Math 639: Lecture 16

Equidistribution on nilmanifolds

Bob Hough

April 6, 2017

Bob Hough

Math 639: Lecture 16

April 6, 2017 1 / 58

Quantitative equidistribution on nilmanifolds

This lecture is based on the paper "The quantitative behavior of polynomial orbits on nilmanifolds" by B. Green and T. Tao, *Annals of Math* 175 (2012), 465–540.

(日) (同) (三) (三)

Filtrations, nilmanifolds

Definition (Filtrations and nilmanifolds)

• Let G be a connected, simply connected nilpotent Lie group with identity 1_G . A *filtration* G_* on G is a sequence of closed connected subgroups

$$G = G_0 = G_1 \supset G_2 \supset \cdots \supset G_d \supset G_{d+1} = \{1_G\}$$

which has the property that $[G_i, G_j] \subset G_{i+j}$ for all integers $i, j \ge 0$.

Let Γ ⊂ G be a uniform (discrete, cocompact) subgroup. The quotient G/Γ = {gΓ : g ∈ G} is called a *nilmanifold*.

We write $m = \dim G$ and $m_i = \dim G_i$.

(日) (周) (三) (三)

In a nilpotent Lie group, the lower central series, defined by

$$G = G_0 = G_1, \ G_{i+1} = [G, G_i]$$

and terminating with $G_{s+1} = \{id_G\}$, is an example of a filtration. The number *s* is called the *step* of *G*. In general, in a filtration with $G_{d+1} = \{1_G\}$, *d* is called the *degree*.

(日) (同) (三) (三)

Example

• In the case s = 1, up to a linear transformation the nilmanifolds are given by tori, $G = \mathbb{R}^m$, $\Gamma = \mathbb{Z}^m$. The lcs filtration is $G = G_0 = G_1$, $G_2 = \{1_G\}$.

(日) (同) (三) (三)

Examples

Example

ΤI

• The Heisenberg nilmanifold has s = 2,

$$G = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1 \end{pmatrix}, \quad \Gamma = \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} \\ 0 & 0 & 1 \end{pmatrix}.$$

The los filtration has $G = G_0 = G_1, \ G_2 = \begin{pmatrix} 1 & 0 & \mathbb{R} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ G_3 = \{1_G\}.$

A fundamental domain for G/Γ is

$$\left\{ \left(\begin{array}{rrrr} 1 & x_1 & x_2 \\ 0 & 1 & x_3 \\ 0 & 0 & 1 \end{array} \right) : 0 \leqslant x_1, x_2, x_3 < 1 \right\}.$$

<ロ> (日) (日) (日) (日) (日)

Definition (Mal'cev bases)

Let G/Γ be a *m*-dimensional nilmanifold and let G_* be a filtration. A basis $\mathscr{X} = \{X_1, ..., X_m\}$ for the Lie algebra \mathfrak{g} over \mathbb{R} is called a *Mal'cev basis* for G/Γ adapted to G_* if the following four conditions are satisfied.

- For each j = 0, ..., m − 1 the subspace h_j := Span{X_{j+1}, ..., X_m} is a Lie algebra ideal in g, and H_j = exp h_j is a normal Lie subgroup of G.
- **2** For every $0 \leq i \leq s$, we have $G_i = H_{m-m_i}$
- Seach g ∈ G has a unique expression as exp(t₁X₁) ··· exp(t_mX_m) for t_i ∈ ℝ
- Γ consists of those points with all $t_i \in \mathbb{Z}$.

イロト イヨト イヨト

- Mal'cev proved that any nilmanifold G/Γ can be equipped with a Mal'cev basis adapted to the lower central series filtration.
- Given a Mal'cev basis, the coordinates t_i are referred to as Mal'cev coordinates and the Mal'cev coordinate map ψ_𝔅 : G → ℝ^m is the map

$$\psi_{\mathscr{X}}(g) := (t_1, ..., t_m).$$

Image: A math a math

Mal'cev metric

Definition

Let G/Γ be a nilmanifold with Mal'cev basis \mathscr{X} . We define $d = d_{\mathscr{X}} : G \times G \to \mathbb{R}_{\geq 0}$ to be the largest metric such that for all $x, y \in G$,

$$d(x,y) \leqslant \|\psi(xy^{-1})\|_{\infty}.$$

Explicitly,

$$d(x, y) = \\ \inf\left\{\sum_{i=1}^{n} \min(\|\psi(x_{i-1}x_{i}^{-1})\|_{\infty}, \|\psi(x_{i}x_{i-1}^{-1})\|_{\infty}) : x_{0}, ..., x_{n} \in G; x_{0} = x; x_{n} = y\right\}$$

and

$$d(x\Gamma, y\Gamma) = \inf_{\gamma \in \Gamma} d(x, y\gamma).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Rationality of a Mal'cev basis

Definition (Height)

The *(naive)* height of a real number x is defined to be $\max(|a|, |b|)$ if $x = \frac{a}{b}$ is rational in reduced form, and ∞ if x is irrational.

Definition (Rationality of a basis)

Let G/Γ be a nilmanifold, and let Q > 0. We say that a Mal'cev basis \mathscr{X} for G/Γ is *Q*-rational if all of the structure constants c_{ijk} in the relations

$$[X_i, X_j] = \sum_k c_{ijk} X_k$$

are rational with height at most Q.

(日) (周) (三) (三)

Equidistribution

Definition (Equidistribution)

Let G/Γ be a nilmanifold endowed with a unique probability Haar measure dx.

