Math 639: Lecture 14

Ergodic theory

Bob Hough

March 28, 2017

Bob Hough

Math 639: Lecture 14

March 28, 2017 1 / 45

э.

3

Definition

A sequence $X_0, X_1, ...$ of random variables is *stationary* if, for each k, the shifted sequence $\{X_{n+k}, n \ge 0\}$ has the same distribution, that is, if for each m, $(X_0, ..., X_m)$ is equal in distribution to $(X_k, ..., X_{k+m})$.

イロト 不得 トイヨト イヨト 二日

Stationary sequence

Example

- X₀, X₁, X₂, ... are i.i.d.
- Let X_n be a Markov chain with transition probability p(x, A) and stationary probability distribution π , so $\pi(A) = \int \pi(dx)p(x, A)$. If X_0 has distribution π then $X_0, X_1, X_2, ...$ is stationary.
- A special case of the previous example: $S = \{0, 1\}$ and $p(x, \{1 x\}) = 1$. The stationary distribution is $\pi(0) = \pi(1) = \frac{1}{2}$. Thus $(X_0, X_1, ...)$ is either (0, 1, 0, 1, ...) or (1, 0, 1, 0, ...) with equal probability $\frac{1}{2}$.

・ロト ・四ト ・ヨト ・ヨト

Example

- (Rotation of the circle) Let Ω = [0,1), *F* Borel sets and P Lebesgue measure. Set X_n(ω) = ω + nθ mod 1. To see this as a Markov chain, set p(x, {y}) = 1 if y = (x + θ) mod 1.
- If $X_0, X_1, ...$ is a stationary sequence and $g : \mathbb{R}^{\{0,1,2...\}} \to \mathbb{R}$ is measurable then $Y_k = g(X_k, X_{k+1}, ...)$ is a stationary sequence.
- (Bernoulli shift) $\Omega = [0, 1)$, \mathscr{F} Borel, P Lebesgue measure. $Y_0(\omega) = \omega$ and for $n \ge 1$, let $Y_n(\omega) = 2Y_{n-1}(\omega) \mod 1$.

Example

(Measure preserving map) Let (Ω, ℱ, P) be a probability space. A measurable map φ : Ω → Ω is measure preserving if P(φ⁻¹A) = P(A) for all A ∈ ℱ. Let φⁿ = φ(φⁿ⁻¹) be the *n*th iterate, n ≥ 1, where φ⁰(ω) = ω. For X ∈ ℱ, X_n(ω) = X(φⁿω).

・ロト ・四ト ・ヨト ・ヨト

- Let $Y_0, Y_1, Y_2, ...$ be a stationary sequence in a space (S, \mathscr{S}) . By Kolmogorov's extension theorem there is a probability measure P on $(S^{\{0,1,2,...\}}, \mathscr{S}^{\{0,1,2,...\}})$ so that the sequence $X_n(\omega) = X(\omega_n)$ has the same distribution as $Y_0, Y_1, ...$
- Let φ be the shift operator φ(ω₀, ω₁, ...) = (ω₁, ω₂, ...). Then φ is measure preserving and X_n(ω) = X(φⁿω).

・ロト ・聞ト ・ ヨト ・ ヨト

Theorem

Any stationary sequence $\{X_n : n \ge 0\}$ can be embedded in a two-sided stationary sequence $\{Y_n : n \in \mathbb{Z}\}$.

Proof.

Define

$$\mathsf{Prob}(Y_{-m} \in A_0, ..., Y_n \in A_{m+n}) = \mathsf{Prob}(X_0 \in A_0, ..., X_{m+n} \in A_{m+n})$$

and apply Kolmogorov's extension theorem to extend Prob to a probability on $(S^{\mathbb{Z}}, \mathscr{S}^{\mathbb{Z}})$.

(日) (周) (三) (三)

Definition

Let ϕ be measure preserving.

- A set $A \in \mathscr{F}$ is invariant if $\phi^{-1}A = A$.
- A is almost invariant if $Prob(A\Delta \phi^{-1}(A)) = 0$.
- The class of invariant events is a σ -field, \mathscr{I} .
- A measure preserving transformation on (Ω, ℱ, Prob) is said to be ergodic if 𝒴 is trivial, in the sense that if A ∈ 𝒴 then Prob(A) ∈ {0, 1}.

