Math 639: Lecture 16
 Equidistribution on nilmanifolds

Bob Hough

April 6, 2017

Quantitative equidistribution on nilmanifolds

This lecture is based on the paper "The quantitative behavior of polynomial orbits on nilmanifolds" by B. Green and T. Tao, Annals of Math 175 (2012), 465-540.

Filtrations, nilmanifolds

Definition (Filtrations and nilmanifolds)

- Let G be a connected, simply connected nilpotent Lie group with identity 1_{G}. A filtration G_{*} on G is a sequence of closed connected subgroups

$$
G=G_{0}=G_{1} \supset G_{2} \supset \cdots \supset G_{d} \supset G_{d+1}=\left\{1_{G}\right\}
$$

which has the property that $\left[G_{i}, G_{j}\right] \subset G_{i+j}$ for all integers $i, j \geqslant 0$.

- Let $\Gamma \subset G$ be a uniform (discrete, cocompact) subgroup. The quotient $G / \Gamma=\{g \Gamma: g \in G\}$ is called a nilmanifold.

We write $m=\operatorname{dim} G$ and $m_{i}=\operatorname{dim} G_{i}$.

Filtrations, nilmanifolds

In a nilpotent Lie group, the lower central series, defined by

$$
G=G_{0}=G_{1}, G_{i+1}=\left[G, G_{i}\right]
$$

and terminating with $G_{s+1}=\left\{i d_{G}\right\}$, is an example of a filtration. The number s is called the step of G. In general, in a filtration with $G_{d+1}=\left\{1_{G}\right\}, d$ is called the degree.

Examples

Example

- In the case $s=1$, up to a linear transformation the nilmanifolds are given by tori, $G=\mathbb{R}^{m}, \Gamma=\mathbb{Z}^{m}$. The Ics filtration is $G=G_{0}=G_{1}$, $G_{2}=\left\{1_{G}\right\}$.

Examples

Example

- The Heisenberg nilmanifold has $s=2$,

$$
G=\left(\begin{array}{ccc}
1 & \mathbb{R} & \mathbb{R} \\
0 & 1 & \mathbb{R} \\
0 & 0 & 1
\end{array}\right), \quad \Gamma=\left(\begin{array}{ccc}
1 & \mathbb{Z} & \mathbb{Z} \\
0 & 1 & \mathbb{Z} \\
0 & 0 & 1
\end{array}\right)
$$

The Ics filtration has $G=G_{0}=G_{1}, G_{2}=\left(\begin{array}{ccc}1 & 0 & \mathbb{R} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), G_{3}=\left\{1_{G}\right\}$. A fundamental domain for G / Γ is

$$
\left\{\left(\begin{array}{ccc}
1 & x_{1} & x_{2} \\
0 & 1 & x_{3} \\
0 & 0 & 1
\end{array}\right): 0 \leqslant x_{1}, x_{2}, x_{3}<1\right\}
$$

Mal'cev bases

Definition (Mal'cev bases)

Let G / Γ be a m-dimensional nilmanifold and let G_{*} be a filtration. A basis $\mathscr{X}=\left\{X_{1}, \ldots, X_{m}\right\}$ for the Lie algebra \mathfrak{g} over \mathbb{R} is called a Mal'cev basis for G / Γ adapted to G_{*} if the following four conditions are satisfied.
(1) For each $j=0, \ldots, m-1$ the subspace $\mathfrak{h}_{j}:=\operatorname{Span}\left\{X_{j+1}, \ldots, X_{m}\right\}$ is a Lie algebra ideal in \mathfrak{g}, and $H_{j}=\exp \mathfrak{h}_{j}$ is a normal Lie subgroup of G.
(2) For every $0 \leqslant i \leqslant s$, we have $G_{i}=H_{m-m_{i}}$
(3) Each $g \in G$ has a unique expression as $\exp \left(t_{1} X_{1}\right) \cdots \exp \left(t_{m} X_{m}\right)$ for $t_{i} \in \mathbb{R}$
(4) Γ consists of those points with all $t_{i} \in \mathbb{Z}$.

Mal'cev bases

- Mal'cev proved that any nilmanifold G / Γ can be equipped with a Mal'cev basis adapted to the lower central series filtration.
- Given a Mal'cev basis, the coordinates t_{i} are referred to as Mal'cev coordinates and the Mal'cev coordinate map $\psi_{\mathscr{X}}: G \rightarrow \mathbb{R}^{m}$ is the map

$$
\psi_{\mathscr{X}}(g):=\left(t_{1}, \ldots, t_{m}\right)
$$

Mal'cev metric

Definition

Let G / Γ be a nilmanifold with Mal'cev basis \mathscr{X}. We define $d=d_{\mathscr{X}}: G \times G \rightarrow \mathbb{R}_{\geqslant 0}$ to be the largest metric such that for all $x, y \in G$,

$$
d(x, y) \leqslant\left\|\psi\left(x y^{-1}\right)\right\|_{\infty} .
$$

Explicitly,
$d(x, y)=$
$\inf \left\{\sum_{i=1}^{n} \min \left(\left\|\psi\left(x_{i-1} x_{i}^{-1}\right)\right\|_{\infty},\left\|\psi\left(x_{i} x_{i-1}^{-1}\right)\right\|_{\infty}\right): x_{0}, \ldots, x_{n} \in G ; x_{0}=x ; x_{n}=y\right\}$
and

$$
d(x \Gamma, y \Gamma)=\inf _{\gamma \in \Gamma} d(x, y \gamma)
$$

Rationality of a Mal'cev basis

Definition (Height)

The (naive) height of a real number x is defined to be $\max (|a|,|b|)$ if $x=\frac{a}{b}$ is rational in reduced form, and ∞ if x is irrational.

Definition (Rationality of a basis)

Let G / Γ be a nilmanifold, and let $Q>0$. We say that a Mal'cev basis \mathscr{X} for G / Γ is Q-rational if all of the structure constants $c_{i j k}$ in the relations

$$
\left[X_{i}, X_{j}\right]=\sum_{k} c_{i j k} X_{k}
$$

are rational with height at most Q.

