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Brownian motion as a Markov process

This lecture follows Morters and Peres, Chapter 2.
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Brownian motion as a Markov process

Definition
If By, ..., By are Brownian motions started in xi, ..., x4, then the stochastic
process {B(t) : t = 0} given by

B(t) = (Bi(t), ..., B4(t))"

is called d-dimensional Brownian motion started in (xy,...,xq)". The
d-dimensional Brownian motion started in the origin is called standard
Brownian motion. One dimensional Brownian motion is called linear,
two-dimensional Brownian motion planar Brownian motion.
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Independent stochastic processes

Definition

The stochastic processes {X(t) : t > 0} and {Y(t) : t > 0} are called
independent, if for any sets t1,...,t, = 0 and s1, ..., Sy, = 0 of times the
vectors (X(t1),...,X(t,)) and (Y(s1), ..., Y(sm)) are independent.
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Markov property

Theorem

Suppose that {B(t) : t = 0} is a Brownian motion started in x € R9. Let
s > 0, then the process {B(t + s) — B(s) : t > 0} is again a Brownian
motion started at the origin, and is independent of the process
{B(t):0<t<s}.

Proof.

One easily checks that the f.d.d. of the shifted Brownian motion agree
with those of Brownian motion. Independence follows from the
independence of increments. Ol
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Filtration

Definition

© A filtration on a probability space (£2,.%#, Prob) is a family
(Z(t) : t = 0) of o-algebras such that .#(s) c .7 (t) c .Z for all
s<t.

@ A probability space together with a filtration is called a filtered
probability space.

© A stochastic process {X(t) : t = 0} defined on a filtered probability
space with filtration (% (t) : t = 0) is called adapted if X(t) is
F (t)-measurable for any t > 0.
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Filtration

Given a Brownian motion {B(t) t > 0} defined on some probability
space, then a filtration .#°(t),t > 0 is defined by letting

FOt) = o(B(s):0<s<t).
A larger o-algebra .7 (s) is defined by

FH(s)=[)7°).

t>s
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Markov property

Theorem

For every s = 0 the process {B(t + s) — B(s) : t = 0} is independent of
the o-algebra F ™ (s).

Bob Hough Math 639: Lecture 18 April 18, 2017 8 /68



Markov property

Proof.
o Let {s,: ne N} be a monotone decreasing sequence tending to s.

@ By continuity, for any ti, ..., tm = 0 we have
(B(t1 +s) — B(s), ..., B(tm +s) — B(s))
= liTrog(B(tl +5j) = B(s)), ... B(tm + 57) — B(s)))
J

is independent of .# T (s). This proves independence of the process
{B(t+s)— B(s): t =0} with #7(s).
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Markov property

Theorem (Blumenthal's 0-1 Law)
Let x e RY and Ae .Z7(0). Then Prob,(A) € {0, 1}.

Proof.

Any A€ o(B(t) : t = 0) is independent of .Z(0), since the o-algebra is
generated by finite dimensional rectangles. This applies to A € .#1(0),
which is thus independent of itself, so that the probability is 0 or 1. O

v
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Return to 0

Theorem

Suppose {B(t) : t = 0} is a 1I-d Brownian motion. Define
T =inf{t > 0: B(t) >0} and o = inf{t > 0: B(t) = 0}. Then

Probg(7 = 0) = Probg(c = 0) = 1.
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Return to 0

Proof.
@ The event

Q0

1

{r =0} = ﬂ {there is0<e<=st Be) > 0}
n=1 n

is in #7(0), hence has probability 0 or 1.

@ Probg(r <t) > Probo( (t) >0) =3 fort >0, so
Probg(7 = 0) > 3, so the probab|||ty is 1.

@ The remaining cIalm follows from the intermediate value theorem.
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Maxima and minima

Theorem
For a 1d Brownian motion {B(t) : 0 < t < 1}, almost surely,
@ Every local maximum is a strict local maximum

@ The set of times where the local maxima are attained is countable
and dense

© The global maximum is attained at a unique time
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Maxima and minima

Proof.

e Fix two intervals [a1, b1], [a2, b2], b1 < ap. Let the maxima of
Brownian motion on these intervals be m; and m»

@ By the previous theorem, B(az) < ms a.s., and so the maxima on
[a2, bo] agrees with that on the interval [ay — €, by] for some € > 0, so
we may assume that b; < ap.

e By the Markov property, m; — B(b1), B(az) — B(b1), and mp — B(ap)
are independent.

