Math 639: Lecture 19

Harmonic functions and applications

Bob Hough

April 20, 2017

Harmonic functions and applications

This lecture follows Mörters and Peres, Chapter 3.

Harmonic functions

Definition

By a domain we mean a connected open set $U \subset \mathbb{R}^{d}$. Let $U \subset \mathbb{R}^{d}$ be a domain. A function $u: U \rightarrow \mathbb{R}$ is harmonic if it is twice continuously differentiable and, for any $x \in U$,

$$
\Delta u(x):=\sum_{j=1}^{d} \frac{\partial^{2} u}{\partial x_{j}^{2}}(x)=0 .
$$

If, instead, $\Delta u \geqslant 0$ then u is subharmonic.

Harmonic functions

The following theorem relates harmonicity to mean value properties.
Theorem
Let $U \subset \mathbb{R}^{d}$ be a domain and $u: U \rightarrow \mathbb{R}$ measurable and locally bounded. The following conditions are equivalent:
(1) u is a harmonic
(2) For any ball $B(x, r) \subset U$, we have

$$
u(x)=\frac{1}{\operatorname{meas}(B(x, r))} \int_{B(x, r)} u(y) d y
$$

(3) For any ball $B(x, r) \subset U$,

$$
u(x)=\frac{1}{\sigma_{x, r}(\partial B(x, r))} \int_{\partial B(x, r)} u(y) d \sigma_{x, r}(y)
$$

where $\sigma_{x, r}$ is the surface measure on $\partial B(x, r)$.

Harmonic functions

Proof.

- Either 2 or 3 implies that one may write, for a suitable C^{∞} function g of compact support,

$$
u(x)=\int u(y) g\left(\|x-y\|_{2}^{2}\right) d y
$$

Differentiating g proves that u is C^{∞}.

- To prove $2 \Rightarrow 3$, differentiate in the radial direction. To prove $3 \Rightarrow 2$, integrate.

Harmonic functions

Proof.

- To prove $3 \Leftrightarrow 1$, introduce

$$
\psi(r)=\int_{\partial B(0,1)} u(x+r y) d \sigma_{0,1}(y)
$$

and differentiate in r, applying Green's theorem, to find

$$
\psi^{\prime}(r)=\int_{\partial B(0,1)} \frac{\partial u}{\partial n}(x+r y) d \sigma_{0,1}(y)=\int_{B(0,1)} \Delta u(x+r y) d y
$$

which suffices.

Maximum principle

Theorem (Maximum principle)

Suppose $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a function, which is subharmonic on an open set $U \subset \mathbb{R}^{d}$.
(1) If u attains its maximum in U, then u is a constant.
(2) If u is continuous on \bar{U} and U is bounded, then

$$
\max _{x \in \bar{U}} u(x)=\max _{x \in \partial U} u(x)
$$

Maximum principle

Proof.

(1) A variant of the argument giving the mean value characterization shows that

$$
u(x) \leqslant \frac{1}{\operatorname{meas}(B(x, r))} \int_{B(x, r)} u(y) d y
$$

Hence if x is a maximum, then u is equal to this maximum on all balls containing x. Since U is connected, u is constant.
(2) Since u is continuous and \bar{U} is closed and bounded, the maximum of u is attained. By the previous part, the maximum is attained on ∂U.

Maximum principle

Corollary

Suppose $u_{1}, u_{2}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ are functions which are harmonic on a bounded domain $U \subset \mathbb{R}^{d}$ and continuous on \bar{U}. If u_{1} and u_{2} agree on ∂U then they are identical on U.

Brownian motion

Theorem

Suppose U is a domain, $\{B(t): t \geqslant 0\}$ a Brownian motion started inside U and $\tau=\tau(\partial U)=\min \{t \geqslant 0: B(t) \in \partial U\}$ the first hitting time of its boundary. Let $\phi: \partial U \rightarrow \mathbb{R}$ be measurable, and such that the function $u: U \rightarrow \mathbb{R}$ with

$$
u(x)=\mathrm{E}_{x}[\phi(B(\tau)) \mathbf{1}(\tau<\infty)], \quad x \in U
$$

is locally bounded. Then u is a harmonic function.

Brownian motion

Proof.

For a ball $B(x, \delta) \subset U$ let $\tilde{\tau}=\inf \{t>0: B(t) \notin B(x, \delta)\}$. The strong Markov property implies

$$
\begin{aligned}
u(x) & =\mathrm{E}_{x}\left[\mathrm{E}_{x}\left[\phi(B(\tau)) \mathbf{1}(\tau<\infty) \mid \mathscr{F}^{+}(\tilde{\tau})\right]\right]=\mathrm{E}_{x}[u(B(\tilde{\tau}))] \\
& =\int_{\partial B(x, \delta)} u(y) \omega_{x, \delta}(d y)
\end{aligned}
$$

where $\omega_{x, \delta}$ is the uniform measure on $\partial B(x, \delta)$. Thus u has the mean value property, and as it is locally bounded, it is harmonic.

Dirichlet problem

Definition

Let U be a domain in \mathbb{R}^{d} and let ∂U be its boundary. Suppose $\phi: \partial U \rightarrow \mathbb{R}$ is continuous. A continuous function $v: \bar{U} \rightarrow \mathbb{R}$ is a solution to the Dirichlet problem with boundary value ϕ, if it is harmonic on U and $v(x)=\phi(x)$ for $x \in \partial U$.