Equidistribution

Definition (Equidistribution)

Let G / Γ be a nilmanifold endowed with a unique probability Haar measure $d x$.

- An infinite sequence $\{g(n) \Gamma\}_{n \in \mathbb{N}}$ is equidistributed if for all continuous functions $F: G / \Gamma \rightarrow \mathbb{C}$,

$$
\lim _{N \rightarrow \infty} E_{n \in[N]}[F(g(n) \Gamma)]=\int_{G / \Gamma} F(x) d x
$$

- An infinite sequence $\{g(n) \Gamma\}_{n \in \mathbb{Z}}$ in G / Γ is totally equidistributed if the sequences $\{g(a n+r) \Gamma\}_{n \in \mathbb{N}}$ are equidistributed for all $a \in \mathbb{Z} \backslash\{0\}$ and all $r \in \mathbb{Z}$.

Lipschitz functions

Definition (Lipschitz functions)

Let (G / Γ) be a nilmanifold with Mal'cev basis \mathscr{X}. The Lipschitz norm of a function $F: G / \Gamma \rightarrow \mathbb{C}$ is

$$
\|F\|_{\text {Lip }}:=\|F\|_{\infty}+\sup _{x \neq y \in G / \Gamma} \frac{|F(x)-F(y)|}{d(x, y)} .
$$

A function F is said to be Lipschitz if it has finite Lipschitz norm.

Quantitative equidistribution

Definition (Quantitative equidistribution)

Let $(G / \Gamma, d x)$ as above with a Mal'cev basis \mathscr{X}, and let be given an error tolerance $\delta>0$ and a length N.

- A finite sequence $\{g(n) \Gamma\}_{n \in[N]}$ is said to be δ-equidistributed if

$$
\left|\mathrm{E}_{n \in[N]}[F(g(n) \Gamma)]-\int_{G / \Gamma} F(x) d x\right| \leqslant \delta\|F\|_{\text {Lip }}
$$

for all Lipschitz functions $F: G / \Gamma \rightarrow \mathbb{C}$.

- The sequence is totally δ-equidistributed if

$$
\left|\mathrm{E}_{n \in P}[F(g(n) \Gamma)]-\int_{G / \Gamma} F(x) d x\right| \leqslant \delta\|F\|_{\text {Lip }}
$$

holds for all arithmetic progressions $P \subset[N]$ of length at least δN.

Linear sequences

Definition (Linear sequences)

A linear sequence in a group G is any sequence $g: \mathbb{Z} \rightarrow G$ of the form $g(n):=a^{n} x$ for some $a, x \in G$. A linear sequence in a nilmanifold G / Γ is a sequence of the form $\{g(n) \Gamma\}_{n \in \mathbb{Z}}$, where $g: \mathbb{Z} \rightarrow G$ is a linear sequence in G .

In the case $G=\mathbb{R}^{m}, \Gamma=\mathbb{Z}^{m}$, a linear sequence takes the form $a n+x \bmod \mathbb{Z}^{m}$.

Qualitative Kronecker

Theorem (Qualitative Kronecker theorem)
Let $m \geqslant 1$, and let $\left(g(n) \bmod \mathbb{Z}^{m}\right)_{n \in \mathbb{N}}$ be a linear sequence in the torus $\mathbb{R}^{m} / \mathbb{Z}^{m}$. Then exactly one of the following statements is true:
(1) $\left(g(n) \bmod \mathbb{Z}^{m}\right)$ is equidistributed in $\mathbb{R}^{m} / \mathbb{Z}^{m}$
(2) There exists a non-trivial character $\eta: \mathbb{R}^{m} \rightarrow \mathbb{R} / \mathbb{Z}$ which annihilates \mathbb{Z}^{m} but does not vanish entirely, such that $\eta \circ g$ is constant.

Horizontal torus

Definition (Horizontal torus)

- Given a nilmanifold G / Γ, the horizontal torus is defined to be $(G / \Gamma)_{\mathrm{ab}}:=G /[G, G] \Gamma$. This torus is isomorphic to $\mathbb{R}^{m_{\mathrm{ab}}} / \mathbb{Z}^{m_{\mathrm{ab}}}$ where $m_{\mathrm{ab}}=\operatorname{dim}(G)-\operatorname{dim}([G, G])$.
- A horizontal character is a continuous homomorphism $\eta: G \rightarrow \mathbb{R} / \mathbb{Z}$ which annihilates Γ. Note that η in fact annihilates $[G, G] \Gamma$.
- A horizontal character is non-trivial if it does not vanish identically.
- Given a Mal'cev basis \mathscr{X} for G / Γ, a horizontal character η may be written $\eta(g)=k \cdot \psi(g)$ for some unique $k \in \mathbb{Z}^{m}$. The norm of η is $\|\eta\|:=\|k\|$.

The Heisenberg nilmanifold

Example

Let G / Γ be the Heisenberg nilmanifold. Then $[G, G]=\left(\begin{array}{lll}1 & 0 & \mathbb{R} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. Then $(G / \Gamma)_{\text {ab }}$ may be identified with $\mathbb{R}^{2} / \mathbb{Z}^{2}$, with projection map π given by

$$
\pi\left[\left(\begin{array}{ccc}
1 & x_{1} & x_{2} \\
0 & 1 & x_{3} \\
0 & 0 & 1
\end{array}\right)\right]:=\left(x_{1}, x_{3}\right)
$$

Leon Green's theorem

Leon Green proved the following generalization to Kronecker's theorem in the case of a linear orbit in a nilmanifold.

Theorem (Leon Green's theorem)

Let $\{g(n) \Gamma\}_{n \in \mathbb{Z}}$ be a linear sequence in a nilmanifold G / Γ. Then exactly one of the following statements is true:
(1) $\{g(n) \Gamma\}_{n \in \mathbb{N}}$ is equidistributed in G / Γ
(2) There is a nontrivial horizontal character $\eta: G / \Gamma \rightarrow \mathbb{R} / \mathbb{Z}$ such that $\eta \circ g$ is a constant.

In other words, a linear sequence is equidistributed in a nilmanifold if and only if the sequence projected to the abelianization is equidistributed there.

