Math 639: Lecture 11

Convergence of Martingales

Bob Hough

March 3, 2017

P ₂	h	ы	~.	. ~	h
Ъυ	υ		υι	ıg	u

Math 639: Lecture 11

If X_n is a submartingale and N is a stopping time with $\operatorname{Prob}(N \leq k) = 1$ then

 $\mathsf{E}[X_0] \leqslant \mathsf{E}[X_N] \leqslant \mathsf{E}[X_k].$

- 4 間 と 4 画 と 4 画

Proof.

• $X_{N \wedge n}$ is a submartingale, so

$$\mathsf{E}[X_0] = \mathsf{E}[X_{N \wedge 0}] \leqslant \mathsf{E}[X_{N \wedge k}] = \mathsf{E}[X_N].$$

• Let $K_n = \mathbf{1}_{N < n}$. Since K_n is predictable, $(K \cdot X)_n = X_n - X_{N \wedge n}$ is a submartingale, so

$$\mathsf{E}[X_k] - \mathsf{E}[X_N] = \mathsf{E}[(K \cdot X)_k] \ge \mathsf{E}[(K \cdot X)_0] = 0.$$

_			
20	ь I		u or h
130		101	וואנ
			-0

< ロ > < 同 > < 三 > < 三

Theorem (Doob's inequality)

Let X_m be a submartingale,

$$\overline{X}_n = \max_{0 \leqslant m \leqslant n} X_m^+,$$

$$\lambda > 0$$
, and $A = \{\overline{X}_n \ge \lambda\}$. Then

$$\lambda \operatorname{Prob}(A) \leq \operatorname{E}[X_n \mathbf{1}_A] \leq \operatorname{E}[X_n^+].$$

Ro	h	н	0.1	at	
50	0		υu	g,	ł

-

• • • • • • • • • • • •

Proof.

• Let $N = \inf\{m : X_m \ge \lambda \text{ or } m = n\}$. Since $X_N \ge \lambda$ on A,

 $\lambda \operatorname{Prob}(A) \leq \operatorname{E}[X_N \mathbf{1}_A] \leq \operatorname{E}[X_n \mathbf{1}_A].$

Bob Hough

(日) (同) (三) (三)

Random walks

Example

- Let $S_n = \xi_1 + \cdots + \xi_n$ where the ξ_m are independent and have $E[\xi_m] = 0$, $\sigma_m^2 = E[\xi_m^2] < \infty$.
- We have $X_n = S_n^2$ is a submartingale.
- Choosing $\lambda = x^2$ in the previous theorem, we get Kolmogorov's maximal inequality

$$\operatorname{Prob}\left(\max_{1\leqslant m\leqslant n}|S_m|\geqslant x\right)\leqslant x^{-2}\operatorname{Var}(S_n).$$

・ロン ・四 ・ ・ ヨン ・ ヨン

If X_n is a submartingale, then for 1 ,

$$\mathsf{E}[\overline{X}_n^p] \leqslant \left(\frac{p}{p-1}\right)^p \mathsf{E}[X_n^+]^p.$$

Bob Hough

(日) (同) (三) (三)

L^p maximum inequality

Proof.

Calculate

$$\mathsf{E}\left[|\overline{X}_n \wedge M|^p\right] = \int_0^\infty p\lambda^{p-1} \operatorname{Prob}(\overline{X}_n \wedge M \ge \lambda) d\lambda$$

$$\leq \int_0^\infty p\lambda^{p-1} \left(\lambda^{-1} \int X_n^+ \mathbf{1}\left(\overline{X}_n \wedge M \ge \lambda\right) dP\right) d\lambda$$

$$= \int X_n^+ \int_0^{\overline{X}_n \wedge M} p\lambda^{p-2} d\lambda dP$$

$$= \frac{p}{p-1} \int X_n^+ \left(\overline{X}_n \wedge M\right)^{p-1} dP$$

$$\leq \frac{p}{p-1} \operatorname{E}[|X_n^+|^p]^{\frac{1}{p}} \operatorname{E}[|\overline{X}_n \wedge M|^p]^{\frac{p-1}{p}}.$$

The result follows on letting $M \uparrow \infty$.

Bob Hough

March 3, 2017 8 / 56

< 🗗 >

L^1 maximum inequality

Theorem

Let X_n be a submartingale and $\log^+ x = \max(\log x, 0)$.

$$\mathsf{E}[\overline{X}_n] \leqslant (1 - e^{-1})^{-1} \left[1 + \mathsf{E}[X_n^+ \log^+(X_n^+)] \right].$$

Proof.

