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Submartingales

Theorem

If Xy, is a submartingale and N is a stopping time with Prob(N < k) =1
then

E[Xo] < E[Xn] < E[Xk]-
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Submartingales

Proof.

@ Xpyan is a submartingale, so
E[XO] = E[XN/\O] < E[XN,\k] = E[XN].

o Let K, = 1y—,. Since K, is predictable, (K - X), = X, — Xynn is a
submartingale, so

E[Xe] — E[Xn] = EI(K - X)4] = E[(K - X)o] = 0.
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Doob's inequality

Theorem (Doob'’s inequality)

Let X, be a submartingale,

A>0,and A={X,>= A}. Then

AProb(A) < E[X,14] < E[X,].

n
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Doob's inequality

Proof.
o Let N =inf{m: X, = XA or m= n}. Since Xy = X on A,

AProb(A) < E[Xy1a] < E[X»14].
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Random walks

Example

o Let S, =& + -+ &, where the &, are independent and have
E[Em] =0, Jr2n = E[£r2n] < 0.

e We have X, = S2 is a submartingale.

@ Choosing A = x? in the previous theorem, we get Kolmogorov's
maximal inequality

Prob < max |Sm| = x) < x72Var(S,).

1<m<n
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LP maximum inequality

Theorem
If X, is a submartingale, then for 1 < p < o0,

E[X"] < (Ll) CEpCHP.
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LP maximum inequality

Proof.

Calculate
— w —
E[|IXs A M|P] = J pAP~1 Prob(X, A M = \)dA
0

Q0
< J pAP! <>\_1 fX,Tl (Xn A M=) dP) dA
0

X, AM
= J X J pA\P2d\dP
0

__P + (¥ p—1
_p_lfxn (X n M)P " dP

< P E[IXF P15 E[[X, A M|P
< o1 (X2 [P E[| X0 A M|P]

p—1
P

The result follows on letting M 1 0. O
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L' maximum inequality

Theorem

Let X, be a submartingale and log™ x = max(log x, 0).

E[Xn] < (1—e N7 1+ E[X, logt (X, )]].

Proof.

Exercise. ]
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LP convergence theorem

Theorem

If X, is a martingale with sup E[| X,|P] < o0 where p > 1, then X, — X
a.s. and in LP.
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LP convergence theorem

Proof.
o (E[X, )P < (E[|Xal])P < E[|Xa|P]. Hence X, — X as.

@ By the LP maximum inequality,

p p \*
E[( - |xm|) ]< () E[1X, 7]
o<m<n P—l

Letting n — o0, sup | X,| € LP, so E[| X, — X|P] — 0 by dominated
convergence.
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Orthogonality of martingale increments

Theorem

Let X, be a martingale with E[X?] < oo for all n. If m < n and Y € Fn,
has E[Y?] < o, then

E[(X, — Xm)Y] = 0.
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Orthogonality of martingale increments

Proof.
By Cauchy-Schwarz, E[|(X, — Xm) Y]] < «, so

E[(Xn - Xm) Y] = E[Y E[(Xn - Xm)|ﬁm]] =0.
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Conditional variance formula

Theorem
If X, is a martingale with E[X2] < co for all n, then

E[(Xp — Xm)?|Zm] = E[X2|Zm] — X2

m-
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Conditional variance formula

Proof.
Calculate
E[Xr? - 2XnXm + Xri|ym] = E[Xrﬂgm] - 2Xm E[Xn|ym] + X,%,
— D7) - XE,
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Square integrable martingales

Definition

Let X, be a martingale with Xo = 0 and E[X?] < oo for all n. Thus X2 is
a sub-martingale. Write X,? = M, + A, where M, is a martingale. A, is
called the increasing process. Let Ay, = lim A,.
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Square integrable martingales

Theorem
We have E[sup,, | Xm|?] < 4E[Ax].

Proof.

The L2 maximum inequality gives

E[ sup |X,,,|2] < 4E[X?] = 4E[A,].

os<m<n

The conclusion follows from monotone convergence. [
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Square integrable martingales

Theorem

limp_o0 Xp exists and is finite a.s. on {Ay < o0}.

Proof.

o Let a> 0. Since A,y1€.%,, N=inf{n:A,1>a%}.
@ Since Ayp < 3%,

E [sup |XNA,,\2} < 42°.
n

@ Hence lim Xy ., exists and is finite a.s. Since this holds for all a, the
result follows.