Leon Green's theorem

Example

Write $\{x\}=x-\lfloor x\rfloor$. The linear sequence

$$
g_{n}=\left(\begin{array}{ccc}
1 & \alpha & 0 \\
0 & 1 & \beta \\
0 & 0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ccc}
1 & n \alpha & \binom{n}{2} \alpha \beta \\
0 & 1 & n \beta \\
0 & 0 & 1
\end{array}\right)
$$

has reduction into a fundamental domain for the Heisenberg nilmanifold G / Γ given by

$$
g_{n} \Gamma=\left(\begin{array}{ccc}
1 & \{n \alpha\} & \left\{\binom{n}{2} \alpha \beta-n \alpha\lfloor n \beta\rfloor\right\} \\
0 & 1 & \{n \beta\} \\
0 & 0 & 1
\end{array}\right) \Gamma .
$$

By Leon Green's theorem, this sequence is equidistributed in G / Γ if and only if $(1, \alpha, \beta)$ are linearly independent over \mathbb{Q}.

Polynomial sequences

Definition (Polynomial sequences)

- Let G be a nilpotent group with filtration G_{*}. Let $g: \mathbb{Z} \rightarrow G$ be a sequence. If $h \in \mathbb{Z}$, write $D_{h} g(n):=g(n+h) g(n)^{-1}$. (This differs slightly from last lecture.)
- We say that g is a polynomial sequence with coefficients in G_{*}, and write $g \in \operatorname{poly}\left(\mathbb{Z}, G_{*}\right)$, if $D_{h_{i}} \cdots D_{h_{1}} g$ takes values in G_{i} for all $i \in \mathbb{Z}_{>0}$ and all $h_{1}, \ldots, h_{i} \in \mathbb{Z}$.

Leibman's theorem

Leibman proved the following generalization of Leon Green's theorem.
Theorem (Leibman's theorem)
Suppose that G / Γ is a nilmanifold and that $g: \mathbb{Z} \rightarrow G$ is a polynomial sequence. Then exactly one of the following statements is true:
(1) $\{g(n) \Gamma\}_{n \in \mathbb{N}}$ is equidistributed in G / Γ.
(2) There exists a nontrivial horizontal character $\eta: G \rightarrow \mathbb{R} / \mathbb{Z}$ such that $\eta \circ g$ is constant.

Quantitative Leibman's theorem

Green and Tao prove the following quantitative form of Leibman's theorem.

Theorem (Quantitative Leibman theorem)

Let G / Γ be an m-dimensional nilmanifold with filtration G_{*} of degree d and a $\frac{1}{\delta}$-rational Mal'cev basis \mathscr{X}. Suppose that $g \in \operatorname{poly}\left(\mathbb{Z}, G_{*}\right)$. Then at least one of the following statements is true.
(1) $\{g(n) \Gamma\}_{n \in[N]}$ is δ-equidistributed in G / Γ
(2) There is a non-trivial horizontal character $\eta: G / \Gamma \rightarrow \mathbb{R} / \mathbb{Z}$ with $\|\eta\| \ll \delta^{-O_{m, d}(1)}$ such that

$$
\|\eta \circ g(n)-\eta \circ g(n-1)\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\delta^{-O_{m, d}(1)}}{N}
$$

for all $n \in\{1, \ldots, N\}$.
For $x \in \mathbb{R},\|x\|_{\mathbb{R} / \mathbb{Z}}$ is the distance to the nearest integer.

Example

Example

Let $G=\mathbb{R}, \Gamma=\mathbb{Z}$ and $g(n)=\left(\frac{1}{2}+\sigma\right) n$ where $0<\sigma \leqslant \frac{\delta}{100}$ is a parameter.

- If N is much larger than $\frac{1}{\sigma}$ then $\{g(n) \bmod \mathbb{Z}\}_{n \in[N]}$ is δ-equidistributed.
- If N is much smaller than $\frac{1}{\sigma}$ then $\{g(n) \bmod \mathbb{Z}\}_{n \in[N]}$ fails to be equidistributed as it is concentrated near 0 and $\frac{1}{2}$. The character $\eta(x)=2 x \bmod 1$ satisfies

$$
\|\eta \circ g(n)-\eta \circ g(n-1)\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{1}{N}
$$

Rational sequences

Definition

- Let G / Γ be a nilmanifold, and let $Q>0$ be a parameter. We say that $\gamma \in G$ is Q-rational if $\gamma^{r} \in \Gamma$ for some integer $r, 0<r \leqslant Q$.
- A Q-rational point is any point in G / Γ of the form $\gamma \Gamma$ for some Q-rational group element γ.
- A sequence $\{\gamma(n)\}_{n \in \mathbb{Z}}$ is Q-rational if every element $\gamma(n) \Gamma$ in the sequence is a Q-rational point.

Rational subgroups

Definition
 Let $Q>0$.

- Suppose a nilmanifold G / Γ is given with Mal'cev basis $\mathscr{X}=\left\{X_{1}, \ldots, X_{m}\right\}$.
- Suppose that $G^{\prime} \subset G$ is a closed connected subgroup.

We say that G^{\prime} is Q-rational relative to \mathscr{X} if the Lie algebra \mathfrak{g}^{\prime} has a basis $\mathscr{X}^{\prime}=\left\{X_{1}^{\prime}, \ldots, X_{m^{\prime}}^{\prime}\right\}$ consisting of linear combinations $\sum_{i=1}^{m} a_{i} X_{i}$ where the a_{i} are rational numbers of height at most Q.

Smooth sequences

Definition

Let G / Γ be a nilmanifold with a Mal'cev basis \mathscr{X}, and let $M, N \geqslant 1$. We say that the sequence $\{\epsilon(n)\}_{n \in \mathbb{Z}}$ in G is (M, N)-smooth if we have

$$
d\left(\epsilon(n), 1_{G}\right) \leqslant M
$$

and

$$
d(\epsilon(n), \epsilon(n-1)) \leqslant \frac{M}{N}
$$

for all $n \in[N]$.