An infinite sequence {g(n)Γ}_{n∈ℕ} is equidistributed if for all continuous functions F : G/Γ → C,

$$\lim_{N\to\infty} \mathsf{E}_{n\in[N]}[F(g(n)\Gamma)] = \int_{G/\Gamma} F(x)dx.$$

 An infinite sequence {g(n)Γ}_{n∈ℤ} in G/Γ is totally equidistributed if the sequences {g(an + r)Γ}_{n∈ℕ} are equidistributed for all a ∈ ℤ\{0} and all r ∈ ℤ.

		ug	

イロト 不得下 イヨト イヨト

Definition (Lipschitz functions)

Let (G/Γ) be a nilmanifold with Mal'cev basis \mathscr{X} . The *Lipschitz norm* of a function $F : G/\Gamma \to \mathbb{C}$ is

$$\|F\|_{\text{Lip}} := \|F\|_{\infty} + \sup_{x \neq y \in G/\Gamma} \frac{|F(x) - F(y)|}{d(x, y)}.$$

A function F is said to be *Lipschitz* if it has finite Lipschitz norm.

Quantitative equidistribution

Definition (Quantitative equidistribution)

Let $(G/\Gamma, dx)$ as above with a Mal'cev basis \mathscr{X} , and let be given an error tolerance $\delta > 0$ and a length N.

• A finite sequence $\{g(n)\Gamma\}_{n\in[N]}$ is said to be δ -equidistributed if

$$\left|\mathsf{E}_{n\in[N]}[F(g(n)\Gamma)] - \int_{G/\Gamma} F(x)dx\right| \leq \delta \|F\|_{\mathsf{Lip}}$$

for all Lipschitz functions $F : G/\Gamma \to \mathbb{C}$.

• The sequence is totally δ -equidistributed if

$$\left|\mathsf{E}_{n\in P}[F(g(n)\Gamma)] - \int_{G/\Gamma} F(x)dx\right| \leq \delta \|F\|_{\mathrm{Lip}}$$

holds for all arithmetic progressions $P \subset [N]$ of length at least δN .

Definition (Linear sequences)

A *linear sequence* in a group G is any sequence $g : \mathbb{Z} \to G$ of the form $g(n) := a^n x$ for some $a, x \in G$. A *linear sequence* in a nilmanifold G/Γ is a sequence of the form $\{g(n)\Gamma\}_{n\in\mathbb{Z}}$, where $g : \mathbb{Z} \to G$ is a linear sequence in G.

In the case $G = \mathbb{R}^m$, $\Gamma = \mathbb{Z}^m$, a linear sequence takes the form $an + x \mod \mathbb{Z}^m$.

Theorem (Qualitative Kronecker theorem)

Let $m \ge 1$, and let $(g(n) \mod \mathbb{Z}^m)_{n \in \mathbb{N}}$ be a linear sequence in the torus $\mathbb{R}^m / \mathbb{Z}^m$. Then exactly one of the following statements is true:

($g(n) \mod \mathbb{Z}^m$) is equidistributed in $\mathbb{R}^m/\mathbb{Z}^m$

2 There exists a non-trivial character $\eta : \mathbb{R}^m \to \mathbb{R}/\mathbb{Z}$ which annihilates \mathbb{Z}^m but does not vanish entirely, such that $\eta \circ g$ is constant.

(日) (周) (三) (三)

Definition (Horizontal torus)

- Given a nilmanifold G/Γ , the *horizontal torus* is defined to be $(G/\Gamma)_{ab} := G/[G, G]\Gamma$. This torus is isomorphic to $\mathbb{R}^{m_{ab}}/\mathbb{Z}^{m_{ab}}$ where $m_{ab} = \dim(G) \dim([G, G])$.
- A horizontal character is a continuous homomorphism $\eta: G \to \mathbb{R}/\mathbb{Z}$ which annihilates Γ . Note that η in fact annihilates $[G, G]\Gamma$.
- A horizontal character is non-trivial if it does not vanish identically.
- Given a Mal'cev basis X for G/Γ, a horizontal character η may be written η(g) = k · ψ(g) for some unique k ∈ Z^m. The norm of η is ||η|| := ||k||.

(日) (周) (三) (三)

The Heisenberg nilmanifold

Example

Let G/Γ be the Heisenberg nilmanifold. Then $[G, G] = \begin{pmatrix} 1 & 0 & \mathbb{R} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Then $(G/\Gamma)_{ab}$ may be identified with $\mathbb{R}^2/\mathbb{Z}^2$, with projection map π given by $\pi \begin{bmatrix} \begin{pmatrix} 1 & x_1 & x_2 \\ 0 & 1 & x_2 \end{bmatrix} \end{bmatrix}$:= (x_1, x_2)

$${\mathsf{T}} \left[\left(\begin{array}{ccc} 0 & 1 & x_3 \\ 0 & 0 & 1 \end{array} \right) \right] := (x_1, x_3).$$

Leon Green proved the following generalization to Kronecker's theorem in the case of a linear orbit in a nilmanifold.

Theorem (Leon Green's theorem)

Let $\{g(n)\Gamma\}_{n\in\mathbb{Z}}$ be a linear sequence in a nilmanifold G/Γ . Then exactly one of the following statements is true:

- $\{g(n)\Gamma\}_{n\in\mathbb{N}}$ is equidistributed in G/Γ
- **2** There is a nontrivial horizontal character $\eta : G/\Gamma \to \mathbb{R}/\mathbb{Z}$ such that $\eta \circ g$ is a constant.

In other words, a linear sequence is equidistributed in a nilmanifold if and only if the sequence projected to the abelianization is equidistributed there.