@ Write the event m; = m» as

8(32) — B(bl) = my — B(bl) — (m2 — B(ag)).

Conditioned on my — B(b1) and mp — B(ay), the right hand side is
constant, while the left hand side is normally distributed, so that the
equality has measure 0.
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Maxima and minima

Proof.

@ To verify that all local maxima are strict, note almost surely that the
maxima differ over any two non-overlapping rational intervals

© Almost surely, there is a strict local maximum in the interior of each
closed bounded interval with distinct rational endpoints. Hence these
are dense, and their number is countable.

© Almost surely, for any rational g, the maxima in [0, g] and [g, 1] are
different. If there are two points of a global maxima t; < t, then
there is a rational g, t; < g < t, so this happens with measure 0.
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Stopping times

Definition

A random variable T with values in [0, o], defined on a probability space
with filtration (.Z (t) : t = 0) is called a stopping time with respect to
(F(t):t=0)if {T <t} e Z(t), for every t > 0.

16 / 68
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Stopping times

e If (T,:n=1,2,...) is an increasing sequence of stopping times with
respect to (F(t) :t > 0) and T, 1 T, then T is a stopping time
w.rt. (ZF(t):t>=0), since

@ Let T be a stopping time w.r.t. (Z(t):t > 0). Define

This is a stopping time.
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Stopping times

@ Every stopping time w.r.t. (F°(t):t > 0) is also a stopping time
w.rt. (F*F(t): t=0), since FO(t) c F*(t).
@ Let H be a closed set. The first hitting time to H,

T = inf{t > 0: B(t) € H} of the set H is a stopping time w.r.t.
(Z°(t) : t = 0). Note

<=1 U U {\B(s)—x!é}?}eﬁo(t).
n=1seQn(

0,t) xeQ9 ~H
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Stopping times

o Let G = R? be open, then
=inf{t >0: B(t) e G}

is a stopping time w.r.t. filtration (Z 1 (¢t) : t = 0), but not
necessarily w.r.t (Z%(t) : t = 0). To see the first claim, write

t=(UT<ss=() | (B(neGieF (v

s>t s>t re(@m 05
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Stopping times

@ To see the second claim, let G be a open half-space and suppose the
starting point is not in G.

o Let v:[0,t] — R? with v(0,t) n G = J and ~(t) € 0G.
o The o-algebra .Z#9(t) contains no non-trivial subset of
{B(s) =v(s),0 <s < t}. If {T <t}e.Zt), the set

{B(s) =~(s),0<s<t,T=t}

would be in .#%(t) and a non-trivial subset of the earlier set.
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Stopping times

@ We make the convention that stopping times are defined w.r.t.
(F*(t),t>0)
@ The filtration (Z# " (t),t > 0) satisfies right-continuity,

(Ft(t+e) =F"(1)

e>0
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Stopping times

Lemma

Suppose a random variable T with values in [0, o] satisfies

{T <t} e F(t), foreveryt =20, and (Z(t) : t = 0) is right-continuous,
then T is a stopping time w.r.t. (Z(t):t > 0).

Proof.
We have

{Tgt}:ﬁ{T<t+i}e Ooﬁ(t+,17>—y(t).

n=
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Stopping times

Definition
Let T be a stopping time. The o-algebra generated by T is

FHT)={Aed :Vt>0, An{T < t}e F+(t)}.
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Strong Markov property

Theorem (Strong Markov property)

For every almost surely finite stopping time T, the process
{B(T +t)— B(T):t=>0} is a standard Brownian motion independent of
FH(T).

Alternatively, for any bounded measurable f : C([0, %), RY) — R, and
xeR9,

Ex[F({B(T +1t): t > 0})|F*(T)] = Eg(n)[f({B(t) : t = 0})].

where B(t) denotes Brownian motion started from B(T).
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Strong Markov property

Proof.