Exercise.

イロト イポト イヨト イヨト

If X_n is a martingale with sup $E[|X_n|^p] < \infty$ where p > 1, then $X_n \to X$ a.s. and in L^p .

Bob Hough

3

- 4 回 ト - 4 回 ト

L^p convergence theorem

Proof.

- $(\mathsf{E}[X_n^+])^p \leq (\mathsf{E}[|X_n|])^p \leq \mathsf{E}[|X_n|^p]$. Hence $X_n \to X$ a.s.
- By the L^p maximum inequality,

$$\mathsf{E}\left[\left(\sup_{0\leqslant m\leqslant n}|X_m|\right)^p\right]\leqslant \left(\frac{p}{p-1}\right)^p\mathsf{E}[|X_n|^p].$$

Letting $n \to \infty$, sup $|X_n| \in L^p$, so $E[|X_n - X|^p] \to 0$ by dominated convergence.

イロト イヨト イヨト イヨト

Orthogonality of martingale increments

Theorem

Let X_n be a martingale with $E[X_n^2] < \infty$ for all n. If $m \le n$ and $Y \in \mathscr{F}_m$ has $E[Y^2] < \infty$, then

 $\mathsf{E}[(X_n-X_m)Y]=0.$

Orthogonality of martingale increments

Proof.

By Cauchy-Schwarz, $E[|(X_n - X_m)Y|] < \infty$, so

$$\mathsf{E}[(X_n - X_m)Y] = \mathsf{E}[Y \mathsf{E}[(X_n - X_m)|\mathscr{F}_m]] = 0.$$

3

(日) (同) (三) (三)

If X_n is a martingale with $E[X_n^2] < \infty$ for all n, then

$$\mathsf{E}[(X_n - X_m)^2 | \mathscr{F}_m] = \mathsf{E}[X_n^2 | \mathscr{F}_m] - X_m^2.$$

Bob Hough

3

・ロト ・回ト ・ヨト ・ヨ

Proof.

Calculate

$$E[X_n^2 - 2X_nX_m + X_m^2|\mathscr{F}_m] = E[X_n^2|\mathscr{F}_m] - 2X_m E[X_n|\mathscr{F}_m] + X_m^2$$
$$= E[X_n^2|\mathscr{F}_m] - X_m^2.$$

D					
RO	h I	=	\sim		h
00				- 5	

3

< ロ > < 同 > < 三 > < 三

Definition

Let X_n be a martingale with $X_0 = 0$ and $E[X_n^2] < \infty$ for all n. Thus X_n^2 is a sub-martingale. Write $X_n^2 = M_n + A_n$ where M_n is a martingale. A_n is called the *increasing process*. Let $A_\infty = \lim A_n$.

Square integrable martingales

Theorem

We have
$$E[\sup_m |X_m|^2] \leq 4 E[A_\infty]$$
.

Proof.

The L^2 maximum inequality gives

$$\mathsf{E}\left[\sup_{0\leqslant m\leqslant n}|X_m|^2\right]\leqslant 4\,\mathsf{E}[X_n^2]=4\,\mathsf{E}[A_n].$$

The conclusion follows from monotone convergence.

D				
Bo	h I	=1	nп	σh
	~ `			ь

3

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Square integrable martingales

Theorem

 $\lim_{n\to\infty} X_n$ exists and is finite a.s. on $\{A_{\infty} < \infty\}$.

Proof.

• Let a > 0. Since $A_{n+1} \in \mathscr{F}_n$, $N = \inf\{n : A_{n+1} > a^2\}$.

• Since
$$A_{N \wedge n} \leq a^2$$
,
 $\mathsf{E}\left[\sup_n |X_{N \wedge n}|^2\right] \leq 4a^2$.

• Hence $\lim X_{N \wedge n}$ exists and is finite a.s. Since this holds for all *a*, the result follows.

イロト イヨト イヨト イヨト

Let $f \ge 1$ be increasing with $\int_0^\infty f(t)^{-2} dt < \infty$. Then $\frac{X_n}{f(A_n)} \to 0$ a.s. on $\{A_{\infty} = \infty\}.$

★聞▶ ★ 国▶ ★ 国▶

Square integrable martingales

Proof.

