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Brownian motion and random walk

This lecture follows Morters and Peres, Chapter 5.
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Law of the iterated logarithm

Theorem
Suppose {B(t) : t = 0} is a standard linear Brownian motion. Then,
almost surely,
: B(t)
limsup ———— =
t—»w +/2tloglogt
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Law of the iterated logarithm

Proof.
@ Fixe>0and g > 1. Let ¢(t) = +/2tloglogt and

A, = { max B(t) = (1+ €)y(q")
0<t<q"

@ Since the distribution of the maximum up to time t is the same as for

1B(1)],
Prob(A,) = Prob { ’B\§Z>:)| > (1+e€) w\ﬁcclT:) } :

—x2/2

@ For Z standard normal, Prob(Z > x) < e , SO

Prob(A,) < 2exp (—(1 + €)?loglog q") =

(nlog q)(+<*"

2

2

O

v
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Law of the iterated logarithm

Proof.

@ Since the bound is summable in n we get that, almost surely, A,
occurs only finitely often.

n—1

@ For large t, g < t < q", we have

B() _ B(H) v(e") t &' _ .
50 " W) o g £ S TIe
so that =
lim supwgg < (1+¢€)gq, as.

Letting € | 0 and g | 1 we get the upper bound.
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Law of the iterated logarithm

Proof.
@ For the lower bound, let g > 1.
o Let
Dp={B(q") —B(a" ) = ¢(¢"—q" )}
@ For a standard normal, there is ¢ > 0 such that, for large x,
Prob(Z > x) = €22 Thus

X

ce—log(nlogq) ¢
= > .
\/2log(nlogq) nlogn

Since > Prob(D,) = o, D, occurs i.o. almost surely.

Prob(D,) = Prob (z >

n n—1 — loglog(q"—q"~1)
Y(q"—q"") S ®
\/2loglog(q" — g™ 1)

Ol
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Law of the iterated logarithm

Proof.
e Using the upper bound for —B(g"1), a.s. i.o.
B(a") _ —2(q"Y) +¥(q" - 4"
¥(q") ¥(q")
_ n_ n—1
2 amat 2 1
Va q" Va4 q

@ Letting g 1 oo concludes the proof.
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Law of the iterated logarithm

Corollary

Suppose {B(t) : t = 0} is a standard Brownian motion. Then a.s.

B(h
lim sup B(A)] =

hlo  +/2hloglog(1/h)

Proof.
This follows on using the time inversion X (t) = tB(1/t).
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Law of the iterated logarithm

Lemma

If{T,:n=>1} is a sequence of random times (not necessarily stopping
times) satisfying T, — o0 and T”?:l — 1 a.s., then

: B(Ty)
lim su =1a.s.
e $(Tn)
Also, if% — a> 0 a.s. then
B(T,
lim sup (7») =1a.s.
n—o0 ¢(an) )
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Law of the iterated logarithm

Proof.
@ The upper bound follows from the previous theorem.

@ Define, for g > 4,
D = {B(¢*) — B(g" ™) = ¥(¢" — " 1)}

Qy = { min  B(t) — B(¢g") > —\/qk}, Df = Dy m Q.
q

kgtqu-f—l

o Note Dy and €y are independent.

Prob(Dy) = Prob {B(l) i qkl)} S—

k k—1

Also Prob(€x) =: ¢qg > 0.
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Law of the iterated logarithm

Proof.

@ The events {D3, : k > 1} are independent and »;, Prob(D},) = oo,
so they occur i.o. a.s., so that

min  B(t) = ¥(¢" — ¢* 1) — 2¢(¢" 1) — Vg

qutqu+1

i.0., a.s. As g 1 o0, the RHS is 1(q%)(1 + o(1)).

o Now define n(k) = min{n: T, > g¥}. Since T,1/T, — 1, it follows
that g < T,k < g*(1 + €) for all large &, so that

. B(Th)
lim su > 1.
n O(Ta)

Ol
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Law of the iterated logarithm

Theorem
Let {S, : n = 0} be a simple random walk. Then, almost surely,

: Sn
lim sup

— =1
n—w +/2nloglogn
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Law of the iterated logarithm

Proof.
@ Let To =0, and, forn>1,

Ty =min(t > To_1: |B(t) — B(To_1)| = 1).

e Evidently, B(T,) is simple random walk.