@ Set
To=(m+1)27" ifm27"<T<(m+1)27"

o Write By = {Bx(t) : t = 0} for By(t) = B(t + k27") — B(k2™"). Set
Bi«(t) = B(t + T,) — B(Tp).
o Let E€ .Z1(T,). For every event {B, € A}, we have

Prob({Bx € A} n E) = i Prob({Bx e A} n En{T,=k2™"})
k=0

Prob(By € A) Prob(E ~ {T, = k27"})

MS

i

0

since En{T,=k2 "} e FT(k27").

O

v
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Strong Markov property

Proof.
@ We have Prob(By € A) = Prob(B € A) so that

Prob({Bx € A} n E) = Prob(B € A) i Prob(E n{T, = k27"})
k=0
= Prob(B € A) Prob(E).

Thus B, is a Brownian motion which is independent of E, hence of
FH(T,).
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Strong Markov property

Proof.
@ As T, | T, we have {B(s+ Th) — ( Tn) : s = 0} is a Brownian
motion independent of .Z*(T,) > .Z1(T). Hence the increments

B(s+t+T)—B(t+ T):nlimooB(s+t+ Th) — B(t+ Tp)

so that the increments of the process {B(r + T) — B(T) : r = 0} are
independent and normally distributed with mean 0 and variance s.
Furthermore,

B(s+t+T)—B(t+T)=IlmB(s+t+ T, —B(t+ T,) is
independent of .Z*(T).
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Reflection principle

Theorem (Reflection principle)

If T is a stopping and {B(t) : t > 0} is standard Brownian motion, then

the process {B*(t) : t = 0} called Brownian motion reflected at T and
defined by

B*(t) = B(t)le<t + (2B(T) — B(t))1e>7

is also a standard Brownian motion.
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Reflection principle

Proof.
If T is finite, by the strong Markov property
{B(t+T)—B(T):t=0}, {—(B(t+T)—B(T)):t=0}

are Brownian motions, and independent of {B(t) : 0 <t < T}. The
process of glueing together paths is measurable, thus the two glueings
induce the same distribution. [

v
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Maximum of Brownian motion

Let B(t) be a one-dimensional Brownian motion. Define
M(t) = MaXogs<t B(S)

Theorem
If a> 0 then Probo(M(t) > a) = 2 Probg(B(t) > a) = Probg(|B(t)| > a).J
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Maximum of Brownian motion

Proof.
Let T =inf{t > 0: B(t) = a} and let {B*(t) : t > 0} be Brownian
motion reflected at stopping time T. Write

(M(t) > a} = {B(t) > a} L {M(t) > a, B(t) < a}.

The second event corresponds to {B*(t) > a}, which has equal
measure. my
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Convolution

Definition
Given functions f, g, denote the convolution of functions f and g given by

fxg(x):= Jf(y)g(x — y)dy.
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Measure

Denote meas Lebesgue measure.
Lemma

If A1, Ay © R? are Borel sets of positive area, then

meas({x € R? : meas(A; n (A2 + x)) > 0}) > 0.
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Measure

Proof.
Assume A; and A, are bounded. By Fubini

fRQ Ly, ol (b = fw JRQ L, (69 oy — s
_ JRQ 14, (w) ( JRZ 14, (w x)dx> dw
= meas(A;) meas(Az) > 0.

Thus 14, * 1_4,(x) > 0 on a set of positive measure. But
14, *1_4,(x) = meas(A; n (A2 + x)). O
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Area of Brownian motion

Theorem
Let B[O, 1] be a 2-d Brownian motion. Almost surely

meas(B[0,1]) = 0.
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Area of Brownian motion

Proof.
@ Let X = meas(BJ0, 1]). We first check that E[X] < c0.

@ In order that X > a it is necessary that B(t) leave the box of side
length +/a surrounding the origin. Thus

Prob(X > a) < 2Prob ( max_ |W(t)| > \/5/2>
te[0,1]
— 4Prob(W(1) > v/a/2) < 4e?/8

where {W(t) : t > 0} is 1-d Brownian motion.
@ As the estimate is integrable, E[X] < c0.
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Area of Brownian motion

Proof.
e Since B(3t) and 1/3B(t) have the same distribution,

E[meas(B][0,3])] = 3E[X].
@ Since

2
E[meas(B Z meas(B[j,j + 1])]

it follows that, almost surely, the intersection of any two of the
Blj,j + 1] has measure 0.