• Let $H_m = f(A_m)^{-1}$ is bounded and predictable so

$$Y_n = (H \cdot X)_n = \sum_{m=1}^n \frac{X_m - X_{m-1}}{f(A_m)}$$

is a martingale.

• The increasing process associated to Y_n satisfies

$$B_{n+1} - B_n = \mathsf{E}[(Y_{n+1} - Y_n)^2 | \mathscr{F}_n]$$

= $\mathsf{E}\left[\frac{(X_{n+1} - X_n)^2}{f(A_{n+1})^2} | \mathscr{F}_n\right] = \frac{A_{n+1} - A_n}{f(A_{n+1})^2}.$

3

Square integrable martingales

Proof.
• Since

$$\sum_{n=0}^{\infty} \frac{A_{n+1} - A_n}{f(A_{n+1})^2} \leq \sum_{n=0}^{\infty} \int_{[A_n, A_{n+1})} f(t)^{-2} dt < \infty.$$
Hence $Y_n \to Y_{\infty}$ a.s.
• It follows that $\frac{X_n}{f(A_n)} \to 0$ a.s. by Kronecker's lemma.

3

-

Image: A match a ma

Definition

A collection of random variables $\{X_i : i \in I\}$ is uniformly integrable if

$$\lim_{M\to\infty}\left(\sup_{i\in I}\mathsf{E}[|X_i|\mathbf{1}(|X_i|>M)]\right)=0.$$

Choose M sufficiently large in the definition so that the sup is less than 1. Then

$$\sup_{i\in I} \mathsf{E}[|X_i|] \leq M+1 < \infty.$$

Given a probability space $(\Omega, \mathscr{F}_0, \text{Prob})$ and an $X \in L^1$, then $\{E[X|\mathscr{F}] : \mathscr{F} \subset \mathscr{F}_0\}$ is uniformly integrable.

Bob Hough

3

(本語)と (本語)と (本語)と

Proof.

- If A_n is a sequence of sets with Prob(A_n) → 0, then E[|X|1_{A_n}] → 0 by dominated convergence. Hence, for each ε > 0 there exists δ > 0 such that Prob(A_n) < δ implies E[|X|1_{A_n}] < ε.
- Apply Jensen's inequality to find, for M > 0,

 $\mathsf{E} \left[|\mathsf{E}[X|\mathscr{F}]|\mathbf{1}(|\mathsf{E}[X|\mathscr{F}]| > M) \right] \leq \mathsf{E} \left[\mathsf{E}[|X||\mathscr{F}]\mathbf{1}(\mathsf{E}[|X||\mathscr{F}] > M) \right]$ $= \mathsf{E}[|X|\mathbf{1}(\mathsf{E}[|X||\mathscr{F}] > M)].$

• Choose M so that $\mathsf{E}[|X|] \leqslant M\delta$ so that

$$\mathsf{Prob}(\mathsf{E}[|X||\mathscr{F}] > M) \leqslant \frac{\mathsf{E}[\mathsf{E}[|X||\mathscr{F}]]}{M} = \frac{\mathsf{E}[|X|]}{M} \leqslant \delta.$$

• Thus $\mathsf{E}[|\mathsf{E}[X|\mathscr{F}]|\mathbf{1}(|\mathsf{E}[X|\mathscr{F}]| > M)] \leq \epsilon$ for all \mathscr{F} .

If $X_n \to X$ in probability, then the following are equivalent.

- $\{X_n : n \ge 0\}$ is uniformly integrable.
- $X_n \to X \text{ in } L^1$
- $I \in [|X_n|] \to \mathsf{E}[|X|] < \infty.$

(本語)と (本語)と (本語)と

Proof.

• 1 implies 2:

Let

$$\phi_M(x) = \begin{cases} M & x \ge M \\ x & |x| \le M \\ -m & x \le -M \end{cases}$$

Thus

$$|X_n - X| \leq |X_n - \phi_M(X_n)| + |\phi_M(X_n) - \phi_M(X)| + |\phi_M(X) - X|.$$

Since $|\phi_M(Y) - Y| \leq |Y|\mathbf{1}(|Y| > M)$, taking expected values

$$\mathsf{E}[|X_n - X|] \leq \mathsf{E}[|\phi_M(X_n) - \phi_M(X)|] + \mathsf{E}[|X_n|\mathbf{1}(|X_n| > M)] + \mathsf{E}[|X|\mathbf{1}(|X| > M)].$$

Bob Hough

Proof.