▲ @ ▶ < ≥ ▶</p>

Example

Let $\{X_n\}$ be a Markov chain on countable state space S, with invariant probability measure $\pi > 0$.

- If the chain is reducible, then the various irreducible components are invariant sets with measure between 0 and 1, so the chain is not ergodic.
- If the chain is irreducible, then any invariant set is either empty or the whole space, so the chain is ergodic.

Example

Consider rotation on the circle, identified with \mathbb{R}/\mathbb{Z} , by an angle θ .

- If $\theta = \frac{m}{n}$, 0 < m < n integers then the rotation is not ergodic. If B is any subset of $[0, \frac{1}{n})$ then $A = \bigcup_{k=0}^{n-1} (B + \frac{k}{n})$ is invariant.
- If θ is irrational then the sequence is ergodic. To check this, note that $x_n = n\theta \mod 1$. If A is an invariant set with |A| > 0 then, for any $\delta > 0$ we can choose interval J = [a, b) with |b a| > 0 such that $|A \cap J| \ge (1 \delta)|J|$. By translating, $|A| \ge 1 2\delta$, so |A| = 1.

イロン 不聞と 不同と 不同と

Theorem

Let $g : \mathbb{R}^{\{0,1,\ldots\}} \to \mathbb{R}$ be measurable. If X_0, X_1, \ldots is an ergodic stationary sequence, then $Y_k = g(X_k, X_{k+1}, \ldots)$ is ergodic.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem

Let U be a unitary operator on a Hilbert space \mathscr{H} . Let P be the orthogonal projection onto $\{\psi : \psi \in \mathscr{H}, U\psi = \psi\}$. Then, for any $f \in \mathscr{H}$,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}U^nf=Pf.$$

We will prove a vast generalization of this theorem over the next several lectures.

Lemma

- If U is unitary, then Uf = f if and only if $U^*f = f$.
- **2** For any operator on a Hilbert space \mathscr{H} , $(\operatorname{Ran} A)^{\perp} = \operatorname{Ker} A^*$.

Proof.

To prove the first statement, since $U^*U = I$, if Uf = f then $U^*Uf = f = U^*f$. Meanwhile, if $U^*f = f$ then $\langle f - Uf, f - Uf \rangle = 0$ by unitarity. The second statement is immediate.

イロト 不得下 イヨト イヨト

Mean ergodic theorem

Proof of the Mean ergodic theorem.

• First let f = g - Ug. Then

$$\left\|\frac{1}{N}\sum_{n=0}^{N-1}U^nf\right\| = \left\|\frac{1}{N}(g-U^Ng)\right\| \leq \frac{2\|g\|}{N} \to 0.$$

The same holds for $f \in \text{Ran}(I - U)$ by a limiting argument.

- ② If $f \in (\text{Ran}(I U))^{\perp}$ then $U^*f = f$, so Uf = f, and the limit is Pf = Uf = f.
- **③** Thus the statement holds on all of $\overline{\text{Ran}(I-U)} \oplus \text{Ker}(I-U^*) = \mathcal{H}$.

イロト 不得下 イヨト イヨト

Theorem

Let ϕ be a measure-preserving transformation on (Ω, \mathscr{F}, P) . For any $X \in L^1$,

$$\frac{1}{n}\sum_{m=0}^{n-1}X(\phi^m\omega)\to\mathsf{E}[X|\mathscr{I}]$$

a.s and in L^1 .

3

(人間) トイヨト イヨト

Lemma (Maximal ergodic lemma) Let $X_j(\omega) = X(\phi^j \omega)$, $S_k(\omega) = X_0(\omega) + \dots + X_{k-1}(\omega)$, and $M_k(\omega) = \max(0, S_1(\omega), \dots, S_k(\omega))$. Then $\mathbb{E}[X\mathbf{1}(M_k > 0)] \ge 0.$

Bob Hough

Proof of Maximal ergodic lemma. • If $j \le k$ then $M_k(\phi\omega) \ge S_j(\phi\omega)$, so $X(\omega) + M_k(\phi\omega) \ge X(\omega) + S_j(\phi\omega) = S_{j+1}(\omega)$, so $X(\omega) \ge S_{j+1}(\omega) - M_k(\phi\omega)$, j = 1, 2, ..., k. • Trivially $X(\omega) \ge S_1(\omega) - M_k(\phi\omega)$ since $S_1 = X$. • Thus

$$E[X(\omega)\mathbf{1}(M_k > 0)] \ge \int_{M_k > 0} \max(S_1(\omega), ..., S_k(\omega)) - M_k(\phi\omega)dP$$
$$= \int_{M_k > 0} M_k(\omega) - M_k(\phi\omega)dP$$
$$\ge \int M_k(\omega) - M_k(\phi\omega)dP = 0.$$

Proof of Pointwise ergodic theorem.

