# Math 639: Lecture 12 <br> Markov Chains 

Bob Hough

March 21, 2017

## Markov chains

## Definition

Given a filtration $\left\{\mathscr{F}_{n}\right\}$, an $\mathscr{F}_{n}$-adapted stochastic process $\left\{X_{n}\right\}$ taking values in a measurable space $(S, \mathscr{S})$ is called an $\mathscr{F}_{n}$-Markov chain with state space $(S, \mathscr{S})$ if for any $A \in \mathscr{S}$,

$$
\operatorname{Prob}\left[X_{n+1} \in A \mid \mathscr{F}_{n}\right]=\operatorname{Prob}\left[X_{n+1} \in A \mid X_{n}\right] .
$$

Informally, Markov chains are 'memoryless.'

## Markov chains

## Definition

A set function $p:(S, \mathscr{S}) \rightarrow[0,1]$ is a transition probability if
(1) For each $x \in S, A \mapsto p(x, A)$ is a probability measure on $(S, \mathscr{S})$.
(2) For each $A \in \mathscr{S}, x \mapsto p(x, A)$ is a measurable function.

We say an $\mathscr{F}_{n}$ Markov chain $\left\{X_{n}\right\}$ has transition probability $p_{n}(x, A)$ if almost surely

$$
\operatorname{Prob}\left(X_{n+1} \in A \mid \mathscr{F}_{n}\right)=p_{n}\left(X_{n}, A\right)
$$

The Markov chain is called homogeneous if $p_{n}(x, A)=p(x, A)$ for all $n, x \in S$ and $A \in \mathscr{S}$.

## The bounded $\sigma$-algebra

Denote $b \mathscr{S}$ the collection of all bounded $\left(\mathbb{R}, \mathscr{B}_{\mathbb{R}}\right)$-valued measurable mappings on $(S, \mathscr{S})$.

## Monotone class theorem

## Theorem

Let $\mathscr{A}$ be a $\pi$-system that contains $\Omega$ and let $\mathscr{H}$ be a collection of real-valued functions that satisfies
(1) If $A \in \mathscr{A}$, then $\mathbf{1}_{A} \in \mathscr{H}$.
(2) If $f, g \in \mathscr{H}$, then $f+g$ and $c f \in \mathscr{H}$ for any real $c$.
(3) If $f_{n} \in \mathscr{H}$ are non-negative and increase to a bounded function $f$, then $f \in \mathscr{H}$.
Then $\mathscr{H}$ contains $b \mathscr{S}$.

## Markov chains

## Lemma

If $\left\{X_{n}\right\}$ is an $\mathscr{F}_{n}$-Markov chain with state space $(S, \mathscr{S})$ and transition probabilities $p_{n}(\cdot, \cdot)$, then for any $h \in b \mathscr{S}$ and all $k \geqslant 0$,

$$
\mathrm{E}\left[h\left(X_{k+1} \mid \mathscr{F}_{k}\right)\right]=\left(p_{k} h\right)\left(X_{k}\right),
$$

where $h \mapsto\left(p_{k} h\right): b \mathscr{S} \rightarrow b \mathscr{S}$ and $\left(p_{k} h\right)(x)=\int p_{k}(x, d y) h(y)$ denotes the integral of $h$ under probability measure $p_{k}(x, \cdot)$.

## Transition probabilities

## Proposition

Given a $\sigma$-finite measure $\nu_{1}$ on $(X, \mathscr{X})$ and $\nu_{2}: X \times \mathscr{S} \mapsto[0,1]$ such that

- $B \mapsto \nu_{2}(x, B)$ is a probability measure on $(S, \mathscr{S})$ for each fixed $x \in X$
- $x \mapsto \nu_{2}(x, B)$ is measurable on $(X, \mathscr{X})$ for each fixed $B \in \mathscr{S}$ there exists a unique $\sigma$-finite measure $\mu=\nu_{1} \otimes \nu_{2}$ on $(X \times S, \mathscr{X} \times \mathscr{S})$ such that, for all $A \in \mathscr{X}$ and $B \in \mathscr{S}$,

$$
\mu(A \times B)=\int_{A} \nu_{1}(d x) \nu_{2}(x, B)
$$

## Markov chains

Given a transition probability $p$ and an initial distribution $\mu$ on $(S, \mathscr{S})$, define probability distributions

$$
\operatorname{Prob}\left(X_{j} \in B_{j}, 0 \leqslant j \leqslant n\right)=\int_{B_{0}} \mu\left(d x_{0}\right) \int_{B_{1}} p\left(x_{0}, d x_{1}\right) \cdots \int_{B_{n}} p\left(x_{n-1}, d x_{n}\right)
$$

## Theorem

$X_{n}$ is a Markov chain with respect to $\mathscr{F}_{n}=\sigma\left(X_{0}, \ldots, X_{n}\right)$ with transition probability $p$.