Factorization theorem

Green and Tao prove the following factorization theorem as part of their program giving an asymptotic for the number of k-term arithmetic progressions in the prime numbers less than X.

Factorization theorem

Theorem (Factorization theorem)

- Let $m, d \geqslant 0$, and let $M_{0}, N \geqslant 1$ and $A>0$ be real numbers.
- Suppose that G / Γ is an m-dimensional nilmanifold with a filtration G_{*} of degree d
- Suppose that \mathscr{X} is an M_{0}-rational Mal'cev basis adapted to G_{*} and that $g \in \operatorname{poly}\left(\mathbb{Z}, G_{*}\right)$.

Then there is an integer M with $M_{0} \leqslant M \ll M_{0}^{O_{A, m, d}(1)}$, a rational subgroup $G^{\prime} \subset G$, a Mal'cev basis \mathscr{X}^{\prime} for $G^{\prime} /\left(G^{\prime} \cap \Gamma\right)$, and a decomposition $g=\epsilon g^{\prime} \gamma$ into sequences in poly $\left(\mathbb{Z}, G_{*}\right)$ satisfying
(1) $\epsilon: \mathbb{Z} \rightarrow G$ is (M, N)-smooth
(2) $g^{\prime}: \mathbb{Z} \rightarrow G^{\prime}$ satisfies $\left\{g^{\prime}(n) \Gamma^{\prime}\right\}_{n \in[N]}$ is totally $1 / M^{A}$-equidistributed
(3) $\gamma: \mathbb{Z} \rightarrow G$ is M-rational, and $\{\gamma(n) \Gamma\}_{n \in \mathbb{Z}}$ is periodic with period at most M.

Quantitative Kronecker Theorem

As a warm-up we prove the following quantitative Kronecker Theorem.

Theorem (Quantitative Kronecker Theorem)

Let $m \geqslant 1$, let $0<\delta<\frac{1}{2}$, and let $\alpha \in \mathbb{R}^{m}$. If the sequence $\left\{\alpha n \bmod \mathbb{Z}^{m}\right\}_{n \in[N]}$ is not δ-equidistributed in the additive torus $\mathbb{R}^{m} / \mathbb{Z}^{m}$, then there exists $k \in \mathbb{Z}^{m}$ with $0<|k| \ll \delta^{-O_{m}(1)}$ such that $\|k \cdot \alpha\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\delta^{-O_{m}(1)}}{N}$.

Quantitative Kronecker Theorem

Proof.

- Suppose that $\left\{\alpha n \bmod \mathbb{Z}^{m}\right\}_{n \in[N]}$ is not δ-equidistributed. Thus there exists a Lipschitz function $F: \mathbb{R}^{m} / \mathbb{Z}^{m} \rightarrow \mathbb{R},\|F\|_{\text {Lip }}=1$

$$
\left|\mathrm{E}_{n \in[N]}[F(\alpha n)]-\int_{\mathbb{R}^{m} / \mathbb{Z}^{m}} F d \theta\right|>\delta
$$

After replacing δ with $\delta / 2$ and translating F by a constant and rescaling, we can assume $\int F=0$. Also, we may assume that F is smooth.

Quantitative Kronecker Theorem

Proof.

- Fejér kernel $K: \mathbb{R}^{m} / \mathbb{Z}^{m} \rightarrow \mathbb{R}^{+}, K(\theta):=\frac{1_{Q}}{\operatorname{meas}(Q)} * \frac{1_{Q}}{\operatorname{meas}(Q)}(\theta)$, where $Q:=\left[-\frac{\delta}{16 m}, \frac{\delta}{16 m}\right]^{m} \subset \mathbb{R}^{m} / \mathbb{Z}^{m}$ has F.T., for $k \in \mathbb{Z}^{m}$,

$$
\hat{K}(k)=\prod_{i=1}^{m}\left(\frac{\sin \frac{\pi k_{i} \delta}{8 m}}{\frac{\pi k_{i} \delta}{8 m}}\right)^{2},
$$

where the ratio is interpretted as 1 where $k_{i}=0$.

- Bounding the numerator by 1 , for $M \geqslant 1$,

$$
\sum_{k \in \mathbb{Z}^{m},\|k\|_{2}>M}|\hat{K}(k)|<_{m} \delta^{-2 m} M^{-1} .
$$

Quantitative Kronecker Theorem

Proof.

- Bound $|\hat{F}(k)| \leqslant\|F\|_{\infty} \leqslant\|F\|_{\text {Lip }} \leqslant 1$.
- Set $F_{1}:=F * K$. Since $\|F\|_{\text {Lip }}=1$ and K is supported in Q,

$$
\left\|F-F_{1}\right\|_{\infty} \leqslant \frac{\delta}{8} .
$$

- Choose $M:=C_{m} \delta^{-2 m-1}$ for m sufficiently large, and set

$$
F_{2}(\theta):=\sum_{k \in \mathbb{Z}^{m}: 0<\|k\|_{2} \leqslant M} \hat{F}_{1}(k) e(k \cdot \theta) .
$$

Thus $\left\|F_{1}-F_{2}\right\|_{\infty} \leqslant \frac{\delta}{8}$.

Quantitative Kronecker Theorem

Proof.

- We've arranged that

$$
\left|\mathrm{E}_{n \in[N]}\left[F_{2}(n \alpha)\right]\right| \geqslant \frac{\delta}{4}
$$

Thus there exists some $k, 0<|k| \leqslant M$ such that

$$
\left|\mathrm{E}_{n \in[N]}[e(n k \cdot \alpha)]\right| \gg_{m} \delta M^{-m} \gg \delta^{O_{m}(1)} .
$$

- The geometric series bound $\left|\mathrm{E}_{n \in[N]}[e(n t)]\right| \ll \min \left(1, \frac{1}{N\|t\|_{\mathbb{R} / \mathbb{Z}}}\right)$ implies

$$
\|k \cdot \alpha\|_{\mathbb{R} / \mathbb{Z}}<_{m} \frac{\delta^{-O_{m}(1)}}{N}
$$

Strongly recurrent sequences

The following one-dimensional version of Kronecker's theorem gives extra information in the case that a small interval is hit often.

