Math 639: Lecture 15

Multiple ergodic averages

Bob Hough

April 4, 2017

Bob Hough

Math 639: Lecture 15

April 4, 2017 1 / 57

-∢ ∃ ▶

Multiple ergodic averages

The goal of this lecture is to prove the following mean ergodic theorem.

Theorem (Walsh, 2012)

Let G be a nilpotent group of measure preserving transformations of a probability space (X, \mathscr{X}, μ) . Then, for every $T_1, ..., T_l \in G$, for every $f_1, ..., f_d \in L^{\infty}(X, \mathscr{X}, \mu)$, for every collection of integer valued polynomials $\{p_{i,j}, 1 \leq i \leq l, 1 \leq j \leq d\}$, the averages

$$\frac{1}{N}\sum_{n=1}^{N}\prod_{j=1}^{d}\left(T_{1}^{p_{1},j(n)}\cdots T_{l}^{p_{l,j}(n)}\right)f_{j}$$

converge in $L^2(X, \mathscr{X}, \mu)$.

(日) (周) (三) (三)

- The proof is combinatorial in nature, and is based on a structure vs. randomness dichotomy.
- The following structural statements are based on the paper "Decompositions, approximate structure, transference, and the Hahn-Banach theorem," by Tim Gowers (Bull. London Math Soc., 42 (2010) pp. 573-606).

Theorem (Hahn-Banach)

Let K be a convex body in \mathbb{R}^n and let f be an element of \mathbb{R}^n that is not contained in K. Then there is a constant β and a non-zero linear functional ϕ such that $\langle f, \phi \rangle \ge \beta$ and $\langle g, \phi \rangle \le \beta$ for every $g \in K$.

イロト イ押ト イヨト イヨト

Theorem

Let $K_1, ..., K_r$ be closed convex subsets of \mathbb{R}^n , each containing 0, let $c_1, ..., c_r$ be positive real numbers, and suppose that f is an element of \mathbb{R}^n that cannot be written as a sum

$$f_1 + \cdots + f_r, \qquad f_i \in c_i K_i.$$

Then there is a linear functional ϕ such that $\langle f, \phi \rangle > 1$ and $\langle g, \phi \rangle \leq c_i^{-1}$ for every $i \leq r$ and every $g \in K_i$.

Proof.

- Define $K = \sum_i c_i K_i$.
- Since K is closed, there exists ε > 0 and a small Euclidean ball B such that (1 + ε)⁻¹f ∉ B + K.
- Apply Hahn-Banach to find ϕ and β such that $(1 + \epsilon)^{-1} \langle f, \phi \rangle \ge \beta$ and $\langle g, \phi \rangle \le \beta$ for every $g \in B + K$.
- Since $0 \in K$ we may take $\beta = 1$.

Theorem

Let $K_1, ..., K_r$ be closed convex subsets of \mathbb{R}^n , each containing 0 and suppose that f is an element of \mathbb{R}^n that cannot be written as a convex combination

$$c_1f_1+\cdots+c_rf_r,\ f_i\in K_i.$$

Then there is a linear functional ϕ such that $\langle f, \phi \rangle > 1$ and $\langle g, \phi \rangle \leq 1$ for every $i \leq r$ and every $g \in K_i$.

Proof.

- Let K be the set of all convex combinations $c_1f_1 + \cdots + c_rf_r$ with $f_i \in K_i$.
- Since K is closed and convex, there is an $\epsilon>0$ such that $(1+\epsilon)^{-1}f\notin K.$
- By Hahn-Banach, there is a functional ϕ and a constant β such that $(1 + \epsilon)^{-1} \langle f, \phi \rangle \ge \beta$ and $\langle g, \phi \rangle \le \beta$ for all $g \in K$.
- As before, β may be taken equal to 1, since K is closed.

・ロト ・ 同ト ・ ヨト ・ ヨ

Definition

If $\|\cdot\|$ is a norm on \mathbb{R}^n , the dual norm $\|\cdot\|^*$ is defined by the formula

$$\|\phi\|^* = \max\{\langle f, \phi \rangle : \|f\| \leqslant 1\}.$$

The dual of a norm $\|\cdot\|$ defined on a subspace V of \mathbb{R}^n is the seminorm

$$\|f\|^* = \max\{\langle f, g \rangle : g \in V, \|g\| \leqslant 1\}.$$

If $f \in \mathbb{R}^n$ a support functional for f is a linear functional $\phi \neq 0$ such that

$$\langle f, \phi \rangle = \|f\| \|\phi\|^*.$$

— D.	ah	ц ~		h
	υυ	110	שטי	
			. 0	

(日) (同) (三) (三)

Theorem

Let Σ be a set and, for each $\sigma \in \Sigma$, let $\|\cdot\|_{\sigma}$ be a norm defined on a subspace V_{σ} of \mathbb{R}^n . Suppose that $\sum_{\sigma \in \Sigma} V_{\sigma} = \mathbb{R}^n$, and define a norm $\|\cdot\|$ on \mathbb{R}^n by the formula

 $\|x\| = \inf\{\|x_1\|_{\sigma_1} + \dots + \|x_k\|_{\sigma_k} : x_1 + \dots + x_k = x, \sigma_1, \dots, \sigma_k \in \Sigma\}.$

The dual norm $\|\cdot\|^*$ is given by the formula

$$||z||^* = \sup\{||z||_{\sigma}^* : \sigma \in \Sigma\}.$$

(日) (周) (三) (三)

Proof.

