
Math 639: Lecture 10
Intro to Martingales

Bob Hough

February 28, 2017

Bob Hough Math 639: Lecture 10 February 28, 2017 1 / 55



Conditional expectation

Recall the definition of conditional expectation.

Definition

Given a probability space pΩ,F0,Probq, a σ-field F Ă F0, and a random
variable X P F0 with Er|X |s ă 8, the conditional expectation of X given
F , ErX |F s is a F -measurable random variable such that, for all A P F ,

ż

A
XdP “

ż

A
YdP.
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Conditional expectation

Example

Suppose X is independent of F , that is, for all B P B and A P F ,

ProbptX P Bu X Aq “ ProbpX P BqProbpAq.

Then ErX |F s “ ErX s, since if A P F ,

ż

A
XdP “ ErX1As “ ErX sEr1As “

ż

A
ErX sdP.
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Conditional expectation

Example

Suppose X and Y are independent. Let φ be a function with
Er|φpX ,Y q|s ă 8 and let gpxq “ Erφpx ,Y qs. Then
ErφpX ,Y q|X s “ gpX q.

To check this, let A P σpX q, then A “ tX P Cu for a measureable set
C , and

ż

A
φpX ,Y qdP “ ErφpX ,Y q1C pX qs

“

ż ż

φpx , yq1C pxqνpdyqµpdxq

“

ż

1C pxqgpxqµpdxq “

ż

A
gpX qdP.
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Properties of conditional expectation

Theorem

Conditional expectation satisfies the following properties.

1 Linearity
EraX ` Y |F s “ aErX |F s ` ErY |F s.

2 If X ď Y then
ErX |F s ď ErY |F s

3 If Xn ě 0 and Xn Ò X with ErX s ă 8, then

ErXn|F s Ò ErX |F s.

Bob Hough Math 639: Lecture 10 February 28, 2017 5 / 55



Properties of conditional expectation

Proof.

For the first item, let A P F and write
ż

A
aErX |F s ` ErY |F sdP “ a

ż

A
ErX |F sdP `

ż

A
ErY |F sdP

“ a

ż

A
XdP `

ż

A
YdP “

ż

A
paX ` Y qdP.

For the second item,
ż

A
ErX |F sdP “

ż

A
XdP ď

ż

A
YdP “

ż

A
ErY |F sdP.

Let A “ tErX |F s ´ ErY |F s ą εu to get the claim.
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Properties of conditional expectation

Proof.

Let Yn “ X ´ Xn. Since Yn decreases, Zn “ ErYn|F s decreases to a limit
Z8. For A P F ,

ż

A
ZndP “

ż

A
YndP.

Since Yn Ó 0, dominated convergence gives
ş

A Z8dP “ 0 for all A, so
Z8 “ 0.
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Properties of conditional expectation

Theorem

If φ is convex and Er|X |s,Er|φpX q|s ă 8, then

φpErX |F sq ď ErφpX q|F s.
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Properties of conditional expectation

Proof.

Let S “ tpa, bq : a, b P Q, ax ` b ď φpxqu. Then

φpxq “ suptax ` b : pa, bq P Su.

For all a, b P S ,
ErφpX q|F s ě aErX |F s ` b

so ErφpX q|F s ě φpErX |F sq.
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Properties of conditional expectation

Theorem

Conditional expectation is a contraction in Lp, p ě 1.
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Properties of conditional expectation

Proof.

By convexity, |ErX |F s|p ď Er|X |p|F s. Hence, taking expectation,

Er|ErX |F s|ps ď ErEr|X |p|F ss “ Er|X |ps.
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Properties of conditional expectation

Theorem

If F Ă G and ErX |G s P F , then ErX |F s “ ErX |G s.

Proof.

If A P F Ă G , then
ż

A
XdP “

ż

A
ErX |G sdP.