Lemma

Let $\alpha \in \mathbb{R}, 0<\delta<\frac{1}{2}, 0<\epsilon \leqslant \frac{\delta}{2}$, and let $I \subset \mathbb{R} / \mathbb{Z}$ be an interval of length ϵ. If $\alpha n \in I$ for at least δN values of $n \in[N]$ then there is some $k \in \mathbb{Z}$ with $0<|k| \ll \delta^{-O(1)}$ such that

$$
\|k \alpha\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\epsilon \delta^{-O(1)}}{N}
$$

Strongly recurrent sequences

Proof.

- By choosing a function F which is a piecewise linear approximation to I one can check that $\{\alpha n \bmod 1\}_{n \in[N]}$ is not $\frac{\delta^{2}}{10}$ equidistributed.
- Choose $0 \neq k \in \mathbb{Z}$ such that $|k| \ll \delta^{-O(1)}$ and $\|k \alpha\|_{\mathbb{R} / \mathbb{Z}}<\frac{\delta^{-O(1)}}{N}$.
- Let $\beta=\|k \alpha\|_{\mathbb{R} / \mathbb{Z}}$, and assume $\beta \neq 0$, since otherwise we're done.

Strongly recurrent sequences

Proof.

- As n^{\prime} ranges over an interval of integers J of length at most $\frac{1}{\beta}$, the numbers $\alpha\left(n_{0}+q n^{\prime}\right) \mathbb{Z}$ are increasing through a fundamental domain for \mathbb{R} / \mathbb{Z}, and thus the number that land in I is at most $1+\frac{\epsilon}{\beta}$.
- Divide $[N]$ into at most $2 k+\beta N$ progressions of form $\left\{n_{0}+k n^{\prime}: n^{\prime} \in J\right\}$ to obtain

$$
\begin{aligned}
\delta N \leqslant \#\{n \in[N]: \alpha n \bmod 1 \in I\} & \leqslant\left(1+\frac{\epsilon}{\beta}\right)(2 k+\beta N) \\
& <k+\frac{\epsilon k}{\beta}+\beta N+\epsilon N
\end{aligned}
$$

- We can assume that $N \geqslant \delta^{-O(1)}$ and that $\epsilon<\delta^{O(1)}$. The only term that is relevant is $\delta N \ll \frac{k \epsilon}{\beta}$, which gives the claim.

Vertical torus

Definition

Let G / Γ be a nilmanifold and G_{*} a filtration of degree d. Then G_{d} is in the center of G.

- The vertical torus is $G_{d} /\left(\Gamma \cap G_{d}\right)$.
- The vertical dimension is $m_{d}=\operatorname{dim} G_{d}$
- A vertical character is a continuous homomorphism
$\xi: G_{d} /\left(\Gamma \cap G_{d}\right) \rightarrow \mathbb{R} / \mathbb{Z}$. Such a character has the form $\xi(x)=k \cdot x$, $k \in \mathbb{Z}^{d}$, by identifying G_{d} with the last m_{d} Mal'cev coordinates.
- Let $F: G / \Gamma \rightarrow \mathbb{C}$ be a Lipschitz function and let ξ be a vertical character. F has vertical oscillation ξ if

$$
F\left(g_{d} \cdot x\right)=e\left(\xi\left(g_{d}\right)\right) F(x), \quad g_{d} \in G_{d}, x \in G / \Gamma .
$$

Equidistribution in subspaces

Definition

Let $g: \mathbb{Z} \rightarrow G$ be a polynomial sequence. We say that $\{g(n) \Gamma\}_{n \in[N]}$ is δ-equidistributed along a vertical character ξ if

$$
\left|\mathrm{E}_{n \in[N]}[F(g(n) \Gamma)]-\int_{G / \Gamma} F(x) d x\right| \leqslant \delta\|F\|_{\text {Lip }}
$$

for all Lipschitz functions $F: G / \Gamma \rightarrow \mathbb{C}$ with vertical oscillation ξ.

Vertical oscillation reduction

Lemma

- Let G / Γ be a nilmanifold with filtration G_{*} of degree d.
- Let m_{d} be the vertical dimension, and let $0<\delta \leqslant \frac{1}{2}$.
- Suppose that $g: \mathbb{Z} \rightarrow G$ is a polynomial sequence and that $\{g(n) \Gamma\}_{n \in[N]}$ is not δ-equidistributed.
Then there is a vertical character ξ with $|\xi| \ll \delta^{-O_{m_{d}}(1)}$ such that $\{g(n) \Gamma\}_{n \in[N]}$ is not $\delta^{O_{m_{d}}(1)}$-equidistributed along the vertical frequency ξ.

Vertical oscillation reduction

Proof.

This follows as in the quantitative Kronecker theorem.

- Replacing δ with $\frac{\delta}{2}$, assume $\int_{G / \Gamma} F=0,\|F\|_{\text {Lip }}=1$ and F is smooth.
- Let K be the m_{d} dimension Fejér kernel. Convolve with K in $G_{d} /\left(\Gamma \cap G_{d}\right)$ fibers to obtain

$$
F_{1}(y):=\int_{\mathbb{R}^{m_{d}} / \mathbb{Z}^{m_{d}}} F(\theta y) K(\theta) d \theta
$$

- Write $F_{1}(y)=\sum_{k \in \mathbb{Z}^{d}} F^{\wedge}(y ; k) \hat{K}(k)$ and $\left(Q=C_{m_{d}} \delta^{-2 m_{d}-1}\right)$

$$
F_{2}(y):=\sum_{k \in \mathbb{Z}_{d}^{m}:\|k\| \leqslant Q} F^{\wedge}(y ; k) \hat{K}(k)
$$

Since $\left\|F-F_{2}\right\|_{\infty} \leqslant \frac{\delta}{4}$, the argument goes through as before.

van der Corput's inequality

Theorem (van der Corput's inequality)

Let N, H be positive integers and suppose that $\left\{a_{n}\right\}_{n \in[N]}$ is a sequence of complex numbers. Extend $\left\{a_{n}\right\}$ to all of \mathbb{Z} by defining $a_{n}:=0$ for $n \notin[N]$.