Poincaré cone

Definition

Let $U \subset \mathbb{R}^{d}$ be a domain. We say that U satisfies the Poincaré cone condition at $x \in \partial U$ if there exists a cone V based at x with opening angle $\alpha>0$, and $h>0$ such that $V \cap B(x, h) \subset U^{c}$.

Poincaré cone

For any open or closed set $A \subset \mathbb{R}^{d}$, denote by $\tau(A)$ the first hitting time of Brownian motion to A,

$$
\tau(A)=\inf \{t \geqslant 0: B(t) \in A\}
$$

Indicate by $C_{z}(\alpha)$ a cone of angle α with base z.

Lemma

Let $0<\alpha<2 \pi$ and let

$$
a=\sup _{x \in \overline{B(0,1 / 2)}} \operatorname{Prob}_{x}\left(\tau(\partial B(0,1))<\tau\left(C_{0}(\alpha)\right)\right) .
$$

Then $a<1$ and, for any positive integer k and $h^{\prime}>0$, we have

$$
\operatorname{Prob}_{x}\left(\tau\left(\partial B\left(z, h^{\prime}\right)\right)<\tau\left(C_{z}(\alpha)\right)\right) \leqslant a^{k}
$$

for all $x, z \in \mathbb{R}^{d}$ with $|x-z|<2^{-k} h^{\prime}$.

Poincaré cone

Proof.

- Checking $a<1$ is straightforward.
- By the strong Markov property

$$
\begin{aligned}
& \operatorname{Prob}_{x}\left(\tau(\partial B(0,1))<\tau\left(C_{0}(\alpha)\right)\right) \\
& \leqslant \prod_{i=0}^{k-1} \sup _{\left.x \in B\left(0,2^{-k+i}\right)\right)} \operatorname{Prob}_{x}\left(\tau\left(\partial B\left(0,2^{-k+i+1}\right)\right)<\tau\left(C_{0}(\alpha)\right)\right)=a^{k},
\end{aligned}
$$

from which the second claim follows.

Dirichlet problem

Theorem

Suppose $U \subset \mathbb{R}^{d}$ is a bounded domain such that every boundary point satisfies the Poincaré cone condition, and suppose ϕ is a continuous function on ∂U. Let $\tau(\partial U)=\inf \{t>0: B(t) \in \partial U\}$, which is an almost surely finite stopping time. Then the function $u: \bar{U} \rightarrow \mathbb{R}$ given by

$$
u(x)=\mathrm{E}_{x}[\phi(B(\tau(\partial U)))], x \in \bar{U}
$$

is the unique continuous function harmonic on U with $u(x)=\phi(x)$ for all $x \in \partial U$.

Dirichlet problem

Proof.

- Uniqueness, and harmonicity on the interior have already been checked, so it suffices to check that the Poincaré cone condition guarantees that u extends continuously to the boundary.
- Let $z \in \partial U$ with cone $C_{z}(\alpha)$ based at z with angle $\alpha>0$ such that for some $h>0, C_{z}(\alpha) \cap B(z, h) \subset U^{c}$.
- By the previous lemma, for some $a<1$, for all positive integers k and $h^{\prime}>0$ we have

$$
\operatorname{Prob}_{x}\left(\tau\left(\partial B\left(z, h^{\prime}\right)\right)<\tau\left(C_{z}(\alpha)\right)\right) \leqslant a^{k}
$$

for all x with $|x-z|<2^{-k} h^{\prime}$.

Dirichlet problem

Proof.

- Given $\epsilon>0$ there is $0<\delta<h$ such that $|\phi(y)-\phi(z)|<\epsilon$ for all $y \in \partial U$ with $|y-z|<\delta$.
- For all $x \in \bar{U}$ with $|z-x|<2^{-k} \delta$,

$$
|u(x)-u(z)|=\left|\mathrm{E}_{x} \phi(B(\tau(\partial U)))-\phi(z)\right| \leqslant \mathrm{E}_{x}|\phi(B(\tau(\partial U)))-\phi(z)| .
$$

- This is bounded by

$$
2\|\phi\|_{\infty} \operatorname{Prob}_{x}\left(\tau(\partial B(z, \delta))<\tau\left(C_{z}(\alpha)\right)\right)+\epsilon \leqslant 2\|\phi\|_{\infty} a^{k}+\epsilon
$$

from which the continuity follows.

Liouville's theorem

Theorem
Any bounded harmonic function in \mathbb{R}^{d} is constant.

Liouville's theorem

Proof.

Let u be harmonic, bounded by M and let $x \neq y$. The claim follows on averaging over balls of radius R centered at x and y, since as $R \rightarrow \infty$, the proportion that does not overlap tends to 0 .