- First suppose that $||z||_{\sigma}^* \ge 1$ for some $\sigma \in \Sigma$. Then there exists $x \in V_{\sigma}$ such that $||x||_{\sigma} \le 1$ and $|\langle x, z \rangle| \ge 1$. Since $||x|| \le 1$, $||z||^* \ge ||z||_{\sigma}^*$.
- Now suppose $||z||^* > 1$. Then there is x with $||x|| \le 1$ and $|\langle x, z \rangle| \ge 1 + \epsilon$ for some $\epsilon > 0$. Choose $x_1, ..., x_k$ such that $x_i \in V_{\sigma_i}$ for each $i, x_1 + \cdots + x_k = x$ and $||x_1||_{\sigma_1} + \cdots + ||x_k||_{\sigma_k} < 1 + \epsilon$. Then

$$\sum_{i} |\langle x_i, z \rangle| > \|x_1\|_{\sigma_1} + \cdots + \|x_k\|_{\sigma_k},$$

so there is *i* with $|\langle x_i, z \rangle| > ||x_i||_{\sigma_i}$, and $||z||_i^* > 1$.

Corollary

Let $\Sigma \subset \mathbb{R}^n$ be a set that spans \mathbb{R}^n and define a norm $\|\cdot\|$ on \mathbb{R}^n by the formula

$$\|f\| = \inf\left\{\sum_{i=1}^{k} |\lambda_i| : f = \sum_{i=1}^{k} \lambda_i \sigma_i, \ \sigma_1, ..., \sigma_k \in \Sigma\right\}$$

Then this formula does indeed define a norm, and its dual norm $\|\cdot\|^*$ is defined by the formula

$$||f||^* = \sup\{|\langle f, \sigma \rangle| : \sigma \in \Sigma\}.$$

This is the special case in which V_{σ} is the span of σ and $\|\lambda\sigma\|_{\sigma} = |\lambda|$.

- **(())) (())) ())**

Theorem

Let $\|\cdot\|$ be any norm on \mathbb{R}^n and let $f \in \mathbb{R}^n$. Then f can be written as g + h in such a way that $\|g\| + \|h\|^* \leq \|f\|_2$.

Bob Hough

April 4, 2017 13 / 57

- 4 同 ト 4 三 ト 4 三

Proof.

- Let K_1 and K_2 be the unit balls in the $\|\cdot\|$ and $\|\cdot\|^*$ norms.
- Suppose for contradiction that the claim is false. Then f/||f||₂ is not a convex combination c₁g₁ + c₂g₂ with g_i ∈ K_i.
- By Hahn-Banach, we obtain ϕ with $\langle f, \phi \rangle > \|f\|_2$ and $\|\phi\|^*$ and $\|\phi\|$ both at most 1.
- The first claim implies $\|\phi\|_2 > 1$, while the second implies $\|\phi\|_2^2 = \langle \phi, \phi \rangle \leq \|\phi\| \|\phi\|^* \leq 1$, a contradiction.

(日) (周) (三) (三)

- Note that by scaling the norm, for any $\epsilon > 0$ it is possible to find g, h, f = g + h with $\epsilon ||g|| + \epsilon^{-1} ||h||^* \le ||f||_2$.
- By admitting a small L^2 error, the following decomposition theorem does better by replacing the inverse relationship ϵ, ϵ^{-1} in the two norms, with an arbitrary growth function.

Theorem

Let $f \in \mathbb{R}^n$ with $||f||_2 \leq 1$, and let $|| \cdot ||$ be any norm on \mathbb{R}^n . Let $\epsilon > 0$ and let $\eta : \mathbb{R}_+ \to \mathbb{R}_+$ be any decreasing positive function. Let $r = \lceil 2\epsilon^{-1} \rceil$ and define a sequence $C_1, ..., C_r$ by setting $C_1 = 1$ and

$$C_i = 2\eta (C_{i-1})^{-1}, i > 1.$$

Then there exists $i \leq r$ such that f can be decomposed as $f_1 + f_2 + f_3$ with

$$C_i^{-1} \|f_1\|^* + \eta(C_i)^{-1} \|f_2\| + \epsilon^{-1} \|f_3\|_2 \leq 1.$$

In particular, $||f_1||^* \leq C_i$, $||f_2|| \leq \eta(C_i)$ and $||f_3||_2 \leq \epsilon$.

Proof.

• Suppose, for contradiction, that no such decomposition exists. Applying Hahn-Banach for each *i* with the convex set

$$\mathcal{K}_i = \left\{ g = g_1 + g_2 + g_3 : C_i^{-1} \|g_1\|^* + \eta(C_i)^{-1} \|g_2\| + \epsilon^{-1} \|g_3\|_2 \leqslant 1 \right\},\$$

there exists ϕ_i satisfying $\left<\phi_i,f\right>>1$ and such that

$$\|\phi_i\| \leq C_i^{-1}, \|\phi_i\|^* \leq \eta(C_i)^{-1}, \|\phi_i\|_2 \leq \epsilon^{-1}.$$

Notice

$$\|\phi_1 + \cdots + \phi_r\|_2 \ge \langle \phi_1 + \cdots + \phi_r, f \rangle \ge r.$$

Proof.

• If i < j then

$$\langle \phi_i, \phi_j \rangle \leq \|\phi_i\| \|\phi_j\|^* \leq \eta(C_i)^{-1} C_j^{-1} \leq \frac{1}{2}$$

so that

$$\|\phi_1 + \dots + \phi_r\|_2^2 \leq \epsilon^{-1}r + \frac{r(r-1)}{2}.$$

This is a contradiction, since $r \ge \frac{2}{\epsilon}$.

