = T_0 \leq T_1 \leq T_2 \leq \dots$ such that $S_n = B(T_n)$ is the embedded random walk and $E[T_n] = n$.

イロト 不得 トイヨト イヨト 二日

Proof.

- Define $W_n(t) = \frac{B(nt)}{\sqrt{n}}$ and let A_n be the event that there exists $t \in [0, 1)$ such that $|S_n^*(t) W_n(t)| > \epsilon$.
- Let k = k(t) be the unique integer with $\frac{k-1}{n} \le t < \frac{k}{n}$. Since S_n^* linearly interpolates values

$$\begin{aligned} A_n \subset \{ \exists \ t \in [0,1), |S_k/\sqrt{n} - W_n(t)| > \epsilon \} \\ \cup \{ \exists \ t \in [0,1), |S_{k-1}/\sqrt{n} - W_n(t)| > \epsilon \}. \end{aligned}$$

• Recall $S_k = B(T_k) = \sqrt{n}W_n(T_k/n)$. For $0 < \delta < 1$, A_n is contained in

$$\{ \exists s, t \in [0, 2], \text{ s.t. } |s - t| < \delta, |W_n(s) - W_n(t)| > \epsilon \} \\ \cup \{ \exists t \in [0, 1), \text{ s.t. } |T_k/n - t| \lor |T_{k-1}/n - t| \ge \delta \}.$$

Proof.

- Since Brownian motion is uniformly continuous on [0, 2], the first item may be made arbitrarily small in probability by choosing δ sufficiently small.
- To bound the second set for fixed δ , note that

$$\lim_{n \to \infty} \frac{T_n}{n} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n (T_k - T_{k-1}) = 1 \text{ a.s.}$$

• Now check $\sum_{k=1}^{\alpha n} (T_k - T_{k-1})$ at rationals $\alpha = \frac{a}{M}$, $0 \le a \le M$ for sufficiently large M, and use that the sum is increasing in α .

Bo	b	Ho	ug	h
			. 0	

イロト イヨト イヨト

Proof of the Donsker invariance principle.

- Choose stopping times as in the proof of the previous lemma, and recall that $W_n(t) = \frac{B(nt)}{\sqrt{n}}$ is a standard Brownian motion.
- Suppose $K \subset C[0,1]$ is closed and define

$$\mathcal{K}[\epsilon] = \{ f \in \mathcal{C}[0,1] : \|f - g\|_{\infty} \leqslant \epsilon, \text{ some } g \in \mathcal{K} \}.$$

Bound

 $\operatorname{Prob}(S_n^* \in K) \leqslant \operatorname{Prob}(W_n \in K[\epsilon]) + \operatorname{Prob}(\|S_n^* - W_n\|_{\infty} > \epsilon).$

The second term tends to 0 as $n \rightarrow \infty$.

_						
	_	h	_	~	~	ь
	101			c)	 μ.	
					-	

Proof of the Donsker invariance principle.

• The first term is equal to $Prob(B \in K[\epsilon])$. Since

$$\lim_{\epsilon \downarrow 0} \operatorname{Prob}(B \in K[\epsilon]) = \operatorname{Prob}(B \in K),$$

 $\limsup_{n\to\infty} \operatorname{Prob}(S_n^* \in K) \leq \operatorname{Prob}(B \in K), \text{ which suffices to prove the convergence in distribution.}$

- 4 🗇 🕨 4 🖻 🕨 4 🖻

As an example of the functional CLT we prove the following limit theorem.

Theorem

Suppose that $\{X_k : k \ge 1\}$ is a sequence of i.i.d. random variables with $E[X_1] = 0$ and $E[X_1^2] = 1$. Let $\{S_n : n \ge 0\}$ be the associated random walk and

$$M_n = \max\{S_k : 0 \leqslant k \leqslant n\}.$$

For all $x \ge 0$,

$$\lim_{n\to\infty} \operatorname{Prob}(M_n \geqslant x\sqrt{n}) = \frac{2}{\sqrt{2\pi}} \int_x^\infty e^{-y^2/2} dy$$

Proof.

- Let $g : \mathbb{R} \to \mathbb{R}$ be a bounded continuous function.
- Define $G: C[0,1] \to \mathbb{R}$ by

$$G(f) = g\left(\max_{x\in[0,1]}f(x)\right).$$

We have

$$\mathsf{E}[G(S_n^*)] = \mathsf{E}\left[g\left(\frac{\max_{0 \le k \le n} S_k}{\sqrt{n}}\right)\right], \ \mathsf{E}[G(B)] = \mathsf{E}\left[g\left(\max_{0 \le t \le 1} B(t)\right)\right]$$

・ロン ・四 ・ ・ ヨン ・ ヨン

Proof.

