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Harmonic functions and applications

This lecture follows Morters and Peres, Chapter 3.
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Harmonic functions

Definition

By a domain we mean a connected open set U c RY. Let U — RY be a
domain. A function u: U — R is harmonic if it is twice continuously
differentiable and, for any x € U,

2

If, instead, Au > 0 then v is subharmonic. )

Q’\

Bob Hough Math 639: Lecture 19 April 20, 2017 3 /68



Harmonic functions

The following theorem relates harmonicity to mean value properties.
Theorem

Let U c R? be a domain and u : U — R measurable and locally bounded.
The following conditions are equivalent:

@ u is a harmonic

@ For any ball B(x,r) < U, we have

1
1) = reas(B(x, 0) Lw) uly)dy

@ For any ball B(x,r) c U,

1

U(X) - Ux,r(aB(X7 r)) LB(x,r) U(Y)dax,r(Y)

where oy , is the surface measure on 0B(x,r).
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Harmonic functions

Proof.

@ Either 2 or 3 implies that one may write, for a suitable C® function g
of compact support,

u) = [ utng(he = yIB)oy.

Differentiating g proves that u is C®.

@ To prove 2 = 3, differentiate in the radial direction. To prove 3 = 2,
integrate.

Ol

v
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Harmonic functions

Proof.
@ To prove 3 < 1, introduce

v = [ uber m)daoaty)
2B(0,1)
and differentiate in r, applying Green's theorem, to find

ou
=[xt mdonst) = [ Bube+ m)dy,
#B(0,1) ¢N B(0,1)

which suffices.
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Maximum principle

Theorem (Maximum principle)

Suppose u : R? — R is a function, which is subharmonic on an open set
UcRA.

@ /f u attains its maximum in U, then u is a constant.

@ If u is continuous on U and U is bounded, then

TeaUX u(x) = max u(x).
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Maximum principle

Proof.

© A variant of the argument giving the mean value characterization

shows that 1

) % B Sy "

Hence if x is a maximum, then u is equal to this maximum on all
balls containing x. Since U is connected, u is constant.

@ Since u is continuous and U is closed and bounded, the maximum of
u is attained. By the previous part, the maximum is attained on dU.

Ol
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Maximum principle

Corollary

Suppose uy, up : RY — R are functions which are harmonic on a bounded
domain U c RY and continuous on U. If uy and u agree on U then they
are identical on U.
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Brownian motion

Theorem

Suppose U is a domain, {B(t) : t = 0} a Brownian motion started inside
U and 7 = 7(0U) = min{t = 0: B(t) € dU} the first hitting time of its
boundary. Let ¢ : U — R be measurable, and such that the function
u:U— R with

u(x) = Ex[o(B(71))1(T < o0)], xe U

is locally bounded. Then u is a harmonic function.
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Brownian motion

Proof.

For a ball B(x,d) < U let 7 = inf{t > 0: B(t) ¢ B(x,0)}. The strong
Markov property implies

u(x) = Ex[Ex[¢(B(r))1(r < o0)|.Z 7 (7)]] = Ex[u(B(7))]

= f u(y)wx,s(dy)
9B(x.,0)

where w, 5 is the uniform measure on 0B(x,d). Thus u has the mean

value property, and as it is locally bounded, it is harmonic. [
v
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Dirichlet problem

Definition
Let U be a domain in RY and let dU be its boundary. Suppose
¢ : 0U — R is continuous. A continuous function v : U — R is a solution

to the Dirichlet problem with boundary value ¢, if it is harmonic on U and
v(x) = ¢(x) for x € OU.
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Poincaré cone

Definition
Let U c R? be a domain. We say that U satisfies the Poincaré cone

condition at x € dU if there exists a cone V based at x with opening angle
a >0, and h > 0 such that V n B(x, h) < U°.
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Poincaré cone

For any open or closed set A = R, denote by 7(A) the first hitting time
of Brownian motion to A,

7(A) = inf{t > 0: B(t) € A}.

Indicate by C,(a) a cone of angle a with base z.