@ Define Brownian motions {Bj(t) : t € [0,1]} and {Bx(t) : t € [0,1]}

by Bx(t) = B(t +2) — B(2) + B(1). These are independent of
Y = B(2) — B(1), (although not independent themselves).

Ol
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Area of Brownian motion

Proof.
o For x € R?, let R(x) be the area of B1[0,1] N (x + B>[0,1]). This is
independent of Y.
o Calculate

><|2

0 — E[meas(B[0, 1] n B[2,3])] = E[R(Y)] = — fw 5 e

"o

@ Thus, for a.e. x, R(x) =0, so meas(B|0, 1]) = meas(B[2,3]) = 0.

Ol

v
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Area of Brownian motion

Theorem
For any points x,y € R, d > 2, we have Prob,(y € B(0,1]) = 0. J
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Area of Brownian motion

Proof.
@ |t suffices to prove the result for d = 2 by projecting.

@ By Fubini's theorem,
J Prob, (x € B[0,1])dx = E,[meas(B[0,1])] = 0.
R2

@ Hence, for a.e. x, Prob,(x € B[0,1]) = 0.

e Thus

Prob, (x € B[0,1]) = Probo(x — y € B[0,1])
= Probg(y — x € B[0, 1]) = Proby(y € B[0, 1])

and so Prob,(y € B[0,1]) = 0 for a.e. x.

Ol

V.
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Area of Brownian motion

Proof.
@ Hence, for any € > 0, a.s. Probg{y € B[0,1]} = 0.
@ We obtain

Proby(y € B(0,1]) = “?8 Prob,{y € Ble, 1]}

— lim Ex Probg ) (y € B[0,1 — ¢]) = 0.
lim E, Probg () (y € B[0,1 —€]) =0
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/Zeros

Theorem

Let {B(t) : t = 0} be a one dimensional Brownian motion and

Zeros = {t > 0: B(t) = 0}

its zero set. Almost surely, Zeros is a closed set with no isolated points.

v
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/Zeros

Proof.

@ Zeros is a.s. closed, since Brownian motion is a.s. continuous.

@ For each rational g € [0, 0) define
Tq = inf{t > q: B(t) = 0}.

Since the zero set is closed, this is a.s. a minimum.

By the Strong Markov property, 74 is not isolated from the right with
probability 1, and this holds for all g together.

@ For those zeros t not equal to 7, for some g, let g, 1 t be a sequence
of rationals. The points 74, make t not isolated from the left.

0
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Markov processes

Definition

A function p: [0,00) x RY x Z — R, where Z is the Borel o-algebra in
R9 is a Markov transition kernel if
Q@ p(-,-,A) is measurable as a function of (t,x) for each Ae A

@ p(t,x,-) is a Borel probability measure on RY for all t > 0 and
x € RY, when integrating a function f w.r.t. this measure we write

ff(y)p(t,x, dy);

© Forall Ae B, x e R? and t,s > 0,

p(t+s,x,A) = JRC, p(t,y,A)p(s,x,dy).
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Markov processes

Definition

An adapted process {X(t) : t = 0} is a (time-homogeneous) Markov
process with transition kernel p w.r.t. filtration (Z(t) : t > 0) if, for all
t > s and Borel sets A € % we have as.

Prob(X(t) € A|Z(s)) = p(t — s, X(s), A).
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Examples

Example

Brownian motion is a Markov process. The transition kernel p has
p(t, x,-) a normal distribution with mean x and variance t.

Example

Reflected one-dimensional Brownian motion {X(t) : t = 0} defined by
X(t) = |B(t)| is a Markov process. Its transition kernel p(t, x, -) is the law
of | Y| for Y normally distributed with mean x and variance t.
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The maximum of Brownian motion

Theorem (Lévy, 1948)
Let {M(t) : t = 0} be the maximum process of a 1d standard Brownian
motion {B(t) : t > 0}, i.e.

M(t) = max B(s).

