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Brownian motion

A reference for the next several lectures is the book Brownian motion by
Morters and Peres, CUP, 2010.
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Stochastic processes

Definition
Let (T, d) be a metric space.
e By a random function or process X = (X¢)te1 indexed by T we mean
a collection of real valued random variables X;, t € T.
e By the finite dimensional distributions (f.d.d.) X we mean the
collection of probability measures jit, .. ¢, on %", indexed by n and
distinct t1,...,t, € T, where

Mtl,...,t,,(B) = Prob((th, ...,th) S B)

for any Borel subset B of R".
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Finite dimensional distributions

Definition
A collection of finite dimensional distributions is consistent if for any
By € # and distinct t, € T, finite n, and permutation 7 € S,

:Utl,...,tn(Bl X oo X Bn) = Mt-,r(1),"',t7r(n)(B7T(1) X oo X Bﬂ(n))7

and

Pty 1 (BL X -+ Bao1) = fity, .ty 4,8, (B1 X -+ x Bp_1 x R).
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Finite dimensional distributions

Definition

Let R7 denote the collection of all functions x(t) : T — R. A finite
dimensional measurable rectangle in R is any set of the form

{x(*) : x(t;) € Bi,i = 1,..., n} for a positive integer n, Bij€ % and tie T.
The cylindrical o-algebra, 7 is the o-algebra generated by the finite
dimensional cylindrical rectangles.
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Finite dimensional distributions

Theorem

For any consistent collection of f.d.d., there exists a probability space
(Q,.7,Prob) and a stochastic process w — {X¢(w),t € T} on it, whose
f.d.d. are in agreement with the given collection. Further, the restriction
of the probability measure Prob to the c-algebra FX = o(X¢, t € T) is
uniquely determined by the specified f.d.d.
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Separable processes

Definition

A random process X = (X;)e1 defined on probability space (9, <7, Prob)
is said to be separable if there exists a negligible set N = Q and a
countable set S in T such that, for every w ¢ N, every t € T, and € > 0,

Xi(w) € {Xs(w) : s € S,d(s,t) < e}.

This condition is met if (T, d) is separable and X is almost surely
continuous.
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The Gaussian

Recall that a random variable X is normally distributed with mean p and
variance o? if

1 L w=p)?
Prob(X > x) = T2 e 202 du.
X
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Gaussian random vectors

Definition

A random vector (X, ..., Xp) is called a Gaussian random vector if there
exists an n X m matrix A and an n-dimensional vector b such that

Xt = AY + b where Y is an m-dimensional vector with independent
standard normal entries.
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Paul Lévy's construction

Definition

A real valued stochastic process {B(t) : t > 0} is called a (linear)

Brownian motion with start x € R if the following holds:

e B(0) = x

e For all times 0 < t; < tp < ... < t, the increments B(t,) —

B(tp—1) — B(tp—2), ..., B(t2) — B(t1) are independent random

variables.

@ For all t > 0 and h > 0, the increments B(t + h) —

distributed with mean 0 and variance h.
@ Almost surely, t — B(t) is continuous.
If x = 0 then B(t) is standard Brownian motion.

B(t) are normally

B(t,,,l),
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Paul Lévy's construction

Definition

We say a stochastic process {X(t),t = 0} on (2, <7, Prob) has property X
almost surely if there exists A € o/ with Prob(A) = 1 such that

Ac {weQ:t— X(t,w) has property X}.
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Brownian motion

Theorem (Wiener, 1923) J

Standard Brownian motion exists.
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Brownian motion

Proof.

@ We construct Brownian motion on the interval [0,1] as a random
element of C[0, 1], the space of continuous functions on [0, 1].

o Let 2, = {2% :0 < k < 2"}. We first construct the joint distribution
of Brownian motion on these sets, then interpolate linearly and check
that the uniform limit exists and is a Brownian motion.

o Let 2 =J;_y P, and let (Q, o7, Prob) be a probability space on
which a collection {Z; : t € 2} of independent standard normals is
defined.
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Brownian motion

Proof.
@ Define B on ¥ iteratively by B(1) = Z;, and for n > 1 and
de -@n\-@n—ly
B(d—=2"")+B(d+27" Z
B(d) _ ( ) ( ) + ndl )
2 o5t

@ We claim that this construction satisfies
For all r < s < t in Z,, the random variable B(t) — B(s) is normally
distributed with mean 0 and variance t — s, and is independent of
B(s) — B(r).
The vectors {B(d) : d € Z,,} and {Z; : t € Z\P,} are independent.
@ The second of these properties is immediate, since B(d) for d € Z, is
a Gaussian vector on {Zs : s € Zp}.