Lemma
Let 0 < o < 27 and let

a= sup Proby(7(0B(0,1)) < 7(Co(w))).

xeB(0,1/2)
Then a < 1 and, for any positive integer k and i’ > 0, we have
Prob, (1(0B(z, 1)) < 7(C,(a))) < a*

for all x,z € R with |x — z| < 27KK'.
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Poincaré cone

Proof.
@ Checking a < 1 is straightforward.
@ By the strong Markov property

Prob, (7(0B(0,1)) < 7(Co(e)))
k—1

<[[ sup  Probu(r(3B(0,27%""1)) < 7(Co(r))) = a,
i=0 xeB(0,2—k+1))

from which the second claim follows.
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Dirichlet problem

Theorem

Suppose U — RY is a bounded domain such that every boundary point
satisfies the Poincaré cone condition, and suppose ¢ is a continuous
function on 0U. Let 7(0U) = inf{t > 0: B(t) € 0U}, which is an almost
surely finite stopping time. Then the function u: U — R given by

u(x) = Ex[¢(B(7(V)))], x € U,

is the unique continuous function harmonic on U with u(x) = ¢(x) for all
xedU.
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Dirichlet problem

Proof.

@ Uniqueness, and harmonicity on the interior have already been
checked, so it suffices to check that the Poincaré cone condition
guarantees that u extends continuously to the boundary.

o Let z € AU with cone C,(«) based at z with angle a > 0 such that
for some h > 0, C,(a) n B(z,h) < U°.

@ By the previous lemma, for some a < 1, for all positive integers k and
h > 0 we have

Prob,(1(0B(z, i) < 7(C,(a))) < a¥

for all x with |x — z| < 27KH'.
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Dirichlet problem

Proof.

@ Given € > 0 there is 0 < § < h such that |¢(y) — ¢(z)| < € for all
y € 0U with |y — z| < §.

e For all x € U with |z — x| < 27k,
u(x) = u(2)| = [Ex d(B(7(0V))) — ¢(2)| < Ex|¢(B(7(0V))) — ¢(2)|.
o This is bounded by
2|8]ls0 Probx (7(9B(2,8)) < 7(Cz(a))) + € < 2| wa” + €

from which the continuity follows.
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Liouville's theorem

Theorem J

Any bounded harmonic function in R? is constant.
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Liouville's theorem

Proof.

Let u be harmonic, bounded by M and let x # y. The claim follows on
averaging over balls of radius R centered at x and y, since as R — o0, the
proportion that does not overlap tends to 0. O
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Functions harmonic on an annulus

Let
A={xeR?:r<|x| <R}, 0<r<R<

be an annulus. A solution u to Au = 0 on A such that u(x) = (|x|?) is
spherically symmetric satisfies

d
Z " (Ix12) 4x? + 20" (xI2)) = 40" (1xI?) + 2d9/(|x]?)

Let y = |x|? > 0 so that this becomes 4" (y) = 594 (y). This gives

2y
x| d=1
u(x) =<% 2log|x| d=2
|x|2— d>3
Write u(|x]|) in place of u(x).
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Exit times from an annulus

Theorem

Suppose {B(t) : t = 0} is a Brownian motion in dimension d > 1 started

in x € A, which is an open annulus A with radii 0 < r < R < o0. Define
stopping times

T, =7(0B(0,r)) = inf{t > 0: |B(t)| = r}, r>0

We have
e g
Prob, (T, < Tg) = 7'755? '75;‘ d=2 .
Bertr  d>3
For any x ¢ B(0,r), we have
Sl (77 1 d<?
obu(Tr<@) =1 o2 g3
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Exit times from an annulus

Proof.
Let T =T, A Tr. We have

u(x) = Ex[u(B(T))] = u(r) Proby(T, < Tr) + u(R)(1—Prob,(T, < TR))

so
Proby (T, < Tg) = :

Letting R — o0 gives the second part. [
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Recurrence and transience

Definition
A Markov process {X(t) : t > 0} with values in R9 is

@ point recurrent if, almost surely, for every x € R there is a (random)
sequence t, T 00 such that X(t,) = x for all ne N

o neighborhood recurrent if, almost surely, for every x € R? and ¢ > 0,
there exists a (random) sequence t, 1 o such that X(t,) € B(x,¢) for
all ne N.

