Math 639: Lecture 18
 Brownian motion as a Markov process

Bob Hough

April 18, 2017

Brownian motion as a Markov process

This lecture follows Mörters and Peres, Chapter 2.

Brownian motion as a Markov process

Definition

If B_{1}, \ldots, B_{d} are Brownian motions started in x_{1}, \ldots, x_{d}, then the stochastic process $\{B(t): t \geqslant 0\}$ given by

$$
B(t)=\left(B_{1}(t), \ldots, B_{d}(t)\right)^{T}
$$

is called d-dimensional Brownian motion started in $\left(x_{1}, \ldots, x_{d}\right)^{T}$. The d-dimensional Brownian motion started in the origin is called standard Brownian motion. One dimensional Brownian motion is called linear, two-dimensional Brownian motion planar Brownian motion.

Independent stochastic processes

Definition

The stochastic processes $\{X(t): t \geqslant 0\}$ and $\{Y(t): t \geqslant 0\}$ are called independent, if for any sets $t_{1}, \ldots, t_{n} \geqslant 0$ and $s_{1}, \ldots, s_{m} \geqslant 0$ of times the vectors $\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)$ and $\left(Y\left(s_{1}\right), \ldots, Y\left(s_{m}\right)\right)$ are independent.

Markov property

> Theorem
> Suppose that $\{B(t): t \geqslant 0\}$ is a Brownian motion started in $x \in \mathbb{R}^{d}$. Let $s>0$, then the process $\{B(t+s)-B(s): t \geqslant 0\}$ is again a Brownian motion started at the origin, and is independent of the process $\{B(t): 0 \leqslant t \leqslant s\}$.

Proof.

One easily checks that the f.d.d. of the shifted Brownian motion agree with those of Brownian motion. Independence follows from the independence of increments.

Filtration

Definition

(1) A filtration on a probability space $(\Omega, \mathscr{F}, \operatorname{Prob})$ is a family $(\mathscr{F}(t): t \geqslant 0)$ of σ-algebras such that $\mathscr{F}(s) \subset \mathscr{F}(t) \subset \mathscr{F}$ for all $s<t$.
(2) A probability space together with a filtration is called a filtered probability space.
(3) A stochastic process $\{X(t): t \geqslant 0\}$ defined on a filtered probability space with filtration $(\mathscr{F}(t): t \geqslant 0)$ is called adapted if $X(t)$ is $\mathscr{F}(t)$-measurable for any $t \geqslant 0$.

Filtration

Given a Brownian motion $\{B(t): t \geqslant 0\}$ defined on some probability space, then a filtration $\mathscr{F}^{0}(t), t \geqslant 0$ is defined by letting

$$
\mathscr{F}^{0}(t)=\sigma(B(s): 0 \leqslant s \leqslant t) .
$$

A larger σ-algebra $\mathscr{F}^{+}(s)$ is defined by

$$
\mathscr{F}^{+}(s)=\bigcap_{t>s} \mathscr{F}^{0}(t)
$$

Markov property

Theorem

For every $s \geqslant 0$ the process $\{B(t+s)-B(s): t \geqslant 0\}$ is independent of the σ-algebra $\mathscr{F}^{+}(s)$.

Markov property

Proof.

- Let $\left\{s_{n}: n \in \mathbb{N}\right\}$ be a monotone decreasing sequence tending to s.
- By continuity, for any $t_{1}, \ldots, t_{m} \geqslant 0$ we have

$$
\begin{aligned}
& \left(B\left(t_{1}+s\right)-B(s), \ldots, B\left(t_{m}+s\right)-B(s)\right) \\
& =\lim _{j \uparrow \infty}\left(B\left(t_{1}+s_{j}\right)-B\left(s_{j}\right), \ldots, B\left(t_{m}+s_{j}\right)-B\left(s_{j}\right)\right)
\end{aligned}
$$

is independent of $\mathscr{F}^{+}(s)$. This proves independence of the process $\{B(t+s)-B(s): t \geqslant 0\}$ with $\mathscr{F}^{+}(s)$.

Markov property

Theorem (Blumenthal's 0-1 Law)
Let $x \in \mathbb{R}^{d}$ and $A \in \mathscr{F}^{+}(0)$. Then $\operatorname{Prob}_{x}(A) \in\{0,1\}$.

Proof.

Any $A \in \sigma(B(t): t \geqslant 0)$ is independent of $\mathscr{F}^{+}(0)$, since the σ-algebra is generated by finite dimensional rectangles. This applies to $A \in \mathscr{F}^{+}(0)$, which is thus independent of itself, so that the probability is 0 or 1 .

Return to 0

Theorem
Suppose $\{B(t): t \geqslant 0\}$ is a 1-d Brownian motion. Define $\tau=\inf \{t>0: B(t)>0\}$ and $\sigma=\inf \{t>0: B(t)=0\}$. Then

$$
\operatorname{Prob}_{0}(\tau=0)=\operatorname{Prob}_{0}(\sigma=0)=1
$$

Return to 0

Proof.

- The event

$$
\{\tau=0\}=\bigcap_{n=1}^{\infty}\left\{\text { there is } 0<\epsilon<\frac{1}{n} \text { s.t. } B(\epsilon)>0\right\}
$$

is in $\mathscr{F}^{+}(0)$, hence has probability 0 or 1 .