## Markov chains

```
Theorem
If }\mp@subsup{X}{n}{}\mathrm{ is a Markov chain with transition probabilities p and initial distribution \(\mu\), then the finite dimensional distributions are given as above.
```


## The law of a Markov chain

## Definition

The law of a Markov chain $\left\{X_{n}\right\}$ with state space $(S, \mathscr{S})$ and initial distribution $\nu$ is the unique probability measure $\operatorname{Prob}_{\nu}$ on $\left(S^{\infty}, \mathscr{S}^{\infty}\right)$ (the product space) with finite dimensional distributions

$$
\operatorname{Prob}_{\nu}\left(\left\{\mathbf{s}: s_{i} \in A_{i}, i=0, \ldots, n\right\}\right)=\operatorname{Prob}\left(X_{0} \in A_{0}, \ldots, X_{n} \in A_{n}\right)
$$

for $A_{i} \in \mathscr{S}$.

## Random walk

## Example (Random walk)

Let $\xi_{1}, \xi_{2}, \ldots \in \mathbb{R}^{d}$ be i.i.d. with distribution $\mu$. Let $X_{0}=x \in \mathbb{R}^{d}$ and let $X_{n}=X_{0}+\xi_{1}+\cdots+\xi_{n}$. Then $X_{n}$ is a Markov chain with transition probability

$$
p(x, A)=\mu(A-x),
$$

where $A-x=\{y-x: y \in A\}$.

## Markov property

The following lemma is useful for proving the Markov property.

## Lemma

Let $X$ and $Y$ take values in $(S, \mathscr{S})$. Suppose $\mathscr{F}$ and $Y$ are independent. Let $X \in \mathscr{F}, \phi$ be a function with $\mathrm{E}[|\phi(X, Y)|]<\infty$ and let $g(x)=\mathrm{E}[\phi(x, Y)]$. Then

$$
\mathrm{E}[\phi(X, Y) \mid \mathscr{F}]=g(X) .
$$

## Examples

To verify that random walk defines a Markov chain, let $\mathscr{F}=\mathscr{F}_{n}, X=X_{n}$, $Y=\xi_{n+1}$, and $\phi(x, y)=\mathbf{1}(x+y \in A)$. Thus $g(x)=\mu(A-x)$.

## Branching processes

## Example

Let $S=\{0,1,2, \ldots\}$ and

$$
p(i, j)=\operatorname{Prob}\left(\sum_{m=1}^{i} \xi_{m}=j\right)
$$

where $\xi_{1}, \xi_{2}, \ldots$ are i.i.d. non-negative integer valued random variables.

## Renewal chain

## Example

Let $S=\{0,1,2, \ldots\}, f_{k} \geqslant 0$, and $\sum_{k=1}^{\infty} f_{k}=1$. Set

$$
\begin{array}{rl}
p(0, j)=f_{j+1} & j \geqslant 0 \\
p(i, i-1)=1 & i \geqslant 1 \\
p(i, j)=0 & \text { otherwise. }
\end{array}
$$

## Ehrenfest chain

## Example

Let $S=\{0,1,2, \ldots, r\}$ and

$$
\begin{aligned}
& p(k, k+1)=\frac{r-k}{r} \\
& p(k, k-1)=\frac{k}{r} \\
& p(i, j)=0 \text { otherwise. }
\end{aligned}
$$

This models $r$ particles moving in a split chamber with a small opening connecting the two sides of the chamber. A particle is picked uniformly at random and moved to the other chamber.

## Birth and death chains

## Example

Let $S=\{0,1,2, \ldots\}$. These chains enforce $p(i, j)=0$ when $|i-j|>1$.

