Math 639: Lecture 12 Markov Chains

Bob Hough

March 21, 2017

Bob Hough

Math 639: Lecture 12

March 21, 2017 1 / 58

-

Given a filtration $\{\mathscr{F}_n\}$, an \mathscr{F}_n -adapted stochastic process $\{X_n\}$ taking values in a measurable space (S, \mathscr{S}) is called an \mathscr{F}_n -Markov chain with state space (S, \mathscr{S}) if for any $A \in \mathscr{S}$,

$$\operatorname{Prob}[X_{n+1} \in A | \mathscr{F}_n] = \operatorname{Prob}[X_{n+1} \in A | X_n].$$

Informally, Markov chains are 'memoryless.'

(人間) トイヨト イヨト

A set function $p:(S,\mathscr{S}) \to [0,1]$ is a *transition probability* if

- For each $x \in S$, $A \mapsto p(x, A)$ is a probability measure on (S, \mathscr{S}) .
- **2** For each $A \in \mathscr{S}$, $x \mapsto p(x, A)$ is a measurable function.

We say an \mathscr{F}_n Markov chain $\{X_n\}$ has transition probability $p_n(x, A)$ if almost surely

$$\operatorname{Prob}(X_{n+1} \in A | \mathscr{F}_n) = p_n(X_n, A).$$

The Markov chain is called *homogeneous* if $p_n(x, A) = p(x, A)$ for all $n, x \in S$ and $A \in \mathcal{S}$.

・ロン ・聞と ・ ほと ・ ほと

Denote $b\mathscr{S}$ the collection of all *bounded* $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$ -valued measurable mappings on (S, \mathscr{S}) .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Theorem

Let \mathscr{A} be a π -system that contains Ω and let \mathscr{H} be a collection of real-valued functions that satisfies

- **1** If $A \in \mathscr{A}$, then $\mathbf{1}_A \in \mathscr{H}$.
- **2** If $f, g \in \mathcal{H}$, then f + g and $cf \in \mathcal{H}$ for any real c.
- If f_n ∈ ℋ are non-negative and increase to a bounded function f, then f ∈ ℋ.

Then \mathscr{H} contains b \mathscr{S} .

Lemma

If $\{X_n\}$ is an \mathscr{F}_n -Markov chain with state space (S, \mathscr{S}) and transition probabilities $p_n(\cdot, \cdot)$, then for any $h \in b\mathscr{S}$ and all $k \ge 0$,

$$\mathsf{E}[h(X_{k+1}|\mathscr{F}_k)] = (p_k h)(X_k),$$

where $h \mapsto (p_k h) : b\mathscr{S} \to b\mathscr{S}$ and $(p_k h)(x) = \int p_k(x, dy)h(y)$ denotes the integral of h under probability measure $p_k(x, \cdot)$.

- 4 同 6 4 日 6 4 日 6

Proposition

Given a σ -finite measure ν_1 on (X, \mathscr{X}) and $\nu_2 : X \times \mathscr{S} \mapsto [0, 1]$ such that

B → ν₂(x, B) is a probability measure on (S, S) for each fixed x ∈ X
x → ν₂(x, B) is measurable on (X, X) for each fixed B ∈ S

there exists a unique σ -finite measure $\mu = \nu_1 \otimes \nu_2$ on $(X \times S, \mathscr{X} \times \mathscr{S})$ such that, for all $A \in \mathscr{X}$ and $B \in \mathscr{S}$,

$$\mu(A \times B) = \int_A \nu_1(dx)\nu_2(x,B).$$

Given a transition probability p and an *initial distribution* μ on (S, \mathscr{S}) , define probability distributions

$$\operatorname{Prob}(X_j \in B_j, 0 \leqslant j \leqslant n) = \int_{B_0} \mu(dx_0) \int_{B_1} p(x_0, dx_1) \cdots \int_{B_n} p(x_{n-1}, dx_n).$$

Theorem

 X_n is a Markov chain with respect to $\mathscr{F}_n = \sigma(X_0, ..., X_n)$ with transition probability p.