- $\operatorname{Prob}_{0}(\tau \leqslant t) \geqslant \operatorname{Prob}_{0}(B(t)>0)=\frac{1}{2}$ for $t>0$, so
$\operatorname{Prob}_{0}(\tau=0) \geqslant \frac{1}{2}$, so the probability is 1 .
- The remaining claim follows from the intermediate value theorem.

Maxima and minima

Theorem

For a 1d Brownian motion $\{B(t): 0 \leqslant t \leqslant 1\}$, almost surely,
(1) Every local maximum is a strict local maximum
(2) The set of times where the local maxima are attained is countable and dense
(3) The global maximum is attained at a unique time

Maxima and minima

Proof.

- Fix two intervals $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], b_{1} \leqslant a_{2}$. Let the maxima of Brownian motion on these intervals be m_{1} and m_{2}
- By the previous theorem, $B\left(a_{2}\right)<m_{2}$ a.s., and so the maxima on [a_{2}, b_{2}] agrees with that on the interval $\left[a_{2}-\epsilon, b_{2}\right]$ for some $\epsilon>0$, so we may assume that $b_{1}<a_{2}$.
- By the Markov property, $m_{1}-B\left(b_{1}\right), B\left(a_{2}\right)-B\left(b_{1}\right)$, and $m_{2}-B\left(a_{2}\right)$ are independent.
- Write the event $m_{1}=m_{2}$ as

$$
B\left(a_{2}\right)-B\left(b_{1}\right)=m_{1}-B\left(b_{1}\right)-\left(m_{2}-B\left(a_{2}\right)\right)
$$

Conditioned on $m_{1}-B\left(b_{1}\right)$ and $m_{2}-B\left(a_{2}\right)$, the right hand side is constant, while the left hand side is normally distributed, so that the equality has measure 0 .

Maxima and minima

Proof.

(1) To verify that all local maxima are strict, note almost surely that the maxima differ over any two non-overlapping rational intervals
(2) Almost surely, there is a strict local maximum in the interior of each closed bounded interval with distinct rational endpoints. Hence these are dense, and their number is countable.
(3) Almost surely, for any rational q, the maxima in $[0, q]$ and $[q, 1]$ are different. If there are two points of a global maxima $t_{1}<t_{2}$ then there is a rational $q, t_{1}<q<t_{2}$, so this happens with measure 0 .

Stopping times

Definition

A random variable T with values in $[0, \infty]$, defined on a probability space with filtration $(\mathscr{F}(t): t \geqslant 0)$ is called a stopping time with respect to $(\mathscr{F}(t): t \geqslant 0)$ if $\{T \leqslant t\} \in \mathscr{F}(t)$, for every $t \geqslant 0$.

Stopping times

- If $\left(T_{n}: n=1,2, \ldots\right)$ is an increasing sequence of stopping times with respect to $(\mathscr{F}(t): t \geqslant 0)$ and $T_{n} \uparrow T$, then T is a stopping time w.r.t. $(\mathscr{F}(t): t \geqslant 0)$, since

$$
\{T \leqslant t\}=\bigcap_{n=1}^{\infty}\left\{T_{n} \leqslant t\right\} \in \mathscr{F}(t) .
$$

- Let T be a stopping time w.r.t. $(\mathscr{F}(t): t \geqslant 0)$. Define

$$
T_{n}=\frac{m+1}{2^{n}}, \frac{m}{2^{n}} \leqslant T<\frac{m+1}{2^{n}} .
$$

This is a stopping time.

Stopping times

- Every stopping time w.r.t. $\left(\mathscr{F}^{0}(t): t \geqslant 0\right)$ is also a stopping time w.r.t. $\left(\mathscr{F}^{+}(t): t \geqslant 0\right)$, since $\mathscr{F}^{0}(t) \subset \mathscr{F}^{+}(t)$.
- Let H be a closed set. The first hitting time to H, $T=\inf \{t \geqslant 0: B(t) \in H\}$ of the set H is a stopping time w.r.t. $\left(\mathscr{F}^{0}(t): t \geqslant 0\right)$. Note

$$
\{T \leqslant t\}=\bigcap_{n=1}^{\infty} \bigcup_{s \in \mathbb{Q} \cap(0, t)} \bigcup_{x \in \mathbb{Q}^{d} \cap H}\left\{|B(s)-x| \leqslant \frac{1}{n}\right\} \in \mathscr{F}^{0}(t)
$$

Stopping times

- Let $G \subset \mathbb{R}^{d}$ be open, then

$$
T=\inf \{t \geqslant 0: B(t) \in G\}
$$

is a stopping time w.r.t. filtration $\left(\mathscr{F}^{+}(t): t \geqslant 0\right)$, but not necessarily w.r.t $\left(\mathscr{F}^{0}(t): t \geqslant 0\right)$. To see the first claim, write

$$
\{T \leqslant t\}=\bigcap_{s>t}\{T<s\}=\bigcap_{s>t} \bigcup_{r \in \mathbb{Q} \cap(0, s)}\{B(r) \in G\} \in \mathscr{F}^{+}(t) .
$$

Stopping times

- To see the second claim, let G be a open half-space and suppose the starting point is not in \bar{G}.
- Let $\gamma:[0, t] \rightarrow \mathbb{R}^{d}$ with $\gamma(0, t) \cap \bar{G}=\varnothing$ and $\gamma(t) \in \partial G$.
- The σ-algebra $\mathscr{F}^{0}(t)$ contains no non-trivial subset of $\{B(s)=\gamma(s), 0 \leqslant s \leqslant t\}$. If $\{T \leqslant t\} \in \mathscr{F}^{0}(t)$, the set

$$
\{B(s)=\gamma(s), 0 \leqslant s \leqslant t, T=t\}
$$

would be in $\mathscr{F}^{0}(t)$ and a non-trivial subset of the earlier set.