## Strong Markov property

## Proposition

Consider a homogeneous Markov chain $\left\{X_{n}\right\}$ on probability space $\left(S^{\infty}, \mathscr{S}^{\infty}, \operatorname{Prob}_{\nu}\right)$. Denote $\theta: S^{\infty} \rightarrow S^{\infty}$ the shift operator $(\theta \omega)_{k}=\omega_{k+1}$ and $\left(\theta^{n} \omega\right)_{k}=\omega_{k+n}$ for $k, n \geqslant 0$. Let $\left\{h_{n}\right\} \subset b \mathscr{S}$ with $\sup _{n, \omega}\left|h_{n}(\omega)\right|<\infty$, and let $\tau$ be a stopping time

$$
\mathrm{E}_{\nu}\left[h_{\tau}\left(\theta^{\tau} \omega\right) \mid \mathscr{F}_{\tau}\right] \mathbf{1}(\tau<\infty)=\mathrm{E}_{X_{\tau}}\left[h_{\tau}\right] 1(\tau<\infty)
$$

Here $\mathrm{E}_{\nu}$ denotes expectation taken with respect to the probability measure Prob $_{\nu}$.

## Strong Markov property

## Proof.

- We first check

$$
\mathrm{E}_{\nu}\left[h\left(\theta^{n} \omega\right) \mid \mathscr{F}_{n}\right]=\mathrm{E}_{X_{n}}[h],
$$

for $h(\omega)=\prod_{\ell=0}^{k} g_{\ell}\left(\omega_{\ell}\right)$, with $g_{\ell} \in b \mathscr{S}, \ell=0, \ldots, k$. The same statement for general $h$ then follows from the monotone class theorem.

- Let $B \in \mathscr{S}^{n+1}$, write $\mu_{m}=\nu \otimes p \otimes \cdots \otimes p$ and calculate

$$
\begin{aligned}
& \mathrm{E}_{\nu}\left[h\left(\theta^{n} \omega\right) \mathbf{1}_{B}\left(\omega_{0}, \ldots, \omega_{n}\right)\right]=\mu_{n+k}\left[\mathbf{1}_{B}\left(x_{0}, \ldots, x_{n}\right) \prod_{\ell=0}^{k} g_{\ell}\left(x_{\ell+n}\right)\right] \\
& =\mu_{n}\left[\mathbf{1}_{B}\left(x_{0}, \ldots, x_{n}\right) g_{0}\left(x_{n}\right) \int p\left(x_{n}, d y_{1}\right) g_{1}\left(y_{1}\right) \ldots \int p\left(y_{k-1}, d y_{k}\right) g_{k}\left(y_{k}\right)\right] \\
& =\mathrm{E}_{\nu}\left[\mathbf{1}_{B}\left(X_{0}, \ldots, X_{n}\right) \mathrm{E}_{X_{n}}[h]\right] .
\end{aligned}
$$

## Strong Markov property

## Proof.

- To introduce the stopping time, write $\mathrm{E}_{\nu}\left[Y_{n} \mid \mathscr{F}_{n}\right]=g\left(n, X_{n}\right)$. Conditioning on the value of the stopping time,

$$
\mathrm{E}_{\nu}\left[h_{\tau}\left(\theta^{\tau} \omega\right) \mathbf{1}(\tau=k) \mid \mathscr{F}_{\tau}\right]=g\left(k, X_{k}\right) \mathbf{1}(\tau=k)=g\left(\tau, X_{\tau}\right) \mathbf{1}(\tau=k) .
$$

- Sum in $k$ to complete the estimate.


## Invariant measure

## Definition

- A measure $\nu$ on $(S, \mathscr{S})$ such that $\nu(S)>0$ and $\nu \circ \theta^{-1}(\cdot)=\nu(\cdot)$, i.e. for all $A \in \mathscr{S}^{\infty}$,

$$
\nu(A)=\nu(\{\omega: \theta(\omega) \in A\})
$$

is called shift invariant. An event $A \in \mathscr{S}^{\infty \infty}$ is called shift invariant if $A=\theta^{-1} A$.

- We say that a stochastic process $\left\{X_{n}\right\}$ on a state space $\{S, \mathscr{S}\}$ is stationary if its joint law $\nu$ is shift invariant.
- A positive measure $\mu$ on a $(S, \mathscr{S})$ is called an invariant measure for a transition probability $p(\cdot, \cdot)$ if it defines a shift invariant measure $\operatorname{Prob}_{\mu}(\cdot)$.