A (10) A (10) A (10)

Theorem

If X_n is a Markov chain with transition probabilities p and initial distribution μ , then the finite dimensional distributions are given as above.

- 4 回 ト - 4 回 ト

The law of a Markov chain $\{X_n\}$ with state space (S, \mathscr{S}) and initial distribution ν is the unique probability measure $\operatorname{Prob}_{\nu}$ on $(S^{\infty}, \mathscr{S}^{\infty})$ (the product space) with finite dimensional distributions

$$\mathsf{Prob}_{\nu}(\{\mathbf{s}: s_i \in A_i, i = 0, ..., n\}) = \mathsf{Prob}(X_0 \in A_0, ..., X_n \in A_n),$$

for $A_i \in \mathscr{S}$.

Example (Random walk)

Let $\xi_1, \xi_2, \ldots \in \mathbb{R}^d$ be i.i.d. with distribution μ . Let $X_0 = x \in \mathbb{R}^d$ and let $X_n = X_0 + \xi_1 + \cdots + \xi_n$. Then X_n is a Markov chain with transition probability

$$p(x,A) = \mu(A-x),$$

where $A - x = \{y - x : y \in A\}.$

イロト イポト イヨト イヨト

The following lemma is useful for proving the Markov property.

Lemma

Let X and Y take values in (S, \mathscr{S}) . Suppose \mathscr{F} and Y are independent. Let $X \in \mathscr{F}$, ϕ be a function with $\mathsf{E}[|\phi(X, Y)|] < \infty$ and let $g(x) = \mathsf{E}[\phi(x, Y)]$. Then

 $\mathsf{E}[\phi(X,Y)|\mathscr{F}] = g(X).$

To verify that random walk defines a Markov chain, let $\mathscr{F} = \mathscr{F}_n$, $X = X_n$, $Y = \xi_{n+1}$, and $\phi(x, y) = \mathbf{1}(x + y \in A)$. Thus $g(x) = \mu(A - x)$.

・ロン ・四 ・ ・ ヨン ・ ヨン

Example

Let $S = \{0, 1, 2, ...\}$ and

$$p(i,j) = \operatorname{Prob}\left(\sum_{m=1}^{i} \xi_m = j\right)$$

where $\xi_1, \xi_2, ...$ are i.i.d. non-negative integer valued random variables.

D -				
во	D	HΟ	Πp	'n

(日) (周) (三) (三)

Example

Let $S = \{0, 1, 2, ...\}$, $f_k \ge 0$, and $\sum_{k=1}^{\infty} f_k = 1$. Set

$$\begin{array}{ll} p(0,j) = f_{j+1} & j \ge 0 \\ p(i,i-1) = 1 & i \ge 1 \\ p(i,j) = 0 & \text{otherwise.} \end{array}$$

D - I	L 1			
во	D I	οı	Iσ	n
			-0	

-2

(日) (周) (三) (三)

Ehrenfest chain

Example

Let $S = \{0, 1, 2, ..., r\}$ and

$$p(k, k+1) = \frac{r-k}{r}$$
$$p(k, k-1) = \frac{k}{r}$$
$$p(i, j) = 0 \text{ otherwise.}$$

This models r particles moving in a split chamber with a small opening connecting the two sides of the chamber. A particle is picked uniformly at random and moved to the other chamber.

	•	•	• 🗗 •	₹,	•	ヨト	З,	$\mathcal{O} \land \mathcal{O}$
Bob Hough	Math 639: Lecture 12			Marc	h 2	21, 2017		16 / 58

Birth and death chains

Example

Let $S = \{0, 1, 2, ...\}$. These chains enforce p(i, j) = 0 when |i - j| > 1.