Functions harmonic on an annulus

Let

$$
A=\left\{x \in \mathbb{R}^{d}: r<|x|<R\right\}, \quad 0<r<R<\infty
$$

be an annulus. A solution u to $\Delta u=0$ on A such that $u(x)=\psi\left(|x|^{2}\right)$ is spherically symmetric satisfies

$$
0=\sum_{i=1}^{d}\left(\psi^{\prime \prime}\left(|x|^{2}\right) 4 x_{i}^{2}+2 \psi^{\prime}\left(|x|^{2}\right)\right)=4|x|^{2} \psi^{\prime \prime}\left(|x|^{2}\right)+2 d \psi^{\prime}\left(|x|^{2}\right)
$$

Let $y=|x|^{2}>0$ so that this becomes $\psi^{\prime \prime}(y)=\frac{-d}{2 y} \psi^{\prime}(y)$. This gives

$$
u(x)=\left\{\begin{array}{cl}
|x| & d=1 \\
2 \log |x| & d=2 \\
|x|^{2-d} & d \geqslant 3
\end{array} .\right.
$$

Write $u(|x|)$ in place of $u(x)$.

Exit times from an annulus

Theorem

Suppose $\{B(t): t \geqslant 0\}$ is a Brownian motion in dimension $d \geqslant 1$ started in $x \in A$, which is an open annulus A with radii $0<r<R<\infty$. Define stopping times

$$
T_{r}=\tau(\partial B(0, r))=\inf \{t>0:|B(t)|=r\}, \quad r>0
$$

We have

$$
\operatorname{Prob}_{x}\left(T_{r}<T_{R}\right)=\left\{\begin{array}{cl}
\frac{R-|x|}{R-r} & d=1 \\
\frac{\log R-\log |x|}{\log R-\log r} & d=2 . \\
\frac{R^{2}-d-|x|^{2-d}}{R^{2-d}-r^{2-d}} & d \geqslant 3
\end{array} .\right.
$$

For any $x \notin B(0, r)$, we have

$$
\operatorname{Prob}_{x}\left(T_{r}<\infty\right)=\left\{\begin{array}{cl}
1 & d \leqslant 2 \\
\frac{r^{d-2}}{|x|^{d-2}} & d \geqslant 3
\end{array} .\right.
$$

Exit times from an annulus

Proof.

Let $T=T_{r} \wedge T_{R}$. We have
$u(x)=\mathrm{E}_{x}[u(B(T))]=u(r) \operatorname{Prob}_{x}\left(T_{r}<T_{R}\right)+u(R)\left(1-\operatorname{Prob}_{x}\left(T_{r}<T_{R}\right)\right)$
so

$$
\operatorname{Prob}_{x}\left(T_{r}<T_{R}\right)=\frac{u(R)-u(x)}{u(R)-u(r)}
$$

Letting $R \rightarrow \infty$ gives the second part.

Recurrence and transience

Definition

A Markov process $\{X(t): t \geqslant 0\}$ with values in \mathbb{R}^{d} is

- point recurrent if, almost surely, for every $x \in \mathbb{R}^{d}$ there is a (random) sequence $t_{n} \uparrow \infty$ such that $X\left(t_{n}\right)=x$ for all $n \in \mathbb{N}$
- neighborhood recurrent if, almost surely, for every $x \in \mathbb{R}^{d}$ and $\epsilon>0$, there exists a (random) sequence $t_{n} \uparrow \infty$ such that $X\left(t_{n}\right) \in B(x, \epsilon)$ for all $n \in \mathbb{N}$.
- transcient if it converges to infinity almost surely.

Recurrence and transience

Theorem
Brownian motion is

- Point recurrent in dimension 1
- Neighborhood recurrent, but not point recurrent in dimension 2
- Transient in dimension $d \geqslant 3$.

Recurrence and transience

Proof.

- The case $d=1$ may be deduced from $d=2$.
- When $d=2$, fix $\epsilon>0$ and $x \in \mathbb{R}^{d}$. By the previous theorem, the stopping time $t_{1}=\inf \{t>0: B(t) \in B(x, \epsilon)\}$ is almost surely finite. Iterating proves the neighborhood recurrence at the point x.
- This proves the neighborhood recurrence in general since the topology has a countable base.
- Point recurrence does not hold, because a.s. Brownian motion has no area.

Recurrence and transience

Proof.

- When $d \geqslant 3$ define event

$$
A_{n}:=\left\{|B(t)|>n, \text { all } t \geqslant T_{n^{3}}\right\} .
$$

Note that $T_{n^{3}}<\infty$ with probability 1 .

- For $n \geqslant|x|^{\frac{1}{3}}$,

$$
\operatorname{Prob}_{x}\left(A_{n}^{c}\right)=E_{x}\left[\operatorname{Prob}_{B\left(T_{n^{3}}\right)}\left\{T_{n}<\infty\right\}\right]=\left(\frac{1}{n^{2}}\right)^{d-2} .
$$

- The RHS is summable, so by Borel-Cantelli, occurs only finitely often with probability 1.

Dvoretzky-Erdős test

Theorem
Let $\{B(t): t \geqslant 0\}$ be Brownian motion in \mathbb{R}^{d} for $d \geqslant 3$ and $f:(0, \infty) \rightarrow(0, \infty)$ increasing. Then

$$
\int_{1}^{\infty} f(r)^{d-2} r^{-\frac{d}{2}} d r<\infty \Leftrightarrow \liminf _{t \uparrow \infty} \frac{|B(t)|}{f(t)}=\infty \text { a.s. }
$$

Conversely, if the integral diverges, then $\lim _{\inf _{t \uparrow \infty}} \frac{|B(t)|}{f(t)}=0$ a.s.