## Invariant measure

## Lemma

Suppose a $\sigma$-finite measure $\nu$ and transition probability $p_{0}(\cdot, \cdot)$ on $(S, \mathscr{S})$ are such that $\nu \otimes p_{0}(S \times A)=\nu(A)$ for any $A \in \mathscr{S}$. Then, for all $k \geqslant 1$ and $A \in \mathscr{S}^{k+1}$,

$$
\nu \otimes p_{0} \otimes \cdots \otimes p_{k}(S \times A)=\nu \otimes p_{1} \otimes \cdots \otimes p_{k}(A) .
$$

## Invariant measure

## Proof.

- By assumption, $\nu\left(\left(p_{0} f\right)\right)=\nu(f)$ for $f=I_{A}$ and any $A \in \mathscr{S}$. By the monotone class theorem, this extends to all $f \in b \mathscr{S}$.
- Consider $f_{k}(x)=I_{A_{0}}(x) p_{1} \otimes \cdots \otimes p_{k}\left(x, A_{1} \times \cdots \times A_{k}\right)$. Since $p_{j} h \in b \mathscr{S}$ for any $h \in b \mathscr{S}$, we have $f_{k} \in b \mathscr{S}$.
- Observe $\nu\left(f_{k}\right)=\nu \otimes p_{1} \otimes \cdots \otimes p_{k}(A)$ for $A=A_{0} \times \cdots \times A_{k}$ and

$$
\begin{aligned}
\nu\left(\left(p_{0} f_{k}\right)\right) & =\int_{S} \nu(d y) \int_{A_{0}} p_{0}(y, d x) p_{1} \otimes \cdots \otimes p_{k}\left(x, A_{1} \times \cdots \times A_{k}\right) \\
& =\nu \otimes p_{0} \otimes \cdots \otimes p_{k}(S \times A) .
\end{aligned}
$$

The claim for $f_{k}$ follows by noting
$p_{1} \otimes \cdots \otimes p_{k}\left(x, A_{1} \times \cdots \times A_{k}\right) \in b \mathscr{S}$, and hence in general by appealing to the monotone class theorem.

## Invariant measure

## Theorem

A positive $\sigma$-finite measure $\mu(\cdot)$ on $(S, \mathscr{S})$ is an invariant measure for transition probability $p(\cdot, \cdot)$ if and only if $\mu \otimes p(S \times A)=\mu(A)$ for all $A \in \mathscr{S}$.

## Invariant measure

## Proof.

- If $\mu$ is a positive $\sigma$-finite measure, then so are the measures $\operatorname{Prob}_{\mu}$ and $\operatorname{Prob}_{\mu} \circ \theta^{-1}$ on $\left(S^{\infty}, \mathscr{S}^{\infty}\right)$.
- The f.d.d. of $\operatorname{Prob}_{\mu}$ are the $\sigma$-finite measures $\mu_{k}(A)=\mu \otimes^{k} p(A)$ for $A \in \mathscr{S}^{k+1}$.
- By definition of $\theta$, the f.d.d. of $\operatorname{Prob}_{\mu} \circ \theta^{-1}$ are $\mu_{k+1}(S \times A)$.
- Thus a positive $\sigma$-finite measure $\mu$ is an invariant measure for $p(\cdot, \cdot)$ if and only if $\mu_{k+1}(S \times A)=\mu_{k}(A)$ for all $k$ and $A \in \mathscr{S}^{k+1}$. This is equivalent to $\mu \otimes p(S \times A)=\mu(A)$.


## Countable state spaces

Consider a homogeneous Markov chain $\left\{X_{n}\right\}$ on a countable state space $\left(S, 2^{S}\right)$.

## Theorem

For any $x, y \in S$ and non-negative integers $k \leqslant n$,

$$
\operatorname{Prob}_{x}\left(X_{n}=y\right)=\sum_{z \in S} \operatorname{Prob}_{x}\left(X_{k}=z\right) \operatorname{Prob}_{z}\left(X_{n-k}=y\right)
$$

## Proof.

This follows on conditioning on $X_{k}$.

## Harmonic functions

## Definition

We say that $f: S \rightarrow \mathbb{R}$ which is bounded above or below, is super-harmonic for transition probability $p(x, y)$ at $x \in S$ if

$$
f(x) \geqslant \sum_{y \in S} p(x, y) f(y)
$$

and sub-harmonic at $x$ if

$$
f(x) \leqslant \sum_{y \in S} p(x, y) f(y)
$$

harmonic if equality holds. $f$ is sub/super/harmonic if it is sub/super/harmonic at each $x \in S$.