@ The waiting times T, — T,_1 are i.i.d. and E[T,, — T,—1] = 1 so the
[.I.n. implies % — 1 a.s., which reduces simple random walk to the
previous theorem.
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Skorokhod embedding theorem

Theorem (Skorokhod embedding theorem)

Let {B(t): t = 0} be a standard Brownian motion and let X be a real
random variable with E[X] = 0 and E[X?] < o0. Then there exists a
stopping time T, with respect to the natural filtration (Z(t) : t = 0) of

the Brownian motion, such that B(T) has the law of X and
E[T] = E[X?].
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Hartman-Wintner law of the iterated logarithm

Combining the Skorokhod embedding theorem with the argument giving
the law of the iterated logarithm for simple random walk obtains the
following more general version.

Theorem (Hartman-Wintner law of the iterated logarithm)
Let {S, : ne€ N} be a random walk with increments S, — S,_1 of zero
mean and finite variance o. Then

Sn

lim sup =3

n—w +/202nloglog n
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Dubins’ embedding theorem

We say that a martingale {X,, : n € N} is a binary splitting if, whenever for
some xg, X1, ..., Xn € R the event

A(X0y -y Xn) 1= {Xo = x0, X1 = X1, ..., Xn = Xn}

has positive probability, the random variable X, 11 conditioned on
A(xo, -.-, Xn) takes on at most two values.
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Dubins’ embedding theorem

Lemma

Let X be a random variable with E[X?] < oo. Then there is a binary
splitting martingale {X, : n € N} such that X, — X a.s. and in L.
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Dubins’ embedding theorem

Proof.
o Let Xo = E[X]. Define, iteratively,

(1 X=X,
& = -1 X < X,
gn = 0—(507517 "-7§n—1)
X, = E[X|%,].

So defined, X, is a binary splitting martingale. Also,

E[X?] = E[(X — Xa)?] + E[X7] = E[X7].
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Dubins’ embedding theorem

Proof.
@ Since {X,} is bounded in L2, it follows that

a.s. and in L2, where %, = o (U2 %) -
o We claim
lim &n(X — Xpy1) = | X — X0l
ntoo

This holds where X(w) = Xy (w). If X(w) < Xy (w) then
Xn(w) > X(w) for all n sufficiently large, so that, for these n,
&n(w) = —1 and the claim holds. The case X(w) > Xy (w) is similar.

Ol

v

Bob Hough Math 639: Lecture 21 April 27, 2017 19 / 48



Dubins’ embedding theorem

Proof.

@ We have

E[ﬁn(X - Xn-i-l)] = E[fn E[X - Xn+1|gn+1]] = 0.

o Since £,(X — X,41) is bounded in L2, E[|X — X|] = 0.

Bob Hough Math 639: Lecture 21 April 27, 2017 20 / 48



Skorokhod embedding theorem

Proof of the Skorokhod embedding theorem.
o Let {X, : ne N} be a binary splitting martingale X, — X a.s. and in
i
@ Choose a sequence of stopping times Top < T7 < ... such that B(T,)
is distributed as X, and E[T,] = E[X2].
@ As T, is an increasing sequence, we have T, 1 T a.s. for some
stopping time T. Moreover,

E[T] = lim E[T,] = |iTryO E[X2] = E[X?].

ntoo

@ Since B(T,) converges in distribution to X, and converges a.s. to
B(T) by continuity, we have B(T) is distributed as X.

Ol
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The Donsker invariance principle

Let {X, : n > 0} be a sequence of i.i.d. random variables with E[X,,] = 0
and Var(X,) = 1. Let

S, = Z Xy.
k=1
Define
S(t) = Sy + (£ = [tD(S[e+1 — Spe)-

Define a sequence {S; : n > 1} of random functions in C[0,1] by

Sy(t) = Sf/nﬁt), te[0,1].
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The Donsker invariance principle

Theorem (Donsker's invariance principle)

On the space C|[0, 1] of continuous functions on the unit interval with sup

norm, the sequence {S;} : n > 1} converges in distribution to a standard
Brownian motion {B(t) : t € [0,1]}.

This theorem is also known as the functional central limit theorem.
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The Donsker invariance principle

Lemma
Suppose {B(t) : t = 0} is a linear Brownian motion. Then, for any
random variable X with mean 0 and variance 1, there exists a sequence of

stopping times
0=To<T1 <To<T3<
with respect to the Brownian motion, such that
© The sequence {B(T,) : n = 0} has the distribution of the random
walk with increments given by the law of X
@ The sequence of functions {S;* : n = 0} constructed from this random
walk satisfies

lim Prob( sup

=20 o<t<l
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The Donsker invariance principle

Proof.

e Let T; be a stopping time with E[T1] = 1, such that B(T;) = X in
distribution.