Dvoretzky-Erdős test

We use several lemmas from homework.
Lemma (Paley-Zygmund inequality)
For any non-negative random variable X with $0<\mathrm{E}\left[X^{2}\right]<\infty$,

$$
\operatorname{Prob}(X>0) \geqslant \frac{\mathrm{E}[X]^{2}}{\mathrm{E}\left[X^{2}\right]}
$$

Lemma (Borel-Cantelli)

Suppose E_{1}, E_{2}, \ldots are events with

$$
\sum_{n=1}^{\infty} \operatorname{Prob}\left(E_{n}\right)=\infty, \quad \liminf _{k \rightarrow \infty} \frac{\sum_{m=1}^{k} \sum_{n=1}^{k} \operatorname{Prob}\left(E_{n} \cap E_{m}\right)}{\left(\sum_{n=1}^{k} \operatorname{Prob}\left(E_{n}\right)\right)^{2}}<\infty
$$

Then with positive probability infinitely many of the events take place.

Dvoretzky-Erdős test

Lemma

There exists a constant $C_{1}>0$ depending only on the dimension d such that, for any $\rho>0$, we have

$$
\sup _{x \in \mathbb{R}^{d}} \operatorname{Prob}_{x}(\text { there exists } t>1 \text { with }|B(t)| \leqslant \rho) \leqslant C_{1} \rho^{d-2}
$$

Dvoretzky-Erdős test

Proof.

Calculate

$$
\begin{aligned}
& \operatorname{Prob}_{x}(\text { there exists } t>1 \text { with }|B(t)| \leqslant \rho) \leqslant \mathrm{E}_{0}\left[\left(\frac{\rho}{|B(1)+x|}\right)^{d-2}\right] \\
& \leqslant \rho^{d-2} \frac{1}{(2 \pi)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}}|y+x|^{2-d} \exp \left(-\frac{|y|^{2}}{2}\right) d y .
\end{aligned}
$$

Dvoretzky-Erdős test

Proof of the Dvoretzky-Erdős test.

- Define events

$$
A_{n}=\left\{\text { there exists } t \in\left(2^{n}, 2^{n+1}\right] \text { with }|B(t)| \leqslant f(t)\right\} .
$$

- We have

$$
\begin{aligned}
\operatorname{Prob}\left(A_{n}\right) & \leqslant \operatorname{Prob}\left(\text { there exists } t>1 \text { with }|B(t)| \leqslant f\left(2^{n+1}\right) 2^{-n / 2}\right) \\
& \leqslant C_{1}\left(f\left(2^{n+1}\right) 2^{-n / 2}\right)^{d-2}
\end{aligned}
$$

Dvoretzky-Erdős test

Proof of the Dvoretzky-Erdős test.

- Convergence of the integral is equivalent to convergence of

$$
\sum_{n=1}^{\infty}\left(f\left(2^{n}\right) 2^{-n / 2}\right)^{d-2}<\infty
$$

- By Borel-Cantelli, the events A_{n} happen only finitely often with probability 1. This holds replacing f with a constant multiple, so

$$
\liminf _{t \uparrow \infty} \frac{|B(t)|}{f(t)}=\infty
$$

with probability 1.

Dvoretzky-Erdős test

Proof of the Dvoretzky-Erdős test.

- Now suppose

$$
\sum_{n=1}^{\infty}\left(f\left(2^{n}\right) 2^{-n / 2}\right)^{d-2}=\infty
$$

and assume, as we may, that $f(t)<\sqrt{t}$.

- For $\rho \in(0,1)$, consider the random variable $I_{\rho}=\int_{1}^{2} \mathbf{1}(|B(t)| \leqslant \rho) d t$. One has

$$
C_{2} \rho^{d} \leqslant \mathrm{E}\left[I_{\rho}\right] \leqslant C_{3} \rho^{d}
$$

Dvoretzky-Erdős test

Proof of the Dvoretzky-Erdős test.

- Estimate

$$
\begin{aligned}
\mathrm{E}\left[I_{\rho}^{2}\right] & =2 \mathrm{E}\left[\int_{1}^{2} \mathbf{1}(|B(t)| \leqslant \rho) \int_{t}^{2} \mathbf{1}(|B(s)| \leqslant \rho) d s d t\right] \\
& \leqslant 2 \mathrm{E}\left[\int_{1}^{2} \mathbf{1}(|B(t)| \leqslant \rho) \mathrm{E}_{B(t)} \int_{0}^{\infty} \mathbf{1}(|\tilde{B}(s)| \leqslant \rho) d s d t\right] .
\end{aligned}
$$

- Given $x \neq 0$, let $T=\inf \{t>0:|B(t)|=x\}$ and use the strong Markov property to obtain

$$
\begin{aligned}
\mathrm{E}_{0} \int_{0}^{\infty} \mathbf{1}(|B(s)| \leqslant \rho) d s & \geqslant \mathrm{E} \int_{T}^{\infty} \mathbf{1}(|B(s)| \leqslant \rho) d s \\
& =\mathrm{E}_{x} \int_{0}^{\infty} \mathbf{1}(|B(s)| \leqslant \rho) d s
\end{aligned}
$$

Dvoretzky-Erdős test

Proof of the Dvoretzky-Erdős test.