<ロ> (日) (日) (日) (日) (日)

Walsh uses the following variant of the last structure theorem, in which \mathbb{R}^n is replaced by a Hilbert space \mathscr{H} , and on which there are a family of equivalent norms.

Theorem (Hilbert space decomposition theorem)

Let \mathscr{H} be a Hilbert space with norm $\|\cdot\|$.

- Let $(\|\cdot\|_N)_{N\in\mathbb{N}}$ be a family of norms on \mathscr{H} equivalent to $\|\cdot\|$, and satisfying $\|\cdot\|_{N+1}^* \leq \|\cdot\|_N^*$ for every N.
- Let $0 < \delta < c < 1$ be positive real numbers, $\eta : \mathbb{R}_+ \to \mathbb{R}_+$ a decreasing function, and $\psi : \mathbb{N} \to \mathbb{N}$ a function satisfying $\psi(N) \ge N$.
- Define constants $C_{[2\delta^{-2}]} := 1$, $C_{n-1} = \max\{C_n, 2\eta(C_n)^{-1}\}$ for $n \ge 2$.
- For every integer $M_- > 0$ there exists a sequence

$$M_{-} \leqslant M_{1} \leqslant \cdots \leqslant M_{\lfloor 2\delta^{-2} \rfloor} \leqslant M_{+} = O_{M,\delta,c,\psi}(1), \qquad s.t.$$

for any $f \in \mathscr{H}$ with $||f|| \leq 1$ there is $1 \leq i \leq \lfloor 2\delta^{-2} \rfloor$ and integers $A, B, M_{-} \leq A < cM_{i} < \psi(M_{i}) \leq B$, so that $f = f_{1} + f_{2} + f_{3}$,

$$\|f_1\|_B < C_i, \|f_2\|_A^* < \eta(C_i), \|f_3\| < \delta.$$

- When ||f||^{*}_A is small, we say that f is 'random', while when ||f||_B is small we say that f is 'structured.' This terminology comes from thinking of ||f||^{*}_A as ||f̂||_∞, the ∞-norm on the Fourier transform, so that ||f||_B = ||f̂||₁ is the 1-norm on the F.T.
- The win in Walsh's version of the structure theorem is that the structured part in the decomposition is at a higher level than the random part.

Proof of Walsh's structure theorem.

• Set $A_1 = M_-$, $M_1 := [c^{-1}A_1 + 1]$ and $B_1 = \psi(M_1)$. If no decomposition with i = 1 exists then obtain $\phi_1 \in \mathscr{H}$ satisfying

$$\langle \phi_1, f \rangle \ge 1, \, \|\phi_1\|_{B_1}^* \leqslant C_1^{-1}, \, \|\phi_1\|_{A_1}^{**} \leqslant \eta(C_1)^{-1}, \, \|\phi_1\| \leqslant \delta^{-1}.$$

- Recursively define parameters $A_j := B_{j-1}$, $M_j := [c^{-1}A_j + 1]$, $B_j := \psi(M_j)$, and, if no decomposition exists with these parameters, find ϕ_j satisfying the corresponding estimates.
- For *i* < *j* bound

$$|\langle \phi_j, \phi_i \rangle| \leq \|\phi_j\|_{A_j}^{**} \|\phi_i\|_{A_j}^* \leq \|\phi_j\|_{A_j}^{**} \|\phi_i\|_{B_i}^* \leq \eta(C_j)^{-1} C_i^{-1} \leq \frac{1}{2},$$

and hence $\|\phi_1 + \cdots + \phi_r\|_2^2 \leq \delta^{-2}r + \frac{r^2-r}{2}$, which forces the process to terminate as before.

April 4, 2017 22

Definition

Fix a probability space X and a nilpotent group G of measure preserving transformations on X.

- A *G*-sequence is a sequence $\{g(n)\}_{n\in\mathbb{Z}}$ taking values in *G*.
- A tuple $g = (g_1, ..., g_j)$ of *G*-sequences is a *G*-system.
- Two systems are *equivalent* if they contain the same set of G-sequences, so, for instance, if g and h are G-sequences then (h, g), (g, h) and (g, h, h) are equivalent.

Definition

• To a pair of *G*-sequences *g*, *h* and positive integer *m*, associate the *G*-sequence

$$\langle g|h\rangle_m(n) := g(n)g(n+m)^{-1}h(n+m).$$

• The *m*-reduction of a system $g = (g_1, ..., g_j)$ is the system

$$g_m^* = (g_1, ..., g_{j-1}, \langle g_j | \mathbf{1}_G \rangle_m, \langle g_j | g_1 \rangle_m, \cdots, \langle g_j | g_{j-1} \rangle_m).$$

Definition (Complexity of a system)

- We say a system g has *complexity* 0 if it is equivalent to the trivial system (1_G).
- Recursively, a system g has complexity d for some positive integer $d \ge 1$ if it is not of complexity d' for some $0 \le d' < d$, and it is equivalent to some system h for which every reduction h_m^* has complexity at most d 1.
- A system has finite complexity if it has complexity d for some $d \ge 0$.

