Math 639: Lecture 2

Differentiation, product measures, independence

Bob Hough

January 26, 2017

Signed measures

Definition

A signed measure α on a measure space (Ω, \mathscr{F}) is a set function which satisfies
(1) α takes values in $(-\infty, \infty]$
(2) $\alpha(\emptyset)=0$
(3) If $E=\bigsqcup_{i} E_{i}$ then $\alpha(E)=\sum_{i} \alpha\left(E_{i}\right)$ in the sense that

- If $\alpha(E)<\infty$ then the sum converges absolutely
- If $\alpha(E)=\infty$ then $\sum_{i}\left|\alpha\left(E_{i}\right)^{-}\right|<\infty$.

Signed measures

Example

Let μ be a measure, and f a function satisfying $\int\left|f^{-}\right| d \mu<\infty$. Then

$$
\alpha(A)=\int_{A} f d \mu
$$

is a signed measure.

Example

Let μ_{1}, μ_{2} be measures with $\mu_{2}(\Omega)<\infty$. Then $\alpha(A)=\mu_{1}(A)-\mu_{2}(A)$ is a signed measure.

Positive sets

Definition

Given signed measure α and measurable set A, A is positive if every measurable $B \subset A$ has $\alpha(B) \geq 0$. A is negative if every measurable $B \subset A$ has $\alpha(B) \leq 0$.

Lemma

Every measurable subset of a positive set is positive. If the sets A_{n} are positive, then $A=\bigcup A_{n}$ is also positive.

Positive sets

Lemma

Let E be a measurable set with $\alpha(E)<0$. Then there is a negative set $F \subset E$ with $\alpha(F)<0$.

Positive sets

Proof.

Set $F_{0}=E, i=0$ and iterate the following process.

- Let $s_{i+1}=\sup \left\{\alpha(A): A \subset F_{i}\right\}$. If $s_{i+1}=0, F_{i}$ is negative and we are done.
- Else, choose $E_{i+1} \subset F_{i}$ with $\alpha\left(E_{i+1}\right)>\frac{s_{i+1}}{2}$ and replace $F_{i+1}=F_{i} \backslash E_{i+1}$.
By additivity $s_{1}<\infty$ and $s_{i+1} \leq \frac{s_{i}}{2}$. Hence if the process does not terminate, $s_{i} \downarrow 0$. In this case, set $F=\bigcap_{i} F_{i}$. Since

$$
\alpha(E)=\alpha(F)+\sum_{i} \alpha\left(E_{i}\right)
$$

converges absolutely, F cannot contain a set of positive measure or else one of the $\alpha\left(E_{i}\right)$ would need to be increased. Hence F is negative.

Hahn decomposition

Theorem (Hahn decomposition)
Let α be a signed measure. Then there is a positive set A and a negative set B so that $\Omega=A \cup B$ and $A \cap B=0$. Furthermore, if A^{\prime}, B^{\prime} is another such decomposition, then $A \cap B^{\prime}$ and $A^{\prime} \cap B$ are null sets in the sense that all of their subsets have measure 0 .

Hahn decomposition

Proof.

To prove the uniqueness statement, note that $A \cap B^{\prime}$ is a positive and negative set, hence a null set, similarly $A^{\prime} \cap B$. We prove the existence statement.

- Let $c=\inf \{\alpha(B): B$ negative $\} \leq 0$. If $c=0$ we are done.
- Otherwise, let B_{i} be negative sets with $\alpha\left(B_{i}\right) \downarrow c$, and set $B=\bigcup_{i} B_{i}$, which is negative. Since $\alpha(B)=\alpha\left(B-B_{i}\right)+\alpha\left(B_{i}\right) \leq \alpha\left(B_{i}\right)$ we have $\alpha(B)=c>-\infty$.
- We have $A=B^{c}$ is positive, since otherwise there exists $E \subset A$ which is negative, but then $B \cup E$ is negative and $\alpha(B \cup E)<c$, contradiction.

Singular measures

Definition

Two measures μ_{1} and μ_{2} are mutually singular if there is a set A with $\mu_{1}(A)=0$ and $\mu_{2}\left(A^{c}\right)=0$. In this case we say μ_{1} is singular with respect to μ_{2} and write $\mu_{1} \perp \mu_{2}$.

Example

The uniform measure on the Cantor set is singular with respect to Lebesgue measure.

