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Signed measures

Definition

A signed measure α on a measure space (Ω,F ) is a set function which
satisfies

1 α takes values in (−∞,∞]

2 α(∅) = 0
3 If E =

⊔
i Ei then α(E ) =

∑
i α(Ei ) in the sense that

I If α(E ) <∞ then the sum converges absolutely
I If α(E ) =∞ then

∑
i |α(Ei )

−| <∞.
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Signed measures

Example

Let µ be a measure, and f a function satisfying
∫
|f −|dµ <∞. Then

α(A) =

∫
A
fdµ

is a signed measure.

Example

Let µ1, µ2 be measures with µ2(Ω) <∞. Then α(A) = µ1(A)− µ2(A) is
a signed measure.
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Positive sets

Definition

Given signed measure α and measurable set A, A is positive if every
measurable B ⊂ A has α(B) ≥ 0. A is negative if every measurable B ⊂ A
has α(B) ≤ 0.

Lemma

Every measurable subset of a positive set is positive. If the sets An are
positive, then A =

⋃
An is also positive.
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Positive sets

Lemma

Let E be a measurable set with α(E ) < 0. Then there is a negative set
F ⊂ E with α(F ) < 0.
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Positive sets

Proof.

Set F0 = E , i = 0 and iterate the following process.

Let si+1 = sup{α(A) : A ⊂ Fi}. If si+1 = 0, Fi is negative and we are
done.

Else, choose Ei+1 ⊂ Fi with α(Ei+1) > si+1

2 and replace
Fi+1 = Fi \ Ei+1.

By additivity s1 <∞ and si+1 ≤ si
2 . Hence if the process does not

terminate, si ↓ 0. In this case, set F =
⋂

i Fi . Since

α(E ) = α(F ) +
∑
i

α(Ei )

converges absolutely, F cannot contain a set of positive measure or else
one of the α(Ei ) would need to be increased. Hence F is negative.
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Hahn decomposition

Theorem (Hahn decomposition)

Let α be a signed measure. Then there is a positive set A and a negative
set B so that Ω = A ∪ B and A ∩ B = 0. Furthermore, if A′,B ′ is another
such decomposition, then A ∩ B ′ and A′ ∩ B are null sets in the sense that
all of their subsets have measure 0.
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Hahn decomposition

Proof.

To prove the uniqueness statement, note that A ∩ B ′ is a positive and
negative set, hence a null set, similarly A′ ∩ B. We prove the existence
statement.

Let c = inf{α(B) : B negative} ≤ 0. If c = 0 we are done.

Otherwise, let Bi be negative sets with α(Bi ) ↓ c , and set B =
⋃

i Bi ,
which is negative. Since α(B) = α(B − Bi ) + α(Bi ) ≤ α(Bi ) we have
α(B) = c > −∞.

We have A = Bc is positive, since otherwise there exists E ⊂ A which
is negative, but then B ∪ E is negative and α(B ∪ E ) < c ,
contradiction.
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Singular measures

Definition

Two measures µ1 and µ2 are mutually singular if there is a set A with
µ1(A) = 0 and µ2(Ac) = 0. In this case we say µ1 is singular with respect
to µ2 and write µ1 ⊥ µ2.

Example

The uniform measure on the Cantor set is singular with respect to
Lebesgue measure.

Bob Hough Math 639: Lecture 2 January 26, 2017 9 / 53



Jordan decomposition

Theorem

Let α be a signed measure. There are mutually singular measures α+ and
α− so that α = α+ − α−. Moreover, there is only one such pair.
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Jordan decomposition

Proof.

Let Ω = A ∪ B be a Hahn decomposition. Define

α+(E ) = α(E ∩ A), α−(E ) = −α(E ∩ B).

This gives a decomposition as required. To prove the uniqueness, let ν1

and ν2 be singular measures, such that α = ν1 − ν2. Let D be such that
ν1(D) = 0 and ν2(Dc) = 0. By the uniqueness of the Hahn
decomposition, A and D differ on a null set, so that

α+(E ) = α(E ∩ A) = α(E ∩ D) = ν1(E ),

which concludes the proof.