(日) (周) (三) (三)

Systems of finite complexity

Definition

• For integer $N \ge 1$, and $f_1, ..., f_j \in L^{\infty}(X)$, define *ergodic average*

$$\mathscr{A}_{N}^{g}[f_{1},...,f_{j}] = \mathsf{E}_{n \in [N]}\left[\prod_{i=1}^{j} g_{i}(n)f_{i}\right]$$

- Convergence of the ergodic averages of a system for all test functions implies convergence of the ergodic averages of an equivalent system for all test functions, since $T(f_1)T(f_2) = T(f_1f_2)$.
- Given a pair of positive integers N, N', define

$$\mathscr{A}_{N,N'}^{g}[f_1,...,f_j] = \mathscr{A}_{N}^{g}[f_1,...,f_j] - \mathscr{A}_{N'}^{g}[f_1,...,f_j].$$

Theorem (Finite complexity theorem)

- Let G and X as above, and let $d \ge 0$.
- Let F : N → N be some nondecreasing function F(N) ≥ N for all N, and let ε > 0.
- For every integer M > 0 there exists a sequence of integers, depending on F, ε and d,

$$M \leq M_1 \leq \cdots \leq M_{K(\epsilon,d)} \leq M(\epsilon,F,d)$$

such that

for every system $g = (g_1, ..., g_j)$ of complexity at most dfor every choice of functions $f_1, ..., f_j \in L^{\infty}(X)$ with $||f_i||_{\infty} \leq 1$ there exists some $1 \leq i \leq K_{\epsilon,d}$ such that, for every $M_i \leq N, N' \leq F(M_i), \left\| \mathscr{A}_{N,N'}^g[f_1, ..., f_j] \right\|_{L^2(X)} \leq \epsilon.$

Image: A math a math

The finite complexity theorem implies the L^2 -convergence of all finite complexity ergodic averages since if $\mathscr{A}_N^g[f_1, ..., f_j]$ fails to converge, then there exists $\epsilon > 0$ and increasing function F(N) so that

$$\left\|\mathscr{A}_{N,F(N)}^{g}[f_{1},...,f_{j}]\right\|_{L^{2}(X)} > \epsilon$$

for every positive integer N.

Reducible functions

From now on we work with the specific choices in the structure theorem

$$\delta := \frac{\epsilon}{96}, \ \eta(x) = \frac{\epsilon^2}{216x}, \ C^* = C_1.$$

Definition (Reducible functions)

Given a positive integer *L*, we say $\sigma \in L^{\infty}(X)$, $\|\sigma\|_{\infty} \leq 1$, is an *L*-reducible function with respect to *g* if there exists some integer M > 0 and a family $b_0, b_1, ..., b_{j-1} \in L^{\infty}(X)$ with $\|b_i\|_{\infty} \leq 1$, such that for every positive integer $l \leq L$,

$$\left\|g_{j}(l)\sigma - \mathsf{E}_{m\in[M]}\left[(\langle g_{j}|\mathbf{1}_{G}\rangle_{m}(l))b_{0}\prod_{i=1}^{j-1}(\langle g_{j}|g_{i}\rangle_{m}(l))b_{i}\right]\right\|_{L^{\infty}(X)} < \frac{\epsilon}{16C^{*}}.$$

イロト イ押ト イヨト イヨト

Theorem (Weak inverse result for ergodic averages) Assume the inequality

$$\left\|\mathscr{A}_{N}^{g}[f_{1},...,f_{j-1},u]\right\|_{2} > \frac{\epsilon}{6}$$

holds for some u, $||u||_{\infty} \leq 3C$, some $1 \leq C \leq C^*$ and some $f_1, ..., f_{j-1} \in L^{\infty}(X)$ with $||f_i||_{\infty} \leq 1$. Then there exists a constant $0 < c_1 < 1$, depending only on ϵ , such that for every positive integer $L < c_1 N$ there is an L-reducible function σ with

$$\langle u,\sigma\rangle > 2\eta(C).$$

Ro	h	н	~	αh
00	0		ou	gu

Weak inverse result

Proof.

Expand the square in the L^2 norm to find

$$\begin{split} \left\|\mathscr{A}_{N}^{g}\right\|_{2}^{2} &= \left\langle \mathscr{A}_{N}^{g}[f_{1},...,f_{j-1},u],\mathsf{E}_{n\in[N]}\left[\left(\prod_{i=1}^{j-1}g_{i}(n)f_{i}\right)g_{j}(n)u\right]\right\rangle \\ &= \left\langle \mathsf{E}_{n\in[N]}\left[g_{j}(n)^{-1}\mathscr{A}_{N}^{g}[f_{1},...,f_{j-1},u]\prod_{i=1}^{j-1}g_{j}(n)^{-1}g_{i}(n)f_{i}\right],u\right\rangle. \end{split}$$

Define

$$h := \mathsf{E}_{n \in [N]} \left[g_j(n)^{-1} \mathscr{A}_N^g[f_1, ..., f_{j-1}, u] \prod_{i=1}^{j-1} g_j(n)^{-1} g_i(n) f_i \right].$$

Set $\sigma = \frac{h}{3C}$. We claim that σ is *L*-reducible for every $L > c_1 N$, some $0 < c_1 < 1$. This suffices since $\langle u, \sigma \rangle > 2\eta(C)$.

Weak inverse result

Proof.