Jordan decomposition

Theorem

Let α be a signed measure. There are mutually singular measures α_{+}and α_{-}so that $\alpha=\alpha_{+}-\alpha_{-}$. Moreover, there is only one such pair.

Jordan decomposition

Proof.

Let $\Omega=A \cup B$ be a Hahn decomposition. Define

$$
\alpha_{+}(E)=\alpha(E \cap A), \quad \alpha_{-}(E)=-\alpha(E \cap B)
$$

This gives a decomposition as required. To prove the uniqueness, let ν_{1} and ν_{2} be singular measures, such that $\alpha=\nu_{1}-\nu_{2}$. Let D be such that $\nu_{1}(D)=0$ and $\nu_{2}\left(D^{c}\right)=0$. By the uniqueness of the Hahn decomposition, A and D differ on a null set, so that

$$
\alpha_{+}(E)=\alpha(E \cap A)=\alpha(E \cap D)=\nu_{1}(E)
$$

which concludes the proof.

Lebesgue decomposition

Theorem (Lebesgue decomposition)
Let μ and ν be σ-finite measures. ν can be written as $\nu_{r}+\nu_{s}$, where ν_{s} is singular with respect to μ and

$$
\nu_{r}(E)=\int_{E} g d \mu
$$

Lebesgue decomposition

Proof.

After making a countable decomposition, we may assume that both μ and ν are finite.

- Let \mathscr{G} be the set of $g \geq 0$ such that for all $E, \int_{E} g d \mu \leq \nu(E)$.
- If $g, h \in \mathscr{G}$ then $\max (g, h) \in \mathscr{G}$. To check this, let $A=\{g>h\}$ and write

$$
\int_{E} \max (g, h) d \mu=\int_{E \cap A} g d \mu+\int_{E \cap A^{c}} h d \mu \leq \nu(E)
$$

Lebesgue decomposition

Proof.

- Let $\kappa=\sup \left\{\int g d \mu: g \in \mathscr{G}\right\}$. Choose $g_{n} \in \mathscr{G}$ such that $\int g_{n} d \mu \geq \kappa-\frac{1}{n}$, set $h_{n}=\max \left(g_{1}, \ldots, g_{n}\right)$, and let $h_{n} \uparrow h$. Then by monotone convergence, $h \in \mathscr{G}$ and $\int_{\Omega} h d \mu=\kappa$.
- Set $\nu_{r}(E)=\int_{E} h d \mu$ and $\nu_{s}(E)=\nu(E)-\nu_{r}(E)$.
- To check that ν_{s} is singular with respect to μ, let $\epsilon>0$ and let $A_{\epsilon} \cup B_{\epsilon}$ be a Hahn decomposition for $\nu_{s}-\epsilon \mu$. Observe that

$$
\int_{E}\left(h+\epsilon \mathbf{1}_{A_{\epsilon}}\right) d \mu=\nu_{r}(E)+\epsilon \mu\left(A_{\epsilon} \cap E\right) \leq \nu(E) .
$$

Hence $h+\epsilon \mathbf{1}_{A_{\epsilon}} \in \mathscr{G}$, but this implies that $\mu\left(A_{\epsilon}\right)=0$.

- Let $A=\bigcup_{n} A_{\frac{1}{n}}$, with $\mu(A)=0$. We have $\nu_{s}\left(A^{c}\right)=0$, since otherwise, for some $\epsilon>0,\left(\nu_{s}-\epsilon \mu\right)\left(A^{c}\right)>0$, which contradicts that A^{c} is a negative set.

Absolutely continuous measures

Definition

We say a measure ν is absolutely continuous with respect to μ, and write $\nu \ll \mu$ if $\mu(A)=0$ implies $\nu(A)=0$.

Radon-Nikodym theorem

Theorem (Radon-Nikodym theorem)

If μ and ν are σ-finite measures and ν is absolutely continuous with respect to μ, then there is a $g \geq 0$ so that $\nu(E)=\int_{E} g d \mu$. If there is another such function, h, then $h=g \mu$-a.e.. g is written $g=\frac{d \nu}{d \mu}$.

Radon-Nikodym theorem

Proof.

Let $\nu=\nu_{r}+\nu_{s}$ be a Lebesgue decomposition, and let A be such that $\nu_{s}\left(A^{c}\right)=0, \mu(A)=0$. By absolute continuity $\nu(A)=0$ which implies $\nu_{s} \equiv 0$. Given two decompositions with functions g, h, one easily checks
$\mu(g>h)=\mu(h>g)=0$.