## Accessible states

## Definition

- Let $\rho_{x y}=\operatorname{Prob}_{x}\left(T_{y}<\infty\right)$ be the probability that, started from state $x$, a Markov chain visits state $y$ in finite time.
- If $x \neq y$, and $\rho_{x y}>0$ then $y$ is accessible.
- $x \neq y$ intercommunicate, denoted $x \leftrightarrow y$ if each is accessible from the other.
- A non-empty collection of states $C \subset S$ is irreducible if each two states of $C$ intercommunicate, and closed if no $y \notin C$ is accessible from some $x \in C$.


## Accessible states

## Exercise

- Check that if $\rho_{x y}>0$ and $\rho_{y z}>0$ then $\rho_{x z}>0$.
- This implies that intercommunication is an equivalence relation, so the state space splits into maximal irreducible sets, which are connected by a directed graph indicating which class leads to another. This graph is transitive and acyclic.


## Recurrent states

## Definition

A state $y \in S$ is called recurrent, or persistent if $\rho_{y y}=1$ and transient if $\rho_{y y}<1$.

## Return times

## Theorem

Let $T_{y}^{0}=0$, and for $k \geqslant 1, T_{y}^{k}=\inf \left\{n>T_{y}^{k-1}: X_{n}=y\right\}$ be the time of the $k$ th return to $y$. For any $x, y \in S$ and $k \geqslant 1$,

$$
\operatorname{Prob}_{x}\left(T_{y}^{k}<\infty\right)=\rho_{x y} \rho_{y y}^{k-1} .
$$

Let $N_{\infty}(y)$ denote the number of visits to state $y$. Then if $y$ is transcient,

$$
\mathrm{E}_{x}\left[N_{\infty}(y)\right]=\frac{\rho_{x y}}{1-\rho_{y y}} .
$$

If $y$ is recurrent then $\mathrm{E}_{\chi}\left[N_{\infty}(y)\right]$ is 0 or $\infty$ according as $\rho_{x y}$ is 0 or 1 .

## Return times

## Proof.

The formula $\operatorname{Prob}_{x}\left(T_{y}^{k}<\infty\right)=\rho_{x y} \rho_{y y}^{k-1}$ follows from the corresponding formula for iterated stopping times. Calculate

$$
\begin{aligned}
\mathrm{E}_{x}\left[N_{\infty}(y)\right] & =\sum_{k=1}^{\infty} \operatorname{Prob}_{x}\left(N_{\infty}(y) \geqslant k\right) \\
& =\sum_{k=1}^{\infty} \operatorname{Prob}_{x}\left(T_{y}^{k}<\infty\right) \\
& =\sum_{k=1}^{\infty} \rho_{x y} \rho_{y y}^{k-1}
\end{aligned}
$$

which gives the claimed evaluation.

## Recurrence

## Theorem

The following equivalent properties characterize a recurrent state $y$ :

- $\rho_{y y}=1$
- $\operatorname{Prob}_{y}\left(T_{y}^{k}<\infty\right)=1$ for all $k$
- $\operatorname{Prob}_{y}\left(X_{n}=y\right.$ i.o. $)=1$
- $\operatorname{Prob}_{y}\left(N_{\infty}(y)=\infty\right)=1$
- $\mathrm{E}_{y}\left[N_{\infty}(y)\right]=\infty$.

This follows from the previous theorem.

## Decomposition theorem

Theorem
A countable state space $S$ of a homogeneous Markov chain can be partitioned uniquely as

$$
S=T \cup R_{1} \cup R_{2} \cup \ldots
$$

where $T$ is the set of transient states and the $R_{i}$ are disjoint, irreducible closed sets of recurrent states with $\rho_{x y}=1$ whenever $x, y \in R_{i}$.

## Decomposition Theorem

## Proof.

- One easily checks that any pair of interconnected states are either both recurrent or both transient.
- In particular, an irreducible set of states is either transient or recurrent simultaneously. Grouping all transient states together, this provides the decomposition.
- Suppose $x$ is recurrent. If $\rho_{x y}>0$, then $\rho_{y x}>0$ since otherwise there is a positive probability of passing from $x$ to $y$ and not returning. This proves the closed condition.


## Irreducible, recurrent, transient

## Definition

A homogeneous Markov chain is irreducible if $S$ is irreducible, is recurrent if each state is recurrent, and is transient if each state is transient.

