Math 639: Lecture 10
 Intro to Martingales

Bob Hough

February 28, 2017

Conditional expectation

Recall the definition of conditional expectation.

Definition

Given a probability space $\left(\Omega, \mathscr{F}_{0}, \operatorname{Prob}\right)$, a σ-field $\mathscr{F} \subset \mathscr{F}_{0}$, and a random variable $X \in \mathscr{F}_{0}$ with $\mathrm{E}[|X|]<\infty$, the conditional expectation of X given $\mathscr{F}, \mathrm{E}[X \mid \mathscr{F}]$ is a \mathscr{F}-measurable random variable such that, for all $A \in \mathscr{F}$,

$$
\int_{A} X d P=\int_{A} Y d P
$$

Conditional expectation

Example

Suppose X is independent of \mathscr{F}, that is, for all $B \in \mathscr{B}$ and $A \in \mathscr{F}$,

$$
\operatorname{Prob}(\{X \in B\} \cap A)=\operatorname{Prob}(X \in B) \operatorname{Prob}(A) .
$$

Then $\mathrm{E}[X \mid \mathscr{F}]=\mathrm{E}[X]$, since if $A \in \mathscr{F}$,

$$
\int_{A} X d P=\mathrm{E}\left[X \mathbf{1}_{A}\right]=\mathrm{E}[X] \mathrm{E}\left[1_{A}\right]=\int_{A} \mathrm{E}[X] d P
$$

Conditional expectation

Example

- Suppose X and Y are independent. Let ϕ be a function with $\mathrm{E}[|\phi(X, Y)|]<\infty$ and let $g(x)=\mathrm{E}[\phi(x, Y)]$. Then $\mathrm{E}[\phi(X, Y) \mid X]=g(X)$.
- To check this, let $A \in \sigma(X)$, then $A=\{X \in C\}$ for a measureable set C, and

$$
\begin{aligned}
\int_{A} \phi(X, Y) d P & =\mathrm{E}\left[\phi(X, Y) \mathbf{1}_{C}(X)\right] \\
& =\iint \phi(x, y) \mathbf{1}_{C}(x) \nu(d y) \mu(d x) \\
& =\int \mathbf{1}_{C}(x) g(x) \mu(d x)=\int_{A} g(X) d P
\end{aligned}
$$

Properties of conditional expectation

Theorem

Conditional expectation satisfies the following properties.
(1) Linearity

$$
\mathrm{E}[\mathrm{a} X+Y \mid \mathscr{F}]=a \mathrm{E}[X \mid \mathscr{F}]+\mathrm{E}[Y \mid \mathscr{F}] .
$$

(2) If $X \leqslant Y$ then

$$
\mathrm{E}[X \mid \mathscr{F}] \leqslant \mathrm{E}[Y \mid \mathscr{F}]
$$

(3) If $X_{n} \geqslant 0$ and $X_{n} \uparrow X$ with $\mathrm{E}[X]<\infty$, then

$$
\mathrm{E}\left[X_{n} \mid \mathscr{F}\right] \uparrow \mathrm{E}[X \mid \mathscr{F}]
$$

Properties of conditional expectation

Proof.

For the first item, let $A \in \mathscr{F}$ and write

$$
\begin{aligned}
\int_{A} a \mathrm{E}[X \mid \mathscr{F}]+\mathrm{E}[Y \mid \mathscr{F}] d P & =a \int_{A} \mathrm{E}[X \mid \mathscr{F}] d P+\int_{A} \mathrm{E}[Y \mid \mathscr{F}] d P \\
& =a \int_{A} X d P+\int_{A} Y d P=\int_{A}(a X+Y) d P
\end{aligned}
$$

For the second item,

$$
\int_{A} \mathrm{E}[X \mid \mathscr{F}] d P=\int_{A} X d P \leqslant \int_{A} Y d P=\int_{A} \mathrm{E}[Y \mid \mathscr{F}] d P
$$

Let $A=\{\mathrm{E}[X \mid \mathscr{F}]-\mathrm{E}[Y \mid \mathscr{F}]>\epsilon\}$ to get the claim.

Properties of conditional expectation

Proof.

Let $Y_{n}=X-X_{n}$. Since Y_{n} decreases, $Z_{n}=\mathrm{E}\left[Y_{n} \mid \mathscr{F}\right]$ decreases to a limit Z_{∞}. For $A \in \mathscr{F}$,

$$
\int_{A} Z_{n} d P=\int_{A} Y_{n} d P .
$$

Since $Y_{n} \downarrow 0$, dominated convergence gives $\int_{A} Z_{\infty} d P=0$ for all A, so
$Z_{\infty}=0$.