イロト 不得 トイヨト イヨト 二日

Leon Green's theorem

Example

Write $\{x\} = x - \lfloor x \rfloor$. The linear sequence

$$g_n = \begin{pmatrix} 1 & \alpha & 0 \\ 0 & 1 & \beta \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & n\alpha & \binom{n}{2}\alpha\beta \\ 0 & 1 & n\beta \\ 0 & 0 & 1 \end{pmatrix}$$

has reduction into a fundamental domain for the Heisenberg nilmanifold ${\it G}/\Gamma$ given by

$$g_n \Gamma = \begin{pmatrix} 1 & \{n\alpha\} & \left\{\binom{n}{2}\alpha\beta - n\alpha\lfloor n\beta\rfloor\right\}\\ 0 & 1 & \{n\beta\}\\ 0 & 0 & 1 \end{pmatrix} \Gamma.$$

By Leon Green's theorem, this sequence is equidistributed in G/Γ if and only if $(1, \alpha, \beta)$ are linearly independent over \mathbb{Q} .

Bob Hough

April 6, 2017 19 / 58

Definition (Polynomial sequences)

- Let G be a nilpotent group with filtration G_* . Let $g : \mathbb{Z} \to G$ be a sequence. If $h \in \mathbb{Z}$, write $D_h g(n) := g(n+h)g(n)^{-1}$. (This differs slightly from last lecture.)
- We say that g is a polynomial sequence with coefficients in G_{*}, and write g ∈ poly(Z, G_{*}), if D_{h_i} · · · D_{h₁}g takes values in G_i for all i ∈ Z_{>0} and all h₁, ..., h_i ∈ Z.

(日) (周) (三) (三)

Leibman proved the following generalization of Leon Green's theorem.

Theorem (Leibman's theorem)

Suppose that G/Γ is a nilmanifold and that $g : \mathbb{Z} \to G$ is a polynomial sequence. Then exactly one of the following statements is true:

- $\{g(n)\Gamma\}_{n\in\mathbb{N}}$ is equidistributed in G/Γ .
- ② There exists a nontrivial horizontal character η : G → ℝ/ℤ such that η ∘ g is constant.

Quantitative Leibman's theorem

Green and Tao prove the following quantitative form of Leibman's theorem.

Theorem (Quantitative Leibman theorem)

Let G/Γ be an m-dimensional nilmanifold with filtration G_* of degree d and a $\frac{1}{\delta}$ -rational Mal'cev basis \mathscr{X} . Suppose that $g \in \text{poly}(\mathbb{Z}, G_*)$. Then at least one of the following statements is true.

- $\{g(n)\Gamma\}_{n\in[N]}$ is δ -equidistributed in G/Γ
- **2** There is a non-trivial horizontal character $\eta : G/\Gamma \to \mathbb{R}/\mathbb{Z}$ with $\|\eta\| \ll \delta^{-O_{m,d}(1)}$ such that

$$\|\eta \circ g(n) - \eta \circ g(n-1)\|_{\mathbb{R}/\mathbb{Z}} \ll \frac{\delta^{-O_{m,d}(1)}}{N}$$

for all $n \in \{1, ..., N\}$.

For $x \in \mathbb{R}$, $||x||_{\mathbb{R}/\mathbb{Z}}$ is the distance to the nearest integer.

イロト 不得下 イヨト イヨト

Example

Example

Let $G = \mathbb{R}$, $\Gamma = \mathbb{Z}$ and $g(n) = (\frac{1}{2} + \sigma)n$ where $0 < \sigma \leq \frac{\delta}{100}$ is a parameter.

- If N is much larger than $\frac{1}{\sigma}$ then $\{g(n) \mod \mathbb{Z}\}_{n \in [N]}$ is δ -equidistributed.
- If N is much smaller than ¹/_σ then {g(n) mod Z}_{n∈[N]} fails to be equidistributed as it is concentrated near 0 and ¹/₂. The character η(x) = 2x mod 1 satisfies

$$\|\eta \circ g(n) - \eta \circ g(n-1)\|_{\mathbb{R}/\mathbb{Z}} \ll \frac{1}{N}.$$

(日) (周) (三) (三)

Definition

- Let G/Γ be a nilmanifold, and let Q > 0 be a parameter. We say that $\gamma \in G$ is *Q*-rational if $\gamma^r \in \Gamma$ for some integer $r, 0 < r \leq Q$.
- A *Q*-rational point is any point in G/Γ of the form $\gamma\Gamma$ for some *Q*-rational group element γ .
- A sequence {γ(n)}_{n∈Z} is Q-rational if every element γ(n)Γ in the sequence is a Q-rational point.

(日) (周) (三) (三)

Definition

Let Q > 0.

- Suppose a nilmanifold G/Γ is given with Mal'cev basis $\mathscr{X} = \{X_1, ..., X_m\}.$
- Suppose that $G' \subset G$ is a closed connected subgroup.

We say that G' is Q-rational relative to \mathscr{X} if the Lie algebra \mathfrak{g}' has a basis $\mathscr{X}' = \{X'_1, ..., X'_{m'}\}$ consisting of linear combinations $\sum_{i=1}^m a_i X_i$ where the a_i are rational numbers of height at most Q.

(日) (同) (三) (三)

Definition

Let G/Γ be a nilmanifold with a Mal'cev basis \mathscr{X} , and let $M, N \ge 1$. We say that the sequence $\{\epsilon(n)\}_{n \in \mathbb{Z}}$ in G is (M, N)-smooth if we have

 $d(\epsilon(n), 1_G) \leq M$

and

$$d(\epsilon(n),\epsilon(n-1)) \leq \frac{M}{N}$$

for all $n \in [N]$.