## Recurrence

Theorem<br>If $F$ is a finite set of transient states then for any initial distribution $\operatorname{Prob}_{\nu}\left(X_{n} \in F\right.$ i.o. $)=0$. Any finite closed set $C$ contains at least one recurrent state, and if $C$ is also irreducible then $C$ is recurrent.

## Recurrence

## Proof.

- If $F$ is a finite set of transient states, then for any $x$, $\mathrm{E}_{\chi}\left[\sum_{f \in F} N_{\infty}(f)\right]<\infty$, so the probability that the sites are visited infinitely often is 0 .
- If a finite set of sites is closed, then once the chain enters the set, it never leaves. In particular, some site is visited infinitely often and is recurrent.
- If an irreducible set contains a recurrent state, then all states are recurrent, which proves the last claim.


## Absorbing states

## Definition <br> If a singleton $\{x\}$ is a closed set of a homogeneous Markov chain, then we call $x$ an absorbing state for the chain.

## Recurrent states

## Theorem

Suppose $S$ is irreducible for a chain $\left\{X_{n}\right\}$ and there exists $h: S \rightarrow[0, \infty)$ of finite level sets $G_{r}=\{x: h(x)<r\}$ that is super-harmonic at $S \backslash G_{r}$ for some finite $r$. Then $\left\{X_{n}\right\}$ is recurrent.

## Recurrent states

## Proof.

- We can assume $S$ is infinite, and that $r_{0}$ is sufficiently large so that $h$ is superharmonic in $S \backslash G_{r_{0}}$.
- If $\operatorname{Prob}_{x}\left(T_{G_{r}}<\infty\right)=1$ for all $x \in S$, then $S$ contains a recurrent state, hence is recurrent by irreducibility.
- Let $r>r_{0}$ and let $C_{r}=G_{r_{0}} \cup\left(S \backslash G_{r}\right)$. Thus $h$ is super-harmonic in $x \notin C$, so $h\left(X_{n \wedge \tau_{c}}\right)$ is a non-negative sup-martingale for Prob $_{x}$ for any $x \in S$.
- Since $C^{c} \subset G_{r}$ is a finite set, $\operatorname{Prob}_{x}\left(\tau_{C}<\infty\right)=1$. Calculate

$$
h(x) \geqslant \mathrm{E}_{x}\left[h\left(X_{\tau_{C}}\right)\right] \geqslant r \operatorname{Prob}_{x}\left(\tau_{C}<\tau_{G_{r_{0}}}\right)
$$

## Recurrent states

## Proof.

- Thus

$$
\operatorname{Prob}_{x}\left(\tau_{G_{r_{0}}}<\infty\right) \geqslant \operatorname{Prob}_{x}\left(\tau_{G_{r_{0}}}<\tau_{C}\right) \geqslant 1-\frac{h(x)}{r} .
$$

Letting $r \rightarrow \infty$ proves the claim.

## Excessive measures

## Definition

We say that a non-zero $\mu: S \rightarrow[0, \infty]$ is an excessive measure if

$$
\mu(y) \geqslant \sum_{x \in S} \mu(x) p(x, y), \quad \forall y \in S .
$$

## Invariant measure

## Theorem

Let $T_{z}$ denote the possibly infinite return time to a state $z$ by homogeneous Markov chain $\left\{X_{n}\right\}$. Then

$$
\mu_{z}(y)=\mathrm{E}_{z}\left[\sum_{n=0}^{T_{z}-1} \mathbf{1}\left(X_{n}=y\right)\right]
$$

is an excessive measure for $\left\{X_{n}\right\}$, the support of which is the closed set of all states accessible from $z$. If $z$ is a recurrent state then $\mu_{z}(\cdot)$ is an invariant measure, whose support is closed and recurrent.

## Invariant measure

## Proof.

- Set $h_{k}(\omega, y)=\sum_{n=0}^{T_{z}(\omega)-1} \mathbf{1}\left(\omega_{n+k}=y\right)$. Thus $\mu_{z}(y)=E_{z}\left[h_{0}(\omega, y)\right]$.
- Calculate

$$
\begin{aligned}
\mathrm{E}_{z}\left[h_{1}(\omega, y)\right] & =\mathrm{E}_{z}\left[\sum_{n=0}^{\infty} \mathbf{1}\left(T_{z}>n\right) \mathbf{1}\left(X_{n+1}=y\right) \sum_{x \in S} \mathbf{1}\left(X_{n}=x\right)\right] \\
& =\sum_{x \in S} \sum_{n=0}^{\infty} \mathrm{E}_{z}\left[\mathbf{1}\left(T_{z}>n\right) \mathbf{1}\left(X_{n}=x\right) \operatorname{Prob}_{z}\left(X_{n+1}=y \mid \mathscr{F}_{n}\right)\right] \\
& =\sum_{x \in S} \sum_{n=0}^{\infty} \mathrm{E}_{z}\left[\mathbf{1}\left(T_{z}>n\right) \mathbf{1}\left(X_{n}=x\right)\right] p(x, y) \\
& =\sum_{x \in S} \mu_{z}(x) p(x, y) .
\end{aligned}
$$