@ transcient if it converges to infinity almost surely.
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Recurrence and transience

Theorem
Brownian motion is
@ Point recurrent in dimension 1

o Neighborhood recurrent, but not point recurrent in dimension 2

@ Transient in dimension d > 3.
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Recurrence and transience

Proof.
@ The case d = 1 may be deduced from d = 2.

@ When d = 2, fix € > 0 and x € R?. By the previous theorem, the
stopping time t; = inf{t > 0: B(t) € B(x,€)} is almost surely finite.
Iterating proves the neighborhood recurrence at the point x.

@ This proves the neighborhood recurrence in general since the topology
has a countable base.

@ Point recurrence does not hold, because a.s. Brownian motion has no
area.

Ol

v
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Recurrence and transience

Proof.
@ When d > 3 define event

An={|B(t)| > n, all t = T,3}.
Note that 7,3 < oo with probability 1.
e Forn> \x|%

1 d—2
Proby (AS) = E [ProbB(Tn3){Tn < oo}] _ (n2) ,

@ The RHS is summable, so by Borel-Cantelli, occurs only finitely often
with probability 1.

Ol

v
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Dvoretzky-Erdos test

Theorem

Let {B(t) : t = 0} be Brownian motion in R? for d > 3 and
f:(0,00) — (0,00) increasing. Then

o0
J f(r)d_zr_gdr <o < liminf 1B(t)
1

it = 0 a.s.
Conversely, if the integral diverges, then liminf “f((f))‘ =0 as.
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Dvoretzky-Erdos test

We use several lemmas from homework.
Lemma (Paley-Zygmund inequality)

For any non-negative random variable X with 0 < E[X?] < oo,

E[X]?
Prob(X > 0) > e
Lemma (Borel-Cantelli)
Suppose Eq, E,, ... are events with
0 k k
Prob(E, n Ep,
Z Prob(E,) = o0, Ii{n inf 2m=1 2in=1 Prob(En 0 Em) < 0.
—00
n=1

(Shy Prob(En))

Then with positive probability infinitely many of the events take place.
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Dvoretzky-Erdos test

Lemma

There exists a constant C; > 0 depending only on the dimension d such
that, for any p > 0, we have

sup Proby(there exists t > 1 with |B(t)| < p) < C1p?~2.
xeRY
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Dvoretzky-Erdos test

31/ 68

Proof.
Calculate
p d—2
Prob, (there exists t > 1 with |B(t)| < p) < Eo [<—|B(1) n x|> ]
1 2
d—2 _ J |y+X|2_d exp |y| )dy
(2m)% Je 2
April 20, 2017

Bob Hough
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Dvoretzky-Erdos test

Proof of the Dvoretzky-Erdés test.

@ Define events
A, = {there exists t € (2",2"1] with |B(t)| < f(t)}.
@ We have

Prob(A,) < Prob(there exists t > 1 with |B(t)| < £(2"1)27"/2)
< C1(f(2n+1)2_n/2)d_2.
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Dvoretzky-Erdos test

Proof of the Dvoretzky-Erdos test.
@ Convergence of the integral is equivalent to convergence of

i (f(2")2_”/2>d72 < o0.

n=1

o By Borel-Cantelli, the events A, happen only finitely often with
probability 1. This holds replacing f with a constant multiple, so

1B

i
e (1)

with probability 1.
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Dvoretzky-Erdos test

Proof of the Dvoretzky-Erdos test.
@ Now suppose
O —2
Z ( 2=/ 2) = o0.

and assume, as we may, that f(t) < /t.

@ For p e (0,1), consider the random variable /, = Sf 1(|B(t)| < p)dt.
One has
C2pd < E[l)] < C3pd.
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Dvoretzky-Erdos test

Proof of the Dvoretzky-Erdos test.
o Estimate

E/§]=2EU121(|B f 1(|B(s) dsdt]

<2E[fl<|3<>| >E3<t)f0 1(8(5)] < p)aset]

o Given x # 0, let T = inf{t > 0:|B(t)| = x} and use the strong
Markov property to obtain

£ [ 108(6)] < pds > €[ 1(18(5)] < p)as

0
- Exfo 1(B(s)| < p)ds

Ol

V.
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Dvoretzky-Erdos test

Proof of the Dvoretzky-Erdés test.
@ Thus »
E[17] < 2Cp7 o | 1(|B(9)] < p)ds < C'p? "2
0
o It follows that
E[),]?