Ol

v
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Square integrable martingales

Theorem

Let f > 1 be increasing with SSO f(t)~2dt < oo. Then ()Xn) — 0 a.s. on
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Square integrable martingales

Proof.
o Let H, = f(Ay,) ! is bounded and predictable so

n

Yo=(H X)p= >

m=1

Xm - A\m-1
f(Am)

is a martingale.

@ The increasing process associated to Y, satisfies
Bn-i-l - Bn = E[(Yn-i-l - Yn)2|gn]

=[S -

An+1 — An
f(An+1)2 .
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Square integrable martingales

Proof.

@ Since

[0'0]
A"H f )72dt < 0.
n+1 AmAn+1

Hence Y, — Yy ass.

o It follows that A "n) — 0 a.s. by Kronecker's lemma.
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Uniformly integrable random variables

Definition

A collection of random variables {X; : i € I} is uniformly integrable if

Mlim (suFE[|X;|1(|X,-| > I\/I)]) =0.

—®0 \ je

Choose M sufficiently large in the definition so that the sup is less than 1.
Then

supE[|Xi]] < M+ 1 < .

iel
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Uniformly integrable random variables

Theorem

Given a probability space (2, %o, Prob) and an X € L, then
{E[X|F#] : F < Fo} is uniformly integrable.
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Uniformly integrable random variables

Proof.

e If A, is a sequence of sets with Prob(A,) — 0, then E[|X|14,] — 0
by dominated convergence. Hence, for each ¢ > 0 there exists § > 0
such that Prob(A,) < d implies E[|X|14,] < €.

@ Apply Jensen's inequality to find, for M > 0,

E[lE[X|Z]A(|E[X|.Z]] > M)] < E[E[|X||Z]1(E[|X||#] > M)]
= E[IX|1(E[|X][.#] > M)].
@ Choose M so that E[|X|] < Md so that

ELE(X]I]] _ ElXI _ 5
M M T

o Thus E[|E[X|Z]|1(|E[X|.Z]| > M)] < ¢ for all Z.

Prob(E[|X||#] > M) <
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Uniformly integrable random variables

Theorem

If X, — X in probability, then the following are equivalent.
@ {X,:n=0} is uniformly integrable.
Q@ X,— Xinl!
Q E[|Xa|] — E[|X]] < co.
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Uniformly integrable random variables

Proof.
o 1 implies 2:
Let
M x=M
dm(x) = X Ix| <M
-m x<—M
Thus

| Xn = X| < [Xo = om(Xn)| + [dm(Xn) — dm(X)] + [om(X) — X].
Since |pm(Y) — Y| < |Y|1(]Y| > M), taking expected values

E[1Xn — X1 < E[lom(Xn) = dam(X)[] + E[[Xa[1(|1Xa| > M)]
+E[IX[1(IX| > M)].

Ol

v
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Uniformly integrable random variables

Proof.

° Since oM (X,) — dm(X) in probability, the first term tends to 0.
The second term tends to 0 as M tends to oo by uniform integrability.
sup E[|X,|] < oo implies E[|X]|] < o0, which implies E[|X|1(|X| > M)].

@ 2 implies 3: Jensen gives

| ENXal] = EIX] < E[[[Xa] = [X]] < E[|X, = X]] = 0.
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Uniformly integrable random variables

Proof.
@ 3 implies 1:
Let ¢p interpolate linearly between f(x) = x on [0, M — 1] and 0 on

[M, ).
E[vm (| Xal)] — E[¥m(]X]|)] by convergence in probability.
Choose M sufficiently large so that E[|X|[] — E[ym(|X])] < 5. If nis

sufficiently large,

E[[Xa[1(|Xn] > M)] < E[[Xn]] — E[¢m (I Xa])] < €.
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Uniformly integrable random variables

Theorem

For a submartingale, the following are equivalent.
© It is uniformly integrable.
@ It converges a.s. in L'

Q It converges in L.
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Uniformly integrable random variables

Proof.

@ 1 implies 2: Uniform integrability implies sup E[| X,|] < o0, so the
martingale convergence theorem implies almost sure convergence.
The convergence in L! follows from the previous theorem.

@ 2 implies 3: This is automatic.

@ 3 implies 1: Convergence in L! implies convergence in probability, so
this follows from the previous theorem.