@ By the strong Markov property,
{Bo(t) :t =0} ={B(T1 +t)—B(T1) : t =0}

is a Brownian motion independent of .Z*(Ty).

@ |t follows that there is a sequence of stopping times
0=To< Ty < Ty <..suchthat S, = B(T,) is the embedded
random walk and E[T,,] =n.
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The Donsker invariance principle

Proof.
@ Define W, (t) = % and let A, be the event that there exists
t € [0,1) such that |5 (t) — Wy(t)| > e.
@ Let k = k(t) be the unique integer with k;nl <t< % Since S}
linearly interpolates values

An c{3te[0,1),[Sk/v/n— Wp(t)] > €}
u{3te[0,1),|Sk_1/v/n— Wy(t)| > €}.
o Recall Sy = B(Ty) = +/nW,(Ty/n). For 0 < < 1, A, is contained
in
{3s,t€[0,2], s.t. |s—t| <0,|Wn(s) — Wy(t)] > €}
u{3tel0,1), sit. |Tu/n—t| v |Tk—1/n—t| = 6}.

O
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The Donsker invariance principle

Proof.

@ Since Brownian motion is uniformly continuous on [0, 2], the first
item may be made arbitrarily small in probability by choosing ¢
sufficiently small.

@ To bound the second set for fixed §, note that

n

T, 1
lim —2 = lim = Z(Tk — Tk-1) =1a.s.
n—ow n n—o n =]

o Now check > 2", (T} — Ty_1) at rationals a = 7, 0 < a < M for

sufficiently large M, and use that the sum is increasing in «.
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The Donsker invariance principle

Proof of the Donsker invariance principle.

@ Choose stopping times as in the proof of the previous lemma, and
recall that W,,(t) = % is a standard Brownian motion.

@ Suppose K < CJ0,1] is closed and define
Kle] = {fe C[0,1] : |[f — gl <€, some ge K}.
@ Bound
Prob(S; € K) < Prob(W, € K|e]) + Prob(||S;; — W, |« > €).

The second term tends to 0 as n — 0.
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The Donsker invariance principle

Proof of the Donsker invariance principle.
@ The first term is equal to Prob(B € K|e]). Since

lim Prob(B & K[c]) = Prob(B € K),

limsup,_,., Prob(S;¥ € K) < Prob(B € K), which suffices to prove the
convergence in distribution.

O]

v
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The Donsker invariance principle

As an example of the functional CLT we prove the following limit theorem.
Theorem

Suppose that {Xi : k = 1} is a sequence of i.i.d. random variables with

E[X1] = 0 and E[X?] = 1. Let {S, : n = 0} be the associated random
walk and

M, = max{Sx : 0 < k < n}.

For all x = 0,

, 2 (* _p
lim Prob(M, = xv/n) = — | e/2dy.
n—00 V21 Jx
v
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The Donsker invariance principle

Proof.

@ Let g: R — R be a bounded continuous function.
o Define G : C[0,1] —» R by

G(f) =g ( max f(x)) .

x€[0,1]

This is continuous and bounded.

@ We have

ElG(s1)] - | (0% ) | E6(6)] ~ € & (max B0
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The Donsker invariance principle

Proof.
@ By the functional CLT,

s ()] el )]

@ Hence, by the reflection principle

lim Prob(M, = x+/n) = 2Prob(|B(1)| = x).

n—o0
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The arcsine laws

The arcsine distribution is the distribution on (0, 1) with density

I
m/x(1 — x)

The cumulative distribution function of a variable X with arcsine
distribution is given by

2
Prob(X < x) = = arcsin(v/x), x € (0,1).

s

Bob Hough Math 639: Lecture 21 April 27, 2017 33 /48



The arcsine laws

Theorem (First arcsine law)
Let {B(t) : t = 0} be a standard linear Brownian motion. Then

@ The random variable L = sup{t € [0,1] : B(t) = 0} has an arcsine
distribution

@ The location M* of max B(s) in [0, 1] has an arcsine distribution.
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The arcsine laws

Proof.
o Let M(t) = maxp<s<t B(s). Since M(t) — B(t) has the distribution
of |B(t)|, the two distributions in the theorem are the same, and it
suffices to prove the second claim.

@ We have

Prob(M* < s) = Prob( max B(u) > max B(v))

O<u<s s<v<l1

— PrOb(OTL?i(S B(u) — B(s) > max B(v) — B(s))

s<v<l

= Prob(Mi(s) > Ma(1 —s))

where My and M5 are independent maximum processes of Brownian
motion.