Bob Hough Math 639: Lecture 10 February 28, 2017 12 / 55



Properties of conditional expectation

Theorem

If F1 Ă F2 then

1 ErErX |F1s|F2s “ ErX |F1s

2 ErErX |F2s|F1s “ ErX |F1s.

Bob Hough Math 639: Lecture 10 February 28, 2017 13 / 55



Properties of conditional expectation

Proof.

The first item follows because ErX |F1s is F2-measurable. To prove the
second item, note that both sides are F1 measurable. Given
A P F1 Ă F2,

ż

A
ErX |F1sdP “

ż

A
XdP “

ż

A
ErX |F2sdP.
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Properties of conditional expectation

Theorem

If X P F and Er|Y |s,Er|XY |s ă 8, then

ErXY |F s “ X ErY |F s.

Bob Hough Math 639: Lecture 10 February 28, 2017 15 / 55



Properties of conditional expectation

Proof.

First let B P F and let X “ 1B with B P F . For A P F ,
ż

A
1B ErY |F sdP “

ż

AXB
ErY |F sdP “

ż

AXB
YdP “

ż

A
1BYdP.

The same holds for simple X by linearity, then for positive variables by
monotone convergence, and finally in general by splitting into positive and
negative parts.
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Properties of conditional expectation

Theorem

Suppose ErX 2s ă 8. ErX |F s is the variable Y P F that minimizes the
mean square error ErpX ´ Y q2s.
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Properties of conditional expectation

Proof.

For Z P L2pF q,
Z ErX |F s “ ErZX |F s.

Hence
ErZ ErX |F ss “ ErErZX |F ss “ ErZX s,

or
ErZ pX ´ ErX |F sqs “ 0, @Z P L2pF q.

If Y P L2pF q and Z “ ErX |F s ´ Y , then

ErpX ´ Y q2s “ ErpX ´ ErX |F sq2s ` ErZ 2s.
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Martingales

Definition

A filtration is an increasing sequence of σ-algebras F1 Ă F2 Ă .... A
sequence tXnu is said to be adapted to Fn if Xn P Fn for all n. If tXnu

satisfies

Er|Xn|s ă 8 for all n

ErXn`1|Fns “ Xn for all n

then X is a martingale with respect to Fn. If instead ErXn`1|Fns ď Xn

then X is a supermartingale. If instead ErXn`1|Fns ě Xn then X is a
submartingale.
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Simple random walk

Example

Let ξ1, ξ2, ... be i.i.d. ˘1 with equal probability, and let Xn “ ξ1` ¨ ¨ ¨ ` ξn.
Set Fn “ σpξ1, ..., ξnq. Then

ErXn`1|Fns “ ErXn|Fns ` Erξn`1|Fns “ Xn ` Erξn`1s “ Xn.
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Superharmonic functions

Example

The name supermartingale comes from the fact that a superharmonic
function, which satisfies ∆f ď 0, has

f pxq ě
1

|Bp0, rq|

ż

Bpx ,rq
f pyqdy .
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Supermartingales and submartingales

Theorem

If Xn is a supermartingale then for n ą m, ErXn|Fms ď Xm.

Proof.

This holds for n “ m ` 1 by definition. For n “ m ` k,

ErXm`k |Fms “ ErErXm`k |Fm`k´1s|Fms ď ErXm`k´1|Fms.

The claim in general now follows by induction.
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Supermartingales and submartingales

Theorem

If Xn is a submartingale, then for n ą m, ErXn|Fms ě Xm. If Xn is a
martingale then for n ą m, ErXn|Fms “ Xm.

Proof.

If Xn is a submartingale, then ´Xn is a supermartingale, from which the
first claim follows. The second follows since a martingale is both a
submartingale and a supermartingale.
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Supermartingales and submartingales

Theorem

If Xn is a martingale with respect to filtration Fn and φ is a convex
function with Er|φpXnq|s ă 8 for all n, then φpXnq is a submartingale with
respect to Fn. In particular, if p ě 1 and Er|Xn|

ps ă 8 for all n, then
|Xn|

p is a submartingale with respect to Fn.