- Thus

$$
\mathrm{E}\left[1_{\rho}^{2}\right] \leqslant 2 C \rho^{d} \mathrm{E}_{0} \int_{0}^{\infty} \mathbf{1}(|B(s)| \leqslant \rho) d s \leqslant C^{\prime} \rho^{d+2}
$$

- It follows that

$$
\operatorname{Prob}\left(I_{\rho}>0\right) \geqslant \frac{\mathrm{E}\left[I_{\rho}\right]^{2}}{\mathrm{E}\left[I_{\rho}^{2}\right]} \geqslant C^{\prime \prime} \rho^{d-2} .
$$

- Choose $\rho=f\left(2^{n}\right) 2^{-n / 2}$. By Brownian scaling and monotonicity of f,

$$
\operatorname{Prob}\left(A_{n}\right) \geqslant \operatorname{Prob}\left(I_{\rho}>0\right) \geqslant C^{\prime \prime}\left(f\left(2^{n}\right) 2^{-n / 2}\right)^{d-2}
$$

so $\sum_{n} \operatorname{Prob}\left(A_{n}\right)=\infty$.

Dvoretzky-Erdős test

Proof of the Dvoretzky-Erdős test.

- For $m<n-1$,

$$
\begin{aligned}
\operatorname{Prob}\left[A_{n} \mid A_{m}\right] & \leqslant \sup _{x \in \mathbb{R}^{d}} \operatorname{Prob}_{x}\left(\exists t>1 \text { with }|B(t)| \leqslant f\left(2^{n+1}\right) 2^{(1-n) / 2}\right) \\
& \leqslant C_{1}\left(f\left(2^{n+1}\right) 2^{(1-n) / 2}\right)^{d-2} .
\end{aligned}
$$

Dvoretzky-Erdős test

Proof of the Dvoretzky-Erdős test.

- Thus

$$
\begin{aligned}
& \liminf _{k \rightarrow \infty} \frac{\sum_{m=1}^{k} \sum_{n=1}^{k} \operatorname{Prob}\left(A_{n} \cap A_{m}\right)}{\left(\sum_{n=1}^{k} \operatorname{Prob}\left(A_{n}\right)\right)^{2}} \\
& =2 \liminf _{k \rightarrow \infty} \frac{\sum_{m=1}^{k} \operatorname{Prob}\left(A_{m}\right) \sum_{n=m+2}^{k} \operatorname{Prob}\left(A_{n} \mid A_{m}\right)}{\left(\sum_{n=1}^{k} \operatorname{Prob}\left(A_{n}\right)\right)^{2}} \\
& \ll \liminf _{k \rightarrow \infty} \frac{\sum_{n=1}^{k}\left(f\left(2^{n+1}\right) 2^{(1-n) / 2}\right)^{d-2}}{\sum_{n=1}^{k}\left(f\left(2^{n}\right) 2^{-n / 2}\right)^{d-2}}<\infty .
\end{aligned}
$$

- We thus get $\operatorname{Prob}\left(A_{n}\right.$ i.o. $)>0$, so it is 1 since it has a $0-1$ law. Since we can replace f with $\epsilon f, \lim _{\inf _{t \uparrow \infty}} \frac{|B(t)|}{f(t)}=0$ a.s.

Occupation measures

Theorem

Let $\{B(s): s \geqslant 0\}$ be a linear Brownian motion and $t>0$. Define the occupation measure μ_{t} by

$$
\mu_{t}(A)=\int_{0}^{t} \mathbf{1}_{A}(B(s)) d s, \quad A \subset \mathbb{R} \text { Borel. }
$$

Then a.s. μ_{t} is absolutely continuous with respect to Lebesgue measure.

Occupation measures

Proof.

It suffices to check that

$$
\liminf _{r \downarrow 0} \frac{\mu_{t}(B(x, r))}{\operatorname{meas}(B(x, r))}<\infty, \mu_{t}-\text { a.e. } x \in \mathbb{R}
$$

By Fatou and Fubini,

$$
\begin{aligned}
\mathrm{E} \int \liminf _{t \downarrow 0} & \frac{\mu_{t}(B(x, r))}{\operatorname{meas}(B(x, r))} \leqslant \liminf _{r \downarrow 0} \frac{1}{2 r} \mathrm{E} \int \mu_{t}(B(x, r)) d \mu_{t}(x) \\
& =\liminf _{r \downarrow 0} \frac{1}{2 r} \int_{0}^{t} \int_{0}^{t} \operatorname{Prob}\left(\left|B\left(s_{1}\right)-B\left(s_{2}\right)\right| \leqslant r\right) d s_{1} d s_{2}
\end{aligned}
$$

Occupation measures

Proof.

Use

$$
\operatorname{Prob}\left(\left|B\left(s_{1}\right)-B\left(s_{2}\right)\right| \leqslant r\right)=\operatorname{Prob}\left(|X| \leqslant \frac{r}{\sqrt{\left|s_{1}-s_{2}\right|}}\right) \leqslant \frac{2 r}{\sqrt{\left|s_{1}-s_{2}\right|}}
$$

which implies that
$\liminf _{r \downharpoonright 0} \frac{1}{2 r} \int_{0}^{t} \int_{0}^{t} \operatorname{Prob}\left(\left|B\left(s_{1}\right)-B\left(s_{2}\right)\right| \leqslant r\right) d s_{1} d s_{2} \leqslant \int_{0}^{t} \int_{0}^{t} \frac{d s_{1} d s_{2}}{\sqrt{\left|s_{1}-s_{2}\right|}}<\infty$.