Bo	h	Ho	ugh
20	۰.		B

Green and Tao prove the following factorization theorem as part of their program giving an asymptotic for the number of k-term arithmetic progressions in the prime numbers less than X.

Factorization theorem

Theorem (Factorization theorem)

- Let $m, d \ge 0$, and let $M_0, N \ge 1$ and A > 0 be real numbers.
- Suppose that G/Γ is an m-dimensional nilmanifold with a filtration G_* of degree d
- Suppose that X is an M₀-rational Mal'cev basis adapted to G_{*} and that g ∈ poly(Z, G_{*}).

Then there is an integer M with $M_0 \leq M \ll M_0^{O_{A,m,d}(1)}$, a rational subgroup $G' \subset G$, a Mal'cev basis \mathscr{X}' for $G'/(G' \cap \Gamma)$, and a decomposition $g = \epsilon g' \gamma$ into sequences in $poly(\mathbb{Z}, G_*)$ satisfying

• $\epsilon: \mathbb{Z} \to G$ is (M, N)-smooth

② $g' : \mathbb{Z} \to G'$ satisfies $\{g'(n)\Gamma'\}_{n \in [N]}$ is totally $1/M^A$ -equidistributed

Solution is M-rational, and {γ(n)Γ}_{n∈Z} is periodic with period at most M.

(日) (同) (日) (日) (日)

As a warm-up we prove the following quantitative Kronecker Theorem.

Theorem (Quantitative Kronecker Theorem) Let $m \ge 1$, let $0 < \delta < \frac{1}{2}$, and let $\alpha \in \mathbb{R}^m$. If the sequence $\{\alpha n \mod \mathbb{Z}^m\}_{n \in [N]}$ is not δ -equidistributed in the additive torus $\mathbb{R}^m / \mathbb{Z}^m$, then there exists $k \in \mathbb{Z}^m$ with $0 < |k| \ll \delta^{-O_m(1)}$ such that $\|k \cdot \alpha\|_{\mathbb{R}/\mathbb{Z}} \ll \frac{\delta^{-O_m(1)}}{N}$.

Proof.

• Suppose that $\{\alpha n \mod \mathbb{Z}^m\}_{n \in [N]}$ is not δ -equidistributed. Thus there exists a Lipschitz function $F : \mathbb{R}^m / \mathbb{Z}^m \to \mathbb{R}, \|F\|_{Lip} = 1$

$$\mathsf{E}_{n\in[N]}[F(\alpha n)] - \int_{\mathbb{R}^m/\mathbb{Z}^m} Fd\theta > \delta.$$

After replacing δ with $\delta/2$ and translating F by a constant and rescaling, we can assume $\int F = 0$. Also, we may assume that F is smooth.

Proof.

• Fejér kernel $K : \mathbb{R}^m / \mathbb{Z}^m \to \mathbb{R}^+$, $K(\theta) := \frac{1_Q}{\text{meas}(Q)} * \frac{1_Q}{\text{meas}(Q)}(\theta)$, where $Q := \left[-\frac{\delta}{16m}, \frac{\delta}{16m}\right]^m \subset \mathbb{R}^m / \mathbb{Z}^m$ has F.T., for $k \in \mathbb{Z}^m$,

$$\hat{\mathcal{K}}(k) = \prod_{i=1}^{m} \left(\frac{\sin \frac{\pi k_i \delta}{8m}}{\frac{\pi k_i \delta}{8m}} \right)^2,$$

where the ratio is interpretted as 1 where $k_i = 0$.

• Bounding the numerator by 1, for $M \ge 1$,

$$\sum_{k\in\mathbb{Z}^m,\|k\|_2>M}|\hat{K}(k)|\ll_m\delta^{-2m}M^{-1}.$$

< ロ > < 同 > < 三 > < 三

Proof.

- Bound $|\hat{F}(k)| \leq ||F||_{\infty} \leq ||F||_{\text{Lip}} \leq 1.$
- Set $F_1 := F * K$. Since $||F||_{Lip} = 1$ and K is supported in Q,

$$\|F - F_1\|_{\infty} \leqslant \frac{\delta}{8}$$

• Choose $M:= C_m \delta^{-2m-1}$ for m sufficiently large, and set

$$F_2(\theta) := \sum_{k \in \mathbb{Z}^m: 0 < \|k\|_2 \leq M} \hat{F}_1(k) e(k \cdot \theta).$$

Thus
$$||F_1 - F_2||_{\infty} \leq \frac{\delta}{8}$$

< ロ > < 同 > < 三 > < 三

Proof.

We've arranged that

$$\left|\mathsf{E}_{n\in[N]}[F_2(n\alpha)]\right| \ge \frac{\delta}{4}.$$

Thus there exists some k, $0 < |k| \leq M$ such that

$$\left|\mathsf{E}_{n\in[N]}[e(nk\cdot\alpha)]\right|\gg_{m}\delta M^{-m}\gg\delta^{O_{m}(1)}$$

• The geometric series bound $\left|\mathsf{E}_{n\in[N]}[e(nt)]\right| \ll \min\left(1, \frac{1}{N\|t\|_{\mathbb{R}/\mathbb{Z}}}\right)$ implies

$$\|\mathbf{k}\cdot\alpha\|_{\mathbb{R}/\mathbb{Z}}\ll_{m}\frac{\delta^{-O_{m}(1)}}{N}.$$

Bob Hough

April 6, 2017 33 / 58

(日)

The following one-dimensional version of Kronecker's theorem gives extra information in the case that a small interval is hit often.