Stopping times

- We make the convention that stopping times are defined w.r.t. $\left(\mathscr{F}^{+}(t), t \geqslant 0\right)$
- The filtration $\left(\mathscr{F}^{+}(t), t \geqslant 0\right)$ satisfies right-continuity,

$$
\bigcap_{\epsilon>0} \mathscr{F}^{+}(t+\epsilon)=\mathscr{F}^{+}(t) .
$$

Stopping times

Lemma

Suppose a random variable T with values in $[0, \infty]$ satisfies $\{T<t\} \in \mathscr{F}(t)$, for every $t \geqslant 0$, and $(\mathscr{F}(t): t \geqslant 0)$ is right-continuous, then T is a stopping time w.r.t. $(\mathscr{F}(t): t \geqslant 0)$.

Proof.

We have

$$
\{T \leqslant t\}=\bigcap_{k=1}^{\infty}\left\{T<t+\frac{1}{k}\right\} \in \bigcap_{n=1}^{\infty} \mathscr{F}\left(t+\frac{1}{n}\right)=\mathscr{F}(t) .
$$

Stopping times

Definition

Let T be a stopping time. The σ-algebra generated by T is

$$
\mathscr{F}^{+}(T)=\left\{A \in \mathscr{A}: \forall t \geqslant 0, A \cap\{T \leqslant t\} \in \mathscr{F}^{+}(t)\right\} .
$$

Strong Markov property

Theorem (Strong Markov property)

For every almost surely finite stopping time T, the process $\{B(T+t)-B(T): t \geqslant 0\}$ is a standard Brownian motion independent of $\mathscr{F}^{+}(T)$.

Alternatively, for any bounded measurable $f: C\left([0, \infty), \mathbb{R}^{d}\right) \rightarrow \mathbb{R}$, and $x \in \mathbb{R}^{d}$,

$$
\mathrm{E}_{x}\left[f(\{B(T+t): t \geqslant 0\}) \mid \mathscr{F}^{+}(T)\right]=\mathrm{E}_{B(T)}[f(\{\tilde{B}(t): t \geqslant 0\})] .
$$

where $\tilde{B}(t)$ denotes Brownian motion started from $B(T)$.

Strong Markov property

Proof.

- Set

$$
T_{n}=(m+1) 2^{-n}, \text { if } m 2^{-n} \leqslant T<(m+1) 2^{-n} .
$$

- Write $B_{k}=\left\{B_{k}(t): t \geqslant 0\right\}$ for $B_{k}(t)=B\left(t+k 2^{-n}\right)-B\left(k 2^{-n}\right)$. Set $B_{*}(t)=B\left(t+T_{n}\right)-B\left(T_{n}\right)$.
- Let $E \in \mathscr{F}^{+}\left(T_{n}\right)$. For every event $\left\{B_{*} \in A\right\}$, we have

$$
\begin{aligned}
\operatorname{Prob}\left(\left\{B_{*} \in A\right\} \cap E\right) & =\sum_{k=0}^{\infty} \operatorname{Prob}\left(\left\{B_{k} \in A\right\} \cap E \cap\left\{T_{n}=k 2^{-n}\right\}\right) \\
& =\sum_{k=0}^{\infty} \operatorname{Prob}\left(B_{k} \in A\right) \operatorname{Prob}\left(E \cap\left\{T_{n}=k 2^{-n}\right\}\right)
\end{aligned}
$$

since $E \cap\left\{T_{n}=k 2^{-n}\right\} \in \mathscr{F}^{+}\left(k 2^{-n}\right)$.

Strong Markov property

Proof.

- We have $\operatorname{Prob}\left(B_{k} \in A\right)=\operatorname{Prob}(B \in A)$ so that

$$
\begin{aligned}
\operatorname{Prob}\left(\left\{B_{*} \in A\right\} \cap E\right) & =\operatorname{Prob}(B \in A) \sum_{k=0}^{\infty} \operatorname{Prob}\left(E \cap\left\{T_{n}=k 2^{-n}\right\}\right) \\
& =\operatorname{Prob}(B \in A) \operatorname{Prob}(E)
\end{aligned}
$$

Thus B_{*} is a Brownian motion which is independent of E, hence of $\mathscr{F}^{+}\left(T_{n}\right)$.

Strong Markov property

Proof.

- As $T_{n} \downarrow T$, we have $\left\{B\left(s+T_{n}\right)-B\left(T_{n}\right): s \geqslant 0\right\}$ is a Brownian motion independent of $\mathscr{F}^{+}\left(T_{n}\right) \supset \mathscr{F}^{+}(T)$. Hence the increments

$$
B(s+t+T)-B(t+T)=\lim _{n \rightarrow \infty} B\left(s+t+T_{n}\right)-B\left(t+T_{n}\right)
$$

so that the increments of the process $\{B(r+T)-B(T): r \geqslant 0\}$ are independent and normally distributed with mean 0 and variance s.
Furthermore,
$B(s+t+T)-B(t+T)=\lim B\left(s+t+T_{n}\right)-B\left(t+T_{n}\right)$ is independent of $\mathscr{F}^{+}(T)$.