Ol

v
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Uniformly integrable random variables

Lemma

If integrable random variables X,, — X in L' then E[X,14] — E[X14].

Proof.

| E[Xm1a] — E[X1a]| < E[[Xmla — X1a]] < E[|Xm — X|] — 0.
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Uniformly integrable random variables

Lemma

If a martingale X, — X in L*, then X, = E[X|.Z,].

Proof.

o If m> n, E[Xp|Zn] = Xy, soif Ae Z,, E[Xp1la] = E[Xnla4]

@ Since E[X,14] — E[X14] we have E[X,14] = E[X14] for all
A€ Z,. In particular, X, = E[X|.Z,].
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Uniformly integrable random variables

Theorem

For a martingale, the following are equivalent.
@ It is uniformly integrable
@ It converges a.s. and in L
@ It converges in Lt

@ There is an integrable random variable X so that X, = E[X|.Z,].

Proof.
The first two implications are as above. For 3 implies 4, this is the
previous lemma. 4 implies 1 is a previous theorem. []
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Uniformly integrable random variables

Theorem

Suppose Fp, 1 Fo and Fo, = 0 (|, Fn). As n — o,
E[X|Z,] — E[X| %] a.s. and in LL.
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Uniformly integrable random variables

Proof.
o If m > n then
E[E[X|Zm]|Fn] = E[X|Fn],
so Y, = E[X|.Z,] is a martingale.

@ Since Y, is uniformly integrable, Y,, converges a.s. and in L! to a
limit Y.

o Observe E[X|.Z,] = Yn = E[Yx|-Zh], and hence if Ae .%,,

J XdP = J Yoo dP.
A A

Since E[X|Z] and Yy, agree on a m-system in %, they are equal
there.

O

v
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Lévy's 0-1 law

Theorem
If Y Py and A€ Fy, then E[14]|.7,] — 14 as. J
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Dominated convergence

Theorem

Suppose Y, — Y a.s. and |Y,| < Z for all n where E[Z] < . If
Fn 1 Fo then

E[Y,|Z] — E[Y| ] a.s.

Bob Hough Math 639: Lecture 11 March 3, 2017 37 / 56



Dominated convergence

Proof.
o Let Wy = sup{|Yn — Yml| : n,m > N}. Note E[Wy] < o0.

o We have
limsupE[| Y, — Y||%n] < IimOO E[W,|.Zh] = E[Wn|Z ]
n—0o0 W=>
@ Since Wy | 0as N 1 oo, E[Wpn|Z] | 0, and Jensen gives
|E[Yn|Zn] — E[Y|Zn]| < E[|Yn— Y||-%n] — 0 a.s.

e Since E[Y|.Z,] — E[Y|Z] as. this suffices.
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Backwards martingales

Definition
A backwards martingale is a martingale indexed by the negative integers,
that is, X, n < 0, adapted to an increasing sequence of o-algebras .Z,

E[Xn+1|Zn] = X, n

N

—1.
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Backwards martingales

Theorem J

X_oo = limp__o X, exists a.s. and in L.
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Backwards martingales

Proof.
o Let U, be the number of upcrossings of [a, b] by X_, ..., Xp.
o (b—a)E[U,] <E[(Xo—a)"].
e Letting n — 0, E[Uyx] < o0, so the limit exists almost surely.
e Since X, = E[Xo|.-Zs], X, is uniformly integrable, so that the
convergence is in L.
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Backwards martingales

Theorem

Bob Hough Math 639: Lecture 11 March 3, 2017 42 / 56



Backwards martingales

Proof.
Since X, = E[Xp|%,], if Ae F_o, € Fp,

f XndP = f XodP.
A A

Since E[X,14] — E[X_s14],

J X_opdP = J XodP
A A

forall Ae . O

Bob Hough Math 639: Lecture 11 March 3, 2017 43 / 56



Backwards martingales

From the previous theorems it follows.