- After replacing X with $X E[X|\mathscr{I}]$ we can assume that $E[X|\mathscr{I}] = 0$.
- Let $\overline{X} = \limsup \frac{S_n}{n}$ and let $\epsilon > 0$, $D = \{\omega : \overline{X}(\omega) > \epsilon\}$.

• Since
$$\overline{X}(\phi\omega) = \overline{X}(\omega), \ D \in \mathscr{I}$$

Define

$$X^*(\omega) = (X(\omega) - \epsilon) \mathbf{1}_D(\omega), \qquad S^*_n(\omega) = X^*(\omega) + \dots + X^*(\phi^{n-1}\omega)$$
$$M^*_n(\omega) = \max(0, S^*_1(\omega), \dots, S^*_n(\omega)), \qquad F_n = \{M^*_n > 0\}$$
$$F = \bigcup_n F_n = \left\{\sup_{k \ge 1} \frac{S^*_k}{k} > 0\right\} = D.$$

Proof of Pointwise ergodic theorem.

- By the Maximal ergodic theorem $E[X^*\mathbf{1}(F_n > 0)] \ge 0$.
- Since E[|X*|] ≤ E[|X|] + ε < ∞, the dominated convergence theorem implies E[X*1_{Fn}] → E[X*1_F], so E[X*1_F] ≥ 0.

• Since
$$F = D \in \mathscr{I}$$
,

$$0 \leq \mathsf{E}[X^*\mathbf{1}_D] = \mathsf{E}[(X-\epsilon)\mathbf{1}_D] = \mathsf{E}[\mathsf{E}[X|\mathscr{I}]\mathbf{1}_D] - \epsilon P(D) = -\epsilon P(D).$$

• Thus $0 = P(D) = P(\limsup S_n/n > \epsilon)$. Replacing X with -X obtains $S_n/n \to 0$ a.s.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Proof of Pointwise ergodic theorem.

• To get the convergence in L^1 we truncate. Let M > 0,

 $X'_{\mathcal{M}}(\omega) = X(\omega)\mathbf{1}(|X| \leq M), \qquad X''_{\mathcal{M}}(\omega) = X(\omega) - X'_{\mathcal{M}}(\omega).$

• By the earlier part of the proof,

$$\frac{1}{n}\sum_{m=0}^{n-1}X'_{M}(\phi^{m}\omega)\to \mathsf{E}[X'_{M}|\mathscr{I}] \text{ a.s.}$$

By bounded convergence

$$\mathsf{E}\left[\left|\frac{1}{n}\sum_{m=0}^{n-1}X'_{M}(\phi^{m}\omega)-\mathsf{E}[X'_{M}|\mathscr{I}]\right|\right]\to 0.$$

Proof of Pointwise ergodic theorem.

• To handle X''_M , bound

$$\mathsf{E}\left[\left|\frac{1}{n}\sum_{m=0}^{n-1}X_{M}''(\phi^{m}\omega)\right|\right] \leqslant \mathsf{E}[|X_{M}''|].$$

Since $E[|E[X''_M|\mathscr{I}]|] \leq E[E[|X''_M||\mathscr{I}]] = E[|X''_M|].$ • It follows

• 11 10110103

$$\limsup_{n \to \infty} \mathsf{E}\left[\left|\frac{1}{n} \sum_{m=0}^{n-1} X(\phi^m \omega) - \mathsf{E}[X|\mathscr{I}]\right|\right] \leq 2 \,\mathsf{E}[|X_M''|].$$

Bob Hough

イロト 人間ト イヨト イヨト

Wiener's maximal equality

Theorem

Let
$$X_j(\omega) = X(\phi^j \omega)$$
, $S_k(\omega) = X_0(\omega) + \cdots + X_{k-1}(\omega)$, $A_k(\omega) = \frac{S_k(\omega)}{k}$,
and $D_k = \max(A_1, ..., A_k)$. If $\alpha > 0$, then

$$\mathsf{Prob}(D_k > \alpha) \leq \alpha^{-1} \mathsf{E}[|X|].$$

Proof.