Bob Hough Math 639: Lecture 2 January 26, 2017 11 / 53



Lebesgue decomposition

Theorem (Lebesgue decomposition)

Let µ and ν be σ-finite measures. ν can be written as νr + νs , where νs is
singular with respect to µ and

νr (E ) =

∫
E
gdµ.
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Lebesgue decomposition

Proof.

After making a countable decomposition, we may assume that both µ and
ν are finite.

Let G be the set of g ≥ 0 such that for all E ,
∫
E gdµ ≤ ν(E ).

If g , h ∈ G then max(g , h) ∈ G . To check this, let A = {g > h} and
write ∫

E
max(g , h)dµ =

∫
E∩A

gdµ+

∫
E∩Ac

hdµ ≤ ν(E ).
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Lebesgue decomposition

Proof.

Let κ = sup
{∫

gdµ : g ∈ G
}

. Choose gn ∈ G such that∫
gndµ ≥ κ− 1

n , set hn = max(g1, ..., gn), and let hn ↑ h. Then by
monotone convergence, h ∈ G and

∫
Ω hdµ = κ.

Set νr (E ) =
∫
E hdµ and νs(E ) = ν(E )− νr (E ).

To check that νs is singular with respect to µ, let ε > 0 and let
Aε ∪ Bε be a Hahn decomposition for νs − εµ. Observe that∫

E
(h + ε1Aε)dµ = νr (E ) + εµ(Aε ∩ E ) ≤ ν(E ).

Hence h + ε1Aε ∈ G , but this implies that µ(Aε) = 0.

Let A =
⋃

n A 1
n
, with µ(A) = 0. We have νs(Ac) = 0, since

otherwise, for some ε > 0, (νs − εµ)(Ac) > 0, which contradicts that
Ac is a negative set.
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Absolutely continuous measures

Definition

We say a measure ν is absolutely continuous with respect to µ, and write
ν � µ if µ(A) = 0 implies ν(A) = 0.
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Radon-Nikodym theorem

Theorem (Radon-Nikodym theorem)

If µ and ν are σ-finite measures and ν is absolutely continuous with
respect to µ, then there is a g ≥ 0 so that ν(E ) =

∫
E gdµ. If there is

another such function, h, then h = g µ-a.e.. g is written g = dν
dµ .
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Radon-Nikodym theorem

Proof.

Let ν = νr + νs be a Lebesgue decomposition, and let A be such that
νs(Ac) = 0, µ(A) = 0. By absolute continuity ν(A) = 0 which implies
νs ≡ 0. Given two decompositions with functions g , h, one easily checks
µ(g > h) = µ(h > g) = 0.
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Product measures

Definition

Let (X ,A ) and (Y ,B) be two measure spaces. The collection of
rectangles of A ×B is the empty set, together with

S = {A× B : A ∈ A ,B ∈ B} .

The set of rectangles forms a semialgebra, since

(A× B) ∩ (C × D) = (A ∩ C )× (B ∩ D)

(A× B)c = (Ac × B) ∪ (A× Bc) ∪ (Ac × Bc).
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Product measures

Theorem

Let (X ,A , µ1) and (Y ,B, µ2) be two σ-finite measure spaces. Set
Ω = X × Y and F = σ(S ). There exists a unique measure µ on F such
that for each rectangle A× B ∈ S ,

µ(A× B) = µ1(A)µ2(B).
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Product measures

Proof.

By the Carathéodory extension theorem, it suffices to show that
µ(A× B) = µ1(A)µ2(B) extends to the algebra S generated by S .

To do this, it suffices to check that if A× B =
⊔

i Ai × Bi is a finite
or countable disjoint union, then

µ(A× B) =
∑
i

µ(Ai × Bi ).

For x ∈ A let I (x) = {i : x ∈ Ai}. We have B =
⊔

i∈I (x) Bi , so

1A(x)µ2(B) =
∑
i

1Ai
(x)µ2(Bi ).