Ol
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Brownian motion

Proof.

@ To check the first property, we will show the collection of increments
{B(d) — B(d —27")} for d € 9,,\{0} is independent, each being a
Gaussian of the correct variance.

@ Since this is a Gaussian vector, it suffices to check the pairwise
independence of it's entries.

e For d € 2,\%n-1,

[B(d+27") — B(d — 27™)]

N

depends only on (Z; : t € Y1), and so is independent of Z,, with
variance 2~ ("*1) |t follows that B(d) — B(d —2~") and
B(d + 2=") — B(d) are independent with mean 0 and variance 2~".

Ol
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Brownian motion

Proof.

@ The previous arguments handles pairs B(d) — B(d —2~") and
B(d +27") — B(d) for d € Z,\%n—1. In all other cases, the intervals
of increment are separated by some d € Z,,_1

o Let d € Z; with j minimal satisfying this property, so that the two
intervals are contained in [d —27/,d] and [d,d + 27/].

@ The increments are built from the independent Gaussians
B(d) — B(d —277), and B(d + 277/) — B(d) using disjoint variables
(Zy : t € Dy), hence they are independent.

Ol
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Brownian motion

Proof.
@ Define
V4l t=1,
Fo(t) = 0 t=0,
linear O<t<l
and
=2 7, t € D\Dn-1
Fn(t) = 0 te Do
linear interpolation otherwise
@ Notice that for d € 2,
n o0}
B(d) = > Fi(d) = >_ Fi(d).
i=0 i=0
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Brownian motion

Proof.
@ Use
—c2n
Prob(|Z4| = cv/n) < exp )
so
0 a0 —C2n
Z Z Prob(|Z4| = ¢ Z (2" +1) exp( ) :
2

n=0 de%, n=0

This converges for ¢ > 1/2log 2, so that there is d € 2, with
|Z4| = c+/n only finitely often with probability 1.

@ |t follows that there is a random but almost surely finite N, so that,

for all n > N,
ol < cy/m2%.

Ol

v
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Brownian motion

Proof.

@ It follows that, almost surely,
0
B(t) = ) Ba(t)
n=0

is uniformly convergent on [0,1]. Thus B(t) is almost surely
continuous.

@ To check the finite dimensional distributions, let t; < th < --- < t, in
[0,1] and let t; x <t < -+ <ty in D with limgyoo ti g = ti. By
continuity,

B(ti+1) — B(ti) = Linyo B(tit1,k) — B(tik)-

O

v
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Brownian motion

Proof.
o Note limyroo E[B(tj4+1,4) — B(ti k)] = 0 and

}(inQO Cov (B(tit1,k) — B(tik), B(tjr1,6) — B(tjx))

= lim 1;,_;(¢; — ti k) = 1icj(tiv1 — ti).
leoo If_]( i+1,k l,k) Ifj( i+1 I)

@ The construction of Brownian motion on [0, 1] is completed by the
following proposition.
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Brownian motion

Proposition

Suppose {X,, : n € N} is a sequence of Gaussian random vectors, and
lim, X, = X, almost surely. If b:= lim,_,o E[X,] and

C :=lim,_o Cov X,, exist, then X is Gaussian with mean b and
covariance matrix C.

Proof.
The convergence guarantees that the set of affine transformations defining
the Gaussian vectors converges. [

v
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Brownian motion

To construct Brownian motion on R, take an independent sequence
By, By, .... of Brownian motions in C[0,1] and glue them together,

l¢]—
B(t) = By (t — |t]) + 2 t>0.

i=0
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Invariance properties of Brownian motion

Lemma (Scaling invariance)

Suppose {B(t) : t = 0} is a standard Brownian motion and let a > 0. The
process {X(t) = 1B(a’t) : t > 0} is also a standard Brownian motion.
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Invariance properties of Brownian motion

Proof.

@ Continuity of paths, independence and stationarity of increments are
preserved by scaling.

o Note X(t) — X(s) = 1(B(a%t) — B(a®s)) is normal with mean 0 and
variance

1
?(azt —a’s)=t—s.
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Invariance properties of Brownian motion

Theorem (Time inversion)

Suppose {B(t) : t = 0} is a standard Brownian motion. Then
{X(t) : t = 0} defined by

is also a standard Brownian motion.
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Invariance properties of Brownian motion

Proof.