Let $B = \{D_k > \alpha\}$. It follows from the Maximal ergodic lemma that

$$\mathsf{E}[|X|] \ge \int_{B} X dP \ge \int_{B} \alpha dP = \alpha \operatorname{Prob}(B).$$

Markov chains

Example

 \bullet (i.i.d. sequence) Since ${\mathscr I}$ is trivial, the ergodic theorem implies

$$\frac{1}{n}\sum_{m=0}^{n-1}X_m\to \mathsf{E}[X_0]$$

a.s. and in L^1 .

• (Markov chains) Let $\{X_n\}$ be an irreducible Markov chain with stationary measure $\pi > 0$. Then \mathscr{I} is trivial again, so

$$\frac{1}{n}\sum_{m=0}^{n-1}f(X_m)\to\sum_x f(x)\pi(x)$$

a.s. and in L^1 .

(日) (同) (三) (三)

Example

• (irrational rotations) Let $\Omega = [0,1)$, $\phi(\omega) = \omega + \theta \mod 1$ where θ is irrational. Again \mathscr{I} is trivial, so for A a Borel set,

$$\frac{1}{n}\sum_{m=0}^{n-1}\mathbf{1}(\phi^m\omega\in A)\to |A|, \ a.s.$$

р.	эb	ы	

3

(人間) トイヨト イヨト

Theorem

If A = [a, b) is an interval then the exceptional set of rotations is empty.

Proof.

Approximate the characteristic function of the interval from above and below by trigonometric polynomials. Use that $\sum_{n=0}^{N} e(k\theta) = \frac{1-e((N+1)k\theta)}{1-e(k\theta)}$, which is bounded.

過 ト イヨ ト イヨト

Let $\theta = \log_{10} 2$ and for $1 \le k \le 9$, $A_k = [\log_{10} k, \log_{10}(k+1))$. By the previous result,

$$\frac{1}{n} \sum_{m=0}^{n-1} \mathbf{1}_{A_k}(\phi^m(0)) \to \log_{10} \frac{k+1}{k}.$$

This says that the first digit of the powers of 2 is asymptotically distributed according to Benford's law.

(日) (周) (三) (三)

Theorem

Let $X_1, X_2, ...$ be a stationary sequence taking values in \mathbb{R}^d and $S_k = X_1 + \cdots + X_k$, let $A = \{S_k \neq 0 \text{ all } k \ge 1\}$, and let $R_n = |\{S_1, ..., S_n\}|$ be the number of points visited at time n. As $n \to \infty$,

$$\frac{R_n}{n} \to \mathsf{E}[\mathbf{1}_A|\mathscr{I}] \text{ a.s.}$$

Pal	<u>ч</u> Ц.	ough
BOI	2 1 10	Jugn

< < p>< < p>

Recurrence

Proof.

- Let $X_1, X_2, ...$ constructed on $(\mathbb{R}^d)^{\{0,1,\ldots\}}$ with $X_n(\omega) = \omega_n$, with ϕ the shift operator.
- We have $R_n \ge \sum_{m=1}^n \mathbf{1}_A(\phi^m \omega)$. Thus the ergodic theorem gives

$$\liminf_{n\to\infty}\frac{R_n}{n} \ge \mathsf{E}[\mathbf{1}_A|\mathscr{I}], \ a.s.$$

• Let $A_k = \{S_1 \neq 0, S_2 \neq 0, ..., S_k \neq 0\}$. One has

$$R_n \leq k + \sum_{m=1}^{n-k} \mathbf{1}_{A_k}(\phi^m \omega)$$

so $\limsup_{n\to\infty} \frac{R_n}{n} \leq \mathsf{E}[\mathbf{1}_{A_k}|\mathscr{I}]$. Since $\mathsf{E}[\mathbf{1}_{A_k}|\mathscr{I}] \downarrow \mathsf{E}[\mathbf{1}_A|\mathscr{I}]$, the claim follows.

Theorem

Let $X_1, X_2, ...$ be a stationary sequence taking values in \mathbb{Z} with $E[|X_i|] < \infty$. Let $S_n = X_1 + \cdots + X_n$, and let $A = \{S_1 \neq 0, S_2 \neq 0, ...\}$.