Reflection principle

Theorem (Reflection principle)
If T is a stopping and $\{B(t): t \geqslant 0\}$ is standard Brownian motion, then the process $\left\{B^{*}(t): t \geqslant 0\right\}$ called Brownian motion reflected at T and defined by

$$
B^{*}(t)=B(t) \mathbf{1}_{t \leqslant T}+(2 B(T)-B(t)) \mathbf{1}_{t>T}
$$

is also a standard Brownian motion.

Reflection principle

Proof.

If T is finite, by the strong Markov property

$$
\{B(t+T)-B(T): t \geqslant 0\},\{-(B(t+T)-B(T)): t \geqslant 0\}
$$

are Brownian motions, and independent of $\{B(t): 0 \leqslant t \leqslant T\}$. The process of glueing together paths is measurable, thus the two glueings induce the same distribution.

Maximum of Brownian motion

Let $B(t)$ be a one-dimensional Brownian motion. Define $M(t)=\max _{0 \leqslant s \leqslant t} B(s)$.

Theorem
If $a>0$ then $\operatorname{Prob}_{0}(M(t)>a)=2 \operatorname{Prob}_{0}(B(t)>a)=\operatorname{Prob}_{0}(|B(t)|>a)$.

Maximum of Brownian motion

Proof.

Let $T=\inf \{t \geqslant 0: B(t)=a\}$ and let $\left\{B^{*}(t): t \geqslant 0\right\}$ be Brownian motion reflected at stopping time T. Write

$$
\{M(t)>a\}=\{B(t)>a\} \sqcup\{M(t)>a, B(t) \leqslant a\} .
$$

The second event corresponds to $\left\{B^{*}(t) \geqslant a\right\}$, which has equal measure.

Convolution

Definition

Given functions f, g, denote the convolution of functions f and g given by

$$
f * g(x):=\int f(y) g(x-y) d y
$$

Measure

Denote meas Lebesgue measure.

Lemma

If $A_{1}, A_{2} \subset \mathbb{R}^{2}$ are Borel sets of positive area, then

$$
\operatorname{meas}\left(\left\{x \in \mathbb{R}^{2}: \operatorname{meas}\left(A_{1} \cap\left(A_{2}+x\right)\right)>0\right\}\right)>0
$$

Measure

Proof.

Assume A_{1} and A_{2} are bounded. By Fubini

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} \mathbf{1}_{A_{1}} * \mathbf{1}_{-A_{2}}(x) d x & =\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \mathbf{1}_{A_{1}}(w) \mathbf{1}_{A_{2}}(w-x) d w d x \\
& =\int_{\mathbb{R}^{2}} \mathbf{1}_{A_{1}}(w)\left(\int_{\mathbb{R}^{2}} \mathbf{1}_{A_{2}}(w-x) d x\right) d w \\
& =\operatorname{meas}\left(A_{1}\right) \operatorname{meas}\left(A_{2}\right)>0
\end{aligned}
$$

Thus $\mathbf{1}_{A_{1}} * \mathbf{1}_{-A_{2}}(x)>0$ on a set of positive measure. But $\mathbf{1}_{A_{1}} * \mathbf{1}_{-A_{2}}(x)=\operatorname{meas}\left(A_{1} \cap\left(A_{2}+x\right)\right)$.

Area of Brownian motion

Theorem
Let $B[0,1]$ be a 2-d Brownian motion. Almost surely

$$
\operatorname{meas}(B[0,1])=0
$$

Area of Brownian motion

Proof.

- Let $X=\operatorname{meas}(B[0,1])$. We first check that $\mathrm{E}[X]<\infty$.
- In order that $X>a$ it is necessary that $B(t)$ leave the box of side length \sqrt{a} surrounding the origin. Thus

$$
\begin{aligned}
\operatorname{Prob}(X>a) & \leqslant 2 \operatorname{Prob}\left(\max _{t \in[0,1]}|W(t)|>\sqrt{a} / 2\right) \\
& =4 \operatorname{Prob}(W(1)>\sqrt{a} / 2) \leqslant 4 e^{-a / 8}
\end{aligned}
$$

where $\{W(t): t \geqslant 0\}$ is 1-d Brownian motion.

- As the estimate is integrable, $\mathrm{E}[X]<\infty$.

Area of Brownian motion

Proof.

- Since $B(3 t)$ and $\sqrt{3} B(t)$ have the same distribution,

$$
\mathrm{E}[\operatorname{meas}(B[0,3])]=3 \mathrm{E}[X] .
$$

- Since

$$
\mathrm{E}[\operatorname{meas}(B[0,3])]=\sum_{j=0}^{2} \mathrm{E}[\operatorname{meas}(B[j, j+1])]
$$

it follows that, almost surely, the intersection of any two of the $B[j, j+1]$ has measure 0 .

- Define Brownian motions $\left\{B_{1}(t): t \in[0,1]\right\}$ and $\left\{B_{2}(t): t \in[0,1]\right\}$ by $B_{2}(t)=B(t+2)-B(2)+B(1)$. These are independent of $Y=B(2)-B(1)$, (although not independent themselves).