Integrating with respect to µ1 gives µ1(A)µ2(B) =
∑

i µ1(Ai )µ2(Bi ).
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Product measures

By the previous theorem and induction, it follows that if
{(Ωi ,Fi , µi ) : i = 1, ..., n} is a finite list of σ-finite measure spaces, then
there is a unique measure µ on Ω = Ω1 × · · · × Ωn,
F = σ({A1 × · · · × An : Ai ∈ Fi}) such that

µ(A1 × · · · × An) =
n∏

m=1

µm(Am).

The extension of this result to probability measures on infinite products is
the subject of Kolmogorov’s extension theorem.
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Kolmogorov extension theorem

Let N = {1, 2, 3, ...} and let RN = {(ω1, ω2, ...) : ωi ∈ R}. Let BN be the
σ-algebra generated by finite dimensional rectangles

{ω : ωi ∈ (ai , bi ], i = 1, 2, ..., n}

where −∞ ≤ ai < bi ≤ ∞.
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Kolmogorov extension theorem

Theorem (Kolmogorov extension theorem)

Suppose we are given a sequence of probability measures (Rn,BRn , µn),
which are consistent, in the sense that

µn+1((a1, b1]× · · · × (an, bn]× R) = µn((a1, b1]× · · · × (an, bn]).

Then there is a probability measure Prob on (RN,BN) such that

Prob(ω : ωi ∈ (ai , bi ], 1 ≤ i ≤ n) = µn((a1, b1]× · · · × (an, bn]).
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Kolmogorov extension theorem

Example

Let F1,F2, ... be distribution functions of measures µ1, ..., µn, and let µ be
the measure on Rn with

µ((a1, b1]× · · · × (an, bn]) =
n∏

m=1

(Fm(bm)− Fm(am)).

Thus µ is the product measure µ1 × · · · × µn. In particular, Kolmogorov’s
extension theorem gives a way of defining infinite products of probability
measures.
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Kolmogorov extension theorem

Proof of Kolmogorov’s extension theorem.

Let S be the empty set, together with the collection of rectangles

{ω : ωi ∈ (ai , bi ], 1 ≤ i ≤ n}.

Define Prob on S according to the formula of the theorem. Since S is a
semialgebra which generates BN, it suffices to check that, if A ∈ S is the
disjoint union of a sequence {Ai} in S then

Prob(A) =
∑
i

Prob(Ai ).

in order to guarantee a unique extension of Prob to BN.
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Kolmogorov extension theorem

Proof of Kolmogorov’s extension theorem.

It suffices to consider the case that {Ai} is an infinite sequence, since
any finite sequence of rectangles is determined in a finite number of
coordinates.

Set Bn = A \
⋃n

i=1 Ai . Thus Bn may be written as a finite disjoint
union of rectangles, and so Prob(A) =

∑n
i=1 Prob(Ai ) + Prob(Bn).

Let A be the algebra formed from finite disjoint unions of rectangles
of S . The proof of the theorem is completed in the following lemma.

Lemma

If Bn ∈ A and Bn ↓ ∅, then Prob(Bn) ↓ 0.
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Kolmogorov extension theorem

Proof.

The proof is a diagonalization argument.

Suppose that Prob(Bn) ↓ δ > 0. Possibly repeating sets, let

Bn =
Kn⋃
k=1

{ω : ωi ∈ (aki , b
k
i ], 1 ≤ i ≤ n}, −∞ ≤ aki < bki ≤ ∞.

Choose Cn ⊂ Bn of form

Cn =
Kn⋃
k=1

{ω : ωi ∈ [ãki , b̃
k
i ], 1 ≤ i ≤ n}, −∞ < ãki < b̃ki <∞

such that Prob(Bn − Cn) ≤ δ
2n+1 .

Let Dn =
⋂n

m=1 Cn so Prob(Bn − Dn) ≤
∑n

m=1 Prob(Bm − Cm) ≤ δ
2 .
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Kolmogorov extension theorem

Proof.

