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Markov chains

Definition
Given a filtration {.#,}, an .#,-adapted stochastic process {X,} taking

values in a measurable space (S,.7) is called an .%,-Markov chain with
state space (S,.) if for any Ae .7,

Prob[Xnt+1 € A|-Fn] = Prob[X,+1 € A|X,].

Informally, Markov chains are ‘memoryless.’
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Markov chains

Definition

A set function p : (S,.) — [0,1] is a transition probability if
© Foreach xe S, A— p(x,A) is a probability measure on (S,.7).
@ For each Ae ., x — p(x, A) is a measurable function.

We say an .%, Markov chain {X,} has transition probability p,(x, A) if
almost surely

Prob(Xp+1 € Al.%)) = pn(Xa, A).

The Markov chain is called homogeneous if p,(x,A) = p(x, A) for all
n,xeSand Ae.”.
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The bounded o-algebra

Denote b.7 the collection of all bounded (R, % )-valued measurable
mappings on (S,.7).
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Monotone class theorem

Theorem

Let of be a m-system that contains Q2 and let 7 be a collection of
real-valued functions that satisfies

Q IfAe o, then 1, € J7.
Q Iff,ge J, then f + g and cf € € for any real c.

© Iff, e ¢ are non-negative and increase to a bounded function f,
then f € 7.

Then 7 contains b. .
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Markov chains

Lemma

If {X,} is an Z,-Markov chain with state space (S,.7) and transition
probabilities p,(-,-), then for any h € b.¥ and all k = 0,

E[h(Xk+1|Fk)] = (prh)(Xk),

where h — (pxh) : b — b and (pxh)(x) = § pk(x, dy)h(y) denotes
the integral of h under probability measure pk( ).
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Transition probabilities

Proposition

Given a o-finite measure vion (X, Z") and v» : X x . — [0, 1] such that
e B — w»(x, B) is a probability measure on (S,.7) for each fixed x € X
e x — »(x, B) is measurable on (X, Z") for each fixed B € .

there exists a unique o-finite measure ;1 = v1 @ v on (X x S, Z" x &)
such that, for all Ae & and B € .7,

u(A x B) = J; v1(dx)va(x, B).
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Markov chains

Given a transition probability p and an initial distribution y on (S,.%),
define probability distributions

Prob(X; € B;,0 < j < n) =J
By

u(ds) | ploo,a) -+ | plxnea, ).

By n

Theorem

Xy is @ Markov chain with respect to %, = o(Xy, ..., Xn) with transition
probability p.
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Markov chains

Theorem

If X, is a Markov chain with transition probabilities p and initial
distribution p, then the finite dimensional distributions are given as above.
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The law of a Markov chain

Definition

The law of a Markov chain {X,} with state space (S,.#) and initial
distribution v is the unique probability measure Prob, on (§%,.7%) (the
product space) with finite dimensional distributions

Prob,({s : sj€ A;,i =0,...,n}) = Prob(Xp € Ao, ..., Xn € Apn),

for A; € 7. )
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Random walk

Example (Random walk)

Let &1,&,... € RY be i.i.d. with distribution p. Let Xp = x € RY and let
Xn=Xo+& + -+ &, Then X, is a Markov chain with transition
probability

p(x; A) = pu(A = x),

where A—x ={y —x:y € A}.
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Markov property

The following lemma is useful for proving the Markov property.
Lemma

Let X and Y take values in (S,.). Suppose . and Y are independent.
Let X € .Z, ¢ be a function with E[|¢(X, Y)|] < oo and let
g(x) = Elg(x, Y)]. Then

Elp(X, Y)|7] = g(X).
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Examples

To verify that random walk defines a Markov chain, let &% = %,, X = X,,
Y =&nt+1, and ¢(x,y) = L(x +y € A). Thus g(x) = u(A—x).
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Branching processes

Example
Let S ={0,1,2,...} and

p(i,j) = Prob (Z Em =j>
m=1

where &1, &p, ... are i.i.d. non-negative integer valued random variables.
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Renewal chain

Example
Let S ={0,1,2,...}, fi >0, and X, ;°; fx = 1. Set

p(0,j) =fiy1 Jj=0
p(i,i—1)=1 i>1
p(i,j) =0  otherwise.
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Ehrenfest chain

Example
Let S ={0,1,2,...,r} and

—k

plk,k+1) = =
k

k k—1)=—

p(k, ) .

p(i,j) = 0 otherwise.