- If $E[X_1|\mathscr{I}] = 0$ then Prob(A) = 0.
- Also, if Prob(A) = 0 then $Prob(S_n = 0 \text{ i.o.}) = 1$.

イロト イポト イヨト イヨト 二日

Recurrence

Proof.

• If $E[X_1|\mathscr{I}] = 0$ then the ergodic theorem implies $S_n/n \to 0$ a.s. • For any K,

$$\limsup_{n\to\infty}\left(\max_{1\leqslant k\leqslant n}\frac{|S_k|}{n}\right)\leqslant \max_{k\geqslant K}\frac{|S_k|}{k}.$$

- This tends to 0 as $K \to \infty$, so $\frac{R_n}{n} \to 0$, and $\operatorname{Prob}(A) = 0$.
- Let $F_j = \{S_i \neq 0, \text{ for } i < j, S_j = 0\}$ and $G_{j,k} = \{S_{j+i} - S_j \neq 0 \text{ for } 1 \leq i < k, S_{j+k} - S_j = 0\}.$
- Since $\operatorname{Prob}(A) = 0$, $\sum \operatorname{Prob}(F_k) = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Recurrence

Proof.

By stationarity, Prob(G_{j,k}) = Prob(F_k). Also, for fixed j, the G_{j,k} are disjoint and have union of full measure, so

$$\sum_{j,k} \mathsf{Prob}(F_j \cap G_{j,k}) = 1.$$

• It follows that $Prob(S_n = 0 \text{ at least } 2 \text{ times}) = 1$. Iterating, $Prob(S_n = 0 \text{ at least } k \text{ times}) = 1 \text{ for all } k$.

Bo	h	ш	~	~	h
Бυ	D		ou	в	

< 回 ト < 三 ト < 三 ト

Theorem

Let A be a set and let $T_0 = 0$, $T_n = \inf\{m > T_{n-1} : X_m \in A\}$. If $Prob(X_n \in A \text{ at least once}) = 1$, then conditioned on $X_0 \in A$, $t_n = T_n - T_{n-1}$ is a stationary sequence with

$$\mathsf{E}[\mathcal{T}_1|X_0 \in A] = \frac{1}{\mathsf{Prob}[X_0 \in A]}$$

See Durrett pp. 340-341.

The result is due to Poincaré.

Theorem

Suppose $\phi : \Omega \to \Omega$ preserves Prob in the sense that $\operatorname{Prob} \circ \phi^{-1} = \operatorname{Prob}$. Let $T_A = \inf\{n \ge 1 : \phi^n(\omega) \in A\}$.

- $T_A < \infty \ a.s. \ on \ A$
- **2** $\{\phi^n(\omega) \in A \text{ i.o.}\} \supset A$
- Solution If ϕ is ergodic and $\operatorname{Prob}(A) > 0$, then $\operatorname{Prob}(\phi^n(\omega) \in A \text{ i.o.}) = 1$.

Recurrence

Proof.

- Let $B = \{\omega \in A, T_A = \infty\}$. If $\omega \in \phi^{-m}B$ then $\phi^m(\omega) \in A$, by $\phi^n(\omega) \notin A$ for n > m, so the $\phi^{-m}B$ are pairwise disjoint. Since ϕ is measure preserving, Prob(B) = 0.
- 2 Since ϕ^k is measure preserving,

$$0 = \operatorname{Prob}(\omega \in A, \phi^{nk}(\omega) \notin A, \text{ for all } n \ge 1)$$

$$\ge \operatorname{Prob}(\omega \in A, \phi^{m}(\omega) \notin A, \text{ for all } m \ge k).$$

This holds for all k, so the claim follows.

Solution B = {ω : φⁿ(ω) ∈ A i.o.} is invariant and contains A, hence has probability 1.

・ロン ・四 ・ ・ ヨン ・ ヨン

The subadditive ergodic theorem

Theorem (Subadditive ergodic theorem) Suppose $X_{m,n}$, $0 \leq m < n$ satisfy **1** $X_{0,m} + X_{m,n} \ge X_{0,n}$ **2** $\{X_{nk,(n+1)k}, n \ge 1\}$ is a stationary sequence for each k So The distribution of $\{X_{m,m+k}, k \ge 1\}$ does not depend on m. • $\mathbb{E}[X_{0,1}^+] < \infty$ and for each n, $\mathbb{E}[X_{0,n}] \ge \gamma_0 n$, where $\gamma_0 > -\infty$. Then 1 $\lim_{n\to\infty} \frac{1}{n} \mathbb{E}[X_{0,n}] = \inf_m \frac{1}{m} \mathbb{E}[X_{0,m}] = \gamma.$ 2 $X = \lim_{n \to \infty} \frac{X_{0,n}}{n}$ exists a.s. and in L^1 , so $E[X] = \gamma$. If the stationary sequences in 2 above are ergodic then $X = \gamma$ a.s.