@ The finite-dimensional distributions (B(t1), ..., B(t,)) of Brownian
motion are Gaussian random vectors characterized by E[B(t;)] = 0
and COV(B(t,'), B(tj)) =t for0<t; < t;.

o {X(t):t >0} is also a Gaussian process with mean 0. The
covariances are given for t > 0 and h > 0 by

Cov(X(t + h), X(t)) = (t + h)t Cov <B (th) 1 (D)

1
=t(t+h t.
(+)t+h

o It follows the law of Brownian motion agrees with

(X(tl)vx(tQ)v-"aX(tn))v Osti<t < - <t
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Invariance properties of Brownian motion

Proof.

@ By the agreement in law,

lim X(t) =0, a.s.
t|0,teQ

@ Thus, by continuity, lim;jo X(t) =0 a.s.
@ This proves the a.s. continuity of X(t) on [0, c0).
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Invariance properties of Brownian motion

Definition
The Ornstein-Uhlenbeck diffusion {X(t) : t € R} is defined by
X(t) = e tB(e?).

This process is time reversible in the sense that {X(t) : t > 0} and
{X(—t): t >0}
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Law of large numbers

Theorem (Law of large numbers)

Almost surely, lim;_, 4 ( ) — 0.

Proof.
Let X(t) be the time-reversal of B(t). The statement is equivalent to
limejo X(t) =0 as.. O

v
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Modulus of continuity

Theorem

There exists a constant C > 0 such that, almost surely, for every small
h>0andall0 <t<1-—h,

IB(t + h) — B(t)] < Cq/hlog%.
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Modulus of continuity

Proof.
o Recall

= Fa(t)
n=0

where F, is piecewise linear.
@ For ¢ > 4/2log?2 there exists a random N € N such that, for all
n> N,

2| Falleo < 2cy/n2:.

[Pl < =55
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Modulus of continuity

Proof.
@ By the mean value theorem, for t,t + h e [0, 1]

o0

|B(t+ h) — B(t)| < Y| |Falt + h) — Fa(t)]
n=0
hZHF’H +2 3 Al

n=/+1

@ For /| > N, this is bounded by

hZHF’H +2ch2\f22+2c 2 Vn27z.

n=/[+1
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Modulus of continuity

Proof.
@ Choose h sufficiently small so that the first term is bounded by
7/ hlog % and so that / defined by 2=/ < h < 27/*1 satisfies / > N.

@ This causes the remaining terms also to be bounded by a constant

times 4/hlog%.
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Modulus of continuity

Theorem

For every ¢ < /2, almost surely, for every ¢ > 0 there exist 0 < h < € and

t € [0,1— h] with
1
|B(t + h) — B(t)| > cq/hlogz.
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Modulus of continuity

Proof.
o Let c < +/2. For integers k,n > 0, define

A = {B((k +1)e ") — B(ke™") > cﬁefﬁ}.

@ We have

cv/n 1 e_izn
c?n+ 1427 '

@ Using e" Prob(Ayx ) — 0 asn—oand 1 —x < e,

Prob(Ax ) = Prob(B(1) > cy/n) >

Prob ( N Ai,n> = (1 — Prob(Ag.»))¢" — 0.

0<k<e'—1
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Modulus of continuity

Theorem (Lévy's modulus of continuity)

Almost surely,

B(t+ h) — B(t
limsup sup [B(t+h) ()

hl0  0<t<l-h /2hlog %

=1.
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Modulus of continuity

Given natural numbers n, m, define A,(m) as the collection of intervals
[(k—1+ b)27""2 (k + b)27 "]

for k€ {1,2,...,2"}, a,be {0, L ... ™1} Set A(m) := |, An(m).

n

Lemma

For any fixed m and ¢ > /2, almost surely, there exists ng € N such that,
for any n = ny,

1
t—s

, Y [s, t] € Am(n).

B(0) — B(s)| < ey (¢~ )tog
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Modulus of continuity

Proof.

Let X be standard normal. By union bound,

Prob(  sup sup
ke{l,...,2"} a,bE{O,%,m,Lil}

m

IB((k — 1+ b)27"+3) — B((k + b)27"%)| > c/2-"+2 |og(2n+a)>

< 2"m? Prob(X > c4/log(2"))

m? 1 ona-c22)

= cy/log(2") V27 '

The bound is summable, so that the result follows by Borel-Cantelli. O

v
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Modulus of continuity

Lemma
Given € > 0 there exists m € N such that for every interval [s, t] < [0,1]

there exists an interval [s',t'] € A(m) with |t — t'| < e(t —s) and
|s —s'| <e(t—s).
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Modulus of continuity

Proof.