Bob Hough

March 21, 2017 17 / 58

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Proposition

Consider a homogeneous Markov chain $\{X_n\}$ on probability space $(S^{\infty}, \mathscr{S}^{\infty}, \operatorname{Prob}_{\nu})$. Denote $\theta : S^{\infty} \to S^{\infty}$ the shift operator $(\theta \omega)_k = \omega_{k+1}$ and $(\theta^n \omega)_k = \omega_{k+n}$ for $k, n \ge 0$. Let $\{h_n\} \subset b\mathscr{S}$ with $\sup_{n,\omega} |h_n(\omega)| < \infty$, and let τ be a stopping time

$$\mathsf{E}_{\nu}[h_{\tau}(\theta^{\tau}\omega)|\mathscr{F}_{\tau}]\mathbf{1}(\tau<\infty)=\mathsf{E}_{X_{\tau}}[h_{\tau}]\mathbf{1}(\tau<\infty).$$

Here E_{ν} denotes expectation taken with respect to the probability measure $Prob_{\nu}$.

Strong Markov property

Proof.

• We first check

$$\mathsf{E}_{\nu}[h(\theta^{n}\omega)|\mathscr{F}_{n}]=\mathsf{E}_{X_{n}}[h],$$

for $h(\omega) = \prod_{\ell=0}^{k} g_{\ell}(\omega_{\ell})$, with $g_{\ell} \in b\mathscr{S}$, $\ell = 0, ..., k$. The same statement for general *h* then follows from the monotone class theorem.

• Let
$$B \in \mathscr{S}^{n+1}$$
, write $\mu_m = \nu \otimes p \otimes \cdots \otimes p$ and calculate

$$\begin{aligned} \mathsf{E}_{\nu} \big[h(\theta^{n} \omega) \mathbf{1}_{B}(\omega_{0}, ..., \omega_{n}) \big] &= \mu_{n+k} \left[\mathbf{1}_{B}(x_{0}, ..., x_{n}) \prod_{\ell=0}^{k} g_{\ell}(x_{\ell+n}) \right] \\ &= \mu_{n} \left[\mathbf{1}_{B}(x_{0}, ..., x_{n}) g_{0}(x_{n}) \int p(x_{n}, dy_{1}) g_{1}(y_{1}) ... \int p(y_{k-1}, dy_{k}) g_{k}(y_{k}) \right] \\ &= \mathsf{E}_{\nu} \left[\mathbf{1}_{B}(X_{0}, ..., X_{n}) \mathsf{E}_{X_{n}}[h] \right]. \end{aligned}$$

Strong Markov property

Proof.

• To introduce the stopping time, write $E_{\nu}[Y_n|\mathscr{F}_n] = g(n, X_n)$. Conditioning on the value of the stopping time,

$$\mathsf{E}_{\nu}[h_{\tau}(\theta^{\tau}\omega)\mathbf{1}(\tau=k)|\mathscr{F}_{\tau}] = g(k,X_k)\mathbf{1}(\tau=k) = g(\tau,X_{\tau})\mathbf{1}(\tau=k).$$

• Sum in k to complete the estimate.

Image: A math and A math and

Invariant measure

Definition

• A measure ν on (S, \mathscr{S}) such that $\nu(S) > 0$ and $\nu \circ \theta^{-1}(\cdot) = \nu(\cdot)$, i.e. for all $A \in \mathscr{S}^{\infty}$,

$$\nu(A) = \nu(\{\omega : \theta(\omega) \in A\})$$

is called *shift invariant*. An event $A \in \mathscr{S}^{\infty}$ is called shift invariant if $A = \theta^{-1}A$.

- We say that a stochastic process {X_n} on a state space {S, S} is stationary if its joint law ν is shift invariant.
- A positive measure μ on a (S, S) is called an *invariant measure* for a transition probability p(·, ·) if it defines a shift invariant measure Prob_μ(·).

イロト 不得下 イヨト イヨト

Lemma

Suppose a σ -finite measure ν and transition probability $p_0(\cdot, \cdot)$ on (S, \mathscr{S}) are such that $\nu \otimes p_0(S \times A) = \nu(A)$ for any $A \in \mathscr{S}$. Then, for all $k \ge 1$ and $A \in \mathscr{S}^{k+1}$,

$$\nu \otimes p_0 \otimes \cdots \otimes p_k(S \times A) = \nu \otimes p_1 \otimes \cdots \otimes p_k(A).$$

3

一日、

Invariant measure

Proof.