イロト 不得下 イヨト イヨト 二日

Examples

Example

- (Stationary sequences) Suppose $\xi_1, \xi_2, ...$ is a stationary sequence with $E[|\xi_k|] < \infty$, and let $X_{m,n} = \xi_{m+1} + \cdots + \xi_n$. Then $X_{0,n} = X_{0,m} + X_{m,n}$.
- (Range of a random walk) Suppose $\xi_1, \xi_2, ...$ is a stationary sequence and let $S_n = \xi_1 + \cdots + \xi_n$. Let $X_{m,n} = |\{S_{m+1}, ..., S_n\}|$. Then $X_{0,m} + X_{m,n} \ge X_{0,n}$.
- (Longest common subsequence) Given ergodic stationary sequences $X_1, X_2, X_3, ...$ and $Y_1, Y_2, Y_3, ...$, let $L_{m,n} = \max\{K : X_{i_k} = Y_{j_k}, 1 \le k \le K\}$ where $m < i_1 < i_2 < \cdots < i_K \le n$ and $m < j_1 < j_2 < \cdots < j_K \le n$. Then

$$L_{0,m}+L_{m,n} \geq L_{0,n}.$$

< 白 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.

The proof is in four steps.

• We have $E[|X_{0,n}|] \leq Cn$. To check this, use $X_{0,m}^+ + X_{m,n}^+ \geq X_{0,n}^+$. Thus $E[X_{0,n}^+] \leq n E[X_{0,1}^+] < \infty$. Combine this with $E[X_{0,n}] \geq \gamma_0 n$ where $\gamma_0 > -\infty$. Let $a_n = E[X_{0,n}]$. Then $a_m + a_{n-m} \geq a_n$, which implies $a_n = \sum_{n=1}^{n} a_n$

$$\frac{2m}{n} \to \inf_{m \ge 1} \frac{2m}{m} = \gamma$$

Bo	h l	Ho	ııσ	h
00		10	чъ	

The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.

• Write $n = km + \ell$. Then

$$\frac{X_{0,n}}{n} \leq \frac{k}{km+\ell} \frac{X_{0,m}+\cdots+X_{(k-1)m,km}}{k} + \frac{X_{km,n}}{n}.$$

The pointwise ergodic theorem gives

$$\frac{X_{0,m} + \dots + X_{(k-1)m,km}}{k} \to A_m \text{ a.s. and in } L^1$$

where $A_m = \mathbb{E}[X_{0,m}|\mathscr{I}_m]$, and \mathscr{I}_m is shift invariant for $X_{(k-1)m,km}$, $k \ge 1$. For fixed ℓ , $\epsilon > 0$, since $\mathbb{E}[X_{0,\ell}^+] < \infty$,

$$\sum_{k=1}^{\infty} \operatorname{Prob}(X_{km,km+\ell} > (km+\ell)\epsilon) \leq \sum_{k=1}^{\infty} \operatorname{Prob}(X_{0,\ell} > k\epsilon) < \infty.$$

Proof of the subadditive ergodic theorem.

Combining these observations,

$$\overline{X} = \limsup \frac{X_{0,n}}{n} \leqslant \frac{A_m}{m},$$

so $E[\overline{X}] \leq \frac{1}{m} E[X_{0,m}]$, which implies $E[\overline{X}] \leq \gamma$. If the sequences are ergodic, then $\overline{X} \leq \gamma$.

The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.