This models r particles moving in a split chamber with a small opening
connecting the two sides of the chamber. A particle is picked uniformly at
random and moved to the other chamber.
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Birth and death chains

Example
Let S ={0,1,2,...}. These chains enforce p(i,j) = 0 when |i — j| > 1. J
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Strong Markov property

Proposition

Consider a homogeneous Markov chain {X,} on probability space

(5%, 7% Prob,). Denote § : 5 — S% the shift operator (Qw)k = wk+1
and (0"w)k = wiyn for k,n > 0. Let {h,} = b with sup, , |hn(w)| < oo,
and let T be a stopping time

E,[h (07w)|.Z,]1(r < ) = Ex_[h,]1(r < o).

v

Here E, denotes expectation taken with respect to the probability measure
Prob,, .
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Strong Markov property

Proof.
o We first check
E,[h(0"w)|-Fn] = Ex,[h],

for h(w) = Héf:o ge(wp), with gge b.”, £ =0, ..., k. The same
statement for general h then follows from the monotone class
theorem.

o Let Be . "1 write Um=VQp®---® p and calculate

K
E.[h(0"w)1g(wo, -, wn)] = tntk [13 X0y -5 X H (Xe4n ]

= ln [IB(XO,---, )&0(Xn JP Xn, dy1)g1(y1)-- jp()/k 1,d)/k)gk(yk)]
— B [15(Xo, - Xo) Ex.[A]].

Ol
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Strong Markov property

Proof.

@ To introduce the stopping time, write E,[Y,|-Z%,] = g(n, Xy).
Conditioning on the value of the stopping time,

B[, (07)1(r = K)|F:] = gk, X)1(r = k) = g(r, X, )1(r = k).

@ Sum in k to complete the estimate.
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Invariant measure

Definition
@ A measure v on (S,.) such that ¥(S) >0 and vo 071(:) = v(), i.e.

for all Ae .#%,
V(A) =v({w: 0(w) € A})
is called shift invariant. An event A € % is called shift invariant if
A=071A.
@ We say that a stochastic process {X,} on a state space {S,.”} is
stationary if its joint law v is shift invariant.
@ A positive measure 1 on a (S,.7) is called an invariant measure for a

transition probability p(-,-) if it defines a shift invariant measure
Prob,,(-).
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Invariant measure

Lemma

Suppose a o-finite measure v and transition probability po(-,-) on (S,.%)
are such that v ® po(S x A) = v(A) for any Ae .. Then, for all k > 1
and Ae Fk+1

VPR - ®@pk(SXxA)=vR@p1® - Q pk(A).
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Invariant measure

Proof.
@ By assumption, v((pof)) = v(f) for f = I4 and any A€ .¥. By the
monotone class theorem, this extends to all f € b.¥.

o Consider fi(x) = la,(x)p1 ® - - - ® pi(x, Ay X - -+ x Ag). Since
pih € b for any he b, we have f, € b.”.

@ Observe v(fy) =rv Q@ p1 ® - ® pk(A) for A= Ag x --- x Ay and

v((pofx)) = Ll/(dy) L po(y, dx)p1 ® - - - ® pi(x, Ap x - x Ag)

=VvRp® - ®pk(S x A).

The claim for f follows by noting
pL® - ®pr(x,Ar x -+ x Ax) € b, and hence in general by
appealing to the monotone class theorem.
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Invariant measure

Theorem

A positive o-finite measure p(-) on (S,.%) is an invariant measure for

transition probability p(-,-) if and only if p® p(S x A) = u(A) for all
Ae 7.
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Invariant measure

Proof.
@ If 11 is a positive o-finite measure, then so are the measures Prob,,
and Prob, of~! on (5%,.7%).
o The f.d.d. of Prob, are the o-finite measures 1, (A) = u ®* p(A) for
Ae 7KL
o By definition of 6, the f.d.d. of Prob,, 00~ are ux;1(S x A).