0<s<t

Then the process {Y (t) : t = 0} defined by Y (t) = M(t) — B(t) is a
reflected Brownian motion.
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The maximum of Brownian motion

Proof.
o Fix s > 0 and consider the two processes {B(t) : t > 0} defined by

N

B(t) = B(s +t) — B(s), t

\Y

0,

and {M(t) : t = 0} defined by M(t) = maxo<y<t B(u),t = 0.

® We first check that, conditional on F*(s), for t =0, Y( ) has
the same distribution as | Y (s) + B(t)|.

@ This suffices for the theorem, since it implies that {Y(t) : t >0} is a

Markov process with the transition kernel of reflected Brownian
motion.
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The maximum of Brownian motion

Proof.

@ Since

o It suffices to check, for every y >0, y v M(t) — B(t) has the same
distribution as |y + B(t)|.

Ol

v
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The maximum of Brownian motion

Proof.

e For any a > 0 write
Py = Prob(y—B(t) > a), P, = Prob(y—B(t) < a, M(t)—B(t) > a)

so Prob(y v M(t) — B(t) > a) = Py + P».
o By symmetry, P; = Prob(y + B(t) > a), so it suffices to show that
P> = Prob(y + B(t) < —a).
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The maximum of Brownian motion

Proof.

o Define W(u) := B(t — u) — B(t), 0 < u < t, which is another
Brownian motion.

o Define My (t) = maxo<u<: W(u) = M(t) — B(t).
e Since W(t) = —B(t),

P> = Prob(y + W(t) < a, My (t) > a).
o Let W*(u) be W reflected at the first time that W hits a. Thus
P, = Prob(W*(t) = a+ y) = Prob(y + B(t) < —a).

Equality holds with probability 0, completing the proof.

Ol

v
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Stable subordinator

Theorem
For any a = 0 define the stopping times

T,=inf{t >0: B(t) = a}.

Then {T, : a > 0} is an increasing Markov process with transition kernel
given by the densities

a 32

mexp <_2(5—t)) 1(s > t), 2> 0.

This process is called the stable subordinator of index %

p(a, t,s) =
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Stable subordinator

Proof.

@ Fix a>= b > 0 and note that for all t > 0

{Ta — Tb = t}
={B(Tp+s)—B(Tp) <a—b, fors < t,
and B(Tb aF t) — B(Tp) = a— b}.
@ By the strong Markov property, this is independent of .#*(T}) and

thus of {T4 : d < b}, which gives the Markov property of
{T,:a>0}.
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Stable subordinator

Proof.

o Calculate

Prob(T, — Tp < t) = Prob(T,_p < t) = Prob ( max B(s) > a— b)

0<s<t
00 e—%
_ 2Prob(B(t) > a— b) — 2f d
t o= (EE:)Z
= (a— b)J - ds.
0 V2ms3

Bob Hough Math 639: Lecture 18 April 18, 2017 54 / 68



Cauchy process

Theorem

Let {B(t) : t = 0} be a planar Brownian motion, B(t) = (Bi(t), Ba(t)).
Let

V(a) = {(x,y) e R? : x = a}.

Let T(a) be the first hitting time of V/(a). The process {X(a) : a > 0},
X(a) := By(T(a)) is a Markov process with transition kernel

1 a
p(a,x,A) = WJA md}’-

This process is called a Cauchy process.
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Cauchy process

Proof.

@ The Markov property of {X(a) : a = 0} follows from the strong
Markov property of Brownian motion for T (a).

@ To calculate the transition density, recall that T(a) has density

a_ . a2
X —c— .
\2ms3 P\ 2s

T (a) is independent of {Bx(s) : s = 0}, so that B»(T(a)) has density

Jy oo () v (50)¢
——exp| —=— exp | —— | ds
0o V2ms . 2s 2753 . 2s

e}

_J ae ¢ do —
o m(@+x2)7 w(a®+x2)

L
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Continuous time martingale

Definition

A real-valued stochastic process {X(t) : t = 0} is a martingale w.r.t. a
filtration (% (t) : t = 0) if it is adapted to the filtration, E[|X(t)|] < oo for
all t = 0 and, for any pair of times 0 < s < t,

E[X(t)].Z (s)] = X(s), a.s.
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Optional stopping theorem

Theorem (Optional stopping theorem)

Suppose {X(t) : t = 0} is a continuous martingale, and 0 < S < T are
stopping times. If the process {X(t A T) : t = 0} is dominated by an
integrable random variable X, i.e. |X(t A T)| < X a.s., for all t = 0, then

E[X(T)|.Z(S)] = X(S), a.s.