E[/2]

Prob(/, > 0) > > C"pd72,

@ Choose p = f(2")2="/2. By Brownian scaling and monotonicity of f,
d-2
Prob(A,) = Prob(l, > 0) > C” (f(2")2_”/2>

so ), Prob(A,) = c0.

Ol

v
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Dvoretzky-Erdos test

Proof of the Dvoretzky-Erdos test.
@ Form<n-—1,

Prob[An|Am] < sup Prob,(3 t > 1 with |B(t)| < f(2"+1)2(1=n/2)

xeRd

< Cl (f(2n+1)2(1—n)/2)d—2‘
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Dvoretzky-Erdos test

Proof of the Dvoretzky-Erdos test.
@ Thus

Sk Sk Prob(A, n Am)

lim inf >

(kL Prob(Ay))

Z 1 Prob(An, )Zn mt2 Prob(A, |Am)

=2 I|l£‘n inf 5
—00
(32h_y Prob(A,))
2 n+1y(1—n)/2yd—2
& liminf Zin=a (F(2777)2 ) < 0.

koo Sk (f(2n)2-n/2)d=2

@ We thus get Prob(A, i.0.) > 0, so it is 1 since it has a 0-1 law. Since

we can replace f with ef, liminfyyo ‘B(( ))| =0 as.

O

v
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Occupation measures

Theorem

Let {B(s) : s = 0} be a linear Brownian motion and t > 0. Define the
occupation measure [i; by

pe(A) = Jot 14(B(s))ds, A c R Borel.

Then a.s. uy is absolutely continuous with respect to Lebesgue measure.
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Occupation measures

Proof.
It suffices to check that

fim inf _F(
rl0

By Fatou and Fubini,

meas(B(x, r))

B(x,r))

< 00, uy — a.e.

pe(B(x, 1)) f
E|l L) f— E B d
JIlen meas(B(x,r)) Irm)n 2r (B, ) dpe(x)
1
= lim mfrJ Prob(|B(s1) — B(s2)| < r)dsidsp.
0 Jo
D)
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Occupation measures

Proof.
Use

r 2r
Prob(|B(s1) — B(sz2)| < r) = Prob | | X]| < <
Vst — 5| Vst — s3]

which implies that

d51d52
I|m|nff f Prob(|B(s1) — B(s2)| < r)dsidsy < J J <
rl0 A/ |51 — 52|
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Occupation measures

Theorem

Let U = RY be a non-empty bounded open set and x € RY arbitrary.
o Ifd =2, then Proby-a.s., §;’ 1y(B(t))dt = .
o Ifd >3, then E, §; 1y(B(t))dt < oo.
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Occupation measures

Proof.

o It suffices to show this for balls, and by translation, for balls centered
at 0. Let U = B(0,r).

@ First consider d =2 and let G = B(0, 2r).

@ Let So =0 and, for all kK > 0, let

T, = inf{t > S : B(t) ¢ G}, 5k+1 = inf{t > Ty B(t) € U}

O

v
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Occupation measures

Proof.
@ By the strong Markov property

Probs, (F 1y(B(t))dt > s)9+(5k)>

Sk
Ty

= PrObB(Sk) < o

= [Ex [PrObB(Sk) ( o

Tk
= Prob, < lu(B(t))dt = S> .
Sk

1y(B(t))dt = s)

Ty

1y(B(t))dt > 5)]

These variables are i.i.d. with positive mean, so the conclusion follows
by the strong law of large numbers.
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Occupation measures

Proof.

o Now let d > 3. Write p(-, -, -) for the transition kernel of Brownian
motion. By Fubini's theorem,

0
Eof ]-B(Or dS = J PrObo(B(S) € B(O,r))ds

J f p(s, 0, y)dyds
O r

=J f p(s, 0, y)dsdy
B(0,r) JO

— 5(0B(0,1)) f ) oo (\/2175 d

2
)e‘gsdsdp
_CJ d=12=d ) < o,
0
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Occupation measures

Proof.