@ Choose m sufficiently large so that % <z and om <1+ 5
o Given [s,t] < [0, 1], pick n such that 27" < t —s < 27" and
ae {O s ’"T_l} so that 2772 < t — s < 2~ MHatn

s mo
@ Pick ke {1,...,2"} such that (k —1)27""? < s < k27""? and
be {0, L, .., =11
o Let s’ = (k—1+ b)27""? so that
2fn+a € €
— < < 72—n+1 <€ = _
s St Si—g

@ Choose t’ = (k+ b)27""2. Then

t—t|<|s—5|+|(t—5)— (' —5)| <e(t—2s).
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Modulus of continuity

Proof of Lévy's modulus of continuity.
e Given ¢ > /2, pick 0 < € < 1 sufficiently small so that
&:=c—e>+/2. Let me N as in the previous lemma.

@ Choose ng € N sufficiently large so that, for all n > ng and all
intervals [s', t'] € A,(m), almost surely

1
t/_s/'

B) ~ B(s))] < &/ (¢ ) og
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Modulus of continuity

Proof of Lévy’'s modulus of continuity.
@ Applying the previous upper bound on modulus of continuity

!B() B(t)] + |B(t") — B(s)| + |B(s) — B(s)|

1
t—t'|| t'—s)l
\/\ log -2+ (¢ = )log 5
+ Cy/|s —s'| log
IS*S’I

e Taking € > 0 sufficiently small, the leading constant can be made
arbitarily close to c.
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Holder continuity

Definition
A function f : [0,00) — R is said to be locally a-Hélder continuous at
x = 0, if there exists € > 0 and ¢ > 0 such that

[f(x) = fy)l S clx =yl VyeB(x).

We refer to e > 0 as the Holder exponent and to ¢ > 0 as the Holder
constant. )
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Holder continuity

Theorem

If a < % then, almost surely, Brownian motion is everywhere locally
«a-Holder continuous.

Proof.

This follows as a consequence of Lévy's bound on modulus of
continuity. L]
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Monotonicity

Theorem

Almost surely, for all 0 < a < b < o0, Brownian motion is not monotone
on the interval [a, b].

Bob Hough Math 639: Lecture 17 April 13, 2017 45 / 61



Monotonicity

Proof.
e Fix an interval [a, b].
e If B(s) is monotone on [a, b] then for each subdivision
a=aj; <ap<..<apt1 = binto n subintervals [a;, aj+1], the
increment B(a;j+1) — B(a;) has a common sign.
By independence, this happens with probability 2 - 27", Letting
n — o0, the probability of monotonicity on [a, b] is 0.
@ The conclusion holds for all intervals [a, b], a < b simultaneously by
taking a union over those intervals of rational endpoints.

Ol
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Hewitt-Savage 0-1 Law

Recall the Hewitt-Savage 0-1 Law.

Theorem (Hewitt-Savage 0-1 Law)
If E is an exchangeable event for an independent, identically distributed
sequence, then Prob(E) is 0 or 1.
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Deviations

Proposition
Almost surely,

lim sup@ = 0, liminf )

n—a0 n n—o  /n

Bob Hough Math 639: Lecture 17 April 13, 2017 48 / 61



Deviations

Proof.

e By Fatou's lemma,

Prob(B(n) > cv/n i.0.) = limsup Prob(B(n) > cv/n).

n—00

@ By scaling, the limsup is equal to Prob(B(1) > ¢) > 0.
o Let X, = B(n) — B(n— 1), which is an exchangeable sequence, and
note

{B(n) > cy/ni.o} = {jXJ > cv/n i.o.}

Jj=1

so that B(n) > c4/n i.o. with probability 1.
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Derivatives

Definition
For a function f, define upper and lower right derivatives

D*f(t) = limsup —f(t + h;) — f(t),
hl0

f(t+ h)— f(t)

—

D.f(t) = I|rir71l|0nf
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Derivatives

Theorem

Fix t = 0. Almost surely, Brownian motion is not differentiable at t.
Moreover, D*B(t) = o0 and D B(t) = —c0.

Proof.