## Invariant measure

## Proof.

- Observe that if $\omega_{0}=z, h_{0}(\omega, y) \geqslant h_{1}(\omega, y)$ with equality when $y \neq z$ or $T_{z}(\omega)<\infty$.
- It follows that

$$
\mu_{z}(y)=\mathrm{E}_{z}\left[h_{0}(\omega, y)\right] \geqslant \mathrm{E}_{z}\left[h_{1}(\omega, y)\right]=\sum_{x \in S} \mu_{z}(x) p(x, y),
$$

with equality when $y \neq z$ or $z$ is recurrent. This proves that $\mu_{z}$ is excessive.

- Iterating, for any $k \geqslant 1$,

$$
\mu_{z}(y) \geqslant \sum_{x \in S} \mu_{z}(x) \operatorname{Prob}_{x}\left(X_{k}=y\right)
$$

with equality if $z$ is recurrent.

## Invariant measure

## Proof.

- If $\rho_{z y}=0$ then $\mu_{z}(y)=0$, while if $\rho_{z y}>0$ then $\operatorname{Prob}_{z}\left(X_{k}=y\right)>0$ for some finite $k$, so that $\mu_{z}(y) \geqslant \mu_{z}(z) \operatorname{Prob}_{z}\left(X_{k}=y\right)$. Thus when $z$ is recurrent, the support of $\mu_{z}$ is its irreducible component.
- If $x \leftrightarrow z$ then $1=\mu_{z}(z) \geqslant \mu_{z}(x) \operatorname{Prob}_{x}\left(X_{k}=z\right)$ for some $k$, whence $\mu_{z}$ is invariant and $\sigma$-finite.


## Invariant measure


#### Abstract

Theorem If $R$ is a recurrent equivalence class of states then the invariant measure whose support is contained in $R$ is unique and has $R$ as its support. In particular, the invariant measure of an irreducible, recurrent chain is unique.


## Invariant measure

## Proof.

- Since $R$ is closed, the restriction of $p(\cdot, \cdot)$ to $R$ is a transition probability, so we may assume $S=R$.
- Hence there exists a strictly positive invariant measure $\mu=\mu_{z}$ on $R$
- Define transition probability $q(x, y)=\frac{\mu(y) p(y, x)}{\mu(x)}$.
- Let $\nu$ be any excessive probability for $p(\cdot, \cdot)$. Then for any $y$,

$$
\nu(y) \geqslant \sum_{x \in S} \nu(x) p(x, y)=\sum_{x \in S} \nu(x) q(y, x) \frac{\mu(y)}{\mu(x)}
$$

so that $\frac{\nu}{\mu}$ is a superharmonic function for $q$.

## Invariant measure

## Proof.

- By considering paths, we can check that $\rho_{x, y}>0$ for $p$ implies $\rho_{y, x}>0$ for $q$, and hence the Markov chain with transition probability $q$ is irreducible.
- Considering loops, the probability of a return from $x$ to $x$ at step $k$ under $p$ is equal to the same probability under $q$ (by running each loop in reverse). Hence the $q$-chain is recurrent.
- Check as an exercise that the only positive super-harmonic function for an irreducible recurrent chain is a constant, and hence $\nu$ is a scalar multiple of $\mu$.


## Reversible chains

## Definition

A non-zero $\mu: S \rightarrow[0, \infty)$ is called a reversible measure for the transition probability $p(\cdot, \cdot)$ if for all $x, y \in S, \mu(x) p(x, y)=\mu(y) p(y, x)$. The transition probability $p(\cdot, \cdot)$ is reversible if it has a reversible measure.

## Time-reversed chain

## Definition

If $\mu(\cdot)$ is an invariant measure for transition probability $p(x, y)$, then $q(x, y)=\mu(y) p(y, x) / \mu(x)$ is a transition probability on the support of $\mu(\cdot)$, call the adjoint or dual of $p$ with respect to $\mu$. The corresponding Markov chain is called the time-reversed chain.