Thus Prob(Dn) converges to a limit ≥ δ
2 .

Let D∗n ⊂ Rn be such that Dn = D∗n × RN. Note that D∗n is compact.

Choose sequence ω1, ω2, ... such that ωi ∈ Di .

By diagonalization, pick a subsequence ωn(i) such that each
coordinate of ωn(i) converges (this is possible by compactness). Let
the limit be θ. We have (θ1, θ2, ..., θn) ∈ D∗n for each n, hence
θ ∈

⋂∞
n=1 Dn, which provides the required contradiction.
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Fubini’s theorem

Theorem

Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be σ-finite measure spaces with product
space (Ω,F , µ). Let f on Ω be measurable and satisfy either f ≥ 0 or∫
|f |dµ <∞. Then∫

Ω1

∫
Ω2

f (x , y)µ2(dy)µ1(dx) =

∫
Ω
fdµ =

∫
Ω2

∫
Ω1

f (x , y)µ1(dx)µ2(dy).
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Fubini’s theorem

Proof sketch.

It suffices to prove the theorem when f = 1E is the indicator function
of a measurable set, since then the usual method of approximation
with simple functions concludes the argument.

It suffices to check that the collection of E for which the theorem
holds with 1E is a σ-algebra, since the theorem already holds for the
semialgebra of rectangles.

In fact, by the π-λ theorem, it suffices to show that this collection is
a λ-system.

Obviously Ω satisfies the condition. The set difference condition is
met by linearity of the integral. The increasing set condition is met by
monotone convergence.
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Differentiating under the integral

As an application of Fubini’s theorem we prove several theorems on
differentiating under the integral.

Theorem

Let (S ,S , µ) be a measure space. Let f be a complex-valued function
defined on R× S . Let δ > 0, and suppose that for x ∈ (y − δ, y + δ) we
have

1 u(x) =
∫
S f (x , s)µ(ds) with

∫
S |f (x , s)|µ(ds) <∞

2 For fixed s, ∂f
∂x (x , s) exists and is a continuous function of x .

3 v(x) =
∫
S
∂f
∂x (x , s)µ(ds) is continuous at x = y .

4
∫
S

∫ δ
−δ
∣∣∂f
∂x (y + θ, s)

∣∣ dθµ(ds) <∞.

Then u′(y) = v(y).
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Differentiating under the integral

Proof.

For |h| ≤ δ, applying Fubini,

u(y + h)− u(y) =

∫
S
f (y + h, s)− f (y , s)µ(ds)

=

∫
S

∫ h

0

∂f

∂x
(y + θ, s)dθµ(ds)

=

∫ h

0

∫
S

∂f

∂x
(y + θ, s)µ(ds)dθ.

The last equation gives

u(y + h)− u(y)

h
=

1

h

∫ h

0
v(y + θ)dθ.

The claim follows from continuity, letting h→ 0.
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Differentiating under the integral

The following variant of the above theorem is useful.

Theorem

Let (S ,S , µ) be a measure space. Let f be a complex valued function
defined on R× S . Let δ > 0, and suppose that for x ∈ (y − δ, y + δ) we
have

1 u(x) =
∫
S f (x , s)µ(ds) with

∫
S |f (x , s)|µ(ds) <∞.

2 For fixed s, ∂f
∂x (x , s) exists and is continuous as a function of x .

3
∫
S supθ∈[−δ,δ]

∣∣∂f
∂x (y + θ, s)

∣∣µ(ds) <∞.
Then u′(y) = v(y).
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Differentiating under the integral

Proof.

To reduce to the previous theorem, it suffices to prove that∫
S

∂f

∂x
(x , s)µ(ds)

is continuous at x = y . This follows from the pointwise continuity for
fixed s and dominated convergence.
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Differentiating under the integral

Theorem

Let Z be a random variable. Suppose ε > 0 and φ(θ) = E[eθZ ] <∞ for
θ ∈ [−ε, ε]. Then φ′(0) = E[Z ].

Proof.