Lemma

Let $\alpha \in \mathbb{R}$, $0 < \delta < \frac{1}{2}$, $0 < \epsilon \leq \frac{\delta}{2}$, and let $I \subset \mathbb{R}/\mathbb{Z}$ be an interval of length ϵ . If $\alpha n \in I$ for at least δN values of $n \in [N]$ then there is some $k \in \mathbb{Z}$ with $0 < |k| \ll \delta^{-O(1)}$ such that

$$\|klpha\|_{\mathbb{R}/\mathbb{Z}}\ll rac{\epsilon\delta^{-O(1)}}{N}.$$

р.	эb	ы	

Proof.

- By choosing a function F which is a piecewise linear approximation to I one can check that $\{\alpha n \mod 1\}_{n \in [N]}$ is not $\frac{\delta^2}{10}$ equidistributed.
- Choose $0 \neq k \in \mathbb{Z}$ such that $|k| \ll \delta^{-O(1)}$ and $||k\alpha||_{\mathbb{R}/\mathbb{Z}} \ll \frac{\delta^{-O(1)}}{N}$.
- Let $\beta = ||k\alpha||_{\mathbb{R}/\mathbb{Z}}$, and assume $\beta \neq 0$, since otherwise we're done.

Strongly recurrent sequences

Proof.

- As n' ranges over an interval of integers J of length at most ¹/_β, the numbers α(n₀ + qn')ℤ are increasing through a fundamental domain for ℝ/ℤ, and thus the number that land in I is at most 1 + ^ε/_β.
- Divide [N] into at most $2k + \beta N$ progressions of form $\{n_0 + kn' : n' \in J\}$ to obtain

$$\delta N \leq \#\{n \in [N] : \alpha n \mod 1 \in I\} \leq \left(1 + \frac{\epsilon}{\beta}\right) (2k + \beta N)$$
$$\ll k + \frac{\epsilon k}{\beta} + \beta N + \epsilon N.$$

• We can assume that $N \ge \delta^{-O(1)}$ and that $\epsilon < \delta^{O(1)}$. The only term that is relevant is $\delta N \ll \frac{k\epsilon}{\beta}$, which gives the claim.

Vertical torus

Definition

Let G/Γ be a nilmanifold and G_* a filtration of degree d. Then G_d is in the center of G.

- The vertical torus is $G_d/(\Gamma \cap G_d)$.
- The vertical dimension is $m_d = \dim G_d$
- A vertical character is a continuous homomorphism $\xi : G_d/(\Gamma \cap G_d) \to \mathbb{R}/\mathbb{Z}$. Such a character has the form $\xi(x) = k \cdot x$, $k \in \mathbb{Z}^d$, by identifying G_d with the last m_d Mal'cev coordinates.
- Let $F : G/\Gamma \to \mathbb{C}$ be a Lipschitz function and let ξ be a vertical character. F has vertical oscillation ξ if

$$F(g_d \cdot x) = e(\xi(g_d))F(x), \qquad g_d \in G_d, x \in G/\Gamma.$$

(日) (周) (三) (三)

Definition

Let $g : \mathbb{Z} \to G$ be a polynomial sequence. We say that $\{g(n)\Gamma\}_{n \in [N]}$ is δ -equidistributed along a vertical character ξ if

$$\mathsf{E}_{n\in[N]}[F(g(n)\Gamma)] - \int_{G/\Gamma} F(x) dx \leqslant \delta \|F\|_{\mathsf{Lip}}$$

for all Lipschitz functions $F : G/\Gamma \to \mathbb{C}$ with vertical oscillation ξ .

Lemma

- Let G/Γ be a nilmanifold with filtration G_* of degree d.
- Let m_d be the vertical dimension, and let $0 < \delta \leq \frac{1}{2}$.
- Suppose that $g : \mathbb{Z} \to G$ is a polynomial sequence and that $\{g(n)\Gamma\}_{n\in[N]}$ is not δ -equidistributed.

Then there is a vertical character ξ with $|\xi| \ll \delta^{-O_{m_d}(1)}$ such that $\{g(n)\Gamma\}_{n\in[N]}$ is not $\delta^{O_{m_d}(1)}$ -equidistributed along the vertical frequency ξ .

Vertical oscillation reduction

Proof.

This follows as in the quantitative Kronecker theorem.

- Replacing δ with $\frac{\delta}{2}$, assume $\int_{G/\Gamma} F = 0$, $||F||_{Lip} = 1$ and F is smooth.
- Let K be the m_d dimension Fejér kernel. Convolve with K in $G_d/(\Gamma \cap G_d)$ fibers to obtain

$$F_1(y) := \int_{\mathbb{R}^{m_d}/\mathbb{Z}^{m_d}} F(\theta y) K(\theta) d\theta$$

• Write $F_1(y) = \sum_{k \in \mathbb{Z}^d} F^{\wedge}(y;k) \hat{K}(k)$ and $(Q = C_{m_d} \delta^{-2m_d-1})$

$$F_2(y) := \sum_{k \in \mathbb{Z}^{m_d} : \|k\| \leq Q} F^{\wedge}(y;k) \hat{K}(k)$$

Since $||F - F_2||_{\infty} \leq \frac{\delta}{4}$, the argument goes through as before.