$$
\left|\mathrm{E}_{n \in[N]}\left[a_{n}\right]\right|^{2} \leqslant \frac{N+H}{H N} \sum_{|h| \leqslant H}\left(1-\frac{|h|}{H}\right) \mathrm{E}_{n \in[N]}\left[a_{n} \overline{a_{n+h}}\right] .
$$

In the classical theory of oscillating sums $\sum_{n} e(P(n))$, van der Corput's inequality is used to reduce the degree of the polynomial P.

van der Corput's inequality

Proof of van der Corput's inequality.
Write $\sum_{n} a_{n}=\frac{1}{H} \sum_{-H<n \leqslant N} \sum_{h=0}^{H-1} a_{n+h}$. By Cauchy-Schwarz,

$$
\begin{aligned}
\left|\sum_{n} a_{n}\right|^{2} & =\left.\frac{1}{H^{2}} \sum_{-H<n \leqslant N} \sum_{h=0}^{H-1} a_{n+h}\right|^{2} \\
& \leqslant \frac{N+H}{H^{2}} \sum_{-H<n \leqslant N}\left|\sum_{h=0}^{H-1} a_{n+h}\right|^{2} \\
& =\frac{N+H}{H^{2}} \sum_{-H<n \leqslant N} \sum_{h, h^{\prime}=0}^{H-1} a_{n+h} \overline{a_{n+h^{\prime}}}
\end{aligned}
$$

This rearranges to the claimed inequality.

van der Corput's inequality

Theorem

Let N be a positive integer, and suppose that $\left\{a_{n}\right\}_{n \in[N]}$ is a sequence of complex numbers with $\left|a_{n}\right| \leqslant 1$. Extend $\left\{a_{n}\right\}$ to all of \mathbb{Z} by defining $a_{n}:=0$ when $n \notin[N]$. Suppose that $0<\delta<1$ and that

$$
\left|\mathrm{E}_{n \in[N]}\left[a_{n}\right]\right| \geqslant \delta .
$$

Then for at least $\frac{\delta^{2} N}{8}$ values of $h \in[N]$, we have

$$
\left|\mathrm{E}_{n \in[N]}\left[a_{n+h} \overline{a_{n}}\right]\right| \geqslant \frac{\delta^{2}}{8} .
$$

van der Corput's inequality

Proof.

We can assume that $N \leqslant \frac{4}{\delta^{2}}$. The proof is by contradiction. Choose $H=N$ in the previous theorem to obtain

$$
\begin{aligned}
\delta^{2} \leqslant\left|\mathrm{E}_{n \in[N]} a_{n}\right|^{2} & \leqslant \frac{2}{N} \sum_{|h| \leqslant N}\left|\mathrm{E}_{n \in[N]}\left[a_{n} \overline{a_{n+h}}\right]\right| \\
& \leqslant \frac{2}{N}\left(1+2\left(\frac{\delta^{2} N}{8}+\frac{\delta^{2} N}{8}\right)\right) .
\end{aligned}
$$

Rearranging produces the inequality.

The Heisenberg nilmanifold

The Heisenberg group has Lie algebra $\mathfrak{g}=\left(\begin{array}{ccc}0 & \mathbb{R} & \mathbb{R} \\ 0 & 0 & \mathbb{R} \\ 0 & 0 & 0\end{array}\right)$. The exponential map is given by

$$
\begin{aligned}
\exp \left(\begin{array}{lll}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right) & =\left(\begin{array}{ccc}
1 & x & y+\frac{x z}{2} \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right) \\
\log \left(\begin{array}{lll}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right) & =\left(\begin{array}{ccc}
0 & x & y-\frac{x z}{2} \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

The Heisenberg nilmanifold

Let

$$
X_{1}:=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), X_{2}:=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), X_{3}:=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$\mathscr{X}=\left\{X_{1}, X_{2}, X_{3}\right\}$ is a Mal'cev basis adapted to the Ics filtration G_{*},

$$
\exp \left(t_{1} X_{1}\right) \exp \left(t_{2} X_{2}\right) \exp \left(t_{3} X_{3}\right)=\left(\begin{array}{ccc}
1 & t_{1} & t_{1} t_{2}+t_{3} \\
0 & 1 & t_{2} \\
0 & 0 & 1
\end{array}\right)
$$

The Mal'cev coordinate map is

$$
\psi\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)=(x, z, y-x z)
$$

Projection onto the horizontal torus is given by $\pi\left(\begin{array}{lll}1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1\end{array}\right)=(x, z)$.

Heisenberg case

We prove the main theorem in the special case of a linear sequence in the Heisenberg nilmanifold. This already illustrates many of the essential ingredients of the more general proof.

Theorem

- Let G / Γ be the Heisenberg nilmanifold with Mal'cev basis given, and let $g: \mathbb{Z} \rightarrow G$ be a linear sequence $g(n)=a^{n}$.
- Let $\delta>0$ be a parameter and let $N \geqslant 1$ be an integer.

Then either $\{g(n) \Gamma\}_{n \in[N]}$ is δ-equidistributed, or else there is a horizontal character η with $0<|\eta| \ll \delta^{-O(1)}$ such that $\|\eta(a)\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\delta^{-O(1)}}{N}$.

Heisenberg case

Proof.

- Assume that the sequence is not δ-equidistributed. Applying the vertical frequency decomposition, there exists $F: G / \Gamma \rightarrow \mathbb{C}$, $\|F\|_{\text {Lip }}=1$ of vertical frequency ξ with $\|\xi\| \ll \delta^{-O(1)}$, such that

$$
\left|\mathrm{E}_{n \in[N]}\left[F\left(a^{n} \Gamma\right)\right]-\int_{G / \Gamma} F(x) d x\right| \gg \delta^{O(1)}
$$

- If $\xi \equiv 0$ then F is G_{2}-invariant, so there exists $\tilde{F}: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{C}$ such that $F(x)=\tilde{F}(\pi(x))$. One has $\|\tilde{F}\|_{\text {Lip }} \leqslant 1$ and

$$
\left|\mathrm{E}_{n \in[N]} \tilde{F}(n \pi(a))-\int_{\mathbb{R}^{2} / \mathbb{Z}^{2}} \tilde{F}(x) d x\right| \gg \delta^{O(1)}\|\tilde{F}\|_{\text {Lip }}
$$

The claim now follows from Kronecker's theorem.