- By assumption, ν((p₀f)) = ν(f) for f = I_A and any A ∈ 𝒴. By the monotone class theorem, this extends to all f ∈ b𝒴.
- Consider $f_k(x) = I_{A_0}(x)p_1 \otimes \cdots \otimes p_k(x, A_1 \times \cdots \times A_k)$. Since $p_j h \in b\mathscr{S}$ for any $h \in b\mathscr{S}$, we have $f_k \in b\mathscr{S}$.
- Observe $\nu(f_k) = \nu \otimes p_1 \otimes \cdots \otimes p_k(A)$ for $A = A_0 \times \cdots \times A_k$ and

$$\nu((p_0 f_k)) = \int_{S} \nu(dy) \int_{A_0} p_0(y, dx) p_1 \otimes \cdots \otimes p_k(x, A_1 \times \cdots \times A_k)$$
$$= \nu \otimes p_0 \otimes \cdots \otimes p_k(S \times A).$$

The claim for f_k follows by noting $p_1 \otimes \cdots \otimes p_k(x, A_1 \times \cdots \times A_k) \in b\mathscr{S}$, and hence in general by appealing to the monotone class theorem.

Theorem

A positive σ -finite measure $\mu(\cdot)$ on (S, \mathscr{S}) is an invariant measure for transition probability $p(\cdot, \cdot)$ if and only if $\mu \otimes p(S \times A) = \mu(A)$ for all $A \in \mathscr{S}$.

< 🗇 🕨 < 🖃 🕨

Invariant measure

Proof.

- If μ is a positive σ -finite measure, then so are the measures $\operatorname{Prob}_{\mu}$ and $\operatorname{Prob}_{\mu} \circ \theta^{-1}$ on $(S^{\infty}, \mathscr{S}^{\infty})$.
- The f.d.d. of $\operatorname{Prob}_{\mu}$ are the σ -finite measures $\mu_k(A) = \mu \otimes^k p(A)$ for $A \in \mathscr{S}^{k+1}$.
- By definition of θ , the f.d.d. of $\operatorname{Prob}_{\mu} \circ \theta^{-1}$ are $\mu_{k+1}(S \times A)$.
- Thus a positive σ-finite measure μ is an invariant measure for p(·, ·) if and only if μ_{k+1}(S × A) = μ_k(A) for all k and A ∈ 𝒴^{k+1}. This is equivalent to μ⊗ p(S × A) = μ(A).

Consider a homogeneous Markov chain $\{X_n\}$ on a countable state space $(S, 2^S)$.

Theorem

For any $x, y \in S$ and non-negative integers $k \leq n$,

$$\operatorname{Prob}_{X}(X_{n} = y) = \sum_{z \in S} \operatorname{Prob}_{X}(X_{k} = z) \operatorname{Prob}_{Z}(X_{n-k} = y).$$

Proof.

This follows on conditioning on X_k .

Bo	h I	H	ou	σh	
				o	

A D A D A D A

Harmonic functions

Definition

We say that $f : S \to \mathbb{R}$ which is bounded above or below, is *super-harmonic* for transition probability p(x, y) at $x \in S$ if

$$f(x) \ge \sum_{y \in S} p(x, y) f(y)$$

and *sub-harmonic* at x if

$$f(x) \leq \sum_{y \in S} p(x, y) f(y)$$

harmonic if equality holds. f is sub/super/harmonic if it is sub/super/harmonic at each $x \in S$.

- Let ρ_{xy} = Prob_x(T_y < ∞) be the probability that, started from state x, a Markov chain visits state y in finite time.
- If $x \neq y$, and $\rho_{xy} > 0$ then y is *accessible*.
- x ≠ y intercommunicate, denoted x ↔ y if each is accessible from the other.
- A non-empty collection of states C ⊂ S is *irreducible* if each two states of C intercommunicate, and *closed* if no y ∉ C is accessible from some x ∈ C.