Theorem (van der Corput's inequality)

Let N, H be positive integers and suppose that $\{a_n\}_{n\in[N]}$ is a sequence of complex numbers. Extend $\{a_n\}$ to all of \mathbb{Z} by defining $a_n := 0$ for $n \notin [N]$.

$$\left|\mathsf{E}_{n\in[N]}[a_n]\right|^2 \leqslant \frac{N+H}{HN} \sum_{|h|\leqslant H} \left(1-\frac{|h|}{H}\right) \mathsf{E}_{n\in[N]}[a_n\overline{a_{n+h}}].$$

In the classical theory of oscillating sums $\sum_{n} e(P(n))$, van der Corput's inequality is used to reduce the degree of the polynomial P.

van der Corput's inequality

Proof of van der Corput's inequality. Write $\sum_{n} a_n = \frac{1}{H} \sum_{-H < n \le N} \sum_{h=0}^{H-1} a_{n+h}$. By Cauchy-Schwarz, $\left|\sum_{n}a_{n}\right|^{2} = \frac{1}{H^{2}} \left|\sum_{H < n < N}\sum_{h = 0}^{H-1}a_{n+h}\right|^{2}$ $\leq \frac{N+H}{H^2} \sum_{H < n < N} \left| \sum_{h=0}^{H-1} a_{n+h} \right|^2$ $=\frac{N+H}{H^2}\sum_{\substack{H=1\\H^2}}\sum_{\substack{n+h\\H^2}}a_{n+h}\overline{a_{n+h'}}.$

This rearranges to the claimed inequality.

Bol	h F	lou	αh
00		iou	gu

April 6, 2017 42 / 58

Theorem

Let N be a positive integer, and suppose that $\{a_n\}_{n \in [N]}$ is a sequence of complex numbers with $|a_n| \leq 1$. Extend $\{a_n\}$ to all of \mathbb{Z} by defining $a_n := 0$ when $n \notin [N]$. Suppose that $0 < \delta < 1$ and that

 $\left|\mathsf{E}_{n\in[N]}[a_n]\right| \geq \delta.$

Then for at least $\frac{\delta^2 N}{8}$ values of $h \in [N]$, we have

$$\left|\mathsf{E}_{n\in[N]}[a_{n+h}\overline{a_n}]\right| \geq \frac{\delta^2}{8}.$$

Bo	b .	H	ou	σh

Proof.

We can assume that $N \leq \frac{4}{\delta^2}$. The proof is by contradiction. Choose H = N in the previous theorem to obtain

$$\delta^{2} \leq \left| \mathsf{E}_{n \in [N]} \, a_{n} \right|^{2} \leq \frac{2}{N} \sum_{|h| \leq N} \left| \mathsf{E}_{n \in [N]} \left[a_{n} \overline{a_{n+h}} \right] \right|$$
$$\leq \frac{2}{N} \left(1 + 2 \left(\frac{\delta^{2} N}{8} + \frac{\delta^{2} N}{8} \right) \right)$$

Rearranging produces the inequality.

Bo	h	н	~	a	h
50	0		υu	ъ	

The Heisenberg nilmanifold

The Heisenberg group has Lie algebra $\mathfrak{g} = \begin{pmatrix} 0 & \mathbb{R} & \mathbb{R} \\ 0 & 0 & \mathbb{R} \\ 0 & 0 & 0 \end{pmatrix}$. The

exponential map is given by

$$\exp\left(\begin{array}{ccc} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{array}\right) = \left(\begin{array}{ccc} 1 & x & y + \frac{xz}{2} \\ 0 & 1 & z \\ 0 & 0 & 1 \end{array}\right)$$
$$\log\left(\begin{array}{ccc} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{array}\right) = \left(\begin{array}{ccc} 0 & x & y - \frac{xz}{2} \\ 0 & 0 & z \\ 0 & 0 & 0 \end{array}\right).$$

The Heisenberg nilmanifold

Let

$$X_1 := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ X_2 := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ X_3 := \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

 $\mathscr{X} = \{X_1, X_2, X_3\}$ is a Mal'cev basis adapted to the lcs filtration G_* ,

$$\exp(t_1X_1)\exp(t_2X_2)\exp(t_3X_3) = \begin{pmatrix} 1 & t_1 & t_1t_2 + t_3 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{pmatrix}.$$

The Mal'cev coordinate map is

$$\psi \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} = (x, z, y - xz).$$

Projection onto the horizontal torus is given by $\pi \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} = (x, z).$

We prove the main theorem in the special case of a linear sequence in the Heisenberg nilmanifold. This already illustrates many of the essential ingredients of the more general proof.

Theorem

- Let G/Γ be the Heisenberg nilmanifold with Mal'cev basis given, and let g : Z → G be a linear sequence g(n) = aⁿ.
- Let $\delta > 0$ be a parameter and let $N \ge 1$ be an integer.

Then either $\{g(n)\Gamma\}_{n\in[N]}$ is δ -equidistributed, or else there is a horizontal character η with $0 < |\eta| \ll \delta^{-O(1)}$ such that $\|\eta(a)\|_{\mathbb{R}/\mathbb{Z}} \ll \frac{\delta^{-O(1)}}{N}$.

(日) (周) (三) (三)

Proof.