Occupation measures

Theorem
Let $U \subset \mathbb{R}^{d}$ be a non-empty bounded open set and $x \in \mathbb{R}^{d}$ arbitrary.

- If $d=2$, then Prob_{x}-a.s., $\int_{0}^{\infty} \mathbf{1}_{U}(B(t)) d t=\infty$.
- If $d \geqslant 3$, then $\mathrm{E}_{x} \int_{0}^{\infty} \mathbf{1}_{u}(B(t)) d t<\infty$.

Occupation measures

Proof.

- It suffices to show this for balls, and by translation, for balls centered at 0 . Let $U=B(0, r)$.
- First consider $d=2$ and let $G=B(0,2 r)$.
- Let $S_{0}=0$ and, for all $k \geqslant 0$, let

$$
T_{k}=\inf \left\{t>S_{k}: B(t) \notin G\right\}, \quad S_{k+1}=\inf \left\{t>T_{k}: B(t) \in U\right\}
$$

Occupation measures

Proof.

- By the strong Markov property

$$
\begin{aligned}
& \operatorname{Prob}_{x}\left(\int_{S_{k}}^{T_{k}} \mathbf{1}_{U}(B(t)) d t \geqslant s \mid \mathscr{F}^{+}\left(S_{k}\right)\right) \\
& =\operatorname{Prob}_{B\left(S_{k}\right)}\left(\int_{0}^{T_{1}} \mathbf{1}_{U}(B(t)) d t \geqslant s\right) \\
& =E_{x}\left[\operatorname{Prob}_{B\left(S_{k}\right)}\left(\int_{0}^{T_{1}} \mathbf{1}_{U}(B(t)) d t \geqslant s\right)\right] \\
& =\operatorname{Prob}_{x}\left(\int_{S_{k}}^{T_{k}} \mathbf{1}_{U}(B(t)) d t \geqslant s\right) .
\end{aligned}
$$

These variables are i.i.d. with positive mean, so the conclusion follows by the strong law of large numbers.

Occupation measures

Proof.

- Now let $d \geqslant 3$. Write $p(\cdot, \cdot, \cdot)$ for the transition kernel of Brownian motion. By Fubini's theorem,

$$
\begin{aligned}
& \mathrm{E}_{0} \int_{0}^{\infty} \mathbf{1}_{B(0, r)}(B(s)) d s=\int_{0}^{\infty} \operatorname{Prob}_{0}(B(s) \in B(0, r)) d s \\
& =\int_{0}^{\infty} \int_{B(0, r)} p(s, 0, y) d y d s \\
& =\int_{B(0, r)} \int_{0}^{\infty} p(s, 0, y) d s d y \\
& =\sigma(\partial B(0,1)) \int_{0}^{r} \rho^{d-1} \int_{0}^{\infty}\left(\frac{1}{\sqrt{2 \pi s}}\right)^{d} e^{-\frac{\rho^{2}}{2 s}} d s d \rho \\
& =C \int_{0}^{r} \rho^{d-1} \rho^{2-d} d \rho<\infty
\end{aligned}
$$

Occupation measures

Proof.

- To handle a general starting point x, let T be the stopping time for Brownian motion started at 0 and stopped the first time it reaches a sphere of radius $|x|$. Then

$$
\begin{aligned}
\mathrm{E}_{x} \int_{0}^{\infty} \mathbf{1}_{B(0, r)}(B(s)) d s & =\mathrm{E}_{0} \int_{T}^{\infty} \mathbf{1}_{B(0, r)}(B(s)) d s \\
& \leqslant \mathrm{E}_{0} \int_{0}^{\infty} \mathbf{1}_{B(0, r)}(B(s)) d s<\infty
\end{aligned}
$$

Transient Brownian motion

Definition

Suppose that $\{B(t): 0 \leqslant t \leqslant T\}$ is a d-dimensional Brownian motion and one of the following three cases holds:
(1) $d \geqslant 3$ and $T=\infty$
(2) $d \geqslant 2$ and T is an independent exponential time with parameter $\lambda>0$,
(3) $d \geqslant 2$ and T is the first exit time from a bounded domain D.

Say $D=\mathbb{R}^{d}$ in cases 1 and 2 . We refer to these three cases by saying that $\{B(t): 0 \leqslant t \leqslant T\}$ is a transient Brownian motion.

Transient Brownian motion

Theorem

For transient Brownian motion $\{B(t): 0 \leqslant t \leqslant T\}$ there exists a transition density $p^{*}:[0, \infty) \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow[0,1]$ such that, for any $t>0$,

$$
\operatorname{Prob}_{x}(B(t) \in A, t \leqslant T)=\int_{A} p^{*}(t, x, y) d y, \quad \forall A \in \mathscr{B}\left(\mathbb{R}^{d}\right)
$$

Moreover, for all $t \geqslant 0$ and a.e. $x, y \in D, p^{*}(t, x, y)=p^{*}(t, y, x)$.
For the proof, see MP p. 79.