Area of Brownian motion

Proof.

- For $x \in \mathbb{R}^{2}$, let $R(x)$ be the area of $B_{1}[0,1] \cap\left(x+B_{2}[0,1]\right)$. This is independent of Y.
- Calculate

$$
0=\mathrm{E}[\operatorname{meas}(B[0,1] \cap B[2,3])]=\mathrm{E}[R(Y)]=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{-\frac{|x|^{2}}{2}} \mathrm{E}[R(x)] d x .
$$

- Thus, for a.e. $x, R(x)=0$, so $\operatorname{meas}(B[0,1])=\operatorname{meas}(B[2,3])=0$.

Area of Brownian motion

Theorem
For any points $x, y \in \mathbb{R}^{d}, d \geqslant 2$, we have $\operatorname{Prob}_{x}(y \in B(0,1])=0$.

Area of Brownian motion

Proof.

- It suffices to prove the result for $d=2$ by projecting.
- By Fubini's theorem,

$$
\int_{\mathbb{R}^{2}} \operatorname{Prob}_{y}(x \in B[0,1]) d x=\mathrm{E}_{y}[\operatorname{meas}(B[0,1])]=0
$$

- Hence, for a.e. $x, \operatorname{Prob}_{y}(x \in B[0,1])=0$.
- Thus

$$
\begin{aligned}
\operatorname{Prob}_{y}(x \in B[0,1]) & =\operatorname{Prob}_{0}(x-y \in B[0,1]) \\
& =\operatorname{Prob}_{0}(y-x \in B[0,1])=\operatorname{Prob}_{x}(y \in B[0,1])
\end{aligned}
$$

and so $\operatorname{Prob}_{x}(y \in B[0,1])=0$ for a.e. x.

Area of Brownian motion

Proof.

- Hence, for any $\epsilon>0$, a.s. $\operatorname{Prob}_{B(\epsilon)}\{y \in B[0,1]\}=0$.
- We obtain

$$
\begin{aligned}
\operatorname{Prob}_{x}(y \in B(0,1]) & =\lim _{\epsilon \downarrow 0} \operatorname{Prob}_{x}\{y \in B[\epsilon, 1]\} \\
& =\lim _{\epsilon \downarrow 0} E_{x} \operatorname{Prob}_{B(\epsilon)}(y \in B[0,1-\epsilon])=0 .
\end{aligned}
$$

Zeros

Theorem
Let $\{B(t): t \geqslant 0\}$ be a one dimensional Brownian motion and

$$
\text { Zeros }=\{t \geqslant 0: B(t)=0\}
$$

its zero set. Almost surely, Zeros is a closed set with no isolated points.

Zeros

Proof.

- Zeros is a.s. closed, since Brownian motion is a.s. continuous.
- For each rational $q \in[0, \infty)$ define

$$
\tau_{q}=\inf \{t \geqslant q: B(t)=0\} .
$$

Since the zero set is closed, this is a.s. a minimum.

- By the Strong Markov property, τ_{q} is not isolated from the right with probability 1 , and this holds for all q together.
- For those zeros t not equal to τ_{q} for some q, let $q_{n} \uparrow t$ be a sequence of rationals. The points $\tau_{q_{n}}$ make t not isolated from the left.

Markov processes

Definition

A function $p:[0, \infty) \times \mathbb{R}^{d} \times \mathscr{B} \rightarrow \mathbb{R}$, where \mathscr{B} is the Borel σ-algebra in \mathbb{R}^{d} is a Markov transition kernel if
(1) $p(\cdot, \cdot, A)$ is measurable as a function of (t, x) for each $A \in \mathscr{B}$
(2) $p(t, x, \cdot)$ is a Borel probability measure on \mathbb{R}^{d} for all $t \geqslant 0$ and $x \in \mathbb{R}^{d}$, when integrating a function f w.r.t. this measure we write

$$
\int f(y) p(t, x, d y)
$$

(3) For all $A \in \mathscr{B}, x \in \mathbb{R}^{d}$ and $t, s>0$,

$$
p(t+s, x, A)=\int_{\mathbb{R}^{d}} p(t, y, A) p(s, x, d y)
$$

Markov processes

Definition

An adapted process $\{X(t): t \geqslant 0\}$ is a (time-homogeneous) Markov process with transition kernel p w.r.t. filtration $(\mathscr{F}(t): t \geqslant 0)$ if, for all $t \geqslant s$ and Borel sets $A \in \mathscr{B}$ we have a.s.

$$
\operatorname{Prob}(X(t) \in A \mid \mathscr{F}(s))=p(t-s, X(s), A) .
$$

Examples

Example

Brownian motion is a Markov process. The transition kernel p has $p(t, x, \cdot)$ a normal distribution with mean x and variance t.

Example

Reflected one-dimensional Brownian motion $\{X(t): t \geqslant 0\}$ defined by $X(t)=|B(t)|$ is a Markov process. Its transition kernel $p(t, x, \cdot)$ is the law of $|Y|$ for Y normally distributed with mean x and variance t.