- Since $\phi_M(X_n) \rightarrow \phi_M(X)$ in probability, the first term tends to 0. The second term tends to 0 as M tends to ∞ by uniform integrability. $\sup E[|X_n|] < \infty$ implies $E[|X|] < \infty$, which implies $E[|X|\mathbf{1}(|X| > M)]$.
- 2 implies 3: Jensen gives

$$|\mathsf{E}[|X_n|] - \mathsf{E}[|X|]| \leq \mathsf{E}[||X_n| - |X||] \leq \mathsf{E}[|X_n - X|] \to 0.$$

* (四) * * (日) * * (日)

Proof.

- 3 implies 1:
 - Let ψ_M interpolate linearly between f(x) = x on [0, M-1] and 0 on $[M, \infty)$.
 - $\mathsf{E}[\psi_{\mathcal{M}}(|X_n|)] \to \mathsf{E}[\psi_{\mathcal{M}}(|X|)]$ by convergence in probability.
 - Choose *M* sufficiently large so that $E[|X|] E[\psi_M(|X|)] \leq \frac{\epsilon}{2}$. If *n* is sufficiently large,

$$\mathsf{E}[|X_n|\mathbf{1}(|X_n| > M)] \leq \mathsf{E}[|X_n|] - \mathsf{E}[\psi_M(|X_n|)] < \epsilon.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

For a submartingale, the following are equivalent.

- 1 It is uniformly integrable.
- 2) It converges a.s. in L^1
- It converges in L¹.

Proof.

- 1 implies 2: Uniform integrability implies sup E[|X_n|] < ∞, so the martingale convergence theorem implies almost sure convergence. The convergence in L¹ follows from the previous theorem.
- 2 implies 3: This is automatic.
- 3 implies 1: Convergence in L¹ implies convergence in probability, so this follows from the previous theorem.

Lemma

If integrable random variables $X_n \to X$ in L^1 then $E[X_n \mathbf{1}_A] \to E[X \mathbf{1}_A]$.

Proof.

$$\mathsf{E}[X_m \mathbf{1}_A] - \mathsf{E}[X \mathbf{1}_A] | \leq \mathsf{E}[|X_m \mathbf{1}_A - X \mathbf{1}_A|] \leq \mathsf{E}[|X_m - X|] \to 0.$$

-				
- 14	٥h	- 13	α	σh
_	00		u	<u> – – – – – – – – – – – – – – – – – – –</u>
				<u> </u>

3

イロト イヨト イヨト イヨト

Lemma

If a martingale
$$X_n \to X$$
 in L^1 , then $X_n = \mathsf{E}[X|\mathscr{F}_n]$.

Proof.

• If
$$m > n$$
, $E[X_m | \mathscr{F}_n] = X_n$, so if $A \in \mathscr{F}_n$, $E[X_n \mathbf{1}_A] = E[X_m \mathbf{1}_A]$

• Since $E[X_m \mathbf{1}_A] \to E[X \mathbf{1}_A]$ we have $E[X_n \mathbf{1}_A] = E[X \mathbf{1}_A]$ for all $A \in \mathscr{F}_n$. In particular, $X_n = E[X|\mathscr{F}_n]$.

・ロン ・四 ・ ・ ヨン ・ ヨン

Theorem

For a martingale, the following are equivalent.

- It is uniformly integrable
- 2 It converges a.s. and in L^1
- It converges in L¹
- **④** There is an integrable random variable X so that $X_n = E[X|\mathscr{F}_n]$.

Proof.

The first two implications are as above. For 3 implies 4, this is the previous lemma. 4 implies 1 is a previous theorem.

Theorem

Suppose
$$\mathscr{F}_n \uparrow \mathscr{F}_{\infty}$$
 and $\mathscr{F}_{\infty} = \sigma (\bigcup_n \mathscr{F}_n)$. As $n \to \infty$,
 $\mathsf{E}[X|\mathscr{F}_n] \to \mathsf{E}[X|\mathscr{F}_{\infty}]$ a.s. and in L^1 .

Bob Hough

< 4 → <

3 🕨 🖌 3

Proof.

• If *m* > *n* then

$$\mathsf{E}[\mathsf{E}[X|\mathscr{F}_m]|\mathscr{F}_n] = \mathsf{E}[X|\mathscr{F}_n],$$

so $Y_n = \mathsf{E}[X|\mathscr{F}_n]$ is a martingale.