Transient Brownian motion

We make the following convention regarding transition kernels for transient Brownian motion.
(1) $d \geqslant 3$ and $T=\infty$:

$$
p^{*}(t, x, y)=p(t, x, y)
$$

(2) $d \geqslant 2$ and T is an independent exponential time with parameter $\lambda>0$:

$$
p^{*}(t, x, y)=e^{-\lambda t} p(t, x, y)
$$

(3) $d \geqslant 2$ and T is the first exit time from a bounded domain D :

$$
p^{*}(t, x, y)=p(t, x, y)-\mathrm{E}_{x}[p(t-T, B(T), y) 1(T<t)] .
$$

Green's function

Definition

For transient Brownian motion $\{B(t): 0 \leqslant t \leqslant T\}$ we define the Green's function $G: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow[0, \infty]$ by

$$
G(x, y)=\int_{0}^{\infty} p^{*}(t, x, y) d t
$$

Green's function

Theorem

If $f: \mathbb{R}^{d} \rightarrow[0, \infty]$ is measurable, then

$$
\mathrm{E}_{x} \int_{0}^{T} f(B(t)) d t=\int f(y) G(x, y) d y
$$

Proof.

Fubini gives

$$
\begin{aligned}
\mathrm{E}_{x} \int_{0}^{T} f(B(t)) d t & =\int_{0}^{\infty} \mathrm{E}_{x}\left[f(B(t)) 1_{(t \leqslant T)}\right] d t=\int_{0}^{\infty} \int p^{*}(t, x, y) f(y) d y d t \\
& =\iint_{0}^{\infty} p^{*}(t, x, y) d t f(y) d y=\int G(x, y) f(y) d y
\end{aligned}
$$

Green's function

Theorem
If $d \geqslant 3$ and $T=\infty$, then

$$
G(x, y)=c(d)|x-y|^{2-d}, \quad c(d)=\frac{\Gamma(d / 2-1)}{2 \pi^{d / 2}} .
$$

Proof.

Calculate

$$
\begin{aligned}
G(x, y) & =\int_{0}^{\infty} \frac{1}{(2 \pi t)^{\frac{d}{2}}} e^{-\frac{|x-y|^{2}}{2 t}} d t \\
& =\frac{|x-y|^{2-d}}{2 \pi^{d / 2}} \int_{0}^{\infty} s^{d / 2-2} e^{-s} d s=\frac{\Gamma(d / 2-1)}{2 \pi^{d / 2}}|x-y|^{2-d} .
\end{aligned}
$$

Green's function

Theorem
If $d=2$ and T is an independent exponential time with parameter $\lambda>0$, then

$$
G(x, y) \sim-\frac{1}{\pi} \log |x-y|, \quad|x-y| \downarrow 0
$$

See MP. p. 81.

Green's function

Theorem

In all three cases of transient Brownian motion in $d \geqslant 2$, the Green's function $G: D \times D \rightarrow[0, \infty]$ has the following properties:
(1) G is finite off and infinite on the diagonal $\Delta=\{(x, y): x=y\}$.
(2) G is symmetric, i.e. $G(x, y)=G(y, x)$ for all $x, y \in D$.
(3) For $y \in D$ the Green's function $G(\cdot, y)$ is subharmonic on $D \backslash\{y\}$. In cases 1 and 3 it is harmonic.

This is immediate in the case $d=3$. In the remaining cases, see MP, pp. 82-84.

Green's function

Lemma

If $d=2$, for $x, y, z \in \mathbb{R}^{2}$ with $|x-z|=1$,

$$
-\frac{1}{\pi} \log |x-y|=\int_{0}^{\infty} p(s, x, y)-p(s, x, z) d s
$$

Green's function

Proof.

For $|x-z|=1$, we obtain

$$
\begin{aligned}
\int_{0}^{\infty} p(t, x, y)-p(t, x, z) d t & =\frac{1}{2 \pi} \int_{0}^{\infty}\left(e^{-\frac{|x-y|^{2}}{2 t}}-e^{-\frac{1}{2 t}}\right) \frac{d t}{t} \\
& =\frac{1}{2 \pi} \int_{0}^{\infty}\left(\int_{|x-y|^{2} /(2 t)}^{1 /(2 t)} e^{-s} d s\right) \frac{d t}{t} \\
& =\frac{1}{2 \pi} \int_{0}^{\infty} e^{-s} \int_{|x-y|^{2} /(2 s)}^{1 /(2 s)} \frac{d t}{t} d s=-\frac{\log |x-y|}{\pi} .
\end{aligned}
$$

Harmonic measure

Definition

Let $\{B(t): t \geqslant 0\}$ be a d-dimensional Brownian motion, $d \geqslant 2$, started in some point x and fix a closed set $A \subset \mathbb{R}^{d}$. Define a measure $\mu_{A}(x, \cdot)$ by

$$
\mu_{A}(x, B)=\operatorname{Prob}(B(\tau) \in B, \tau<\infty), \quad \tau=\inf \{t \geqslant 0: B(t) \in A\}
$$

for $B \subset A$ Borel.
$\mu_{A}(x, \cdot)$ is the distribution of the first hitting point of A, and the total mass of the measure is the probability that a Brownian motion started in x ever hits the set A. If $x \notin A, \mu_{A}(x, \cdot)$ is supported on ∂A.