Exercise

- Check that if $\rho_{xy} > 0$ and $\rho_{yz} > 0$ then $\rho_{xz} > 0$.
- This implies that intercommunication is an equivalence relation, so the state space splits into maximal irreducible sets, which are connected by a directed graph indicating which class leads to another. This graph is transitive and acyclic.

A state $y \in S$ is called *recurrent*, or *persistent* if $\rho_{yy} = 1$ and *transient* if $\rho_{yy} < 1$.

イロン 不聞と 不同と 不同と

Return times

Theorem

Let $T_y^0 = 0$, and for $k \ge 1$, $T_y^k = \inf\{n > T_y^{k-1} : X_n = y\}$ be the time of the kth return to y. For any $x, y \in S$ and $k \ge 1$,

$$\mathsf{Prob}_{\mathsf{x}}(T_{\mathsf{y}}^{\mathsf{k}} < \infty) = \rho_{\mathsf{x}\mathsf{y}}\rho_{\mathsf{y}\mathsf{y}}^{\mathsf{k}-1}.$$

Let $N_{\infty}(y)$ denote the number of visits to state y. Then if y is transcient,

$$\mathsf{E}_{x}[N_{\infty}(y)] = \frac{\rho_{xy}}{1 - \rho_{yy}}$$

If y is recurrent then $E_x[N_{\infty}(y)]$ is 0 or ∞ according as ρ_{xy} is 0 or 1.

D				
Bo	h I	HΟ	ııσ	n
	~ `		чь	

Return times

Proof.

The formula $\operatorname{Prob}_x(T_y^k < \infty) = \rho_{xy}\rho_{yy}^{k-1}$ follows from the corresponding formula for iterated stopping times. Calculate

$$E_{x}[N_{\infty}(y)] = \sum_{k=1}^{\infty} \operatorname{Prob}_{x}(N_{\infty}(y) \ge k)$$
$$= \sum_{k=1}^{\infty} \operatorname{Prob}_{x}(T_{y}^{k} < \infty)$$
$$= \sum_{k=1}^{\infty} \rho_{xy} \rho_{yy}^{k-1}$$

which gives the claimed evaluation.

(人間) トイヨト イヨト

Recurrence

Theorem

The following equivalent properties characterize a recurrent state y:

•
$$\mathsf{Prob}_y(T_y^k < \infty) = 1$$
 for all k

•
$$\operatorname{Prob}_y(X_n = y \text{ i.o.}) = 1$$

•
$$\mathsf{Prob}_{y}(N_{\infty}(y) = \infty) = 1$$

•
$$\mathsf{E}_{y}[N_{\infty}(y)] = \infty.$$

This follows from the previous theorem.

3

- 4 同 6 4 日 6 4 日 6

Theorem

A countable state space S of a homogeneous Markov chain can be partitioned uniquely as

 $S = T \cup R_1 \cup R_2 \cup \dots$

where T is the set of transient states and the R_i are disjoint, irreducible closed sets of recurrent states with $\rho_{xy} = 1$ whenever $x, y \in R_i$.

Decomposition Theorem

Proof.

- One easily checks that any pair of interconnected states are either both recurrent or both transient.
- In particular, an irreducible set of states is either transient or recurrent simultaneously. Grouping all transient states together, this provides the decomposition.
- Suppose x is recurrent. If $\rho_{xy} > 0$, then $\rho_{yx} > 0$ since otherwise there is a positive probability of passing from x to y and not returning. This proves the closed condition.

A homogeneous Markov chain is *irreducible* if S is irreducible, is *recurrent* if each state is recurrent, and is *transient* if each state is transient.

Theorem

If *F* is a finite set of transient states then for any initial distribution $\operatorname{Prob}_{\nu}(X_n \in F \text{ i.o.}) = 0$. Any finite closed set *C* contains at least one recurrent state, and if *C* is also irreducible then *C* is recurrent.