Heisenberg case

Proof.

- If $\xi \not \equiv 0$ then F is mean zero, by integrating in the G_{2} direction. Hence

$$
\left|\mathrm{E}_{n \in[N]}\left[F\left(a^{n} \Gamma\right)\right]\right| \geqslant \delta^{O(1)} .
$$

- By van der Corput there are $\gg \delta^{O(1)} N$ values of $h \in[N]$ such that

$$
\left|\mathrm{E}_{n \in[N]}\left[F\left(a^{n+h} \Gamma\right) \overline{F\left(a^{n} \Gamma\right)}\right]\right| \gg \delta^{O(1)} .
$$

- Given $g \in G$, write $g=\{g\}[g]$, where $\psi(\{g\}) \in[0,1)^{3}$ and $[g] \in \Gamma$. Hence the expectation is

$$
\left|\mathrm{E}_{n \in[N]}\left[F\left(a^{n}\left\{a^{h}\right\} \Gamma\right) \overline{F\left(a^{n} \Gamma\right)}\right]\right| \gg \delta^{O(1)} .
$$

Heisenberg case

Proof.

- Let $\tilde{F}_{h}: G^{2} / \Gamma^{2} \rightarrow \mathbb{C}$ defined by

$$
\tilde{F}_{h}(x, y):=F\left(\left\{a^{h}\right\} x\right) \overline{F(y)}
$$

Thus the expectation may be written

$$
\left|\mathrm{E}_{n \in[N]}\left[\tilde{F}_{h}\left(\tilde{a}_{h}^{n}\right) \Gamma^{2}\right]\right| \gg \delta^{O(1)}
$$

where $\tilde{a}_{h}:=\left(\left\{a^{h}\right\}^{-1} a\left\{a^{h}\right\}, a\right)$.

- Notice $a^{-1}\left\{a^{h}\right\}^{-1} a\left\{a^{h}\right\}=\left[a,\left\{a^{h}\right\}\right] \in G_{2}$, so \tilde{a}_{h} lies in the subgroup $G^{\square}=G \times{ }_{G_{2}} G:=\left\{\left(g, g^{\prime}\right): g^{-1} g^{\prime} \in G_{2}\right\}$ of G^{2}.

Heisenberg case

Proof.

- We can check that the commutator subgroup of G^{\square} is $G_{2}^{\Delta}=\left\{\left(g_{2}, g_{2}\right): g_{2} \in G_{2}\right\}$ as follows. Let $\left(g, g^{\prime}\right),\left(h, h^{\prime}\right) \in G^{\square}$. Then $\left[\left(g, g^{\prime}\right),\left(h, h^{\prime}\right)\right]=\left([g, h],\left[g^{\prime}, h^{\prime}\right]\right) \in G_{2}^{2}$.
- We have, since G_{2} is in the center,

$$
\begin{aligned}
{[g, h]\left[g^{\prime}, h^{\prime}\right]^{-1} } & =g^{-1} h^{-1} g h\left(h^{\prime}\right)^{-1}\left(g^{\prime}\right)^{-1} h^{\prime} g^{\prime} \\
& =h\left(h^{\prime}\right)^{-1} g\left(g^{\prime}\right)^{-1} h^{-1} h^{\prime} g^{-1} g^{\prime}=1
\end{aligned}
$$

Heisenberg case

Proof.

- A Mal'cev basis for $G^{\square} / \Gamma^{\square}, \mathscr{X}^{\square}=\left\{X_{1}^{\square}, X_{2}^{\square}, X_{3}^{\square}, X_{4}^{\square}\right\}$

$$
X_{1}^{\square}=\left(\begin{array}{ccc}
0 & 1 & \{0,0\} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), X_{2}^{\square}=\left(\begin{array}{ccc}
0 & 0 & \{0,0\} \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), X_{3}^{\square}=\left(\begin{array}{ccc}
0 & 0 & \{1,0\} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), x_{4}^{\square}=\left(\begin{array}{ccc}
0 & 0 & \{1,1\} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

where

$$
\left(\begin{array}{ccc}
0 & x & \left\{y, y^{\prime}\right\} \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right):=\left(\left(\begin{array}{ccc}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & x & y^{\prime} \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right)\right) .
$$

- Projection onto the horizontal torus $\mathbb{R}^{3} / \mathbb{Z}^{3}$ is given by projection onto the first three coordinates.

Heisenberg case

Proof.

- Write F_{h}^{\square} and a_{h}^{\square} for the restrictions of \tilde{F}_{h} and \tilde{a}_{h} to G^{\square} and write $\Gamma^{\square}:=\Gamma \times_{\Gamma \cap G_{2}} \Gamma$. Integrating in the X_{3}^{\square} direction shows that F_{h}^{\square} is mean zero.
- Check that

$$
\begin{aligned}
F_{h}^{\square}\left(\left(g_{2}, g_{2}\right) \cdot\left(g, g^{\prime}\right)\right) & =F\left(\left\{a^{h}\right\} g_{2} g\right) \overline{F\left(g_{2} g^{\prime}\right)} \\
& =\xi\left(g_{2}\right) \overline{\xi\left(g_{2}\right)} F\left(\left\{a^{h}\right\} g\right) \overline{F\left(g^{\prime}\right)}=F_{h}^{\square}\left(\left(g, g^{\prime}\right)\right)
\end{aligned}
$$

so F_{h}^{\square} is $\left[G^{\square}, G^{\square}\right]$-invariant, and so factors through the projection π^{\square} to the abelianization.

- Write $F_{h}^{\prime}: \mathbb{R}^{3} / \mathbb{Z}^{3} \rightarrow \mathbb{C}$ defined by $F_{h}^{\prime}\left(\pi^{\square}(x)\right)=F_{h}^{\square}\left(x \Gamma^{\square}\right)$. We have F_{h}^{\prime} is mean zero and has Lipschitz norm bounded by 1.