Product measures

Definition

Let (X, \mathscr{A}) and (Y, \mathscr{B}) be two measure spaces. The collection of rectangles of $\mathscr{A} \times \mathscr{B}$ is the empty set, together with

$$
\mathscr{S}=\{A \times B: A \in \mathscr{A}, B \in \mathscr{B}\} .
$$

The set of rectangles forms a semialgebra, since

$$
\begin{aligned}
& (A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D) \\
& (A \times B)^{c}=\left(A^{c} \times B\right) \cup\left(A \times B^{c}\right) \cup\left(A^{c} \times B^{c}\right)
\end{aligned}
$$

Product measures

Theorem

Let $\left(X, \mathscr{A}, \mu_{1}\right)$ and $\left(Y, \mathscr{B}, \mu_{2}\right)$ be two σ-finite measure spaces. Set $\Omega=X \times Y$ and $\mathscr{F}=\sigma(\mathscr{S})$. There exists a unique measure μ on \mathscr{F} such that for each rectangle $A \times B \in \mathscr{S}$,

$$
\mu(A \times B)=\mu_{1}(A) \mu_{2}(B)
$$

Product measures

Proof.

- By the Carathéodory extension theorem, it suffices to show that $\mu(A \times B)=\mu_{1}(A) \mu_{2}(B)$ extends to the algebra $\overline{\mathscr{S}}$ generated by \mathscr{S}.
- To do this, it suffices to check that if $A \times B=\bigsqcup_{i} A_{i} \times B_{i}$ is a finite or countable disjoint union, then

$$
\mu(A \times B)=\sum_{i} \mu\left(A_{i} \times B_{i}\right)
$$

- For $x \in A$ let $I(x)=\left\{i: x \in A_{i}\right\}$. We have $B=\bigsqcup_{i \in I(x)} B_{i}$, so

$$
\mathbf{1}_{A}(x) \mu_{2}(B)=\sum_{i} \mathbf{1}_{A_{i}}(x) \mu_{2}\left(B_{i}\right)
$$

Integrating with respect to μ_{1} gives $\mu_{1}(A) \mu_{2}(B)=\sum_{i} \mu_{1}\left(A_{i}\right) \mu_{2}\left(B_{i}\right)$.

Product measures

By the previous theorem and induction, it follows that if $\left\{\left(\Omega_{i}, \mathscr{F}_{i}, \mu_{i}\right): i=1, \ldots, n\right\}$ is a finite list of σ-finite measure spaces, then there is a unique measure μ on $\Omega=\Omega_{1} \times \cdots \times \Omega_{n}$, $\mathscr{F}=\sigma\left(\left\{A_{1} \times \cdots \times A_{n}: A_{i} \in \mathscr{F}_{i}\right\}\right)$ such that

$$
\mu\left(A_{1} \times \cdots \times A_{n}\right)=\prod_{m=1}^{n} \mu_{m}\left(A_{m}\right)
$$

The extension of this result to probability measures on infinite products is the subject of Kolmogorov's extension theorem.

Kolmogorov extension theorem

Let $\mathbb{N}=\{1,2,3, \ldots\}$ and let $\mathbb{R}^{\mathbb{N}}=\left\{\left(\omega_{1}, \omega_{2}, \ldots\right): \omega_{i} \in \mathbb{R}\right\}$. Let $\mathscr{B}_{\mathbb{N}}$ be the σ-algebra generated by finite dimensional rectangles

$$
\left\{\omega: \omega_{i} \in\left(a_{i}, b_{i}\right], i=1,2, \ldots, n\right\}
$$

where $-\infty \leq a_{i}<b_{i} \leq \infty$.

Kolmogorov extension theorem

Theorem (Kolmogorov extension theorem)

Suppose we are given a sequence of probability measures $\left(\mathbb{R}^{n}, \mathscr{B}_{\mathbb{R}^{n}}, \mu_{n}\right)$, which are consistent, in the sense that

$$
\mu_{n+1}\left(\left(a_{1}, b_{1}\right] \times \cdots \times\left(a_{n}, b_{n}\right] \times \mathbb{R}\right)=\mu_{n}\left(\left(a_{1}, b_{1}\right] \times \cdots \times\left(a_{n}, b_{n}\right]\right)
$$