• By the functional CLT,

$$\lim_{n \to \infty} \mathsf{E}\left[g\left(\frac{M_n}{\sqrt{n}}\right)\right] = \mathsf{E}\left[g\left(\max_{0 \le t \le 1} B(t)\right)\right].$$

• Hence, by the reflection principle

$$\lim_{n\to\infty} \operatorname{Prob}(M_n \ge x\sqrt{n}) = 2\operatorname{Prob}(|B(1)| \ge x).$$

D-		ы.		
во	D	пс	ווכ	øη
				o

御 と く ヨ と く

The arcsine distribution is the distribution on (0,1) with density

$$\frac{1}{\pi\sqrt{x(1-x)}}$$

The cumulative distribution function of a variable X with arcsine distribution is given by

$$\operatorname{Prob}(X \leqslant x) = \frac{2}{\pi} \arcsin(\sqrt{x}), \qquad x \in (0, 1).$$

(日) (同) (三) (三)

Theorem (First arcsine law)

Let $\{B(t) : t \ge 0\}$ be a standard linear Brownian motion. Then

- O The random variable L = sup{t ∈ [0,1] : B(t) = 0} has an arcsine distribution
- **2** The location M^* of max B(s) in [0,1] has an arcsine distribution.

The arcsine laws

Proof.

• Let $M(t) = \max_{0 \le s \le t} B(s)$. Since M(t) - B(t) has the distribution of |B(t)|, the two distributions in the theorem are the same, and it suffices to prove the second claim.

We have

$$\begin{aligned} \operatorname{Prob}(M^* < s) &= \operatorname{Prob}(\max_{0 \leq u \leq s} B(u) > \max_{s \leq v \leq 1} B(v)) \\ &= \operatorname{Prob}(\max_{0 \leq u \leq s} B(u) - B(s) > \max_{s \leq v \leq 1} B(v) - B(s)) \\ &= \operatorname{Prob}(M_1(s) > M_2(1-s)) \end{aligned}$$

where M_1 and M_2 are independent maximum processes of Brownian motion.

The arcsine laws

Proof.

• We have, for independent standard normals Z_1, Z_2 ,

$$\begin{aligned} \mathsf{Prob}(M_1(s) > M_2(1-s)) &= \mathsf{Prob}(|B_1(s)| > |B_2(1-s)|) \\ &= \mathsf{Prob}(\sqrt{s}|Z_1| > \sqrt{1-s}|Z_2|) \\ &= \mathsf{Prob}\left(\frac{|Z_2|}{\sqrt{Z_1^2 + Z_2^2}} < \sqrt{s}\right). \end{aligned}$$

• Since the 2d Gaussian has spherical symmetry, this gives the arcsine law.

-∢∃⊳

Theorem

Suppose that $\{X_k : k \ge 1\}$ is a sequence of i.i.d. random variables with $E[X_1] = 0$ and $Var[X_1] = 1$. Let $\{S_n : n \ge 0\}$ be the associated random walk and

$$N_n = \max\{1 \leqslant k \leqslant n : S_k S_{k-1} \leqslant 0\}.$$

Then, for all $x \in (0, 1)$,

$$\lim_{n\to\infty}\operatorname{Prob}(N_n\leqslant xn)=\frac{2}{\pi}\operatorname{arcsin}(\sqrt{x}).$$

イロト イヨト イヨト イヨト

The arcsine laws

Proof.

• Define bounded function g on C[0,1] by

$$g(f) = \max(t \leq 1 : f(t) = 0)$$

or 0 if no zero exists.

- We have that $g(S_n^*)$ differs from $\frac{N_n}{n}$ by an amount which is O(1/n).
- g is not continuous on C[0,1] but it is continuous on the subset C of functions f such that f(1) ≠ 0 and such that f takes positive and negative values in every neighborhood of a zero. Note that B ∈ C a.s.

Proof.

By Donsker's invariance principle, for every bounded continuous function h : ℝ → ℝ,

$$\lim_{n \to \infty} \mathsf{E}\left[h\left(\frac{N_n}{n}\right)\right] = \lim_{n \to \infty} \mathsf{E}[h \circ g(S_n^*)] = \mathsf{E}[h \circ g(B)]$$

so that the claim follows from the previous theorem.

< ロ > < 同 > < 三 > < 三

Theorem

Let $\{B(t) : t \ge 0\}$ be a standard Brownian motion. Then meas $(t \in [0, 1] : B(t) > 0)$ is arcsine distributed.