@ Thus a positive o-finite measure p is an invariant measure for p(-,-) if
and only if px41(S x A) = uk(A) for all k and Ae .#*+1. This is
equivalent to u® p(S x A) = u(A).
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Countable state spaces

Consider a homogeneous Markov chain {X,} on a countable state space
(5.2°).

Theorem

For any x,y € S and non-negative integers k < n

Prob, (X, = y) = Y Proby (X = z) Prob(X,—x = y).
zeS )
Proof.
This follows on conditioning on X. [
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Harmonic functions

Definition
We say that £ : S — R which is bounded above or below, is
super-harmonic for transition probability p(x,y) at x € S if

F(x) = Y, Pl Y)F(y)
y€eS
and sub-harmonic at x if
F(x) < ), Pl Y)F(y)
=)

harmonic if equality holds. f is sub/super/harmonic if it is
sub/super/harmonic at each x € S.
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Accessible states

Definition

o Let p,y, = ProbX(Ty < ) be the probability that, started from state
X, a Markov chain visits state y in finite time.

o If x # y, and p,, > 0 then y is accessible.

@ x # y intercommunicate, denoted x < y if each is accessible from
the other.

@ A non-empty collection of states C = S is irreducible if each two
states of C intercommunicate, and closed if no y ¢ C is accessible
from some x € C. )
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Accessible states

Exercise
o Check that if py, > 0 and p,, > 0 then p,, > 0.
o This implies that intercommunication is an equivalence relation, so
the state space splits into maximal irreducible sets, which are

connected by a directed graph indicating which class leads to another.
This graph is transitive and acyclic.
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Recurrent states

Definition
A state y € S is called recurrent, or persistent if p,, = 1 and transient if
Pyy < 1.
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Return times

Theorem

Let T}(,’ =0, and for k > 1, Tyk = inf{n > Ty"_1 : Xp =y} be the time of
the kth return to y. For any x,y € S and k > 1,

k k—1
Proby(Ty < o0) = pxypy, -
Let Ny (y) denote the number of visits to state y. Then if y is transcient,

Px:
BN ()] = 122
yy

If y is recurrent then Ex[Ny(y)] is O or oo according as pxy, is 0 or 1.
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Return times

Proof.

The formula ProbX(T)f‘ < ) = pxyp’;;l follows from the corresponding
formula for iterated stopping times. Calculate

Ex[Nao(y)] = > Proby(Noo(y) > k)
k=1

e}
= ) Proby(Ty < )
k=1

which gives the claimed evaluation. [
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Recurrence

Theorem

The following equivalent properties characterize a recurrent state y:

°p, =1

@ Prob, (T} < o) =1 for all k
@ Prob, (X, =y io)=1

@ Proby (Ny(y) =) =1

° E/[Nyp(y)] =0

This follows from the previous theorem.
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Decomposition theorem

Theorem

A countable state space S of a homogeneous Markov chain can be
partitioned uniquely as

S:TUR1UR2U...

where T is the set of transient states and the R; are disjoint, irreducible
closed sets of recurrent states with p,, = 1 whenever x,y € R;.
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Decomposition Theorem

Proof.

@ One easily checks that any pair of interconnected states are either
both recurrent or both transient.

@ In particular, an irreducible set of states is either transient or
recurrent simultaneously. Grouping all transient states together, this
provides the decomposition.

@ Suppose x is recurrent. If p,, > 0, then p,, > 0 since otherwise there
is a positive probability of passing from x to y and not returning.
This proves the closed condition.
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Irreducible, recurrent, transient

Definition

A homogeneous Markov chain is irreducible if S is irreducible, is recurrent
if each state is recurrent, and is transient if each state is transient.
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Recurrence

Theorem

If F is a finite set of transient states then for any initial distribution
Prob, (X, € F i.0.) = 0. Any finite closed set C contains at least one
recurrent state, and if C is also irreducible then C is recurrent.
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Recurrence

Proof.

o If F is a finite set of transient states, then for any x,

Ex[>fep Noo(f)] < 00, so the probability that the sites are visited
infinitely often is 0.

o If a finite set of sites is closed, then once the chain enters the set, it
never leaves. In particular, some site is visited infinitely often and is
recurrent.