 Assume that the sequence is not δ-equidistributed. Applying the vertical frequency decomposition, there exists F : G/Γ → C, ||F||_{Lip} = 1 of vertical frequency ξ with ||ξ|| ≪ δ^{-O(1)}, such that

$$\left|\mathsf{E}_{n\in[N]}[F(a^{n}\Gamma)] - \int_{G/\Gamma} F(x)dx\right| \gg \delta^{O(1)}$$

• If $\xi \equiv 0$ then F is G_2 -invariant, so there exists $\tilde{F} : \mathbb{R}^2 / \mathbb{Z}^2 \to \mathbb{C}$ such that $F(x) = \tilde{F}(\pi(x))$. One has $\|\tilde{F}\|_{Lip} \leq 1$ and

$$\left|\mathsf{E}_{n\in[N]}\,\tilde{F}(n\pi(a))-\int_{\mathbb{R}^2/\mathbb{Z}^2}\tilde{F}(x)dx\right|\gg\delta^{O(1)}\|\tilde{F}\|_{\mathrm{Lip}}.$$

The claim now follows from Kronecker's theorem.

Bob Hough

Math 639: Lecture 16

April 6, 2017 48

Proof.

• If $\xi \neq 0$ then F is mean zero, by integrating in the G_2 direction. Hence

$$\left|\mathsf{E}_{n\in[N]}[F(a^{n}\Gamma)]\right| \ge \delta^{O(1)}.$$

• By van der Corput there are $\gg \delta^{O(1)}N$ values of $h \in [N]$ such that

$$\left|\mathsf{E}_{n\in[N]}[F(a^{n+h}\Gamma)\overline{F(a^{n}\Gamma)}]\right|\gg\delta^{O(1)}.$$

• Given $g \in G$, write $g = \{g\}[g]$, where $\psi(\{g\}) \in [0,1)^3$ and $[g] \in \Gamma$. Hence the expectation is

$$\left|\mathsf{E}_{n\in[N]}[F(a^n\{a^h\}\Gamma)\overline{F(a^n\Gamma)}]\right| \gg \delta^{O(1)}.$$

< ロ > < 同 > < 三 > < 三

Proof.

• Let $\tilde{F}_h: G^2/\Gamma^2 \to \mathbb{C}$ defined by

$$\widetilde{F}_h(x,y) := F(\{a^h\}x)\overline{F(y)}.$$

Thus the expectation may be written

$$\left|\mathsf{E}_{n\in[N]}\left[\tilde{F}_{h}(\tilde{a}_{h}^{n})\mathsf{\Gamma}^{2}\right]\right|\gg\delta^{O(1)}$$

where
$$\tilde{a}_h := (\{a^h\}^{-1}a\{a^h\}, a)$$
.
• Notice $a^{-1}\{a^h\}^{-1}a\{a^h\} = [a, \{a^h\}] \in G_2$, so \tilde{a}_h lies in the subgroup $G^{\circ} = G \times_{G_2} G := \{(g, g') : g^{-1}g' \in G_2\}$ of G^2 .

< ロ > < 同 > < 三 > < 三

Proof.

• We can check that the commutator subgroup of G° is $G_2^{\Delta} = \{(g_2, g_2) : g_2 \in G_2\}$ as follows. Let $(g, g'), (h, h') \in G^{\circ}$. Then $[(g, g'), (h, h')] = ([g, h], [g', h']) \in G_2^2$.

• We have, since G_2 is in the center,

$$\begin{split} [g,h][g',h']^{-1} &= g^{-1}h^{-1}gh(h')^{-1}(g')^{-1}h'g' \\ &= h(h')^{-1}g(g')^{-1}h^{-1}h'g^{-1}g' = 1. \end{split}$$

Proof.

• A Mal'cev basis for G°/Γ° , $\mathscr{X}^{\circ} = \{X_1^{\circ}, X_2^{\circ}, X_3^{\circ}, X_4^{\circ}\}$

$$X_1^{\square} = \begin{pmatrix} 0 & 1 & \{0,0\} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, X_2^{\square} = \begin{pmatrix} 0 & 0 & \{0,0\} \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, X_3^{\square} = \begin{pmatrix} 0 & 0 & \{1,0\} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, X_4^{\square} = \begin{pmatrix} 0 & 0 & \{1,1\} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

where

$$\begin{pmatrix} 0 & x & \{y, y'\} \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} := \begin{pmatrix} \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & x & y' \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} \end{pmatrix}.$$

• Projection onto the horizontal torus $\mathbb{R}^3/\mathbb{Z}^3$ is given by projection onto the first three coordinates.

• • • • • • • • • • • •

Proof.

- Write F_h[□] and a_h[□] for the restrictions of F_h and ã_h to G[□] and write Γ[□] := Γ ×_{Γ∩G2} Γ. Integrating in the X₃[□] direction shows that F_h[□] is mean zero.
- Check that

$$\begin{aligned} F_h^{\circ}((g_2,g_2)\cdot(g,g')) &= F(\{a^h\}g_2g)\overline{F(g_2g')} \\ &= \xi(g_2)\overline{\xi(g_2)}F(\{a^h\}g)\overline{F(g')} = F_h^{\circ}((g,g')) \end{aligned}$$

so F_h° is $[G^{\circ}, G^{\circ}]$ -invariant, and so factors through the projection π° to the abelianization.

• Write $F'_h : \mathbb{R}^3 / \mathbb{Z}^3 \to \mathbb{C}$ defined by $F'_h(\pi^{\scriptscriptstyle \square}(x)) = F^{\scriptscriptstyle \square}_h(x\Gamma^{\scriptscriptstyle \square})$. We have F'_h is mean zero and has Lipschitz norm bounded by 1.

Image: A (□)

Proof.