@ To handle a general starting point x, let T be the stopping time for
Brownian motion started at 0 and stopped the first time it reaches a
sphere of radius |x|. Then

E. fo 150, (B(5))ds = Eo J 15(0.(B(s))ds

T
o0
< Eg . ].B(O,r)(B(S))dS < 0.
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Transient Brownian motion

Definition
Suppose that {B(t) : 0 < t < T} is a d-dimensional Brownian motion and
one of the following three cases holds:

Q@ d>3and T =

@ d > 2 and T is an independent exponential time with parameter
A >0,

© d =2 and T is the first exit time from a bounded domain D.

Say D = R? in cases 1 and 2. We refer to these three cases by saying that
{B(t): 0 <t < T} is a transient Brownian motion.

v
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Transient Brownian motion

Theorem

For transient Brownian motion {B(t) : 0 < t < T} there exists a transition
density p* : [0,0) x RY x RY — [0,1] such that, for any t > 0,

Prob,(B(t)e A, t < T) = J p*(t,x,y)dy, VAe B(RY).
A

Moreover, for all t = 0 and a.e. x,y € D, p*(t,x,y) = p*(t,y,x).

For the proof, see MP p. 79.
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Transient Brownian motion

We make the following convention regarding transition kernels for
transient Brownian motion.

Q@ d>3and T = oo:

p*(t,x,y) = p(t,x,y).

@ d > 2 and T is an independent exponential time with parameter
A>0:

p*(t,x,y) = e Mp(t,x,y).
© d =2 and T is the first exit time from a bounded domain D:

p*(t,x,y) = p(t,X,y) - Ex[p(t_ Tv B(T)’y)]-(T < t)]
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Green's function

Definition
For transient Brownian motion {B(t) : 0 < t < T} we define the Green's
function G : R? x R — [0, 0] by

0

G(Xay) = L p*(t,X,y)dt.
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Green's function

Theorem

If f : RY — [0, 0] is measurable, then

)
E, JO F(B(t))dt = ff<y>c<x,y>dy.

Proof.
Fubini gives

T 0 0
Exfo F(B(t))dt = f E, [F(B(1))1(0<r]dt = f j p* (£, %, y)F(y)dydt

0

” (t.%.)dtf(y)dy = | G(x.)F(y)d.

Ol

v
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Green's function

Theorem
Ifd >3 and T = oo, then

Glxy) = c(d)x—y2¢,  c(d) = I2-1)

27Td/2

Proof.
Calculate

© 1 Ix—y|?

G(x,y)zf e~ % dt
0 (2wt)2
2—d (oo
_ |X_y‘ sd/2_2e_sds _ F(d/2— 1>|X—y‘2_d.
27rd/2 0 2rd/2
DJ
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Green's function

Theorem

If d =2 and T is an independent exponential time with parameter A > 0,
then

1
Glx,y) ~ ——log|x —yl, Ix =yl 0.
See MP. p.81.
LD (GREs LRt
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Green's function

Theorem

In all three cases of transient Brownian motion in d > 2, the Green's
function G : D x D — [0, 0] has the following properties:

© G is finite off and infinite on the diagonal A = {(x,y) : x = y}.
@ G is symmetric, i.e. G(x,y) = G(y,x) for all x,y € D.

@ Fory € D the Green's function G(-,y) is subharmonic on D\{y}. In
cases 1 and 3 it is harmonic.

This is immediate in the case d = 3. In the remaining cases, see MP, pp.
82-84.
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Green's function

Lemma
Ifd =2, for x,y,z e R? with |x — z| = 1,

1 e}
~loglx =yl = | p(sixiy) = plsx,2)ds.
0
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Green's function

Proof.