@ If an irreducible set contains a recurrent state, then all states are
recurrent, which proves the last claim.
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Absorbing states

Definition
If a singleton {x} is a closed set of a homogeneous Markov chain, then we
call x an absorbing state for the chain.
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Recurrent states

Theorem

Suppose S is irreducible for a chain {X,} and there exists h: S — [0, o0)

of finite level sets G, = {x : h(x) < r} that is super-harmonic at S\G, for
some finite r. Then {X,} is recurrent.
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Recurrent states

Proof.

@ We can assume S is infinite, and that ry is sufficiently large so that h
is superharmonic in S\Gy,.

o If Proby(Tg, < ) =1 for all x € S, then S contains a recurrent
state, hence is recurrent by irreducibility.

o Let r > rp and let G, = G, U (S\G,). Thus h is super-harmonic in
x ¢ C, so h(X,.7.) is a non-negative sup-martingale for Prob, for
any x € S.

@ Since C¢ c G, is a finite set, Proby(7¢ < o) = 1. Calculate

h(x) = Ex[h(X;c)] = r Probx(rc < 76,)-
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Recurrent states

Proof.

@ Thus
h(x)

r

Prob,(7g,, < 20) = Proby(rg, <7c) 21—

Letting r — o0 proves the claim.
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Excessive measures

Definition
We say that a non-zero 11 : S — [0, 0] is an excessive measure if

u(y) = ) n()p(x,y),  Vyes.

X€ES
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Invariant measure

Theorem

Let T, denote the possibly infinite return time to a state z by
homogeneous Markov chain {X,}. Then

T.—1
nz(y) = E; [ > X =y)]

n=0

is an excessive measure for {X,}, the support of which is the closed set of
all states accessible from z. If z is a recurrent state then p,(-) is an
invariant measure, whose support is closed and recurrent.

Bob Hough Math 639: Lecture 12 March 21, 2017 44 / 58



Invariant measure

Proof.

o Set hi(w,y) = 2= 1 (wny = y). Thus p1z(y) = Ex[ho(w, y)].
@ Calculate

E.[h(w,y)] = E; (T, > m1(Xa1 = y) Y, 1(X

XxeS

I
]
P8 18

E, [1(T, > n)1(X, = x) Prob,(Xps1 = y|Zn)]

X
m
(95
3
Il
o

E. [1(Tz > m)1(Xs = x)] p(x,y)

[
g
18

X
m
5]
3
Il

/\O

pz(x)p(x, y)-

I
AN

O

v
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Invariant measure

Proof.

@ Observe that if wy = z, hp(w, y) =

or T,(w) < o0.

o It follows that

,Uz(.y) = EZ[hO(wvy)]

with equality when y # z or z is recurrent. This proves that u, is

excessive.

@ lterating, for any k > 1

> ) (%)

x€eS

with equality if z is recurrent.

hi(w, y) with equality when y # z

2lhi(w, y)]

= z(x)

xeS

Proby (Xx = y)

Ol
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Invariant measure

Proof.
o If p,, = 0 then p,(y) = 0, while if p,, > 0 then Prob, (X, =y) >0
for some finite k, so that u(y) = p,(z) Prob,(Xx = y). Thus when
z is recurrent, the support of pu, is its irreducible component.
o If x & zthen 1 = p,(z) = pz(x) Proby(Xx = z) for some k, whence
[z is invariant and o-finite.

Ol

v
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Invariant measure

Theorem

If R is a recurrent equivalence class of states then the invariant measure
whose support is contained in R is unique and has R as its support. In

particular, the invariant measure of an irreducible, recurrent chain is
unique.
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Invariant measure

Proof.