Then there is a probability measure Prob on $\left(\mathbb{R}^{\mathbb{N}}, \mathscr{B}_{\mathbb{N}}\right)$ such that

$$
\operatorname{Prob}\left(\omega: \omega_{i} \in\left(a_{i}, b_{i}\right], 1 \leq i \leq n\right)=\mu_{n}\left(\left(a_{1}, b_{1}\right] \times \cdots \times\left(a_{n}, b_{n}\right]\right)
$$

Kolmogorov extension theorem

Example

Let F_{1}, F_{2}, \ldots be distribution functions of measures μ_{1}, \ldots, μ_{n}, and let μ be the measure on \mathbb{R}^{n} with

$$
\mu\left(\left(a_{1}, b_{1}\right] \times \cdots \times\left(a_{n}, b_{n}\right]\right)=\prod_{m=1}^{n}\left(F_{m}\left(b_{m}\right)-F_{m}\left(a_{m}\right)\right)
$$

Thus μ is the product measure $\mu_{1} \times \cdots \times \mu_{n}$. In particular, Kolmogorov's extension theorem gives a way of defining infinite products of probability measures.

Kolmogorov extension theorem

Proof of Kolmogorov's extension theorem.

Let \mathscr{S} be the empty set, together with the collection of rectangles

$$
\left\{\omega: \omega_{i} \in\left(a_{i}, b_{i}\right], 1 \leq i \leq n\right\}
$$

Define Prob on \mathscr{S} according to the formula of the theorem. Since \mathscr{S} is a semialgebra which generates $\mathscr{B}_{\mathbb{N}}$, it suffices to check that, if $A \in \mathscr{S}$ is the disjoint union of a sequence $\left\{A_{i}\right\}$ in \mathscr{S} then

$$
\operatorname{Prob}(A)=\sum_{i} \operatorname{Prob}\left(A_{i}\right)
$$

in order to guarantee a unique extension of Prob to $\mathscr{B}_{\mathbb{N}}$.

Kolmogorov extension theorem

Proof of Kolmogorov's extension theorem.

- It suffices to consider the case that $\left\{A_{i}\right\}$ is an infinite sequence, since any finite sequence of rectangles is determined in a finite number of coordinates.
- Set $B_{n}=A \backslash \bigcup_{i=1}^{n} A_{i}$. Thus B_{n} may be written as a finite disjoint union of rectangles, and so $\operatorname{Prob}(A)=\sum_{i=1}^{n} \operatorname{Prob}\left(A_{i}\right)+\operatorname{Prob}\left(B_{n}\right)$.
- Let \mathscr{A} be the algebra formed from finite disjoint unions of rectangles of \mathscr{S}. The proof of the theorem is completed in the following lemma.

Lemma

If $B_{n} \in \mathscr{A}$ and $B_{n} \downarrow \emptyset$, then $\operatorname{Prob}\left(B_{n}\right) \downarrow 0$.

Kolmogorov extension theorem

Proof.

The proof is a diagonalization argument.

- Suppose that $\operatorname{Prob}\left(B_{n}\right) \downarrow \delta>0$. Possibly repeating sets, let

$$
B_{n}=\bigcup_{k=1}^{K_{n}}\left\{\omega: \omega_{i} \in\left(a_{i}^{k}, b_{i}^{k}\right], 1 \leq i \leq n\right\}, \quad-\infty \leq a_{i}^{k}<b_{i}^{k} \leq \infty .
$$

- Choose $C_{n} \subset B_{n}$ of form

$$
C_{n}=\bigcup_{k=1}^{K_{n}}\left\{\omega: \omega_{i} \in\left[\tilde{a}_{i}^{k}, \tilde{b}_{i}^{k}\right], 1 \leq i \leq n\right\}, \quad-\infty<\tilde{a}_{i}^{k}<\tilde{b}_{i}^{k}<\infty
$$

such that $\operatorname{Prob}\left(B_{n}-C_{n}\right) \leq \frac{\delta}{2^{n+1}}$.

- Let $D_{n}=\bigcap_{m=1}^{n} C_{n}$ so $\operatorname{Prob}\left(B_{n}-D_{n}\right) \leq \sum_{m=1}^{n} \operatorname{Prob}\left(B_{m}-C_{m}\right) \leq \frac{\delta}{2}$.

Kolmogorov extension theorem

Proof.