Since

$$\left|\mathsf{E}_{n\in[N]}[F_h'(n\pi^{\scriptscriptstyle \Box}(a_h^{\scriptscriptstyle \Box}))]\right|\gg \delta^{O(1)}$$

we obtain that for $\gg \delta^{O(1)}N$ values of h there exists $k_h^{\scriptscriptstyle D} \in \mathbb{Z}^3$, $0 < |k_h^{\scriptscriptstyle D}| \ll \delta^{-O(1)}$ such that

$$\|\boldsymbol{k}_{\boldsymbol{h}}^{\scriptscriptstyle \Box}\cdot\pi^{\scriptscriptstyle \Box}(\boldsymbol{a}_{\boldsymbol{h}}^{\scriptscriptstyle \Box})\|_{\mathbb{R}/\mathbb{Z}}\ll rac{\delta^{-O(1)}}{N}$$

• Picking the most common values of k_h^{\square} , the same conclusion holds for a single k^{\square} . Let $\eta : G^{\square}/\Gamma^{\square} \to \mathbb{R}/\mathbb{Z}$ be defined as $\eta(x) := k^{\square} \cdot \pi^{\square}(x)$.

		gh

(日) (周) (三) (三)

Proof.

- Notice that by decomposing along the first two coordinates in the Mal'cev basis, we can write $\eta(g',g) = \eta_1(g) + \eta_2(g'g^{-1})$ where η_1 is a horizontal character of G and $\eta_2 : G_2/(\Gamma \cap G_2) \to \mathbb{R}/\mathbb{Z}$.
- Calculate $\eta(\tilde{a}_h) = \eta_1(a) + \eta_2([a, \{a^h\}]).$
- In coordinates, if $\psi(x) = (t_1, t_2, t_3)$ and $\psi(y) = (u_1, u_2, u_3)$ then $\psi([x, y]) = (0, 0, t_1u_2 t_2u_1)$. If $\psi(a) = (\gamma_1, \gamma_2, *)$ then $\psi(\{a^h\}) = (\{\gamma_1h\}, \{\gamma_2h\}, *)$.
- Set $\gamma := (\gamma_1, \gamma_2) = \pi(a)$, $\zeta := (-\gamma_2, \gamma_1)$ and observe $\eta(\tilde{a}_h) = k_1 \cdot \gamma + k_2 \zeta \cdot \{\gamma h\}$ so that for $\gg \delta^{O_m(1)} N$ values of $h \in [N]$

$$\|k_1 \cdot \gamma + k_2 \zeta \cdot \{\gamma h\}\|_{\mathbb{R}/\mathbb{Z}} \ll \frac{\delta^{-O(1)}}{N}.$$

(日) (同) (三) (三)

Bracket polynomial lemma

The proof is now completed by the following 'bracket polynomial lemma.'

Lemma

Let $\delta \in (0,1)$ and let $N \ge 1$ be an integer. Let $\theta \in \mathbb{R}$, $\gamma \in \mathbb{R}^2/\mathbb{Z}^2$ and $\zeta \in \mathbb{R}^2$ satisfy $|\zeta| \ll 1$. Suppose that for at least δN values of $h \in [N]$, we have

$$\|\theta + \zeta \cdot \{\gamma h\}\|_{\mathbb{R}/\mathbb{Z}} \leq \frac{1}{\delta N}.$$

Then either θ , $|\zeta| \ll \frac{\delta^{-O(1)}}{N}$ or else there is $k \in \mathbb{Z}^2$, $0 < ||k|| \ll \delta^{-O(1)}$ such that $||k \cdot \gamma||_{\mathbb{R}/\mathbb{Z}} \ll \frac{\delta^{-O(1)}}{N}$.

In either case we obtain a horizontal character k, $0 < ||k|| \ll \delta^{-O(1)}$ on G/Γ satisfying $||k \cdot \gamma||_{\mathbb{R}/\mathbb{Z}} \ll \frac{\delta^{-O(1)}}{N}$.

イロト イポト イヨト イヨト 二日

Bracket polynomial lemma

Proof.

• We may assume that

$$\|\theta + \zeta \cdot \{\gamma h\}\|_{\mathbb{R}/\mathbb{Z}} \leq \frac{\delta}{10} \|\zeta\|_{\infty}$$

for at least δN values $h \in [N]$, or otherwise the first conclusion holds.

• Define
$$\Omega := \left\{ t \in \mathbb{R}^2 / \mathbb{Z}^2 : \|\theta + \zeta \cdot \{t\}\|_{\mathbb{R}/\mathbb{Z}} \leqslant \frac{\delta}{10} \|\zeta\|_{\infty} \right\}$$

and

$$\tilde{\Omega} := \left\{ x \in \mathbb{R}^2 / \mathbb{Z}^2 : d(x, \Omega) < \frac{\delta}{10} \right\}.$$

By slicing, one finds $|\tilde{\Omega}| < \frac{\delta}{2}$.

Bracket polynomial lemma

Proof.

• Define
$$F : \mathbb{R}^2 / \mathbb{Z}^2 \to \mathbb{R}_{\geq 0}$$

$$F(x) := \max\left(1 - \frac{10d(x,\Omega)}{\delta}, 0\right).$$

- Since F is 1 on Ω , $\mathsf{E}_{n \in [N]}[F(\gamma n)] \ge \delta$.
- Since F is supported on $\tilde{\Omega}$, $\int_{\mathbb{R}^2/\mathbb{Z}^2} F(x) dx < \frac{\delta}{2}$.

Thus

$$\left|\mathsf{E}_{n\in[N]}[F(\gamma n)]-\int_{\mathbb{R}^2/\mathbb{Z}^2}F(x)dx\right|\geq\frac{\delta}{2}.$$

Since ||F||_{Lip} ≪ ¹/_δ we find that {γn}_{n∈[N]} is not cδ²-equidistributed for some c > 0, and the conclusion follows.