@ Since R is closed, the restriction of p(-,) to R is a transition
probability, so we may assume S = R.
@ Hence there exists a strictly positive invariant measure . = i, on R

@ Define transition probability g(x,y) = %.

@ Let v be any excessive probability for p(-,-). Then for any y,

vy) = Y v(x)p(x.y) = Y v(x)qly, x) )

xeS xeS M(X)

so that ﬁ is a superharmonic function for q.
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Invariant measure

Proof.

@ By considering paths, we can check that py, > 0 for p implies
pyx > 0 for g, and hence the Markov chain with transition probability
q is irreducible.

@ Considering loops, the probability of a return from x to x at step k
under p is equal to the same probability under g (by running each
loop in reverse). Hence the g-chain is recurrent.

@ Check as an exercise that the only positive super-harmonic function
for an irreducible recurrent chain is a constant, and hence v is a
scalar multiple of p.
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Reversible chains

Definition

A non-zero i : S — [0,0) is called a reversible measure for the transition
probability p(-,-) if for all x,y € S, u(x)p(x,y) = u(y)p(y, x). The
transition probability p(-, ) is reversible if it has a reversible measure.
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Time-reversed chain

Definition

If 1(+) is an invariant measure for transition probability p(x,y), then
q(x,y) = u(y)p(y, x)/u(x) is a transition probability on the support of
u(+), call the adjoint or dual of p with respect to p. The corresponding
Markov chain is called the time-reversed chain.
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Random walk on a graph

Definition
@ A network consists of a countable (finite or infinite) set of vertices V
with a symmetric weight function w : V x V — [0, 0) (i.e.
Wxy = wyx for all x, y € V). Set u(x) = X o Wy
@ A random walk on the network is a homogeneous Markov chain of
state space V and transition probability

f1(x)

p(Xv)/) =
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Recurrent states

Definition
Let T, denote the first return time to state z. A recurrent state z is called
positive recurrent if E;[ T,] < oo and null recurrent otherwise.
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Recurrence

Theorem

If w(-) is an invariant probability measure, then all states z with m(z) > 0
are positive recurrent. Further, if the support of 7(-) is an irreducible set
R of positive recurrent states then w(z) = 1/E,[T,] for all z € R.
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Recurrence

Proof.

@ Starting the chain from the invariant distribution 7 one easily verifies
that 7 is supported on recurrent states.

o Calculate, starting from a recurrent state z,

T,—1
pz(S) = Z pz(y) = Ex Z Z 1(Xy =y) | = E;[T:].
yeS y€S n=0

Thus, if u is a finite measure then z is positive recurrent.

e If 7 is supported on a single irreducible then 7(z) = Zj((?) = ﬁ

@ To complete the proof, note that an invariant probability measure is a
mixture of invariant probability measures supported on single
irreducibles.

Ol
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Markovian coupling

Theorem

Let {X,} and {Y,} be two independent copies of an aperiodic, irreducible
Markov chain. Suppose further that the irreducible chain Z, = (Xp, Yy) is
recurrent. Then, regardless of the initial distribution (Xo, Yo), the first
meeting time 7 = min{{ = 0 : X; = Y}} of the two processes is a.s. finite,
and for any n,

H‘Dg/ﬂxn - gYnHTV <2 Pr0b<7' > n).
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Markovian coupling

Proof.
o The Markov chain Z, = (X,, Y,) on S? is irreducible by
independence. Since {Z,} is recurrent, 7, = min{{ > 0: Z, = z} is
a.s. finite for each z € S2. Thus,

T =inf{7, : z = (x, x), some x € S}.

@ For the remaining claim, let g € b.¥ bounded by 1, and verify that,
for k < n,

1(r = k) Ex,[g(Xn—k)] = 17 = k) Ey,[g(Yn—k)]
or E[1(r = k)g(X»)] = E[1(7 = k)g(Y,)]. Thus
Elg(Xn)] —E[g(Yn)] = E[1(7 > n)(g(Xn) —&(Yn))] < 2Prob(r > n).
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