The maximum of Brownian motion

Theorem (Lévy, 1948)

Let $\{M(t): t \geqslant 0\}$ be the maximum process of a 1d standard Brownian motion $\{B(t): t \geqslant 0\}$, i.e.

$$
M(t)=\max _{0 \leqslant s \leqslant t} B(s) .
$$

Then the process $\{Y(t): t \geqslant 0\}$ defined by $Y(t)=M(t)-B(t)$ is a reflected Brownian motion.

The maximum of Brownian motion

Proof.

- Fix $s \geqslant 0$ and consider the two processes $\{\hat{B}(t): t \geqslant 0\}$ defined by

$$
\hat{B}(t)=B(s+t)-B(s), \quad t \geqslant 0
$$

$$
\text { and }\{\hat{M}(t): t \geqslant 0\} \text { defined by } \hat{M}(t)=\max _{0 \leqslant u \leqslant t} \hat{B}(u), t \geqslant 0
$$

- We first check that, conditional on $\mathscr{F}^{+}(s)$, for $t \geqslant 0, Y(s+t)$ has the same distribution as $|Y(s)+\hat{B}(t)|$.
- This suffices for the theorem, since it implies that $\{Y(t): t \geqslant 0\}$ is a Markov process with the transition kernel of reflected Brownian motion.

The maximum of Brownian motion

Proof.

- Since

$$
\begin{aligned}
M(s+t) & =M(s) \vee(B(s)+\hat{M}(t)) \\
Y(s+t) & =(M(s) \vee(B(s)+\hat{M}(t)))-(B(s)+\hat{B}(t)) \\
& =(Y(s) \vee \hat{M}(t))-\hat{B}(t) .
\end{aligned}
$$

- It suffices to check, for every $y \geqslant 0, y \vee \hat{M}(t)-\hat{B}(t)$ has the same distribution as $|y+\hat{B}(t)|$.

The maximum of Brownian motion

Proof.

- For any $a \geqslant 0$ write

$$
P_{1}=\operatorname{Prob}(y-\hat{B}(t)>a), \quad P_{2}=\operatorname{Prob}(y-\hat{B}(t) \leqslant a, \hat{M}(t)-\hat{B}(t)>a)
$$

so $\operatorname{Prob}(y \vee \hat{M}(t)-\hat{B}(t)>a)=P_{1}+P_{2}$.

- By symmetry, $P_{1}=\operatorname{Prob}(y+\hat{B}(t)>a)$, so it suffices to show that $P_{2}=\operatorname{Prob}(y+\hat{B}(t)<-a)$.

The maximum of Brownian motion

Proof.

- Define $W(u):=\hat{B}(t-u)-\hat{B}(t), 0 \leqslant u \leqslant t$, which is another Brownian motion.
- Define $M_{W}(t)=\max _{0 \leqslant u \leqslant t} W(u)=\hat{M}(t)-\hat{B}(t)$.
- Since $W(t)=-\hat{B}(t)$,

$$
P_{2}=\operatorname{Prob}\left(y+W(t) \leqslant a, M_{W}(t)>a\right) .
$$

- Let $W^{*}(u)$ be W reflected at the first time that W hits a. Thus

$$
P_{2}=\operatorname{Prob}\left(W^{*}(t) \geqslant a+y\right)=\operatorname{Prob}(y+\hat{B}(t) \leqslant-a) .
$$

Equality holds with probability 0 , completing the proof.

Stable subordinator

Theorem

For any $a \geqslant 0$ define the stopping times

$$
T_{a}=\inf \{t \geqslant 0: B(t)=a\} .
$$

Then $\left\{T_{a}: a \geqslant 0\right\}$ is an increasing Markov process with transition kernel given by the densities

$$
p(a, t, s)=\frac{a}{\sqrt{2 \pi(s-t)^{3}}} \exp \left(-\frac{a^{2}}{2(s-t)}\right) \mathbf{1}(s>t), \quad a>0 .
$$

This process is called the stable subordinator of index $\frac{1}{2}$.

Stable subordinator

Proof.

- Fix $a \geqslant b \geqslant 0$ and note that for all $t \geqslant 0$

$$
\begin{aligned}
& \left\{T_{a}-T_{b}=t\right\} \\
& =\left\{B\left(T_{b}+s\right)-B\left(T_{b}\right)<a-b, \text { for } s<t,\right. \\
& \left.\quad \text { and } B\left(T_{b}+t\right)-B\left(T_{b}\right)=a-b\right\} .
\end{aligned}
$$

- By the strong Markov property, this is independent of $\mathscr{F}^{+}\left(T_{b}\right)$ and thus of $\left\{T_{d}: d \leqslant b\right\}$, which gives the Markov property of $\left\{T_{a}: a \geqslant 0\right\}$.

Stable subordinator

Proof.

- Calculate

$$
\begin{aligned}
\operatorname{Prob}\left(T_{a}-T_{b} \leqslant t\right) & =\operatorname{Prob}\left(T_{a-b} \leqslant t\right)=\operatorname{Prob}\left(\max _{0 \leqslant s \leqslant t} B(s) \geqslant a-b\right) \\
& =2 \operatorname{Prob}(B(t) \geqslant a-b)=2 \int_{a-b}^{\infty} \frac{e^{-\frac{x^{2}}{2 t}}}{\sqrt{2 \pi t}} d x \\
& =(a-b) \int_{0}^{t} \frac{e^{-\frac{(a-b)^{2}}{2 s}}}{\sqrt{2 \pi s^{3}}} d s .
\end{aligned}
$$

Cauchy process

Theorem
Let $\{B(t): t \geqslant 0\}$ be a planar Brownian motion, $B(t)=\left(B_{1}(t), B_{2}(t)\right)$. Let

$$
V(a)=\left\{(x, y) \in \mathbb{R}^{2}: x=a\right\} .
$$

Let $T(a)$ be the first hitting time of $V(a)$. The process $\{X(a): a \geqslant 0\}$, $X(a):=B_{2}(T(a))$ is a Markov process with transition kernel

$$
p(a, x, A)=\frac{1}{\pi} \int_{A} \frac{a}{a^{2}+(x-y)^{2}} d y .
$$

This process is called a Cauchy process.