• Let $\underline{X} = \liminf_{n \to \infty} \frac{X_{0,n}}{n}$. Let $\epsilon > 0$ and let $Z = \epsilon + (\underline{X} \lor -M)$. Since $E[\overline{X}] < \infty$, $E[|Z|] < \infty$. Define $Y_{m,n} = X_{m,n} - (n-m)Z$ and $\underline{Y} = \liminf_{n \to \infty} \frac{Y_{0,n}}{n} \leqslant -\epsilon$. Define $T_m = \min\{n \ge 1 : Y_{m,m+n} \le 0\}$. By stationarity, T_m is equal in distribution to T_0 , so

$$\mathsf{E}[Y_{m,m+1}\mathbf{1}(T_m > N)] = \mathsf{E}[Y_{0,1}\mathbf{1}(T_0 > N)].$$

Since $Prob(T_0 < \infty) = 1$, pick *N* large enough so that

$$\mathsf{E}[Y_{0,1}\mathbf{1}(T_0 > N)] \leqslant \epsilon.$$

イロト 不得下 イヨト イヨト 二日

Proof of the subadditive ergodic theorem.

Define

$$S_m = \begin{cases} T_m & \text{on } \{T_m \leqslant N\} \\ 1 & \text{on } \{T_m > N\} \end{cases}$$
$$\xi_m = \begin{cases} 0 & \text{on } \{T_m \leqslant N\} \\ Y_{m,m+1} & \text{on } \{T_m > N\} \end{cases}.$$

Since $Y_{m,m+T_m} \leq 0$ and $S_m = 1$, $Y_{m,m+1} > 0$ on $\{T_m > N\}$ we have $Y_{m,m+S_m} \leq \xi_m$ and $\xi_m \ge 0$.

(日) (周) (三) (三)

The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.

Let $R_0 = 0$ and $R_k = R_{k-1} + S_{R_{k-1}}$. Define $K = \max\{k : R_k \leq n\}$. We have

$$Y_{0,n} \leq Y_{R_0,R_1} + Y_{R_1,R_2} + \ldots + Y_{R_{K-1},R_K} + Y_{R_K,n} \leq \sum_{m=0}^{n-1} \xi_m + \sum_{j=1}^N |Y_{n-j,n-j+1}|.$$

Hence,

$$\limsup_{n\to\infty}\frac{1}{n}\operatorname{\mathsf{E}}[Y_{0,n}]\leqslant\operatorname{\mathsf{E}}[\xi_0]\leqslant\operatorname{\mathsf{E}}[Y_{0,1}\mathbf{1}(T_0>N)]\leqslant\epsilon.$$

Thus $\gamma = \lim_{n \to \infty} \frac{1}{n} \mathbb{E}[X_{0,n}] \leq 2\epsilon + \mathbb{E}[\underline{X} \vee -M]$. Thus $\gamma = \mathbb{E}[\underline{X}] = \mathbb{E}[\overline{X}]$ and $\underline{X} = \overline{X}$ almost surely.

イロト イポト イヨト イヨト 二日

The subadditive ergodic theorem

Proof of the subadditive ergodic theorem.

See Durrett p. 346 for the convergence in L^1 .

Bo		

Products of random matrices

Example

• (Products of random matrices) Suppose $A_1, A_2, ...$ is a stationary sequence of $k \times k$ matrices with positive entries, and let

$$\alpha_{m,n}(i,j) = (A_{m+1} \cdots A_n)(i,j)$$

Note $\alpha_{0,m}(1,1)\alpha_{m,n}(1,1) \leq \alpha_{0,n}(1,1)$. Set $X_{m,n} = -\log \alpha_{m,n}(1,1)$ so $X_{0,m} + X_{m,n} \geq X_{0,n}$. Subject to

 $\mathsf{E}[|\log A_m(i,j)|] < \infty, \text{ all } i,j$

we obtain $\frac{1}{n}X_{0,n} \to X$ a.s.

< 回 ト < 三 ト < 三 ト

First-passage percolation

Example

(First passage percolation) Consider \mathbb{Z}^2 as a graph with edges connecting $x, y \in \mathbb{Z}^2$ when |x - y| = 1. Assign i.i.d. non-negative edge weights $\tau(e)$ of finite mean.

• If $x_0 = x, x_1, x_2, ..., x_n = y$ is a path from x to y with $|x_m - x_{m-1}| = 1$, define the *travel time* to be

$$\tau(x_0, x_1) + \cdots + \tau(x_{n-1}, x_n).$$

- Define the *passage time* t(x, y) to be the infimum of travel times over all paths from x to y.
- Define $X_{m,n} = t((m,0), (n,0))$. Since $X_{0,m} + X_{m,n} \ge X_{0,n}$, one obtains $\frac{X_{0,n}}{n} \to X$ a.s. We have X is almost surely constant, since it is measurable in the tail sigma field.