Proof.

By Jensen’s inequality,

ErφpXn`1q|Fns ě φpErXn`1|Fnsq “ φpXnq.
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Supermartingales and submartingales

Theorem

If Xn is a submartingale with respect to Fn and φ is an increasing convex
function with Er|φpXnq|s ă 8 for all n, then φpXnq is a submartingale with
respect to Fn. Consequently

1 If Xn is a submartingale, then pXn ´ aq` is a submartingale.

2 If Xn is a supermartingale, then minpXn, aq is a supermartingale.

Proof.

By Jensen’s inequality, and the fact that φ is increasing,

ErφpXn`1q|Fns ě φpErXn`1|Fnsq ě φpXnq.
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Predictable sequences

Definition

Let Fn, n ě 0 be a filtration. Hn, n ě 1 is a predictable sequence if
Hn P Fn´1 for all n ě 1. The martingale transform of Hn with respect to
the sequence of sub or super martingales pXn,Fnq is

Y0 “ 0, Yn “

n
ÿ

k“1

HkpXk ´ Xk´1q, n ě 1.
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Predictable sequences

Theorem

Suppose tYnu is the martingale transform of Fn-predictable tVnu with
respect to a sub or super martingale pXn,Fnq.

If Yn is integrable and pXn,Fnq is a martingale, then pYn,Fnq is also
a martingale.

If Yn is integrable, Vn ě 0 and pXn,Fnq is a sub or super martingale,
then Yn is a sub or super martingale.

Proof.

Check

ErYn`1 ´ Yn|Fns “ E rVn`1pXn`1 ´ Xnq|Fns “ Vn`1 ErXn`1 ´ Xn|Fns,

from which the claims follows.
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Stopping times

Theorem

If pXn,Fnq is a sub-martingale, or sup-martingale and θ ď τ are stopping
times for tFnu then pXn^τ ´ Xn^θ,Fnq is also a sub or sup-martingale. In
particular, taking θ “ 0, pXn^τ ,Fnq is a sub or sup-martingale.
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Stopping times

Proof.

Suppose Xn is a sub-martingale, otherwise replace it with ´Xn.

Let Vk “ 1pθ ă k ď τq. Thus Vk is Fk´1-measurable.

Since

Xn^τ ´ Xn^θ “

n
ÿ

k“1

VkpXk ´ Xk´1q

is a martingale transform, it is again a sub-martingale.
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Upcrossing inequality

Example (Upcrossings)

Let a ă b and let N0 “ ´1. For k ě 1,

N2k´1 “ inftm ą N2k´2 : Xm ď au

N2k “ inftm ą N2k´1 : Xm ě bu.

The Nj are stopping times, and

Hm “

"

1 N2k´1 ă m ď N2k , some k
0 otherwise

is a predictable sequence.
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Upcrossing inequality

Define Un “ suptk : N2k ď nu to be the number of upcrossings to time n.

Theorem (Upcrossing inequality)

If Xm, m ě 0, is a submartingale, then

pb ´ aqErUns ď ErpXn ´ aq`s ´ ErpX0 ´ aq`s.
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Upcrossing inequality

Proof.

Let Ym “ a` pXm ´ aq`.

Ym is a submartingale, and it upcrosses ra, bs the same number of
times that Xm does.

One has pH ¨ Y qn ě pb ´ aqUn.

Set K “ 1´ H, and note that ErK ¨ Yns ě ErK ¨ Y0s “ 0. Hence
ErH ¨ Yns ď ErYn ´ Y0s.
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Martingale convergence theorem

Theorem (Martingale convergence theorem)

If Xn is a submartingale with sup ErX`n s ă 8, then as nÑ8, Xn

converges a.s. to a limit X , Er|X |s ă 8.
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Martingale convergence theorem

Proof.

Since pX ´ aq` ď X` ` |a|,

ErUns ď
|a| ` ErX`n s

b ´ a
.

As n Ò 8, Un Ò U the number of upcrossings of ra, bs by the whole
sequence.