Cauchy process

Proof.

- The Markov property of $\{X(a): a \geqslant 0\}$ follows from the strong Markov property of Brownian motion for $T(a)$.
- To calculate the transition density, recall that $T(a)$ has density

$$
\frac{a}{\sqrt{2 \pi s^{3}}} \exp \left(-\frac{a^{2}}{2 s}\right) .
$$

$T(a)$ is independent of $\left\{B_{2}(s): s \geqslant 0\right\}$, so that $B_{2}(T(a))$ has density

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi s}} \exp \left(-\frac{x^{2}}{2 s}\right) \frac{a}{\sqrt{2 \pi s^{3}}} \exp \left(-\frac{a^{2}}{2 s}\right) d s \\
& =\int_{0}^{\infty} \frac{a e^{-\sigma}}{\pi\left(a^{2}+x^{2}\right)} d \sigma=\frac{a}{\pi\left(a^{2}+x^{2}\right)} .
\end{aligned}
$$

Continuous time martingale

Definition

A real-valued stochastic process $\{X(t): t \geqslant 0\}$ is a martingale w.r.t. a filtration $(\mathscr{F}(t): t \geqslant 0)$ if it is adapted to the filtration, $\mathrm{E}[|X(t)|]<\infty$ for all $t \geqslant 0$ and, for any pair of times $0 \leqslant s \leqslant t$,

$$
\mathrm{E}[X(t) \mid \mathscr{F}(s)]=X(s), \text { a.s. }
$$

Optional stopping theorem

Theorem (Optional stopping theorem)

Suppose $\{X(t): t \geqslant 0\}$ is a continuous martingale, and $0 \leqslant S \leqslant T$ are stopping times. If the process $\{X(t \wedge T): t \geqslant 0\}$ is dominated by an integrable random variable X, i.e. $|X(t \wedge T)| \leqslant X$ a.s., for all $t \geqslant 0$, then

$$
\mathrm{E}[X(T) \mid \mathscr{F}(S)]=X(S), \text { a.s. }
$$

This may be obtained from the discrete time result by discretization.

Doob's maximal inequality

Theorem (Doob's maximal inequality)

Suppose $\{X(t): t \geqslant 0\}$ is a continuous martingale and $p>1$. Then, for any $t \geqslant 0$,

$$
\mathrm{E}\left[\left(\sup _{0 \leqslant s \leqslant t}|X(s)|\right)^{p}\right] \leqslant\left(\frac{p}{p-1}\right)^{p} \mathrm{E}\left[|X(t)|^{p}\right] .
$$

Again, this can be proved from the corresponding result for discrete time martingales by discretization.

Wald's lemma for Brownian motion

Theorem (Wald's lemma for Brownian motion)
Let $\{B(t): t \geqslant 0\}$ be a standard 1-d Brownian motion and T a stopping time, such that either
(1) $\mathrm{E}[T]<\infty$
(2) $\{B(t \wedge T): t \geqslant 0\}$ is dominated by an integrable random variable.

Then $\mathrm{E}[B(T)]=0$.

Wald's lemma for Brownian motion

Proof.

Under the second condition one can apply the Optional stopping theorem with $S=0$ to obtain $\mathrm{E}[B(T)]=0$.
To reduce the first condition to the second, set

$$
M_{k}=\max _{0 \leqslant t \leqslant 1}|B(t+k)-B(k)|, \quad M=\sum_{k=1}^{[T\rceil} M_{k}
$$

Notice $|B(t \wedge T)| \leqslant M$. We have

$$
\begin{aligned}
\mathrm{E}[M] & =\mathrm{E}\left[\sum_{k=1}^{\lceil T\rceil} M_{k}\right]=\sum_{k=1}^{\infty} \mathrm{E}\left[\mathbf{1}(T>k-1) M_{k}\right] \\
& =\sum_{k=1}^{\infty} \operatorname{Prob}(T>k-1) \mathrm{E}\left[M_{k}\right]=\mathrm{E}\left[M_{0}\right] \mathrm{E}[T+1]<\infty .
\end{aligned}
$$

Brownian motion in L^{2}

Theorem
Let $S \leqslant T$ be stopping times and $\mathrm{E}[T]<\infty$. Then

$$
\mathrm{E}\left[(B(T))^{2}\right]=\mathrm{E}\left[(B(S))^{2}\right]+\mathrm{E}\left[(B(T)-B(S))^{2}\right] .
$$

Proof.

$$
\begin{aligned}
\mathrm{E}\left[B(T)^{2}\right] & =\mathrm{E}\left[B(S)^{2}\right]+2 \mathrm{E}[B(S) \mathrm{E}[B(T)-B(S) \mid \mathscr{F}(S)]] \\
& +\mathrm{E}\left[(B(T)-B(S))^{2}\right] .
\end{aligned}
$$

The middle expectation vanishes.