- Thus $\operatorname{Prob}\left(D_{n}\right)$ converges to a limit $\geq \frac{\delta}{2}$.
- Let $D_{n}^{*} \subset \mathbb{R}^{n}$ be such that $D_{n}=D_{n}^{*} \times \mathbb{R}^{\mathbb{N}}$. Note that D_{n}^{*} is compact.
- Choose sequence $\omega_{1}, \omega_{2}, \ldots$ such that $\omega_{i} \in D_{i}$.
- By diagonalization, pick a subsequence $\omega_{n(i)}$ such that each coordinate of $\omega_{n(i)}$ converges (this is possible by compactness). Let the limit be θ. We have $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right) \in D_{n}^{*}$ for each n, hence $\theta \in \bigcap_{n=1}^{\infty} D_{n}$, which provides the required contradiction.

Fubini's theorem

Theorem

Let $\left(\Omega_{1}, \mathscr{F}_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \mathscr{F}_{2}, \mu_{2}\right)$ be σ-finite measure spaces with product space $(\Omega, \mathscr{F}, \mu)$. Let f on Ω be measurable and satisfy either $f \geq 0$ or $\int|f| d \mu<\infty$. Then

$$
\int_{\Omega_{1}} \int_{\Omega_{2}} f(x, y) \mu_{2}(d y) \mu_{1}(d x)=\int_{\Omega^{2}} f d \mu=\int_{\Omega_{2}} \int_{\Omega_{1}} f(x, y) \mu_{1}(d x) \mu_{2}(d y) .
$$

Fubini's theorem

Proof sketch.

- It suffices to prove the theorem when $f=\mathbf{1}_{E}$ is the indicator function of a measurable set, since then the usual method of approximation with simple functions concludes the argument.
- It suffices to check that the collection of E for which the theorem holds with $\mathbf{1}_{E}$ is a σ-algebra, since the theorem already holds for the semialgebra of rectangles.
- In fact, by the $\pi-\lambda$ theorem, it suffices to show that this collection is a λ-system.
- Obviously Ω satisfies the condition. The set difference condition is met by linearity of the integral. The increasing set condition is met by monotone convergence.

Differentiating under the integral

As an application of Fubini's theorem we prove several theorems on differentiating under the integral.

Theorem

Let (S, \mathscr{S}, μ) be a measure space. Let f be a complex-valued function defined on $\mathbb{R} \times S$. Let $\delta>0$, and suppose that for $x \in(y-\delta, y+\delta)$ we have
(1) $u(x)=\int_{S} f(x, s) \mu(d s)$ with $\int_{S}|f(x, s)| \mu(d s)<\infty$
(2) For fixed $s, \frac{\partial f}{\partial x}(x, s)$ exists and is a continuous function of x.
(3) $v(x)=\int_{S} \frac{\partial f}{\partial x}(x, s) \mu(d s)$ is continuous at $x=y$.
(9) $\int_{S} \int_{-\delta}^{\delta}\left|\frac{\partial f}{\partial x}(y+\theta, s)\right| d \theta \mu(d s)<\infty$.

Then $u^{\prime}(y)=v(y)$.

Differentiating under the integral

Proof.

For $|h| \leq \delta$, applying Fubini,

$$
\begin{aligned}
u(y+h)-u(y) & =\int_{S} f(y+h, s)-f(y, s) \mu(d s) \\
& =\int_{S} \int_{0}^{h} \frac{\partial f}{\partial x}(y+\theta, s) d \theta \mu(d s) \\
& =\int_{0}^{h} \int_{S} \frac{\partial f}{\partial x}(y+\theta, s) \mu(d s) d \theta
\end{aligned}
$$

The last equation gives

$$
\frac{u(y+h)-u(y)}{h}=\frac{1}{h} \int_{0}^{h} v(y+\theta) d \theta
$$

The claim follows from continuity, letting $h \rightarrow 0$.

Differentiating under the integral

The following variant of the above theorem is useful.

Theorem

Let (S, \mathscr{S}, μ) be a measure space. Let f be a complex valued function defined on $\mathbb{R} \times S$. Let $\delta>0$, and suppose that for $x \in(y-\delta, y+\delta)$ we have
(1) $u(x)=\int_{S} f(x, s) \mu(d s)$ with $\int_{S}|f(x, s)| \mu(d s)<\infty$.
(2) For fixed $s, \frac{\partial f}{\partial x}(x, s)$ exists and is continuous as a function of x.
(3) $\int_{S} \sup _{\theta \in[-\delta, \delta]}\left|\frac{\partial f}{\partial x}(y+\theta, s)\right| \mu(d s)<\infty$.

Then $u^{\prime}(y)=v(y)$.

Differentiating under the integral

Proof.