Let
$$c_1 := \frac{\epsilon}{96(C^*)^2}$$
 and let $0 < l < c_1 N$. Use
 $\|\mathscr{A}_N^g[f_1, ..., f_{j-1}, u]\|_{\infty} \leq 3C \leq 3C^*$. Since the average is short,

$$\left\|h-\mathsf{E}_{n\in[N]}\left[g_{j}(l+n)^{-1}\mathscr{A}_{N}^{g}[\cdot]\prod_{i=1}^{j-1}g_{j}(l+n)^{-1}g_{i}(l+n)f_{i}\right]\right\|_{L^{\infty}(X)}<\frac{\epsilon}{16C^{*}}.$$

Shifting by $g_j(I)$,

$$\left\|g_{j}(l)h - \mathsf{E}_{n \in [N]}\left[\langle g_{j}|\mathbf{1}_{G}\rangle_{n}(l)\rangle\mathscr{A}_{N}^{g}[\cdot]\prod_{i=1}^{j-1}(\langle g_{j}|g_{i}\rangle_{n}(l))f_{i}\right]\right\|_{L^{\infty}(X)} < \frac{\epsilon}{16C^{*}}.$$

Choose M := N, $b_0 = \frac{1}{3C} \mathscr{A}_N^g[\cdot]$ and $b_i = f_i$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem (Stability of averages for structured functions)

For every positive integer M_* there exists $\tilde{K} = \tilde{K}(\epsilon, d)$, and a sequence

$$M_* \leqslant M_1 \leqslant \cdots \leqslant M_{\tilde{\kappa}} \leqslant M^*$$

depending on M_*, ϵ, d, F such that if

•
$$f_1, ..., f_{j-1} \in L^{\infty}(X), ||f_i||_{\infty} \leq 1$$

• $f = \sum_{t=0}^{k-1} \lambda_t \sigma_t$, $\sum_{t=0}^{k-1} |\lambda_t| \leq C^*$ and each σ_t is an L-reducible function for some $L \geq F(M^*)$

then there exists some $1 \leq i \leq \tilde{K}$ such that

$$\left\|\mathscr{A}_{N,N'}^{g}[f_{1},...,f_{j-1},f]\right\|_{L^{2}(X)} \leqslant \frac{\epsilon}{4}$$

for every pair $M_i \leq N, N' \leq F(M_i)$.

(日) (同) (三) (三)

Proof.

Since σ_t is *L*-reducible, choose corresponding integer $M^{(t)}$ and functions $b_i^{(t)} \in L^{\infty}(X)$. Using the reducibility, replace $\mathscr{A}_N^g[f_1, ..., f_{j-1}, \sigma_t]$ with

$$\mathsf{E}_{[\mathcal{M}^{(t)}]}\left[\mathsf{E}_{[\mathcal{N}]}\left(\prod_{i=1}^{j-1}g_i(n)f_i\right)\left((\langle g_j|\mathbf{1}_G\rangle_m(n))b_0^{(t)}\right)\left(\prod_{i=1}^{j-1}(\langle g_j|g_i\rangle_m(n))b_i^{(t)}\right)\right]$$

making error at most $\frac{\epsilon}{16C^*}$. Thus, for $N, N' \leq L$, $\left\| \mathscr{A}_{N,N'}^g[f_1, ..., f_{j-1}, f] \right\|_2$ is bounded by

$$\frac{\epsilon}{8} + \sum_{t=0}^{k-1} |\lambda_t| \mathsf{E}_{m \in [M_t]} \left\| \mathscr{A}_{N,N'}^{g_m^*} \left[f_1, ..., f_{j-1}, b_0^{(t)}, b_1^{(t)}, ..., b_{j-1}^{(t)} \right] \right\|_{L^2(X)}$$

イロト イポト イヨト イヨト

Proof.

- Let $\gamma = \frac{\epsilon}{16C^*}$.
- Since g_m^* is lower complexity than g, we invoke the bounded complexity theorem inductively. Recall that this theorem provides for some $1 \le i \le K_{\gamma,d-1}$ a range $M_i^{\gamma,F,d} \le N \le F\left(M_i^{\gamma,F,d}\right)$, such that the average at length N varies by at most γ over the interval.
- Our goal now is to find an interval [*M*, *M*'] over which this is valid for many *t*.

Proof.

• Let $r = O_{\epsilon,d}(1)$ and define functions $F_1, F_2, ..., F_r : \mathbb{N} \to \mathbb{N}$ given by

$$F_r = F,$$
 $F_{i-1}(N) := \max_{1 \leq M \leq N} F_i(M^{\gamma,F_i,d-1}).$

• For each tuple $1 \leq i_1, ..., i_s \leq K$, $s \leq r$ and integer M, define

$$\mathcal{M}^{(i_1,\ldots,i_s)} := \left(\cdots \left(\left(\mathcal{M}_{i_1}^{\gamma,F_1,d-1} \right)_{i_2}^{\gamma,F_2,d-1} \right) \ldots \right)_{i_s}^{\gamma,F_s,d-1}$$

Thus $M^{(i_1)}$ is the integer $M_{i_1}^{\gamma,F_1,d-1}$ found by starting the sequence at M using F_1 , $M^{(i_1,i_2)}$ the result of starting at $M^{(i_1)}$ using F_2 , etc. Thus

$$\left[M^{(i_1)}, F_1\left(M^{(i_1)}\right)\right] \supset \left[M^{(i_1,i_2)}, F_2\left(M^{(i_1,i_2)}\right)\right] \supset \dots$$

• Note
$$\left\|\mathscr{A}_{N,N'}^{g_m^*}\left[f_1,...,f_{j-1},b_0^{(t)},...,b_{j-1}^{(t)}\right]\right\|_{L^{\infty}(X)} \leq 2.$$
 Hence
$$\sum_{t=0}^{k-1} |\lambda_t| \mathsf{E}_{m \in [M_t]} \left\|\mathscr{A}_{N,N'}^{g_m^*}\left[f_1,...,f_{j-1},b_0^{(t)},b_1^{(t)},...,b_{j-1}^{(t)}\right]\right\|_{L^2(X)} \leq 2C^*.$$

- Applying the finite complexity theorem inductively, the reduced average at t is bounded by γ for all pairs $N, N' \in \left[M_*^{(i)}, F_1\left(M_*^{(i)}\right)\right]$ for some $1 \leq i \leq K$ which depends on t.
- By the pigeonhole principle we can pick i_1 so that the sum of $|\lambda_t|$ for which $i \neq i_1$ is at most $(1 \frac{1}{K}) C^*$.