- Since Y_n is uniformly integrable, Y_n converges a.s. and in L^1 to a limit Y_{∞} .
- Observe $\mathsf{E}[X|\mathscr{F}_n] = Y_n = \mathsf{E}[Y_{\infty}|\mathscr{F}_n]$, and hence if $A \in \mathscr{F}_n$,

$$\int_A X dP = \int_A Y_\infty dP.$$

Since $E[X|\mathscr{F}_{\infty}]$ and Y_{∞} agree on a π -system in \mathscr{F}_{∞} , they are equal there.

イロト イポト イヨト イヨト

If $\mathscr{F}_n \uparrow \mathscr{F}_{\infty}$ and $A \in \mathscr{F}_{\infty}$ then $\mathsf{E}[\mathbf{1}_A | \mathscr{F}_n] \to \mathbf{1}_A$ a.s.

-			
ж	n		i a h
ັ	UL	 IUL	1 E I I
			•

Suppose $Y_n \to Y$ a.s. and $|Y_n| \leq Z$ for all n where $\mathbb{E}[Z] < \infty$. If $\mathscr{F}_n \uparrow \mathscr{F}_\infty$ then $\mathbb{E}[Y_n | \mathscr{F}_n] \to \mathbb{E}[Y | \mathscr{F}_\infty]$ a.s.

Bob Hough

イロト 不得 トイヨト イヨト 二日

Dominated convergence

Proof.

• Let $W_N = \sup\{|Y_n - Y_m| : n, m \ge N\}$. Note $E[W_N] < \infty$.

We have

$$\limsup_{n\to\infty} \mathsf{E}[|Y_n - Y||\mathscr{F}_n] \leq \lim_{n\to\infty} \mathsf{E}[W_n|\mathscr{F}_n] = \mathsf{E}[W_N|\mathscr{F}_\infty].$$

• Since $W_N \downarrow 0$ as $N \uparrow \infty$, $E[W_N | \mathscr{F}_{\infty}] \downarrow 0$, and Jensen gives

 $|\mathsf{E}[Y_n|\mathscr{F}_n] - \mathsf{E}[Y|\mathscr{F}_n]| \leq \mathsf{E}[|Y_n - Y||\mathscr{F}_n] \to 0 \text{ a.s.}$

• Since $\mathsf{E}[Y|\mathscr{F}_n] \to \mathsf{E}[Y|\mathscr{F}_\infty]$ a.s. this suffices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Definition

A *backwards martingale* is a martingale indexed by the negative integers, that is, X_n , $n \leq 0$, adapted to an increasing sequence of σ -algebras \mathscr{F}_n

$$\mathsf{E}[X_{n+1}|\mathscr{F}_n] = X_n, \qquad n \leqslant -1.$$

Backwards martingales

Theorem

 $X_{-\infty} = \lim_{n \to -\infty} X_n$ exists a.s. and in L^1 .

- D		
		1000
-	 	
		<u> </u>

3

(日) (周) (三) (三)

Proof.

• Let U_n be the number of upcrossings of [a, b] by $X_{-n}, ..., X_0$.

•
$$(b-a) \operatorname{\mathsf{E}}[U_n] \leq \operatorname{\mathsf{E}}[(X_0-a)^+].$$

- Letting $n \to \infty$, $\mathsf{E}[U_{\infty}] < \infty$, so the limit exists almost surely.
- Since $X_n = E[X_0|\mathscr{F}_n]$, X_n is uniformly integrable, so that the convergence is in L^1 .

Backwards martingales

Theorem

If $X_{-\infty} = \lim_{n \to -\infty} X_n$ and $\mathscr{F}_{-\infty} = \bigcap_n \mathscr{F}_n$, then $X_{-\infty} = \mathsf{E}[X_0 | \mathscr{F}_{-\infty}]$.

	_	_	-			
- DO		_	<i>.</i> 11		• •	٠
	_				_	
				-	_	

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

Backwards martingales

Proof.

Since $X_n = \mathsf{E}[X_0|\mathscr{F}_n]$, if $A \in \mathscr{F}_{-\infty} \subset \mathscr{F}_n$,

$$\int_A X_n dP = \int_A X_0 dP.$$

Since $\mathsf{E}[X_n \mathbf{1}_A] \to \mathsf{E}[X_{-\infty} \mathbf{1}_A]$,

$$\int_A X_{-\infty} dP = \int_A X_0 dP$$

for all $A \in \mathscr{F}_{-\infty}$.