To reduce to the previous theorem, it suffices to prove that

$$
\int_{S} \frac{\partial f}{\partial x}(x, s) \mu(d s)
$$

is continuous at $x=y$. This follows from the pointwise continuity for fixed s and dominated convergence.

Differentiating under the integral

Theorem
Let Z be a random variable. Suppose $\epsilon>0$ and $\phi(\theta)=\mathrm{E}\left[e^{\theta Z}\right]<\infty$ for $\theta \in[-\epsilon, \epsilon]$. Then $\phi^{\prime}(0)=\mathrm{E}[Z]$.

Proof.

Apply the previous theorem with μ the distribution of Z and $f(\theta, s)=e^{\theta s}$.

Independence

Definition

Several σ-algebras $\mathscr{F}_{1}, \mathscr{F}_{2}, \ldots, \mathscr{F}_{n}$ are independent if, whenever $A_{i} \in \mathscr{F}_{i}$,

$$
\operatorname{Prob}\left(\bigcap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} \operatorname{Prob}\left(A_{i}\right)
$$

Random variables X_{1}, \ldots, X_{n} are independent if the σ-algebras $\sigma\left(X_{1}\right), \ldots, \sigma\left(X_{n}\right)$ are independent.
Sets A_{1}, \ldots, A_{n} are independent if whenever $I \subset\{1, \ldots, n\}$ we have

$$
\operatorname{Prob}\left(\bigcap_{i \in I} A_{i}\right)=\prod_{i \in I} \operatorname{Prob}\left(A_{i}\right)
$$

Pairwise independence

Definition
 Several events $A_{1}, A_{2}, \ldots, A_{n}$ are pairwise independent if, for any $i \neq j$, $\operatorname{Prob}\left(A_{i} \cap A_{j}\right)=\operatorname{Prob}\left(A_{i}\right) \operatorname{Prob}\left(A_{j}\right)$.

Pairwise independence does not imply independence, as the next example shows.

Pairwise independence

Example

Let X_{1}, X_{2}, X_{3} be independent random variables with
$\operatorname{Prob}\left(X_{i}=0\right)=\operatorname{Prob}\left(X_{i}=1\right)=\frac{1}{2}$. Let

$$
A_{1}=\left\{X_{2}=X_{3}\right\}, \quad A_{2}=\left\{X_{1}=X_{3}\right\}, \quad A_{3}=\left\{X_{1}=X_{2}\right\}
$$

These events are pairwise independent, since if $i \neq j$, then

$$
\operatorname{Prob}\left(A_{i} \cap A_{j}\right)=\operatorname{Prob}\left(X_{1}=X_{2}=X_{3}\right)=\frac{1}{4}=\operatorname{Prob}\left(A_{i}\right) \operatorname{Prob}\left(A_{j}\right)
$$

They are not independent, since $\operatorname{Prob}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\frac{1}{4}$.

Independence of π-systems

Definition

Collections of sets $\mathscr{A}_{1}, \ldots, \mathscr{A}_{n} \subset \mathscr{F}$ are independent if whenever $A_{i} \in \mathscr{A}_{i}$ and $I \subset\{1, \ldots, n\}$ we have $\operatorname{Prob}\left(\bigcap_{i \in I} A_{i}\right)=\prod_{i \in I} \operatorname{Prob}\left(A_{i}\right)$.

Recall that a π-system is a collection of sets closed under intersection.
Theorem
Suppose $\mathscr{A}_{1}, \ldots, \mathscr{A}_{n}$ are independent, and each \mathscr{A}_{i} is a π-system. Then $\sigma\left(\mathscr{A}_{1}\right), \ldots, \sigma\left(\mathscr{A}_{n}\right)$ are independent.

Independence of π-systems

Proof.

- Let A_{2}, \ldots, A_{n} be sets with $A_{i} \in \mathscr{A}_{i}$ and let F be the intersection of one or more of the A_{i}.
- Let $\mathscr{L}=\{A \in \mathscr{F}: \operatorname{Prob}(A \cap F)=\operatorname{Prob}(A) \operatorname{Prob}(F)\}$. Note that $\mathscr{A}_{1} \subset \mathscr{L}$ by independence. We check that \mathscr{L} is a λ-system.