イロト 不得下 イヨト イヨト 二日

Recurrence

Proof.

- If F is a finite set of transient states, then for any x,
 E_x[∑_{f∈F} N_∞(f)] < ∞, so the probability that the sites are visited infinitely often is 0.
- If a finite set of sites is closed, then once the chain enters the set, it never leaves. In particular, some site is visited infinitely often and is recurrent.
- If an irreducible set contains a recurrent state, then all states are recurrent, which proves the last claim.

If a singleton $\{x\}$ is a closed set of a homogeneous Markov chain, then we call x an *absorbing state* for the chain.

- 4 回 ト - 4 回 ト

Theorem

Suppose S is irreducible for a chain $\{X_n\}$ and there exists $h : S \to [0, \infty)$ of finite level sets $G_r = \{x : h(x) < r\}$ that is super-harmonic at $S \setminus G_r$ for some finite r. Then $\{X_n\}$ is recurrent.

イロト 不得下 イヨト イヨト

Recurrent states

Proof.

- We can assume S is infinite, and that r_0 is sufficiently large so that h is superharmonic in $S \setminus G_{r_0}$.
- If $\operatorname{Prob}_{X}(T_{G_{r}} < \infty) = 1$ for all $x \in S$, then S contains a recurrent state, hence is recurrent by irreducibility.
- Let $r > r_0$ and let $C_r = G_{r_0} \cup (S \setminus G_r)$. Thus *h* is super-harmonic in $x \notin C$, so $h(X_{n \wedge \tau_C})$ is a non-negative sup-martingale for Prob_x for any $x \in S$.
- Since $C^c \subset G_r$ is a finite set, $\operatorname{Prob}_x(\tau_C < \infty) = 1$. Calculate

$$h(x) \ge \mathsf{E}_x[h(X_{\tau_C})] \ge r \operatorname{Prob}_x(\tau_C < \tau_{G_{r_0}}).$$

イロト 不得下 イヨト イヨト

Proof.

Thus

$\mathsf{Prob}_{x}(\tau_{G_{r_{0}}} < \infty) \ge \mathsf{Prob}_{x}(\tau_{G_{r_{0}}} < \tau_{C}) \ge 1 - \frac{h(x)}{r}.$

Letting $r \to \infty$ proves the claim.

D					
RO	h I	=	\sim	10	h
00			υı	- 5	

We say that a non-zero $\mu: S \rightarrow [0, \infty]$ is an *excessive measure* if

$$\mu(y) \geqslant \sum_{x \in S} \mu(x) p(x, y), \qquad \forall y \in S.$$

R.	h	. н	10		۳h
	υL	· ·	10	ч	вu

(日) (周) (三) (三)

Theorem

Let T_z denote the possibly infinite return time to a state z by homogeneous Markov chain $\{X_n\}$. Then

$$\mu_z(y) = \mathsf{E}_z\left[\sum_{n=0}^{T_z-1} \mathbf{1}(X_n = y)\right]$$

is an excessive measure for $\{X_n\}$, the support of which is the closed set of all states accessible from z. If z is a recurrent state then $\mu_z(\cdot)$ is an invariant measure, whose support is closed and recurrent.

	- L	- 1	ш.			1
Ð	υι	וכ		υι	1g	
					•••	

Invariant measure

Proof.

• Set
$$h_k(\omega, y) = \sum_{n=0}^{T_z(\omega)-1} \mathbf{1}(\omega_{n+k} = y)$$
. Thus $\mu_z(y) = \mathsf{E}_z[h_0(\omega, y)]$.