Apply the previous theorem with µ the distribution of Z and
f (θ, s) = eθs .
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Independence

Definition

Several σ-algebras F1,F2, ...,Fn are independent if, whenever Ai ∈ Fi ,

Prob

(
n⋂

i=1

Ai

)
=

n∏
i=1

Prob(Ai ).

Random variables X1, ...,Xn are independent if the σ-algebras
σ(X1), ..., σ(Xn) are independent.
Sets A1, ...,An are independent if whenever I ⊂ {1, ..., n} we have

Prob

(⋂
i∈I

Ai

)
=
∏
i∈I

Prob(Ai ).
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Pairwise independence

Definition

Several events A1,A2, ...,An are pairwise independent if, for any i 6= j ,
Prob(Ai ∩ Aj) = Prob(Ai ) Prob(Aj).

Pairwise independence does not imply independence, as the next example
shows.
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Pairwise independence

Example

Let X1,X2,X3 be independent random variables with
Prob(Xi = 0) = Prob(Xi = 1) = 1

2 . Let

A1 = {X2 = X3}, A2 = {X1 = X3}, A3 = {X1 = X2}.

These events are pairwise independent, since if i 6= j , then

Prob(Ai ∩ Aj) = Prob(X1 = X2 = X3) =
1

4
= Prob(Ai ) Prob(Aj).

They are not independent, since Prob(A1 ∩ A2 ∩ A3) = 1
4 .
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Independence of π-systems

Definition

Collections of sets A1, ...,An ⊂ F are independent if whenever Ai ∈ Ai

and I ⊂ {1, ..., n} we have Prob
(⋂

i∈I Ai

)
=
∏

i∈I Prob(Ai ).

Recall that a π-system is a collection of sets closed under intersection.

Theorem

Suppose A1, ...,An are independent, and each Ai is a π-system. Then
σ(A1), ..., σ(An) are independent.
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Independence of π-systems

Proof.

Let A2, ...,An be sets with Ai ∈ Ai and let F be the intersection of
one or more of the Ai .

Let L = {A ∈ F : Prob(A ∩ F ) = Prob(A) Prob(F )}. Note that
A1 ⊂ L by independence. We check that L is a λ-system.

I Ω ∈ L
I Let A,B ∈ L with A ⊂ B. Then B − A ∈ L , since

Prob((B − A) ∩ F ) = Prob(B ∩ F )− Prob(A ∩ F )

= (Prob(B)− Prob(A)) Prob(F )

= Prob(B − A) Prob(F ).

I If {Bk} ⊂ L and Bk ↑ B then
Prob(B ∩ F ) = lim Prob(Bk ∩ F ) = Prob(B) Prob(F ) so B ∈ L .
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Independence of π-systems

Proof.

By the π-λ theorem, σ(A1) ⊂ L for each F , so σ(A1) is
independent of A2, ...,An.

Replacing A1 with σ(A1), and rearranging the order and iterating, we
reach the conclusion that σ(A1), ..., σ(An) are independent.
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Independence of random variables

Theorem

Let X1, ...,Xn be random variables which satisfy, for all
x1, ..., xn ∈ (−∞,∞]

Prob(X1 ≤ x1, ...,Xn ≤ xn) =
n∏

i=1

Prob(Xi ≤ xi ).

Then X1, ...,Xn are independent.

Proof.

The sets Ai = {Xi ≤ xi} form a π-system, and σ(Ai ) = σ(Xi ). Choosing
xi =∞ omits Xi from left and right side above. Hence, the claim follows
from the previous theorem.
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Independence of composites

Theorem

Suppose Fi ,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m(i) are independent σ-algebras, and let

Gi = σ
(⋃

j Fi ,j

)
. Then G1, ...,Gn are independent.

Proof.

The collection of sets Ai =
⋂

j Ai ,j where Ai ,j ∈ Fi ,j form a π-system
generating Gi . The claim follows.
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Independence of composites

Theorem

Let Xi ,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m(i) be independent, and fi : Rm(i) → R be
measurable. Then fi (Xi ,1, ...,Xi ,m(i)) are independent.