Brownian motion in L^{2}

Theorem

Suppose $\{B(t): t \geqslant 0\}$ is a 1-d Brownian motion. Then $\left\{B(t)^{2}-t: t \geqslant 0\right\}$ is a martingale.

Proof.

Calculate

$$
\begin{aligned}
& \mathrm{E}\left[B(t)^{2}-t \mid \mathscr{F}^{+}(s)\right] \\
& =\mathrm{E}\left[(B(t)-B(s))^{2} \mid \mathscr{F}^{+}(s)\right]+2 \mathrm{E}\left[B(t) B(s) \mid \mathscr{F}^{+}(s)\right]-B(s)^{2}-t \\
& =B(s)^{2}-s .
\end{aligned}
$$

Wald's second lemma

Theorem

Let T be a stopping time for standard Brownian motion such that $\mathrm{E}[T]<\infty$. Then

$$
\mathrm{E}\left[B(T)^{2}\right]=\mathrm{E}[T] .
$$

Wald's second lemma

Proof.

- Define stopping time $T_{n}=\inf \{t \geqslant 0:|B(t)|=n\}$
- Thus $\left\{B\left(t \wedge T \wedge T_{n}\right)^{2}-t \wedge T \wedge T_{n}: t \geqslant 0\right\}$ is dominated by $n^{2}+T$, which is integrable.
- By the optional stopping theorem, $\mathrm{E}\left[B\left(T \wedge T_{n}\right)^{2}\right]=\mathrm{E}\left[T \wedge T_{n}\right]$.
- Since $\mathrm{E}\left[B(T)^{2}\right] \geqslant \mathrm{E}\left[B\left(T \wedge T_{n}\right)^{2}\right]$,

$$
\mathrm{E}\left[B(T)^{2}\right] \geqslant \lim _{n \rightarrow \infty} \mathrm{E}\left[B\left(T \wedge T_{n}\right)^{2}\right]=\lim _{n \rightarrow \infty} \mathrm{E}\left[T \wedge T_{n}\right]=\mathrm{E}[T] .
$$

- By Fatou,

$$
\mathrm{E}\left[B(T)^{2}\right] \leqslant \liminf _{n \rightarrow \infty} \mathrm{E}\left[B\left(T \wedge T_{n}\right)^{2}\right]=\liminf _{n \rightarrow \infty} \mathrm{E}\left[T \wedge T_{n}\right] \leqslant \mathrm{E}[T] .
$$

Martingale properties of Brownian motion

Given twice differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ the Laplacian of f, written Δf, is

$$
\Delta f(x)=\sum_{i=1}^{d} \frac{\partial^{2} f}{\partial x_{i}^{2}}
$$

Theorem

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be twice continuously differentiable, and $\{B(t): t \geqslant 0\}$ be a d-dimensional Brownian motion. Further suppose that, for all $t>0$ and $x \in \mathbb{R}^{d}$, we have $\mathrm{E}_{x}[|f(B(t))|]<\infty$ and $\mathrm{E}_{x}\left[\int_{0}^{t}|\Delta f(B(s))| d s\right]<\infty$. Then the process $\{X(t): t \geqslant 0\}$ defined by

$$
X(t)=f(B(t))-\frac{1}{2} \int_{0}^{t} \Delta f(B(s)) d s
$$

is a martingale.

Martingale properties of Brownian motion

Proof.

For $0 \leqslant s<t$,

$$
\begin{aligned}
& \mathrm{E}[X(t) \mid \mathscr{F}(s)] \\
& =\mathrm{E}_{B(s)}[f(B(t-s))]-\frac{1}{2} \int_{0}^{s} \Delta f(B(u)) d u-\int_{0}^{t-s} \mathrm{E}_{B(s)}\left[\frac{1}{2} \Delta f(B(u))\right] d u .
\end{aligned}
$$

The Markov transition kernel of Brownian motion satisfies $\frac{1}{2} \Delta p(t, x, y)=\frac{\partial}{\partial t} p(t, x, y)$, so that, integrating by parts,

$$
\begin{aligned}
& \mathrm{E}_{B(s)}\left[\frac{1}{2} \Delta f(B(u))\right]=\frac{1}{2} \int p(u, B(s), x) \Delta f(x) d x \\
& =\frac{1}{2} \int \Delta p(u, B(s), x) f(x) d x=\int \frac{\partial}{\partial u} p(u, B(s), x) f(x) d x
\end{aligned}
$$

Martingale properties of Brownian motion

Proof.

Thus

$$
\begin{aligned}
& \int_{0}^{t-s} \mathrm{E}_{B(s)}\left[\frac{1}{2} \Delta f(B(u))\right] d u=\lim _{\epsilon \downarrow 0} \int\left[\int_{\epsilon}^{t-s} \frac{\partial}{\partial u} p(u, B(s), x) d u\right] f(x) d x \\
& =\int p(t-s, B(s), x) f(x) d x-\lim _{\epsilon \downarrow 0} \int p(\epsilon, B(s), x) f(x) d x \\
& =\mathrm{E}_{B(s)}[f(B(t-s))]-f(B(s))
\end{aligned}
$$

which proves that X is a martingale.