$$
\Omega \in \mathscr{L}
$$

Let $A, B \in \mathscr{L}$ with $A \subset B$. Then $B-A \in \mathscr{L}$, since

$$
\begin{aligned}
\operatorname{Prob}((B-A) \cap F) & =\operatorname{Prob}(B \cap F)-\operatorname{Prob}(A \cap F) \\
& =(\operatorname{Prob}(B)-\operatorname{Prob}(A)) \operatorname{Prob}(F) \\
& =\operatorname{Prob}(B-A) \operatorname{Prob}(F) .
\end{aligned}
$$

If $\left\{B_{k}\right\} \subset \mathscr{L}$ and $B_{k} \uparrow B$ then
$\operatorname{Prob}(B \cap F)=\lim \operatorname{Prob}\left(B_{k} \cap F\right)=\operatorname{Prob}(B) \operatorname{Prob}(F)$ so $B \in \mathscr{L}$.

Independence of π-systems

Proof.

- By the π - λ theorem, $\sigma\left(\mathscr{A}_{1}\right) \subset \mathscr{L}$ for each F, so $\sigma\left(\mathscr{A}_{1}\right)$ is independent of $\mathscr{A}_{2}, \ldots, \mathscr{A}_{n}$.
- Replacing \mathscr{A}_{1} with $\sigma\left(\mathscr{A}_{1}\right)$, and rearranging the order and iterating, we reach the conclusion that $\sigma\left(\mathscr{A}_{1}\right), \ldots, \sigma\left(\mathscr{A}_{n}\right)$ are independent.

Independence of random variables

Theorem

Let X_{1}, \ldots, X_{n} be random variables which satisfy, for all $x_{1}, \ldots, x_{n} \in(-\infty, \infty]$

$$
\operatorname{Prob}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=\prod_{i=1}^{n} \operatorname{Prob}\left(X_{i} \leq x_{i}\right) .
$$

Then X_{1}, \ldots, X_{n} are independent.

Proof.

The sets $\mathscr{A}_{i}=\left\{X_{i} \leq x_{i}\right\}$ form a π-system, and $\sigma\left(\mathscr{A}_{i}\right)=\sigma\left(X_{i}\right)$. Choosing $x_{i}=\infty$ omits X_{i} from left and right side above. Hence, the claim follows from the previous theorem.

Independence of composites

Theorem
Suppose $\mathscr{F}_{i, j}, 1 \leq i \leq n, 1 \leq j \leq m(i)$ are independent σ-algebras, and let $\mathscr{G}_{i}=\sigma\left(\bigcup_{j} \mathscr{F}_{i, j}\right)$. Then $\mathscr{G}_{1}, \ldots, \mathscr{G}_{n}$ are independent.

Proof.

The collection of sets $\mathscr{A}_{i}=\bigcap_{j} A_{i, j}$ where $A_{i, j} \in \mathscr{F}_{i, j}$ form a π-system generating \mathscr{G}_{i}. The claim follows.

Independence of composites

Theorem

Let $X_{i, j}, 1 \leq i \leq n, 1 \leq j \leq m(i)$ be independent, and $f_{i}: \mathbb{R}^{m(i)} \rightarrow \mathbb{R}$ be measurable. Then $f_{i}\left(X_{i, 1}, \ldots, X_{i, m(i)}\right)$ are independent.

Proof.

Let $\mathscr{F}_{i, j}=\sigma\left(X_{i, j}\right)$ and $\mathscr{G}_{i}=\sigma\left(\bigcup_{j} \mathscr{F}_{i, j}\right)$. The result follows from the previous theorem, since $f_{i}\left(X_{i, 1}, \ldots, X_{i, m}\right)$ is \mathscr{G}_{i}-measurable.

Independent distributions

Theorem

Suppose X_{1}, \ldots, X_{n} are independent random variables and X_{i} has distribution μ_{i}. Then $\left(X_{1}, \ldots, X_{n}\right)$ has distribution $\mu_{1} \times \cdots \times \mu_{n}$.

Proof.

Calculate

$$
\begin{aligned}
& \operatorname{Prob}\left(\left(X_{1}, \ldots, X_{n}\right) \in A_{1} \times \cdots \times A_{n}\right)=\prod_{i=1}^{n} \operatorname{Prob}\left(X_{i} \in A_{i}\right) \\
& =\prod_{i=1}^{n} \mu_{i}\left(A_{i}\right)=\mu_{1} \times \cdots \times \mu_{n}\left(A_{1} \times \cdots \times A_{n}\right)
\end{aligned}
$$

Since the distribution of $\left(X_{1}, \ldots, X_{n}\right)$ and $\mu_{1} \times \cdots \times \mu_{n}$ agree on the π-system of sets $A_{1} \times \cdots \times A_{n}$ which generates $\mathscr{B}_{\mathbb{R}^{n}}$, they agree.