Dirichlet problem

Theorem

If the Poincaré cone condition is satisfied at every point $x \in \partial U$ on the boundary of a bounded domain U, then the solution of the Dirichlet problem with boundary condition $\phi: \partial U \rightarrow \mathbb{R}$ can be written

$$
u(x)=\int \phi(y) \mu_{\partial} u(x, d y), \quad x \in \bar{U} .
$$

This is a restatement of our earlier solution of the Dirichlet problem.

Harnack principle

Theorem (Harnack principle)

Suppose $A \subset \mathbb{R}^{d}$ is compact and x, y are in the unbounded component of A^{c}. Then $\mu_{A}(x, \cdot)$ is absolutely continuous with respect to $\mu_{A}(y, \cdot)$.

Harnack principle

Proof.

Given $B \subset \partial A$ Borel, the mapping $x \mapsto \mu_{A}(x, B)$ is a harmonic function on A^{c}. If it vanishes at $y \in A^{c}$ then this is a minimum, so the maximum modulus principle implies $\mu_{A}(x, B)=0$ for all $x \in A^{c}$, as needed.

Polar and nonpolar

Definition

A compact set A is called nonpolar if $\mu_{A}(x, A)>0$ for some (all) $x \in A^{C}$. Otherwise it is called polar.

Poisson's formula

Theorem (Poisson's formula)
Suppose that $B \subset \partial B(0,1)$ is a Borel subset of the unit sphere for $d \geqslant 2$. Let ω denote the uniform distribution on the unit sphere. Then, for all $x \notin \partial B(0,1)$,

$$
\mu_{\partial B(0,1)}(x, B)=\int_{B} \frac{\left|1-|x|^{2}\right|}{|x-y|^{d}} d \omega(y) .
$$

Poisson's formula

Proof.

- We first consider the case $|x|<1$.
- Let τ denote the first hitting time of $\partial B(0,1)$.
- It suffices by density to check for smooth f

$$
\mathrm{E}_{x}[f(B(\tau))]=\int_{\partial B(0,1)} \frac{1-|x|^{2}}{|x-y|^{d}} f(y) d \omega(y)
$$

Thus it suffices to check that the RHS is a solution to the Dirichlet problem with boundary value f.

Poisson's formula

Proof.

- One may check by differentiating that for all $y \in \partial B(0,1)$,

$$
x \mapsto \frac{1-|x|^{2}}{|x-y|^{d}}
$$

is harmonic on the open ball $B(0,1)$. This proves the harmonicity.

- To prove the extension to the boundary first consider $f \equiv 1$ and check

$$
I(x)=\int_{\partial B(0,1)} \frac{1-|x|^{2}}{|x-y|^{d}} \omega(d y)=1
$$

Indeed, I is harmonic on the interior, satisfies spherical symmetric, and has value 1 at 0 .

Poisson's formula

Proof.

- For general f, and $y \in \partial B(0,1)$,

$$
\begin{aligned}
& \left|f(y)-\int_{\partial B(0,1)} \frac{1-|x|^{2}}{|x-z|^{d}} f(z) d \omega(z)\right| \\
& =\left|\int_{\partial B(0,1)} \frac{1-|x|^{2}}{|x-z|^{d}}(f(y)-f(z)) d \omega(z)\right| .
\end{aligned}
$$

- Note that $\frac{1-|x|^{2}}{|x-z|^{d}} d \omega(z)$ is a probability measure on the boundary which is a summability kernel for δ_{y} as $x \rightarrow y$.

Poisson's formula

Proof.

- If $|x|>1$ we use inversion in the unit sphere. One can check that

$$
u: \overline{B(0,1)}^{c} \rightarrow \mathbb{R}
$$

is harmonic if and only if its inversion

$$
u^{*}: B(0,1) \backslash\{0\} \rightarrow \mathbb{R}, u^{*}(x)=u\left(\frac{x}{|x|^{2}}\right)|x|^{2-d}
$$

is harmonic.

Poisson's formula

Proof.

- Given smooth f, define harmonic function $u: \overline{B(0,1)}^{c} \rightarrow \mathbb{R}$,

$$
u(x)=\mathrm{E}_{x}[f(B(\tau)) \mathbf{1}(\tau<\infty)]
$$

Thus u^{*} is bounded and harmonic, and hence has a unique extension to a harmonic function at 0 , also.

- The harmonic extension is continuous on the closure, where it agrees with f, which gives the claimed formula.

Harmonic measure

Theorem

Let $A \subset \mathbb{R}^{d}$ be a compact, nonpolar set, then there exists a probability measure μ_{A} on A given by

$$
\mu_{A}(B)=\lim _{x \rightarrow \infty} \operatorname{Prob}_{x}(B(\tau(A)) \in B \mid \tau(A)<\infty)
$$

for $B \subset A$ Borel. Moreover, if $B(x, r) \supset A$ and $\omega_{x, r}$ is the uniform probability measure on its boundary then

$$
\mu_{A}(B)=\frac{\int \mu_{A}(a, B) d \omega_{x, r}(a)}{\int \mu_{A}(a, A) d \omega_{x, r}(a)} .
$$

See MP pp. $87-91$.