Proof.

Iterate the argument using M^(i₁), F₂, etc. r times to find M^(i₁,...,i_r) such that the contribution of |λ_t| for which 𝒢^g^m_{N,N'}[·] > γ for some

$$M^{(i_1,\ldots,i_r)} \leq N, N' \leq F\left(M^{(i_1,\ldots,i_r)}\right)$$

is at most $\left(\frac{K-1}{K}\right)^r C^* < \frac{\epsilon}{32}$.

- The contribution of the remaining part is at most $\sum_t |\lambda_t| \gamma < \frac{\epsilon}{16}$.
- Putting together the estimates gives, for all N, N' in the interval,

$$\left\|\mathscr{A}_{N,N'}^{g}[f_{1},...,f_{j-1},f]\right\|_{2} < \frac{\epsilon}{4}.$$

- The weak inverse theorem bounds ergodic averages for functions which do not correlate strongly with a reducible function, while the previous theorem shows that the averages for reducible functions are slowly varying.
- We now combine these estimates using the structure decomposition theorem to prove the theorem on finite complexity.

Proof of finite complexity theorem.

- Fix X, G, F, ϵ, d and g as in the theorem, and assume that all reductions g_m^* of g have complexity at most d 1.
- The proof is by induction. We assume the statement for all d' < d.
- Let M_0 be the starting point of the sequence in the theorem.
- Let $\delta := \frac{\epsilon}{2^5 3}$ and $\eta(x) := \frac{\epsilon^2}{2^3 3^{3} x}$ as previously. This determines the constants $C_1, C_2, ...$ and C^* which appear in the structure decomposition theorem.

Proof of finite complexity theorem.

Given a positive integer L, write Σ_L for the set of L-reducible functions, and

$$\Sigma_L^+ := \Sigma_L \cup B_2\left(\frac{\delta}{C^*}\right).$$

• Define the norm $\|\cdot\|_L = \|\cdot\|_{\boldsymbol{\Sigma}_L^+}$ by

$$\|f\|_{\Sigma_L^+} := \inf \left\{ \sum_{j=0}^{k-1} |\lambda_j| : f = \sum_{j=0}^{k-1} \lambda_j \sigma_j, \sigma_j \in \Sigma_L^+ \right\}.$$

Bob Hough

Proof of finite complexity theorem.

 Define ψ(M) = F(M*) where M* is the upper bound on the sequence started from M = M* in the theorem on structured functions.

- Given $f_1, f_2, ..., f_j \in L^{\infty}(X)$, $||f_i||_{\infty} \leq 1$.
- Since Σ⁺_{L+1} ⊂ Σ⁺_L, || · ||^{*}_{L+1} ≤ || · ||^{*}_L, perform decomposition of f_j according to (|| · ||_L)_{L∈ℕ}, ψ, δ, η and with c₁ = c the constant from the weak inverse theorem.
- We thus find a constant $1 \leq C_i \leq C^*$, an M with $M_0 \leq M = O(1)$ and

$$f_j = \sum_{t=0}^{\kappa-1} \lambda_t \sigma_t + u + v$$

where $\sum_{t=0}^{k-1} |\lambda_t| \leq C_i$, each $\sigma_t \in \Sigma_B^+$ for some $B \geq \psi(M)$, $||u||_A^* \leq \eta(C_i)$ for some $A < c_1 M$ and $||v||_2 \leq \delta$.

Proof of finite complexity theorem.

- By absorbing any $\sigma_t \in B_2(\delta/C^*)$ into v, so that $||v||_2 \leq 2\delta$, we may assume that all $\sigma_t \in \Sigma_{\psi(M)}$.
- Applying the bound for structured theorems, we obtain that

$$\left\| \mathscr{A}_{N,N'}^{g} \left[f_1, \dots, f_{j-1}, \sum_{t=0}^{k-1} \lambda_t \sigma_t \right] \right\|_{L^2(X)} < \frac{\epsilon}{3}$$

for all $M_i \leq N, N' \leq F(M_i)$, for some index *i*.

• The contribution of the L^2 error is controlled by using that $||f_i||_{\infty} \leq 1$.

Proof of finite complexity theorem.