Bob Hough

イロト イヨト イヨト イヨト

Lemma

Let S_k be a simple symmetric random walk on the integers. Then $\#\{k \in \{1, ..., n\} : S_k > 0\}$ is equal in distribution to $\min\{k \in \{0, ..., n\} : S_k = \max_{0 \le j \le n} S_j\}.$

The proof is a bijection, see MP pp. 138-139.

- **(())) (())) ())**

The second arcsine law

Proof of the second arcsine law.

Define

$$g(f) = \inf\{t \in [0,1] : f(t) = \sup_{s \in [0,1]} f(s)\}.$$

This is continuous on the set of $f \in C[0,1]$ having a unique maximum, which contains Brownian motion a.s.

• By the Donsker invariant theorem

$$\frac{1}{n}\min\left\{k\in\{0,...,n\}:S_k=\max_{0\leqslant j\leqslant n}S_j\right\}$$

converges in distribution to g(B), which has an arcsine distribution.

Pa	Ы	1 ~		h
50	יט	10	ugi	

The second arcsine law

Proof of the second arcsine law.

Let

$$h(f) = \max\{t \in [0,1] : f(t) > 0\}.$$

Then

$$\frac{1}{n}\#\{k\in\{1,...,n\}:S_k>0\}$$

is approximated by $h(S_n^*)$ in probability.

• *h* is continuous on the set of $f \in C[0,1]$ satisfying

$$\lim_{\epsilon \downarrow 0} \operatorname{meas}(t \in [0, 1] : |f(t)| \leqslant \epsilon) = 0$$

which holds for Brownian motion a.s. Thus, applying Donsker again, one obtains the arcsine law.

- 18		` F	-0	110	
				118	
	_				

Theorem

Let $\{B(t) : t \ge 0\}$ be a standard linear Brownian motion and, for $a \ge 0$, let $\tau_a = \inf\{t \ge 0 : B(t) = a\}$ and $\sigma_a = \inf\{t \ge 0 : |B(t)| = a\}$. Then

$$\int_0^{\tau_a} \mathbf{1}(0 \leqslant B(t) \leqslant a) dt \stackrel{d}{=} \sigma_a.$$

3

イロト イヨト イヨト

Lemma

Let $s(t) = \int_0^t \mathbf{1}(B(s) \ge 0) ds$ and let $t(s) = \inf\{t \ge 0 : s(t) \ge s\}$ its right-continuous inverse. Then

$$\{B(t(s)):s\geq 0\}\stackrel{d}{=}\{|B(s)|:s\geq 0\}.$$

Bob Hough

▲ → **▲** → **▲** → **へ** ⊂ April 27, 2017 45 / 48

(日) (周) (三) (三)

Excursions

Proof.

Let {S(n) : n = 0, 1, ...} be simple random walk, and let {S_n^{*}(s) : s ≥ 0} be defined by linear interpolation as in the functional central limit theorem.

Define

$$s(t,f) = \int_0^t \mathbf{1}(f(s) \ge 0) ds, \qquad t(s,f) = \inf(t \ge 0 : s(t,f) \ge s)$$

 Removing the negative excursions from simple random walk gives reflected random walk, so

$$\{S_n^*(t(s, S_n^*)) : s \ge 0\} \stackrel{d}{=} \{|S_n^*(s)| : s \ge 0\}.$$

< ロ > < 同 > < 三 > < 三

Proof.

• Since the mapping $f \mapsto f(t(\cdot, f))$ is continuous on the part of C[0, 1] for which

$$\lim_{\epsilon \downarrow 0} \operatorname{meas}(s \in [0, t] : -\epsilon \leqslant f(s) \leqslant \epsilon) = 0$$

which holds for Brownian motion with probability 1, the equality in distribution for Brownian motion holds by the functional central limit theorem.

Excursions

Proof of theorem.

Observe

$$\int_0^{\tau_a} \mathbf{1}(0 \leqslant B(s) \leqslant a) ds = \inf\{s \ge 0 : B(t(s)) = a\}.$$

Also,

$$\inf\{s \ge 0 : B(t(s)) = a\} \stackrel{d}{=} \inf\{s \ge 0 : |B(s)| = a\} = \sigma_a.$$

	•	< 🗗 🕨	< ≣ >	< ≣ >
Bob Hough	Math 639: Lecture 21		Apr	ril 27, 20

≣ ▶ 4 ≣ ▶ ≣ ∽९९ April 27, 2017 48 / 48