If sup ErX`n s ă 8 then ErUs ă 8, so U ă 8 a.s., so for all rational
a, b,

ď

a,bPQ
tlim inf Xn ă a ă b ă lim supXnu

has probability 0. Hence limXn exists with probability 1.
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Martingale convergence theorem

Proof.

We have ErX`s ď lim inf ErX`n s ă 8.

Also, ErX´n s “ ErX`n s ´ ErXns ď ErX`n s ´ ErX0s

ErX´s ď lim infnÑ8 ErX´n s ď supn ErX`n s ´ ErX0s ă 8.
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Supermartingale version

Theorem

If Xn ě 0 is a supermartingale, then as nÑ8, Xn Ñ X a.s. and
ErX s ď ErX0s.

Proof.

´Xn ď 0 is a submartingale.
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Examples

Example

Let S0 “ 1, Sn “ 1` ξ1 ` ¨ ¨ ¨ ` ξn be simple random walk.

Let N “ inftn : Sn “ 0u and Xn “ SN^n.

Xn is a non-negative martingale, which converges a.s. to a finite limit,
which is zero.

Since ErXns “ ErX0s “ 1 for all n, the convergence is not in L1.
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Doob’s decomposition

Theorem (Doob’s decomposition)

Any submartingale Xn, n ě 0, can be written in a unique way as
Xn “ Mn ` An, where Mn is a martingale and An is a predictable
increasing sequence with A0 “ 0.
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Doob’s decomposition

Proof.

Let A0 “ 0 and for n ě 1,

An “ An´1 ` ErXn ´ Xn´1|Fn´1s.

By construction, tAnu is Fn´1-measurable.

To check that Yn “ Xn ´ An is a martingale, calculate

ErYn ´ Yn´1|Fn´1s “ ErXn ´ Xn´1 ´ pAn ´ An´1q|Fn´1s

“ ErXn ´ Xn´1|Fn´1s ´ pAn ´ An´1q “ 0.

Bob Hough Math 639: Lecture 10 February 28, 2017 39 / 55



Bounded increments

Theorem

Let X1,X2, ... be a martingale with |Xn`1 ´ Xn| ď M ă 8. Let

C “ tlimXn exists and is finiteu

D “ tlim supXn “ 8, lim inf Xn “ ´8u.

Then ProbpC Y Dq “ 1.
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Bounded increments

Proof.

We can assume X0 “ 0 by replacing Xn with Xn ´ X0.

Let N “ inftn : Xn ď ´Ku. Then Xn^N is bounded below, so
converges, and hence Xn converges on tN “ 8u.

Letting K Ñ8 the limit exists on tlim inf Xn ą ´8u. Replacing Xn

with ´Xn, the claim follows.
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Borel-Cantelli revisited

Theorem (Second Borel-Cantelli lemma)

Let Fn, n ě 0 be a filtration with F0 “ tH,Ωu and An, n ě 1 a sequence
of events with An P Fn. Then

tAn i.o.u “

#

8
ÿ

n“1

ProbpAn|Fn´1q “ 8

+

.
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Borel-Cantelli revisited

Proof.

Let X0 “ 0 and Xn “
řn

m“1p1Am ´ ProbpAm|Fm´1qq for n ě 1. Thus
|Xn ´ Xn´1| ď 1.

Using the decomposition C Y D of the previous theorem, on C where
the limit exists,

8
ÿ

n“1

1An “ 8 ô

8
ÿ

n“1

ProbpAn|Fn´1q “ 8.

On D, where the lim sup is 8 and the lim inf is ´8

8
ÿ

n“1

1An “ 8 and
8
ÿ

n“1

ProbpAn|Fn´1q “ 8.
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Radon-Nikodym derivatives

Lemma

Let µ be a finite measure and ν a probability measure on pΩ,F q. Let
Fn Ò F be σ-algebras. Let µn and νn be the restrictions of µ and ν to
Fn. Suppose µn ! νn for all n, and let Xn “

dµn
dνn

is a martingale with
respect to Fn.
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Radon-Nikodym derivatives

Proof.