Calculate

$$\begin{aligned} \mathsf{E}_{z}[h_{1}(\omega, y)] &= \mathsf{E}_{z}\left[\sum_{n=0}^{\infty} \mathbf{1}(T_{z} > n)\mathbf{1}(X_{n+1} = y)\sum_{x \in S} \mathbf{1}(X_{n} = x)\right] \\ &= \sum_{x \in S}\sum_{n=0}^{\infty} \mathsf{E}_{z}\left[\mathbf{1}(T_{z} > n)\mathbf{1}(X_{n} = x)\operatorname{Prob}_{z}(X_{n+1} = y|\mathscr{F}_{n})\right] \\ &= \sum_{x \in S}\sum_{n=0}^{\infty} \mathsf{E}_{z}\left[\mathbf{1}(T_{z} > n)\mathbf{1}(X_{n} = x)\right]p(x, y) \\ &= \sum_{x \in S}\mu_{z}(x)p(x, y).\end{aligned}$$

Invariant measure

Proof.

- Observe that if $\omega_0 = z$, $h_0(\omega, y) \ge h_1(\omega, y)$ with equality when $y \ne z$ or $T_z(\omega) < \infty$.
- It follows that

$$\mu_{z}(y) = \mathsf{E}_{z}[h_{0}(\omega, y)] \ge \mathsf{E}_{z}[h_{1}(\omega, y)] = \sum_{x \in S} \mu_{z}(x)p(x, y),$$

with equality when $y \neq z$ or z is recurrent. This proves that μ_z is excessive.

• Iterating, for any $k \ge 1$,

$$\mu_z(y) \ge \sum_{x \in S} \mu_z(x) \operatorname{Prob}_x(X_k = y)$$

with equality if z is recurrent.

March 21, 2017 46 /

Proof.

- If $\rho_{zy} = 0$ then $\mu_z(y) = 0$, while if $\rho_{zy} > 0$ then $\operatorname{Prob}_z(X_k = y) > 0$ for some finite k, so that $\mu_z(y) \ge \mu_z(z) \operatorname{Prob}_z(X_k = y)$. Thus when z is recurrent, the support of μ_z is its irreducible component.
- If $x \leftrightarrow z$ then $1 = \mu_z(z) \ge \mu_z(x) \operatorname{Prob}_x(X_k = z)$ for some k, whence μ_z is invariant and σ -finite.

イロト 不得下 イヨト イヨト

Theorem

If R is a recurrent equivalence class of states then the invariant measure whose support is contained in R is unique and has R as its support. In particular, the invariant measure of an irreducible, recurrent chain is unique.

Invariant measure

Proof.

- Since R is closed, the restriction of $p(\cdot, \cdot)$ to R is a transition probability, so we may assume S = R.
- Hence there exists a strictly positive invariant measure $\mu = \mu_z$ on R
- Define transition probability $q(x, y) = \frac{\mu(y)p(y,x)}{\mu(x)}$.
- Let ν be any excessive probability for $\textit{p}(\cdot,\cdot).$ Then for any y,

$$\nu(\mathbf{y}) \ge \sum_{\mathbf{x} \in S} \nu(\mathbf{x}) p(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{x} \in S} \nu(\mathbf{x}) q(\mathbf{y}, \mathbf{x}) \frac{\mu(\mathbf{y})}{\mu(\mathbf{x})}$$

so that $\frac{\nu}{\mu}$ is a superharmonic function for q.

イロト 不得下 イヨト イヨト

Invariant measure

Proof.

- By considering paths, we can check that $\rho_{x,y} > 0$ for p implies $\rho_{y,x} > 0$ for q, and hence the Markov chain with transition probability q is irreducible.
- Considering loops, the probability of a return from x to x at step k under p is equal to the same probability under q (by running each loop in reverse). Hence the q-chain is recurrent.
- Check as an exercise that the only positive super-harmonic function for an irreducible recurrent chain is a constant, and hence ν is a scalar multiple of μ .

A non-zero $\mu: S \to [0, \infty)$ is called a *reversible measure* for the transition probability $p(\cdot, \cdot)$ if for all $x, y \in S$, $\mu(x)p(x, y) = \mu(y)p(y, x)$. The transition probability $p(\cdot, \cdot)$ is *reversible* if it has a reversible measure.