For |x — z| = 1, we obtain

” 1 ([ _byP dt
f p(t, %, y) — plt, x, 2)dt = f (e— - _e—;t>
0 2w 0 t
1 JOO J*l/(Zt) . dt
= — e s -
21 Jo \Jix=yp/2e) ;
_ i JOO = Jl/(2s) ﬂds _ |Og |X _ y|
27 Jo —y/(2s) m
D)
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Harmonic measure

Definition
Let {B(t): t > 0} be a d-dimensional Brownian motion, d > 2, started in
some point x and fix a closed set A — RY. Define a measure pa(x,-) by

ua(x, B) = Prob(B(7) € B,7 < ), T=inf{t > 0: B(t) € A}

for B — A Borel. )

wa(x,-) is the distribution of the first hitting point of A, and the total
mass of the measure is the probability that a Brownian motion started in x
ever hits the set A. If x ¢ A, ua(x,-) is supported on 0A.
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Dirichlet problem

Theorem

If the Poincaré cone condition is satisfied at every point x € U on the
boundary of a bounded domain U, then the solution of the Dirichlet
problem with boundary condition ¢ : 0U — R can be written

u(x) = j¢()/)uau(x, dy), xe U.

This is a restatement of our earlier solution of the Dirichlet problem.
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Harnack principle

Theorem (Harnack principle)

Suppose A = RY is compact and x, y are in the unbounded component of
AC€. Then pa(x,-) is absolutely continuous with respect to ua(y,-).
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Harnack principle

Proof.

Given B  0A Borel, the mapping x — pa(x, B) is a harmonic function on
A€. If it vanishes at y € A then this is a minimum, so the maximum

modulus principle implies pa(x, B) = 0 for all x € A¢, as needed. O
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Polar and nonpolar

Definition

A compact set A is called nonpolar if j14(x, A) > 0 for some (all) x € A°.
Otherwise it is called polar.
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Poisson’s formula

Theorem (Poisson's formula)

Suppose that B < 0B(0,1) is a Borel subset of the unit sphere for d > 2.

Let w denote the uniform distribution on the unit sphere. Then, for all
x ¢ 0B(0,1),

11— |x?|
po,1)(x;, B) = | ———dw(y).
A B Ix—yld ) )
ath 630: Lecture 10
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Poisson’s formula

Proof.

o We first consider the case |x| < 1.
o Let 7 denote the first hitting time of 0B(0, 1).

o It suffices by density to check for smooth f

1—|x|?

B(0,1) Ix — y|d

E [f(B(r))] = L f(y)dw(y).

Thus it suffices to check that the RHS is a solution to the Dirichlet
problem with boundary value f.
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Poisson’s formula

Proof.
@ One may check by differentiating that for all y € 0B(0, 1),
1—|x]?
x = y|¢

is harmonic on the open ball B(0,1). This proves the harmonicity.

@ To prove the extension to the boundary first consider f = 1 and check

X
1(x) =L 1= (dy) = 1.

w
B(0,1) Ix — Y|d

Indeed, / is harmonic on the interior, satisfies spherical symmetric,
and has value 1 at 0.

Ol
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Poisson’s formula

Proof.
@ For general f, and y € 0B(0,1),

— - ‘X|2 Z)aw\z
)= [ g9

1— |x|?
- f (F(y) — £(2))duw(2)
2B(0,1)

x — 2|9

o Note that 12X
[x—z

which is a summability kernel for 6, as x — y.

|3 dw(z) is a probability measure on the boundary
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Poisson’s formula

Proof.
@ If |[x| > 1 we use inversion in the unit sphere. One can check that

u: B(0, l)c —-R
is harmonic if and only if its inversion
u* : B(0,1)\{0} — R, u*(x) = u (|XX’2> Pleat

is harmonic.
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Poisson’s formula

Proof.

@ Given smooth f, define harmonic function v : B(0,1) — R,

u(x) = Ex[f(B(7))1(T < o0)].

Thus v* is bounded and harmonic, and hence has a unique extension
to a harmonic function at 0, also.

@ The harmonic extension is continuous on the closure, where it agrees
with f, which gives the claimed formula.

Ol

v
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Harmonic measure

Theorem

Let A = RY be a compact, nonpolar set, then there exists a probability
measure pa on A given by

pa(B) = lim Proby(B((A)) & B|7(A) < )

X—00

for B A Borel. Moreover, if B(x,r) o A and wy , is the uniform
probability measure on its boundary then

_ §ra(a, B)dwy ,(a)

#a(B) = 1 A, ()

See MP pp.87 — 91.
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