Heisenberg case

Proof.

- Since

$$
\left|\mathrm{E}_{n \in[N]}\left[F_{h}^{\prime}\left(n \pi^{\square}\left(a_{h}^{\square}\right)\right)\right]\right| \gg \delta^{O(1)}
$$

we obtain that for >> $\delta^{O(1)} N$ values of h there exists $k_{h}^{\square} \in \mathbb{Z}^{3}$, $0<\left|k_{h}\right| \ll \delta^{-O(1)}$ such that

$$
\left\|k_{h}^{\mathrm{D}} \cdot \pi^{\square}\left(a_{h}^{\mathrm{a}}\right)\right\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\delta^{-O(1)}}{N} .
$$

- Picking the most common values of $k_{h}^{\text {ㅁ }}$, the same conclusion holds for a single k^{\square}. Let $\eta: G^{\square} / \Gamma^{\square} \rightarrow \mathbb{R} / \mathbb{Z}$ be defined as $\eta(x):=k^{\square} \cdot \pi^{\square}(x)$.

Heisenberg case

Proof.

- Notice that by decomposing along the first two coordinates in the Mal'cev basis, we can write $\eta\left(g^{\prime}, g\right)=\eta_{1}(g)+\eta_{2}\left(g^{\prime} g^{-1}\right)$ where η_{1} is a horizontal character of G and $\eta_{2}: G_{2} /\left(\Gamma \cap G_{2}\right) \rightarrow \mathbb{R} / \mathbb{Z}$.
- Calculate $\eta\left(\tilde{a}_{h}\right)=\eta_{1}(a)+\eta_{2}\left(\left[a,\left\{a^{h}\right\}\right]\right)$.
- In coordinates, if $\psi(x)=\left(t_{1}, t_{2}, t_{3}\right)$ and $\psi(y)=\left(u_{1}, u_{2}, u_{3}\right)$ then $\psi([x, y])=\left(0,0, t_{1} u_{2}-t_{2} u_{1}\right)$. If $\psi(a)=\left(\gamma_{1}, \gamma_{2}, *\right)$ then $\psi\left(\left\{a^{h}\right\}\right)=\left(\left\{\gamma_{1} h\right\},\left\{\gamma_{2} h\right\}, *\right)$.
- Set $\gamma:=\left(\gamma_{1}, \gamma_{2}\right)=\pi(a), \zeta:=\left(-\gamma_{2}, \gamma_{1}\right)$ and observe $\eta\left(\tilde{a}_{h}\right)=k_{1} \cdot \gamma+k_{2} \zeta \cdot\{\gamma h\}$ so that for > $\delta^{O_{m}(1)} N$ values of $h \in[N]$

$$
\left\|k_{1} \cdot \gamma+k_{2} \zeta \cdot\{\gamma h\}\right\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\delta^{-O(1)}}{N}
$$

Bracket polynomial lemma

The proof is now completed by the following 'bracket polynomial lemma.'

Lemma

Let $\delta \in(0,1)$ and let $N \geqslant 1$ be an integer. Let $\theta \in \mathbb{R}, \gamma \in \mathbb{R}^{2} / \mathbb{Z}^{2}$ and $\zeta \in \mathbb{R}^{2}$ satisfy $|\zeta| \ll 1$. Suppose that for at least δN values of $h \in[N]$, we have

$$
\|\theta+\zeta \cdot\{\gamma h\}\|_{\mathbb{R} / \mathbb{Z}} \leqslant \frac{1}{\delta N}
$$

Then either $\theta,|\zeta| \ll \frac{\delta^{-O(1)}}{N}$ or else there is $k \in \mathbb{Z}^{2}, 0<\|k\| \ll \delta^{-O(1)}$ such that $\|k \cdot \gamma\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\delta^{-O(1)}}{N}$.

In either case we obtain a horizontal character $k, 0<\|k\| \ll \delta^{-O(1)}$ on G / Γ satisfying $\|k \cdot \gamma\|_{\mathbb{R} / \mathbb{Z}} \ll \frac{\delta^{-O(1)}}{N}$.

Bracket polynomial lemma

Proof.

- We may assume that

$$
\|\theta+\zeta \cdot\{\gamma h\}\|_{\mathbb{R} / \mathbb{Z}} \leqslant \frac{\delta}{10}\|\zeta\|_{\infty}
$$

for at least δN values $h \in[N]$, or otherwise the first conclusion holds.

- Define

$$
\Omega:=\left\{t \in \mathbb{R}^{2} / \mathbb{Z}^{2}:\|\theta+\zeta \cdot\{t\}\|_{\mathbb{R} / \mathbb{Z}} \leqslant \frac{\delta}{10}\|\zeta\|_{\infty}\right\}
$$

and

$$
\tilde{\Omega}:=\left\{x \in \mathbb{R}^{2} / \mathbb{Z}^{2}: d(x, \Omega)<\frac{\delta}{10}\right\} .
$$

By slicing, one finds $|\tilde{\Omega}|<\frac{\delta}{2}$.

Bracket polynomial lemma

Proof.

- Define $F: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}_{\geqslant 0}$,

$$
F(x):=\max \left(1-\frac{10 d(x, \Omega)}{\delta}, 0\right)
$$

- Since F is 1 on $\Omega, \mathrm{E}_{n \in[N]}[F(\gamma n)] \geqslant \delta$.
- Since F is supported on $\tilde{\Omega}, \int_{\mathbb{R}^{2} / \mathbb{Z}^{2}} F(x) d x<\frac{\delta}{2}$.
- Thus

$$
\left|\mathrm{E}_{n \in[N]}[F(\gamma n)]-\int_{\mathbb{R}^{2} / \mathbb{Z}^{2}} F(x) d x\right| \geqslant \frac{\delta}{2} .
$$

- Since $\|F\|_{\text {Lip }} \ll \frac{1}{\delta}$ we find that $\{\gamma n\}_{n \in[N]}$ is not $c \delta^{2}$-equidistributed for some $c>0$, and the conclusion follows.