- To handle u, we first control it's large values. Let S be the set of points where |v(s)| ≤ C_i.
- Note $\mu(S^c) \leq \left(\frac{2\delta}{C_i}\right)^2$
- Since $\|\sigma_t\|_{L^{\infty}(X)} \leq 1$, one has $|u\mathbf{1}_{S^c}(x)| \leq 3|v(x)|$, so $\|u\mathbf{1}_{S^c}\|_2 \leq 3\|v\|_2$
- Similarly, $||u\mathbf{1}_{\mathcal{S}}||_{\infty} \leq 3C_i$. Also, for every $\sigma \in \Sigma_A$,

$$\begin{aligned} |\langle u\mathbf{1}_{\mathcal{S}},\sigma\rangle| &\leq |\langle u,\sigma\rangle| + |\langle u\mathbf{1}_{\mathcal{S}^{c}},\sigma\mathbf{1}_{\mathcal{S}^{c}}\rangle| \\ &\leq \|u\|_{\mathcal{A}}^{*} + \|u\mathbf{1}_{\mathcal{S}^{c}}\|_{2} \|\sigma\mathbf{1}_{\mathcal{S}^{c}}\|_{2} \leq 2\eta(C_{i}). \end{aligned}$$

• By the weak inverse theorem, $\|\mathscr{A}_{N,N'}[f_1,...,f_{j-1},u1_S]\|_2 \leq \frac{\epsilon}{3}$.

(日) (同) (三) (三)

Definition

- Given a G-sequence $\{g(n)\}_{n\in\mathbb{Z}}$ taking values in a nilpotent group G and an integer m, define operator D_m by $(D_mg)(n) := g(n)g(n+m)^{-1}$. Thus $\langle g|h \rangle_m(n) = (D_mg)(n)h(n+m)$.
- A *G*-sequence *g* is *polynomial* if there exists some positive integer *d* such that, for every choice of integers *m*₁, ..., *m*_d,

$$D_{m_1}D_{m_2}\cdots D_{m_d}g=\mathbf{1}_G.$$

Definition

Let $\mathbb{Z}_* = \{0, 1, 2, ...\} \cup \{-\infty\}$. A vector $\overline{d} = (d_1, ..., d_c) \in \mathbb{Z}_*^c$ is superadditive if $d_i \leq d_j$ for all i < j and $d_i + d_j \leq d_{i+j}$ for all i, j with $i + j \leq c$. For $d \in \mathbb{Z}_*$ and $t \in \mathbb{Z}_+$, let

$$d -_* t = \left\{ egin{array}{cc} d-t & t \leqslant d \ -\infty & t > d \end{array}
ight.$$

If $\overline{d} = (d_1, ..., d_c) \in \mathbb{Z}^c_*$, let $\overline{d} -_* t = (d_1 -_* t, ..., d_c -_* t)$.

In what follows we write just - for $-_*$. Notice that $(\overline{d} - t_1) - t_2 = \overline{d} - (t_1 + t_2)$. Also, subtraction preserves the property of being superadditive.

イロト イポト イヨト イヨト 二日

Definition

Let G be nilpotent of class c, and let

$$G = G_{(1)} \supset G_{(2)} \supset \cdots \supset G_{(c)} \supset G_{(c+1)} = \{1_G\}$$

be the lower central series of F, $G_{(i+1)} = [G_{(i)}, G], i = 1, 2, ..., c$. Let $\phi : \mathbb{Z} \to G$ be a polynomial mapping, and let $\overline{d} = (d_1, ..., d_c) \in \mathbb{Z}^c_*$ be a superadditive vector. We say ϕ has *lc-degree* $\leq \overline{d}$ if for each i = 1, ..., c,

• If
$$d_i = -\infty$$
, then $\phi(\mathbb{Z}) \in G_{(i+1)}$

• If $d_i \ge 0$ then for any $h_1, ..., h_{d_i+1}$, $D_{h_1} \cdots D_{h_{d_i+1}} \phi(\mathbb{Z}) \subset G_{(i+1)}$.

Notice that if ϕ has lc-degree \overline{d} then $D_h \phi$ has lc-degree $\overline{d} - 1$.

・ロト ・ 同ト ・ ヨト ・ ヨ

Leibman proved the following theorem regarding polynomial sequences.

Theorem (Leibman's theorem on polynomial sequences)

Let $d = (d_1, ..., d_s)$ be a superadditive vector, and let $t, t_1, t_2 \ge 0$ be non-negative integers. Then we have the following properties:

- If g is a polynomial sequence of degree $\leq \overline{d} t$, then $D_m g$ is a polynomial sequence of degree $\leq \overline{d} (t+1)$ for every $m \in \mathbb{Z}$.
- 2 The set of polynomial sequences of degree $\leq \overline{d} t$ forms a group.
- If g is a polynomial sequence of degree ≤ d t₁ and h is a polynomial sequence of degree ≤ d t₂, then [g, h] is a polynomial sequence of degree ≤ d (t₁ + t₂), where [g, h](n) := g⁻¹(n)h⁻¹(n)g(n)h(n).

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣○

Proof of Leibman's theorem on polynomial sequences.

- The first claim is immediate.
- The proof of the remaining claims is a joint downward induction on t and t₁ + t₂.
- Note that the second claim is trivial if $t \ge d_c$, since in that case, $h \equiv 1_G$. Similarly, the third claim is trivial if $t_1 + t_2 \ge 2d_c$.
- Thus we assume both claims hold for $t \ge s + 1$, $t_1 + t_2 \ge s + 1$ and prove that they hold for $t = t_1 + t_2 = s$.

Proof of Leibman's theorem on polynomial sequences.

• We first check the multiplication law.

$$D_m(g_1g_2)(n) = g_1(n)g_2(n)g_2(n+m)^{-1}g_1(n+m)^{-1}$$

= $g_1(n)D_mg_2(n)g_1(n)^{-1}D_mg_1(n)$
= $D_mg_2(n)[D_mg_2(n),g_1^{-1}(n)]D_mg_1(n).$

This has lc-degree $\leq \overline{d} - t - 1$ by applying the inductive assumption.