Independence and expectation

Theorem

Suppose X and Y are independent and have distributions μ and ν. If $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a measurable function with $h \geq 0$ or $\mathrm{E}[|h(X, Y)|]<\infty$, then

$$
\mathrm{E}[h(X, Y)]=\iint h(x, y) \mu(d x) \nu(d y)
$$

In particular, if $h(x, y)=f(x) g(y)$ where $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are measurable functions with $f, g \geq 0$ or $\mathrm{E}[|f(X)|]$ and $\mathrm{E}[|g(Y)|]<\infty$, then

$$
\mathrm{E}[f(X) g(Y)]=\mathrm{E}[f(X)] \mathrm{E}[g(Y)]
$$

This follows from the previous theorem and Fubini's Theorem.

Independence and expectation

Theorem
If X_{1}, \ldots, X_{n} are independent and satisfy either $X_{i} \geq 0$ for all i, or $\mathrm{E}\left[\left|X_{i}\right|\right]<\infty$ for all i, then

$$
\mathrm{E}\left[\prod_{i=1}^{n} X_{i}\right]=\prod_{i=1}^{n} \mathrm{E}\left[X_{i}\right]
$$

This follows from the previous result and induction.

Correlation

Definition

Two random variables X and Y which satisfy $\mathrm{E}\left[X^{2}\right], \mathrm{E}\left[Y^{2}\right]<\infty$ are uncorrelated if $\mathrm{E}[X Y]=\mathrm{E}[X] \mathrm{E}[Y]$.

Two random variables can be uncorrelated without being independent.

Sums of independent random variables

Theorem

Let X and Y be independent random variables with distributions μ and ν. Then $X+Y$ has distribution $\mu * \nu$ defined by

$$
\mu * \nu((a, b])=\iint_{x+y \in(a, b]} \mu(d x) \nu(d y)
$$

Proof.

This follows from the fact that (X, Y) have distibution $\mu \times \nu$.

Sums of independent random variables

We record several consequences of the previous theorem.
(1) If $F(x)=\operatorname{Prob}(X \leq x)$ then $X+Y$ has distribution function

$$
\operatorname{Prob}(X+Y \leq z)=\int F(z-y) \nu(d y)
$$

(2) If X has density $f(x)$ then $X+Y$ has density

$$
h(x)=\int f(x-y) \nu(d y)
$$

(3) In particular, if Y has density g then

$$
h(x)=\int f(x-y) g(y) d y=f * g(x)
$$

The Gamma distribution

The Gamma distribution with parameters $\alpha>0$ and $\lambda>0$ has density

$$
f(x)=\left\{\begin{array}{cc}
\frac{\lambda^{\alpha} x^{\alpha-1}}{\Gamma(\alpha)} e^{-\lambda x} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

Theorem
If X and Y are independent, with X distributed gamma (α, λ) and Y distributed gamma (β, λ) then $X+Y$ is distributed gamma $(\alpha+\beta, \lambda)$.

The Gamma distribution

Proof.

For $x \geq 0$, the density of $X+Y$ at x is

$$
\begin{aligned}
f_{X+Y}(x) & =\int_{0}^{x} \frac{\lambda^{\alpha}(x-y)^{\alpha-1}}{\Gamma(\alpha)} e^{-\lambda(x-y)} \frac{\lambda^{\beta} y^{\beta-1}}{\Gamma(\beta)} e^{-\lambda y} d y \\
& =\frac{\lambda^{\alpha+\beta} e^{-\lambda x}}{\Gamma(\alpha) \Gamma(\beta)} \int_{0}^{x}(x-y)^{\alpha-1} y^{\beta-1} d y
\end{aligned}
$$

The latter integral is

$$
x^{\alpha+\beta-1} \int_{0}^{1}(1-u)^{\alpha-1} u^{\beta-1} d u=x^{\alpha+\beta-1} \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

The normal distribution

The normal distribution with mean μ and variance a has density

$$
\eta(\mu, a ; x)=\frac{\exp \left(-\frac{(x-\mu)^{2}}{2 a}\right)}{\sqrt{2 \pi a}}
$$

Theorem

If $X=\eta(\mu, a)$ and $Y=\eta(\nu, b)$ are independent, then $X+Y=\eta(\mu+\nu, a+b)$.