Ol
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The arcsine laws

Proof.

@ We have, for independent standard normals 2, 2o,

Prob(M(s) > Ma(1 —s)) = Prob(|Bi(s)| > |B2(1 — s)|)
= Prob(+/s|Z1| > V1 —s|Z|)

Z
= Prob £<\/§ :

A ZE+ Z2

@ Since the 2d Gaussian has spherical symmetry, this gives the arcsine
law.

Ol
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The arcsine laws

Theorem

Suppose that {Xy : k > 1} is a sequence of i.i.d. random variables with

E[Xi1] = 0 and Var[Xi] = 1. Let {S,: n = 0} be the associated random
walk and

N, = max{1 < k < n: 55,1 <0}
Then, for all x € (0,1),

lim Prob(N, < xn) = 2 arcsin(v/x).

n—0o0 T
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The arcsine laws

Proof.
@ Define bounded function g on C[0, 1] by

g(f) =max(t<1:f(t)=0)

or 0 if no zero exists.
@ We have that g(5;) differs from % by an amount which is O(1/n).

@ g is not continuous on C[0, 1] but it is continuous on the subset € of
functions f such that (1) # 0 and such that f takes positive and
negative values in every neighborhood of a zero. Note that B € € a.s.

Ol
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The arcsine laws

Proof.

@ By Donsker's invariance principle, for every bounded continuous
function h: R — R,

lim E {h <N>] — lim E[hog(5%)] = E[ho g(B)]

n—0o0 n n—ao0

so that the claim follows from the previous theorem.
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The second arcsine law

Theorem

Let {B(t) : t = 0} be a standard Brownian motion. Then
meas(t € [0,1] : B(t) > 0) is arcsine distributed.
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The second arcsine law

Lemma

Let Si be a simple symmetric random walk on the integers. Then
#{k e {1,...,n} : Sk > 0} is equal in distribution to

min{k € {0, ..., n} : Sk = maxo<j<n Sj}-

The proof is a bijection, see MP pp. 138-139.
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The second arcsine law

Proof of the second arcsine law.
@ Define

g(f) =inf{t€[0,1]: f(t) = sup f(s)}.
se[0,1]

This is continuous on the set of f € C[0, 1] having a unique
maximum, which contains Brownian motion a.s.

o By the Donsker invariant theorem

%min {k €{0,...,n} : Sk = max SJ}

0<j<n

converges in distribution to g(B), which has an arcsine distribution.
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The second arcsine law

Proof of the second arcsine law.
o Let
h(f) = meas{t € [0,1] : f(t) > 0}.

Then |
;#{k e{l,...,n}: S >0}

is approximated by h(S}) in probability.
@ h is continuous on the set of f € C[0, 1] satisfying

limmeas(t € [0,1] : |[f(t)| <€) =0

€l0

which holds for Brownian motion a.s. Thus, applying Donsker again,
one obtains the arcsine law.
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Excursions

Theorem

Let {B(t) : t = 0} be a standard linear Brownian motion and, for a > 0,
let T, = inf{t > 0: B(t) = a} and o, = inf{t = 0: |B(t)| = a}. Then
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Excursions

Lemma

Let s(t) = §o 1( > 0)ds and let t(s) = inf{t > 0:s(t) > s} its
right—contmuous inverse. Then

{(B(t(s)) : s =0} L {|B(s)| : s > O}
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Excursions

Proof.

o Let {S(n): n=0,1,...} be simple random walk, and let
{S7(s) : s = 0} be defined by linear interpolation as in the functional
central limit theorem.

@ Define

s(t,f) = Jotl(f(s) > 0)ds, t(s,f) =inf(t =0:s(t,f)>s)

@ Removing the negative excursions from simple random walk gives
reflected random walk, so

(S*(t(s,S)) 15 =0} £ {|S*(s)| : s = 0}.

Ol
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Excursions

Proof.

@ Since the mapping f — f(t(-,f)) is continuous on the part of C[0,1]
for which
Ieilng meas(s € [0,t] : —e < f(s) <€) =0
which holds for Brownian motion with probability 1, the equality in
distribution for Brownian motion holds by the functional central limit
theorem.
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Excursions

Proof of theorem.

Observe
f 1(0 < B(s) < a)ds = inf{s > 0 : B(¢(s)) = a}.
Also,
inf{s > 0: B(t(s)) = a} Linf{s > 0: |B(s)| = a} = o,
D)
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