Let A P Fn. Calculate
ż

A
Xndν “

ż

A
Xndνn “ µnpAq “ µpAq.

Hence if A P Fm´1

ż

A
Xmdν “ µpAq “

ż

A
Xm´1dν

so ErXm|Fm´1s “ Xm´1.
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Radon-Nikodym derivatives

Theorem

With the set-up as in the previous lemma, let X “ lim supXn. Then

µpAq “

ż

A
Xdν ` µpAX tX “ 8uq.

For a proof, see Durrett pp. 242–243.
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Branching processes

Definition

Let ξni , i , n ě 1 be i.i.d. nonnegative integer-valued random variables. The
Galton-Watson process is a sequence Zn, n ě 0 by Z0 “ 1 and

Zn`1 “

"

ξn`11 ` ¨ ¨ ¨ ` ξn`1Zn
Zn ą 0

0 Zn “ 0
.

pk “ Probpξni “ kq is called the offspring distribution.
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Branching processes

Lemma

Let Fn “ σpξmi : i ě 1, 1 ď m ď nq and µ “ Erξmi s P p0,8q. Then Zn
µn is a

martingale with respect to Fn.
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Branching processes

Proof.

Calculate

ErZn`1|Fns “

8
ÿ

k“1

ErZn`11pZn “ kq|Fns

“

8
ÿ

k“1

Erpξn`11 ` ¨ ¨ ¨ ` ξn`1k q1pZn “ kq|Fns

“

8
ÿ

k“1

1pZn “ kqErξn`11 ` ¨ ¨ ¨ ` ξn`1k |Fns

“ µ
8
ÿ

k“1

1pZn “ kqk “ µZn.
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Branching processes

Theorem

If µ ă 1 then Zn “ 0 for all n sufficiently large, so Zn
µn Ñ 0.

Proof.

E
”

Zn
µn

ı

“ ErZ0s “ 1, so ErZns “ µn. Since Zn ě 1 when Zn ‰ 0,

ProbpZn ‰ 0q ď µn Ñ 0.
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Branching processes

Theorem

If µ “ 1 and Probpξmi “ 1q ă 1 then Zn “ 0 for all n sufficiently large.
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Branching processes

Proof.

When µ “ 1, Zn is a non-negative martingale.

Zn has an almost sure finite limit Z8, and since Zn is integer valued,
Zn “ Z8 for all n sufficiently large.

Since Probpξmi “ 1q ă 1, the only possibility is Z8 “ 0.
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Branching processes

For s P r0, 1s, let φpsq “
ř8

k“0 pks
k where pk “ Probpξmi “ kq.

Theorem

If µ “ Erξmi s ą 1 then ProbpZn “ 0 for some nq “ ρ, the unique fixed
point of φ in r0, 1q.
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Branching processes

Proof.

Calculate

φ1psq “
8
ÿ

k“1

kpks
k´1 ě 0

φ2psq “
8
ÿ

k“2

kpk ´ 1qpks
k´2 ě 0.

Thus φ is increasing and convex and limsÒ1 φ
1psq “

ř8
k“1 kpk “ µ.
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Branching processes

Proof.

Let θm “ ProbpZm “ 0q. By conditioning on Z1, θm “
ř8

k“0 pkθ
k
m´1,

since each child of the first generation must die out.

We check that there is a unique 0 ď ρ ă 1 such that φpρq “ ρ.
Indeed, φp0q ě 0, and φp1q “ 1, φ1p1q “ µ ą 1 implies that
φp1´ εq ă 1´ ε for some ε ą 0. This proves the existence of a fixed
point less than 1. The fixed point is unique since φ is strictly convex.

θm Ò ρ follows since θ0 “ 0, φ is increasing, and φpρq “ ρ, so that θm
is increasing and θm ď ρ for all m.
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