Proof.

Let Fi ,j = σ(Xi ,j) and Gi = σ
(⋃

j Fi ,j

)
. The result follows from the

previous theorem, since fi (Xi ,1, ...,Xi ,m(i)) is Gi -measurable.
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Independent distributions

Theorem

Suppose X1, ...,Xn are independent random variables and Xi has
distribution µi . Then (X1, ...,Xn) has distribution µ1 × · · · × µn.

Proof.

Calculate

Prob((X1, ...,Xn) ∈ A1 × · · · × An) =
n∏

i=1

Prob(Xi ∈ Ai )

=
n∏

i=1

µi (Ai ) = µ1 × · · · × µn(A1 × · · · × An).

Since the distribution of (X1, ...,Xn) and µ1 × · · · × µn agree on the
π-system of sets A1 × · · · × An which generates BRn , they agree.
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Independence and expectation

Theorem

Suppose X and Y are independent and have distributions µ and ν. If
h : R2 → R is a measurable function with h ≥ 0 or E[|h(X ,Y )|] <∞, then

E[h(X ,Y )] =

∫∫
h(x , y)µ(dx)ν(dy).

In particular, if h(x , y) = f (x)g(y) where f , g : R→ R are measurable
functions with f , g ≥ 0 or E[|f (X )|] and E[|g(Y )|] <∞, then

E[f (X )g(Y )] = E[f (X )] E[g(Y )].

This follows from the previous theorem and Fubini’s Theorem.
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Independence and expectation

Theorem

If X1, ...,Xn are independent and satisfy either Xi ≥ 0 for all i , or
E[|Xi |] <∞ for all i , then

E

[
n∏

i=1

Xi

]
=

n∏
i=1

E[Xi ].

This follows from the previous result and induction.
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Correlation

Definition

Two random variables X and Y which satisfy E
[
X 2
]
,E
[
Y 2
]
<∞ are

uncorrelated if E[XY ] = E[X ] E[Y ].

Two random variables can be uncorrelated without being independent.
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Sums of independent random variables

Theorem

Let X and Y be independent random variables with distributions µ and ν.
Then X + Y has distribution µ ∗ ν defined by

µ ∗ ν((a, b]) =

∫∫
x+y∈(a,b]

µ(dx)ν(dy).

Proof.

This follows from the fact that (X ,Y ) have distibution µ× ν.
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Sums of independent random variables

We record several consequences of the previous theorem.

1 If F (x) = Prob(X ≤ x) then X + Y has distribution function

Prob(X + Y ≤ z) =

∫
F (z − y)ν(dy).

2 If X has density f (x) then X + Y has density

h(x) =

∫
f (x − y)ν(dy).

3 In particular, if Y has density g then

h(x) =

∫
f (x − y)g(y)dy = f ∗ g(x).
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The Gamma distribution

The Gamma distribution with parameters α > 0 and λ > 0 has density

f (x) =

{
λαxα−1

Γ(α) e−λx x ≥ 0

0 x < 0
.

Theorem

If X and Y are independent, with X distributed gamma(α, λ) and Y
distributed gamma(β, λ) then X + Y is distributed gamma(α + β, λ).
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The Gamma distribution

Proof.

For x ≥ 0, the density of X + Y at x is

fX+Y (x) =

∫ x

0

λα(x − y)α−1

Γ(α)
e−λ(x−y)λ

βyβ−1

Γ(β)
e−λydy

=
λα+βe−λx

Γ(α)Γ(β)

∫ x

0
(x − y)α−1yβ−1dy

The latter integral is

xα+β−1

∫ 1

0
(1− u)α−1uβ−1du = xα+β−1 Γ(α)Γ(β)

Γ(α + β)
.
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The normal distribution

The normal distribution with mean µ and variance a has density

η(µ, a; x) =
exp

(
− (x−µ)2

2a

)
√

2πa
.

Theorem

If X = η(µ, a) and Y = η(ν, b) are independent, then
X + Y = η(µ+ ν, a + b).
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