イロト 不得 トイヨト イヨト 二日

From the previous theorems it follows.

Theorem If $\mathscr{F}_n \downarrow \mathscr{F}_{-\infty}$ as $n \downarrow -\infty$, $E[Y|\mathscr{F}_n] \to E[Y|\mathscr{F}_{-\infty}]$ a.s. and in L^1 .

Bob Hough

イロン 不聞と 不同と 不同と

Strong law of large numbers

Example

• Let $\xi_1, \xi_2, ...$ be i.i.d. with $E[|\xi_i|] < \infty$. • Let $S_n = \xi_1 + \dots + \xi_n$, let $X_{-n} = \frac{S_n}{n}$, and let $\mathscr{F}_{-n} = \sigma(S_n, S_{n+1}, S_{n+2}, ...) = \sigma(S_n, \xi_{n+1}, \xi_{n+2}, ...).$

• Calculate, using symmetry, for $j \leqslant n+1$,

$$E[\xi_j | \mathscr{F}_{-n-1}] = \frac{1}{n+1} \sum_{k=1}^{n+1} E[\xi_k | \mathscr{F}_{-n-1}]$$
$$= \frac{1}{n+1} E[S_{n+1} | \mathscr{F}_n] = \frac{S_{n+1}}{n+1}$$

Bob Hough

イロト イヨト イヨト イヨト

Strong law of large numbers

Example

• Since
$$X_{-n} = \frac{S_{n+1} - \xi_{n+1}}{n}$$
,

$$\mathsf{E}[X_{-n}|\mathscr{F}_{-n-1}] = \mathsf{E}\left[\frac{S_{n+1}}{n}\Big|\mathscr{F}_{-n-1}\right] - \mathsf{E}\left[\frac{\xi_{n+1}}{n}\Big|\mathscr{F}_{-n-1}\right]$$
$$= \frac{S_{n+1}}{n} - \frac{S_{n+1}}{n(n+1)} = \frac{S_{n+1}}{n+1} = X_{-n-1}.$$

- Thus X_{-n} is a backwards martingale, and thus $\lim_{n\to\infty} \frac{S_n}{n} = E[X_{-1}|\mathscr{F}_{-\infty}].$
- Since *F*_{-n} has first n coordinates exchangeable, *F*_{-∞} ⊂ *E*, and thus, by the Hewitt-Savage 0-1 law, lim_{n→∞} S_n/n = E[X₋₁] a.s..

_						
	_	b	_	~	~	ь
	101			c)	 μ.	
					-	

イロト 不得下 イヨト イヨト 二日

A sequence $X_1, X_2, ...$ is said to be *exchangeable* if for each *n* and permutation π of $\{1, 2, ..., n\}$, $(X_1, ..., X_n)$ and $(X_{\pi(1)}, ..., X_{\pi(n)})$ have the same distribution.

Theorem

If $X_1, X_2, ...$ are exchangeable, then conditional on \mathscr{E} , $X_1, X_2, ...$ are independent and indentically distributed.

de Finetti's Theorem

Proof.

• Let ϕ be bounded, and introduce

$$A_{n}(\phi) = \frac{1}{(n)_{k}} \sum_{i} \phi(X_{i_{1}}, ..., X_{i_{k}})$$

where the sum runs over distinct sets $1 \le i_1, ..., i_k \le n$ and $(n)_k = n(n-1)\cdots(n-k+1)$.

Calculate

$$A_n(\phi) = \mathsf{E}[A_n(\phi)|\mathscr{E}_n] = \frac{1}{(n)_k} \sum_i \mathsf{E}[\phi(X_{i_1}, ..., X_{i_k})|\mathscr{E}_n]$$
$$= \mathsf{E}[\phi(X_1, ..., X_k)|\mathscr{E}_n].$$

• It follows $A_n(\phi) \to \mathsf{E}[\phi(X_1, ..., X_k) | \mathscr{E}].$

de Finetti's Theorem

Proof.