To check the inverse property, use induction in

$$D_m(g^{-1})(n) = g^{-1}(n)g(n+m)$$

= $g^{-1}(n)D_{-m}g(n+m)g(n)$
= $[g(n), D_{-m}g(n+m)^{-1}](D_{-m}g(n+m))^{-1}$

Proof of Leibman's theorem on polynomial sequences.

• To prove the claim regarding commutators, we use the identity

$$[xy, uv] = [x, u][x, v] [v, [u, x]] [[x, v] [v, [u, x]], [x, u]]$$

$$\cdot [[x, v] [v, [u, x]] [x, u], y] [y, v] [v, [u, y]] [y, u]$$

in the expression

$$D_m[g_1,g_2](n) = [g_1(n),g_2(n)][g_1(n+m),g_2(n+m)]^{-1}$$

= [g_1(n),g_2(n)][D_{-m}g_1(n+m)g_1(n),g_2(n)(D_{-m}g_2(n+m))^{-1}]^{-1}.

In making the expansion, $[y, u] = [g_1(n), g_2(n)]$, and this cancels the leading term. All remaining commutators are lower degree, so that the claim follows by induction.

April 4, 2017 51 / 57

< 一型

Definition

Let $g = (g_1, g_2, ..., g_j)$ be a polynomial system in a nilpotent group G. A *step* consists of replacing g with an equivalent system, then reducing by an integer m. We write the reduction of g as

$$g^* = (g_1, ..., g_{j-1}, \langle g_j | 1_G \rangle, \langle g_j | g_1 \rangle, ..., \langle g_j | g_{j-1} \rangle),$$

$$\langle g | h \rangle (n) = Dg(n) (Dh(n))^{-1} h(n),$$

omitting the dependence on m. The *complete reduction* of a system g is the system

$$g^{**} = (g_1, ..., g_{j-1}, \langle g_j | g_1 \rangle, ..., \langle g_j | g_{j-1} \rangle).$$

A complete step consists of replacing g with an equivalent system, then performing a complete reduction.

		${\color{red}{\leftarrow}} \square {\color{black}{\rightarrow}}$	< 🗗 >	< ≣⇒	◆厘≯	æ	9 Q (?
Bob Hough	Math 639: Lecture 15			A	oril 4, 2017		52 / 57

Walsh proves the following reduction theorem which reduces the main theorem on multiple ergodic averages to his theorem on systems of bounded complexity.

Theorem (Reduction theorem)

Let g be a polynomial system of size $|g| \leq C_1$ and degree $\leq \overline{d}$ for some superadditive vector $\overline{d} = (d_1, ..., d_s)$. Then

- One can go from g to the trivial system (1_G) in $O_{C_1,\overline{d}}(1)$ steps.
- One can go from g to a system consisting of a single sequence of degree ≤ d in O_{C1,d}(1) complete steps.

Lemma

Suppose s_1, s_2 are sequences of degree $\leq \overline{d}$ and h_i, h_j are sequences of degree $\leq \overline{d} - 1$. Then

$$\langle s_1 h_1 | s_2 h_2 \rangle = s_2 h$$

where h has degree $\leq \overline{d} - 1$. Also, $\langle s_1 h_1 | s_1 h_2 \rangle = s_1 \langle h_1 | h_2 \rangle$.

→ ∃ →

Proof.

Calculate

$$s_1h_1|s_2h_2\rangle = D(s_1h_1)D(s_2h_2)^{-1}s_2h_2$$

= $s_2D(s_1h_1)D(s_2h_2)^{-1}[D(s_1h_1)D(s_2h_2)^{-1}, s_2]h_2$
=: s_2h .

Also,

$$\langle s_1 h_1 | s_1 h_2 \rangle_m(n) = s_1(n) h_1(n) h_1(n+m)^{-1} s_1(n+m)^{-1} s_1(n+m) h_2(n+m)$$

= $s_1(n) \langle h_1 | h_2 \rangle_m(n).$

イロト イヨト イヨト イヨト

Proof of reduction theorem.

Write

$$g = \underline{h}_0 \oplus \bigoplus_{i=1}^l s_i \underline{h}_i$$

where each s_i is a polynomial sequence of degree $\leq d$ and each \underline{h}_i is a polynomial system of degree $\leq \overline{d} - 1$, and where $s(h_1, h_2, ..., h_j) = (sh_1, sh_2, ..., sh_j)$.

- We argue that in $O(C_1, \overline{d})$ steps we can produce a system $\tilde{g} = \underline{\tilde{h}}_0 \oplus \bigoplus_{i=1}^{l-1} s_i \underline{\tilde{h}}_i$ with $|\tilde{g}| \leq O(C_1, \overline{d})|g|$.
- Notice ⟨s_lh_{l,j_l}, 1_G⟩ has degree ≤ d − 1. Thus, when a single step is performed, <u>h</u>₀ is replaced with a system of size ≤ 2|<u>h</u>₀| + 1, while <u>h</u>_i is replaced by a system of size ≤ 2|<u>h</u>_i| for i ≤ l − 1, and s_l<u>h</u>_l is replaced with s_l<u>h</u>^{**}.

Proof of reduction theorem.

- By the inductive assumption on complete steps, \underline{h}_l may be reduced to (1_G) in $O(C_1, \overline{d})$ steps, and eliminated in the following step.
- We need to prove the corresponding inductive statement for reducing complete steps, but the proof is the same.