Given standard Brownian motion B, let X be the time inversion. Then

B
D*X(0) = limsup n(X(1/n) — X(0)) = limsup+/nX(1/n) = limsup (n)
n—o0 n—o0 '\/E
This is infinite, and the reverse bound is similar. To obtain the bounds at
t # 0, translate by t. O

v
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Derivatives

Theorem (Paley, Wiener, Zygmund, 1933)

Almost surely, Brownian motion is nowhere differentiable. Furthermore,
almost surely, for all t,

D*B(t) = o, or D.B(t) = —c0.
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Derivatives

Proof.
@ Suppose there is tp € [0, 1] with

|B(to + h) — B(to)]

lim sup < 0,
hl0 h
so that there is a constant M with
B(to + h) — B(t
wp\u+> MﬂgM

he(0,1] h

It suffices to prove that this holds with probability O for any fixed M.
[]

v
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Derivatives

Proof.

o If tp is contained in [kz_,,l, 2—’2] for n > 2, then for all 1 < j < 2" — k,

k+j k+j—1
() -a(57)

k+j k+j—1 M(2j +1
<|B (X9 Z Ba)| + |8 (KFEI=L) _ Bregy| < MEHD),
20 20 2n
@ Define
_ k+j k+j—1 M(2j+1) .
anom {[a (K)o (E2L20)| < MEED 5y
O

v
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Derivatives

Proof.
@ By independence of increments and the scaling property,

22

™\3
Prob(Q, «) < Prob <|B(1)] < — ) .
@ Thus
2"—3
Prob ( g Qn,k> < 2"(7TM27"2)3 — (7M)327"/2,
k=1

This is summable in n, so that by Borel-Cantelli, only finitely many
Q, « occur with probability 1.

Bob Hough Math 639: Lecture 17 April 13, 2017 55 / 61



Bounded variation

Definition
A right-continuous function f : [0, t] — R is a function of bounded
variation if

k
V(1) := Z () — F(tj_1)| < o

where the supremum is over all kK € N and partitions
O=th<t < < ty_1 < ty = t. If the supremum is infinite f is said to
be of unbounded variation.
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Bounded variation

Theorem

Suppose that the sequence of partitions

0=t <" <<t <t =t

is nested, in the sense that one point is added at each step, and the mesh

A(n):= sup (" — £}
1<j<k(n)

converges to 0. Then, almost surely,
k(n)
lim S (B(t"”) — B(t")))? =t

n—0oo 4 J
J=1

and Brownian motion is of unbounded variation.
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Bounded variation

Lemma

If X, Z are independent, symmetric random variables in L2, then

E[(X + 2)3X% + Z%] = X2 + Z2.

Proof.
By symmetry of Z,

E[(X + 2)?|X? + Z%] = E[(X — 2)?|X? + Z?].

It follows that E[XZ|X?2 + Z2] = 0, which suffices. O

Bob Hough Math 639: Lecture 17 April 13, 2017 58 / 61



Bounded variation

Proof of variation theorem.

@ To deduce the unbounded variation from the mean-square claim we
use the Holder property. Let « € (0,1/2), and let n be such that
|B(a) — B(b)| < |a— b|* for all a,b € [0, t] with |a — b| < A(n).

@ Then

k(n k(n)
M B - B(E"™)] = A(n) = Y (B(E™) - B(E™))?.
£ =i
2
o Define X, := 1 (B (t”) = B (¢"))) . Let
4, = 0(Xn, Xn+1, ...) and

a0
G- C n+lcgnc"'cg1‘
k=1

[
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Bounded variation

Proof of variation theorem.
e We show that {X,, : n € N} is a reverse martingale, i.e. that almost

surely,
Xn = E[Xn-1|9x], n=2.

o If s (t, tp) is the inserted point, apply the lemma to the random
variables B(s) — B(t1), B(t2) — B(s) and .% the o-algebra generated
by (B(s) — B(t1))? + (B(t2) — B(s))2. Thus

E[(B(t2) — B(11))*|F] = (B(5) — B(t1)) + (B(z2) — B(s))*.
Hence
E[(B(t2) - B(1))? - (B(s) — B(1))* - (B(r2) — B(s))|#] =0

so X, is a reverse martingale.
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Bounded variation

Proof of variation theorem.
@ Thus limpyo Xy = E[X1]|9x] as.
o We have E[X1] =t
@ The variance is bounded by

k(n)
liminf E[(X, — E[X,])?] = liminf 3 (t.(") _ tgn)l)z

nfoo ntoo . J
Jj=1

< 3tliminf A(n) = 0.
ntoo

@ Thus the limit is t a.s.
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