• Let f and g be bounded on \mathbb{R}^{k-1} and \mathbb{R} and calculate

$$(n)_{k-1}A_n(f)nA_n(g) = \sum_{\substack{1 \le i_1, \dots, i_{k-1} \le n \\ \text{distinct}}} f(X_{i_1}, \dots, X_{i_{k-1}}) \sum_m g(X_m)$$
$$= \sum_{\substack{1 \le i_1, \dots, i_k \le n \\ \text{distinct}}} f(X_{i_1}, \dots, X_{i_{k-1}})g(X_{i_k})$$
$$+ \sum_{\substack{1 \le i_1, \dots, i_{k-1} \le n \\ \text{distinct}}} \sum_{j=1}^{k-1} f(X_{i_1}, \dots, X_{i_{k-1}})g(X_{i_j}).$$

3

・ロト ・回ト ・ヨト ・ヨ

de Finetti's Theorem

Proof.

- Let $\phi(x_1, ..., x_k) = f(x_1, ..., x_{k-1})g(x_k)$ and $\phi_j(x_1, ..., x_{k-1}) = f(x_1, ..., x_{k-1})g(x_j)$.
- Rearranging the above identity,

$$A_n(\phi) = \frac{n}{n-k+1} A_n(f) A_n(g) - \frac{1}{n-k+1} \sum_{j=1}^{k-1} A_n(\phi_j).$$

Letting $n \to \infty$,

 $\mathsf{E}[f(X_1,...,X_{k-1})g(X_k)|\mathscr{E}] = \mathsf{E}[f(X_1,...,X_{k-1})|\mathscr{E}] \mathsf{E}[g(X_k)|\mathscr{E}].$

• The theorem now follows by induction.

D			
RO	hΗ		ισh
20		101	-6"

イロト イポト イヨト イヨト

If X_n is a uniformly integrable submartingale, then for any stopping time N, $X_{N \wedge n}$ is uniformly integrable.

Bob Hough

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Optional Stopping Theorems

Proof.

• X_n^+ is a submartingale, so $E[X_{N \wedge n}^+] \leq E[X_n^+]$.

•
$$\sup_n \mathsf{E}[X^+_{N \wedge n}] \leq \sup_n \mathsf{E}[X^+_n] < \infty$$

- By the martingale convergence theorem $X_{N \wedge n} \to X_N$ a.s. and $E[|X_N|] < \infty$.
- Now calculate

$$\mathsf{E}[|X_{N \wedge n}|\mathbf{1}(|X_{N \wedge n}| > K)] = \mathsf{E}[|X_N|\mathbf{1}(|X_N| > K, N \le n)] \\ + \mathsf{E}[|X_n|\mathbf{1}(|X_n| > K, N > n)].$$

Choosing K sufficiently large makes both parts on the right sufficiently small.

D			
- B.A		-	
	20		21
			•

< ロ > < 同 > < 三 > < 三

If X_n is a uniformly integrable submartingale, then for any stopping time $N \leq \infty$ we have $E[X_0] \leq E[X_N] \leq E[X_\infty]$ where $X_\infty = \lim X_n$.

Bob Hough

イロト イヨト イヨト

Proof.

Recall $E[X_0] \leq E[X_{N \wedge n}] \leq E[X_n]$. Letting $n \to \infty$ and noting $X_{N \wedge n} \to X_N$ and $X_n \to X_\infty$ in L^1 proves the result.

イロト イヨト イヨト

Theorem (Optional stopping theorem)

If $L \leq M$ are stopping times and $Y_{M \wedge n}$ is a uniformly integrable submartingale, then $E[Y_L] \leq E[Y_M]$ and

 $Y_L \leqslant \mathsf{E}[Y_M|\mathscr{F}_L].$

Bob Hough

3

(人間) トイヨト イヨト

Optional Stopping Theorems

Proof.

Set X_n = Y_{M∧n} and use E[X_L] ≤ E[X_∞] to obtain E[Y_L] ≤ E[Y_M].
Let A ∈ ℱ_l and

$$N = \begin{cases} L & \text{on } A \\ M & \text{on } A^c \end{cases}$$

We have $E[Y_N] \leq E[Y_M]$. Since N = M on A^c ,

 $\mathsf{E}[Y_L \mathbf{1}_A] \leqslant \mathsf{E}[Y_M \mathbf{1}_A] = \mathsf{E}[\mathsf{E}[Y_M | \mathscr{F}_L] \mathbf{1}_A].$

Set $A_{\epsilon} = \{Y_L - \mathsf{E}[Y_M | \mathscr{F}_L] > \epsilon\}$ gives $\mathsf{Prob}(A_{\epsilon}) = 0$.