Theorem
If#,| %_ asn| —w,

E[Y|.Z,] — E[Y|Z_] a.s. and in L.
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Strong law of large numbers

Example
o Let &1,&, ... be i.i.d. with E[|&]] < o0
o letS, =& +---+&, let X)), = % and let

g—n = U(Sn’5n+17 5n+2a ) = U(Snafn-&-lafn-&-% )

o Calculate, using symmetry, for j < n+ 1,

+
E[§j|y—n—l] —n— 1
1 Sn-&-l
- E Z] = .
1 Comnl Tl =TT
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Strong law of large numbers

Example

Sn+1*£n+l
n 1

@ Since X_, =

E[X—n|<g—n—1] _ E{ n+1‘<} . 1] _E [énﬂ‘ﬂ_n 1]

Snt1 Snt1 Snt1 _x
= = = = X_p-1.
n nin+1) n+1

@ Thus X_,, is a backwards martingale, and thus
lim,_ o0 n" = E[ 1’9\ ]

@ Since .%_, has first n coordinates exchangeable _oo C &, and thus,
by the HeW|tt—Savage 0-1 law, limy_o 22 = E[X_1] a.
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de Finetti's Theorem

A sequence Xi, Xa, ... is said to be exchangeable if for each n and

permutation 7 of {1,2,...;n}, (X1, ..., Xs) and (Xr(1), .-, Xr(m)) have the
same distribution.

Theorem

If X1, Xo, ... are exchangeable, then conditional on &, X1, Xa, ... are
independent and indentically distributed.
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de Finetti's Theorem

Proof.
@ Let ¢ be bounded, and introduce

Z(ls 190y Ik

where the sum runs over distinct sets 1 < i, ..., ix < n and
(Mk=n(n—1)---(n—k+1).
o Calculate

An() = ELAN(0)|61] = o S EB(Xs 0 X, |65

= E[¢(X1, ..., Xi) |6n]-
o It follows An(¢) — E[¢(X1, ..., X¢)|&].
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de Finetti's Theorem

Proof.
o Let f and g be bounded on R¥~! and R and calculate

(M1 An(F)nAn(g) = Y F(Xipy s Xi 1) D 8(Xm)

1<it,...,ixk—1<n m
distinct

= Z f(X,'l, 0005 Xikfl)g(xik)

1<i,...,ix<n
distinct

+ Z Z f iy ’k 1) (XIJ)

1<i,..,ik—1<n j=1
distinct
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de Finetti's Theorem

Proof.

o Let ¢(x1,...,xk) = f(x1, ..., xk—1)8(xx) and
Gj (X1, oo Xk—1) = F(x1, .., Xk—1)8 (%)
@ Rearranging the above identity,

k—1
n 1

An(f)An(g) — n_k+1 Z An())-

An(9) = ——An
n—k+1 =

Letting n — oo,
E[f (X1, ..., Xk—1)8(X)[€] = E[F(Xy, ..., Xi—1)|E] E[g(Xi)|€].

@ The theorem now follows by induction.

Ol

v
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Optional Stopping Theorems

Theorem

If X,, is a uniformly integrable submartingale, then for any stopping time
N, Xnnn is uniformly integrable.
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Optional Stopping Theorems

Proof.
e X, is a submartingale, so E[Xy ] < E[X;].
e sup, E[X\ 1< sup,E[X;] < .

@ By the martingale convergence theorem Xy, — Xy a.s. and
E[| Xn]|] < 0.

@ Now calculate

E[[ Xy nl1([Xninnl > K)] = E[IXnIL(1Xn] > K, N < )]
+ E[|Xal1(|X0| > K, N > n)].

Choosing K sufficiently large makes both parts on the right
sufficiently small.
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Optional Stopping Theorems

Theorem

If X,, is a uniformly integrable submartingale, then for any stopping time
N < oo we have E[Xo] < E[Xn] < E[Xy] where Xy, = lim X,.
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Optional Stopping Theorems

Proof.
Recall E[Xo] < E[Xnan] < E[X,]. Letting n — o0 and noting Xy.pn — Xy
and X, — X, in L' proves the result. []

Bob Hough Math 639: Lecture 11 March 3, 2017 54 / 56



Optional Stopping Theorems

Theorem (Optional stopping theorem)

If L < M are stopping times and Y p, is a uniformly integrable
submartingale, then E[Y|] < E[Ym] and

Y, < E[YMLQL]
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Optional Stopping Theorems

Proof.
@ Set X, = Yman and use E[X; ] < E[Xy] to obtain E[Y,] < E[Yum].
o Let Ac %, and
N— { L on A

M on A°
We have E[Yn] < E[Yum]. Since N = M on A€,

E[YL].A] < E[YM].A] = E[E[YM|yL]1A]

Set Ac = {Y. — E[Yu|ZL] > €} gives Prob(A.) = 0.
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