イロト 不得 トイヨト イヨト 二日

If $\mu(\cdot)$ is an invariant measure for transition probability p(x, y), then $q(x, y) = \mu(y)p(y, x)/\mu(x)$ is a transition probability on the support of $\mu(\cdot)$, call the *adjoint* or *dual* of p with respect to μ . The corresponding Markov chain is called the *time-reversed* chain.

- A network consists of a countable (finite or infinite) set of vertices V with a symmetric weight function w : V × V → [0, ∞) (i.e. w_{xy} = w_{yx} for all x, y ∈ V). Set μ(x) = ∑_{y∈V} w_{xy}.
- A *random walk* on the network is a homogeneous Markov chain of state space V and transition probability

$$p(x,y)=\frac{w_{xy}}{\mu(x)}.$$

Let T_z denote the first return time to state z. A recurrent state z is called *positive recurrent* if $E_z[T_z] < \infty$ and *null recurrent* otherwise.

3

- 4 同 6 4 日 6 4 日 6

Theorem

If $\pi(\cdot)$ is an invariant probability measure, then all states z with $\pi(z) > 0$ are positive recurrent. Further, if the support of $\pi(\cdot)$ is an irreducible set R of positive recurrent states then $\pi(z) = 1/E_z[T_z]$ for all $z \in R$.

イロト 不得下 イヨト イヨト 二日

Recurrence

Proof.

- Starting the chain from the invariant distribution π one easily verifies that π is supported on recurrent states.
- Calculate, starting from a recurrent state z,

$$\mu_z(S) = \sum_{y \in S} \mu_z(y) = \mathsf{E}_x \left[\sum_{y \in S} \sum_{n=0}^{T_z - 1} \mathbf{1}(X_n = y) \right] = \mathsf{E}_z[T_z].$$

Thus, if μ_z is a finite measure then z is positive recurrent.

- If π is supported on a single irreducible then $\pi(z) = \frac{\mu_z(z)}{\mu_z(S)} = \frac{1}{\mathsf{F}[T_z]}$.
- To complete the proof, note that an invariant probability measure is a mixture of invariant probability measures supported on single irreducibles.

Theorem

Let $\{X_n\}$ and $\{Y_n\}$ be two independent copies of an aperiodic, irreducible Markov chain. Suppose further that the irreducible chain $Z_n = (X_n, Y_n)$ is recurrent. Then, regardless of the initial distribution (X_0, Y_0) , the first meeting time $\tau = \min\{\ell \ge 0 : X_\ell = Y_\ell\}$ of the two processes is a.s. finite, and for any n,

$$\|\mathscr{L}_{X_n} - \mathscr{L}_{Y_n}\|_{\mathsf{TV}} \leq 2 \operatorname{Prob}(\tau > n).$$

イロト 不得下 イヨト イヨト

Markovian coupling

Proof.

• The Markov chain $Z_n = (X_n, Y_n)$ on S^2 is irreducible by independence. Since $\{Z_n\}$ is recurrent, $\tau_z = \min\{\ell \ge 0 : Z_\ell = z\}$ is a.s. finite for each $z \in S^2$. Thus,

$$\tau = \inf\{\tau_z : z = (x, x), \text{ some } x \in S\}.$$

• For the remaining claim, let $g \in b\mathscr{S}$ bounded by 1, and verify that, for $k \leq n$,

$$\mathbf{1}(\tau = k) \mathsf{E}_{X_k}[g(X_{n-k})] = \mathbf{1}(\tau = k) \mathsf{E}_{Y_k}[g(Y_{n-k})]$$

or $\mathsf{E}[\mathbf{1}(\tau = k)g(X_n)] = \mathsf{E}[\mathbf{1}(\tau = k)g(Y_n)]$. Thus

 $\mathsf{E}[g(X_n)] - \mathsf{E}[g(Y_n)] = \mathsf{E}[\mathbf{1}(\tau > n)(g(X_n) - g(Y_n))] \leq 2 \operatorname{Prob}(\tau > n).$