## Random walk on a graph

## Definition

- A network consists of a countable (finite or infinite) set of vertices $V$ with a symmetric weight function $w: V \times V \mapsto[0, \infty)$ (i.e. $w_{x y}=w_{y x}$ for all $\left.x, y \in V\right)$. Set $\mu(x)=\sum_{y \in V} w_{x y}$.
- A random walk on the network is a homogeneous Markov chain of state space $V$ and transition probability

$$
p(x, y)=\frac{w_{x y}}{\mu(x)} .
$$

## Recurrent states

## Definition

Let $T_{z}$ denote the first return time to state $z$. A recurrent state $z$ is called positive recurrent if $\mathrm{E}_{z}\left[T_{z}\right]<\infty$ and null recurrent otherwise.

## Recurrence

## Theorem

If $\pi(\cdot)$ is an invariant probability measure, then all states $z$ with $\pi(z)>0$ are positive recurrent. Further, if the support of $\pi(\cdot)$ is an irreducible set $R$ of positive recurrent states then $\pi(z)=1 / E_{z}\left[T_{z}\right]$ for all $z \in R$.

## Recurrence

## Proof.

- Starting the chain from the invariant distribution $\pi$ one easily verifies that $\pi$ is supported on recurrent states.
- Calculate, starting from a recurrent state $z$,

$$
\mu_{z}(S)=\sum_{y \in S} \mu_{z}(y)=\mathrm{E}_{x}\left[\sum_{y \in S} \sum_{n=0}^{T_{z}-1} \mathbf{1}\left(X_{n}=y\right)\right]=\mathrm{E}_{z}\left[T_{z}\right] .
$$

Thus, if $\mu_{z}$ is a finite measure then $z$ is positive recurrent.

- If $\pi$ is supported on a single irreducible then $\pi(z)=\frac{\mu_{z}(z)}{\mu_{z}(S)}=\frac{1}{\mathrm{E}\left[T_{z}\right]}$.
- To complete the proof, note that an invariant probability measure is a mixture of invariant probability measures supported on single irreducibles.


## Markovian coupling

## Theorem

Let $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ be two independent copies of an aperiodic, irreducible Markov chain. Suppose further that the irreducible chain $Z_{n}=\left(X_{n}, Y_{n}\right)$ is recurrent. Then, regardless of the initial distribution $\left(X_{0}, Y_{0}\right)$, the first meeting time $\tau=\min \left\{\ell \geqslant 0: X_{\ell}=Y_{\ell}\right\}$ of the two processes is a.s. finite, and for any $n$,

$$
\left\|\mathscr{L}_{X_{n}}-\mathscr{L}_{Y_{n}}\right\|_{\mathrm{TV}} \leqslant 2 \operatorname{Prob}(\tau>n) .
$$

## Markovian coupling

## Proof.

- The Markov chain $Z_{n}=\left(X_{n}, Y_{n}\right)$ on $S^{2}$ is irreducible by independence. Since $\left\{Z_{n}\right\}$ is recurrent, $\tau_{z}=\min \left\{\ell \geqslant 0: Z_{\ell}=z\right\}$ is a.s. finite for each $z \in S^{2}$. Thus,

$$
\tau=\inf \left\{\tau_{z}: z=(x, x), \text { some } x \in S\right\}
$$

- For the remaining claim, let $g \in b \mathscr{S}$ bounded by 1 , and verify that, for $k \leqslant n$,

$$
\mathbf{1}(\tau=k) \mathrm{E}_{X_{k}}\left[g\left(X_{n-k}\right)\right]=\mathbf{1}(\tau=k) \mathrm{E}_{Y_{k}}\left[g\left(Y_{n-k}\right)\right]
$$

or $\mathrm{E}\left[\mathbf{1}(\tau=k) g\left(X_{n}\right)\right]=\mathrm{E}\left[\mathbf{1}(\tau=k) g\left(Y_{n}\right)\right]$. Thus
$\mathrm{E}\left[g\left(X_{n}\right)\right]-\mathrm{E}\left[g\left(Y_{n}\right)\right]=\mathrm{E}\left[\mathbf{1}(\tau>n)\left(g\left(X_{n}\right)-g\left(Y_{n}\right)\right)\right] \leqslant 2 \operatorname{Prob}(\tau>n)$.