This may be obtained from the discrete time result by discretization.
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Doob’s maximal inequality

Theorem (Doob’s maximal inequality)

Suppose {X(t) : t = 0} is a continuous martingale and p > 1. Then, for

any t >0,
e[ (e, pe01) | < (55 Erxcor

Again, this can be proved from the corresponding result for discrete time
martingales by discretization.
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Wald's lemma for Brownian motion

Theorem (Wald's lemma for Brownian motion)

Let {B(t) : t = 0} be a standard 1-d Brownian motion and T a stopping
time, such that either

Q E[T] <

@ {B(t A T):t=0} is dominated by an integrable random variable.
Then E[B(T)] = 0.
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Wald's lemma for Brownian motion

Proof.

Under the second condition one can apply the Optional stopping theorem

with S = 0 to obtain E[B(T)] = 0.
To reduce the first condition to the second, set

My = max |B(t+ k) = B(K)|, M= ;1 M.

Notice |B(t A T)| < M. We have

[T 0
1=E| Y M| = > E[I(T > k—1)M,]
k=1 =

1

i Prob(T > k — 1) E[My] = E[Mo] E[T + 1] < ©
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Brownian motion in L2

Theorem

Let S < T be stopping times and E[T] < co. Then

E[(B(T))?] = E[(B(5))] + E[(B(T) — B(S))°]-

Proof.

E[B(T)?] = E[B(S)*] + 2E[B(S) E[B(T) — B(S)|.Z(S)]]
+E[(B(T) = B(S))].

The middle expectation vanishes.
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Brownian motion in L2

Theorem

Suppose {B(t) : t = 0} is a 1-d Brownian motion. Then
{B(t)?> — t: t >0} is a martingale.

Proof.

Calculate
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Wald’s second lemma

Theorem

Let T be a stopping time for standard Brownian motion such that
E[T] < 0. Then
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Wald's second lemma

Proof.
@ Define stopping time T, = inf{t >0 \ (t)] = n}
@ Thus {B(t AT ATy?—tATAT,:t>=0}is dominated by

n® + T, which is integrable.
o By the optional stopping theorem, E[B(T A T,)?] = E[T A T,].
e Since E[B(T)?] = E[B(T A T»)],

E[B(T)?] = lim E[B(T A T,)?] = lim E[T A T,] = E[T].

n—o0 n—oo
e By Fatou,
E[B(T)?] < “r?liong[B(T A Tn)?] = Iir?liong[T A To) < E[T].
L)
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Martingale properties of Brownian motion

Given twice differentiable function f : R — R the Laplacian of f, written

Af, is
d
=5

l\.)
M

Theorem

Let f : RY — R be twice continuously differentiable, and {B(t) : t > 0} be
a d-dimensional Brownian motion. Further suppose that, for all t > 0 and
x € R?, we have E,[|f(B(t))|] < o and EX[SS |Af(B(s))|ds] < oo. Then
the process {X(t) : t = 0} defined by

X(t) = f(B(t)) — ;Jo Af(B(s))ds

is a martingale.

v
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Martingale properties of Brownian motion

Proof.
For0 <s < t,

E[X(2)|.7(s)]

— Ep[f(B(t—5))] - f AF(B du—f_s EB(S)[%Af(B(u))]du.

The Markov transition kernel of Brownian motion satisfies
%Ap(t,x,y) = %p(t,x,y), so that, integrating by parts,

Ea(o[5AF(B)] = 5 [ plu B(s),x)AF(x)dx
_ ;pr(u,B(s),x)f(x)dx _ J;up(u,B(s),x)f(x)dx
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Martingale properties of Brownian motion

Proof.
Thus

[ eewipar@wna=in [| [ £ pw 85)0du] rxon

0 €l0
= fp(t —s5,B(s),x)f(x)dx — Iellng Jp(e, B(s),x)f(x)dx
= Ep(s)[f(B(t —s))] — f(B(s))

which proves that X is a martingale. [

Bob Hough Math 639: Lecture 18 April 18, 2017 68 / 68