Properties of conditional expectation

Theorem
If ϕ is convex and $\mathrm{E}[|X|], \mathrm{E}[|\phi(X)|]<\infty$, then

$$
\phi(\mathrm{E}[X \mid \mathscr{F}]) \leqslant \mathrm{E}[\phi(X) \mid \mathscr{F}] .
$$

Properties of conditional expectation

Proof.

Let $S=\{(a, b): a, b \in \mathbb{Q}, a x+b \leqslant \phi(x)\}$. Then

$$
\phi(x)=\sup \{a x+b:(a, b) \in S\}
$$

For all $a, b \in S$,

$$
\mathrm{E}[\phi(X) \mid \mathscr{F}] \geqslant a \mathrm{E}[X \mid \mathscr{F}]+b
$$

so $\mathrm{E}[\phi(X) \mid \mathscr{F}] \geqslant \phi(\mathrm{E}[X \mid \mathscr{F}])$.

Properties of conditional expectation

Theorem
Conditional expectation is a contraction in $L^{p}, p \geqslant 1$.

Properties of conditional expectation

Proof.

By convexity, $|\mathrm{E}[X \mid \mathscr{F}]|^{p} \leqslant \mathrm{E}\left[|X|^{p} \mid \mathscr{F}\right]$. Hence, taking expectation, $\mathrm{E}\left[|\mathrm{E}[X \mid \mathscr{F}]|^{p}\right] \leqslant \mathrm{E}\left[\mathrm{E}\left[|X|^{p} \mid \mathscr{F}\right]\right]=\mathrm{E}\left[|X|^{p}\right]$.

Properties of conditional expectation

Theorem
If $\mathscr{F} \subset \mathscr{G}$ and $\mathrm{E}[X \mid \mathscr{G}] \in \mathscr{F}$, then $\mathrm{E}[X \mid \mathscr{F}]=\mathrm{E}[X \mid \mathscr{G}]$.

Proof.

If $A \in \mathscr{F} \subset \mathscr{G}$, then

$$
\int_{A} X d P=\int_{A} \mathrm{E}[X \mid \mathscr{G}] d P .
$$

Properties of conditional expectation

Theorem
If $\mathscr{F}_{1} \subset \mathscr{F}_{2}$ then
(1) $\mathrm{E}\left[\mathrm{E}\left[X \mid \mathscr{F}_{1}\right] \mid \mathscr{F}_{2}\right]=\mathrm{E}\left[X \mid \mathscr{F}_{1}\right]$
(2) $\mathrm{E}\left[\mathrm{E}\left[X \mid \mathscr{F}_{2}\right] \mid \mathscr{F}_{1}\right]=\mathrm{E}\left[X \mid \mathscr{F}_{1}\right]$.

Properties of conditional expectation

Proof.

The first item follows because $\mathrm{E}\left[X \mid \mathscr{F}_{1}\right]$ is \mathscr{F}_{2}-measurable. To prove the second item, note that both sides are \mathscr{F}_{1} measurable. Given $A \in \mathscr{F}_{1} \subset \mathscr{F}_{2}$,

$$
\int_{A} \mathrm{E}\left[X \mid \mathscr{F}_{1}\right] d P=\int_{A} X d P=\int_{A} \mathrm{E}\left[X \mid \mathscr{F}_{2}\right] d P
$$

Properties of conditional expectation

Theorem
If $X \in \mathscr{F}$ and $\mathrm{E}[|Y|], \mathrm{E}[|X Y|]<\infty$, then

$$
\mathrm{E}[X Y \mid \mathscr{F}]=X \mathrm{E}[Y \mid \mathscr{F}] .
$$

Properties of conditional expectation

Proof.

First let $B \in \mathscr{F}$ and let $X=\mathbf{1}_{B}$ with $B \in \mathscr{F}$. For $A \in \mathscr{F}$,

$$
\int_{A} \mathbf{1}_{B} \mathrm{E}[Y \mid \mathscr{F}] d P=\int_{A \cap B} \mathrm{E}[Y \mid \mathscr{F}] d P=\int_{A \cap B} Y d P=\int_{A} \mathbf{1}_{B} Y d P .
$$

The same holds for simple X by linearity, then for positive variables by monotone convergence, and finally in general by splitting into positive and negative parts.

Properties of conditional expectation

Theorem
Suppose $\mathrm{E}\left[X^{2}\right]<\infty . \mathrm{E}[X \mid \mathscr{F}]$ is the variable $Y \in \mathscr{F}$ that minimizes the mean square error $\mathrm{E}\left[(X-Y)^{2}\right]$.

Properties of conditional expectation

Proof.

For $Z \in L^{2}(\mathscr{F})$,

$$
Z \mathrm{E}[X \mid \mathscr{F}]=\mathrm{E}[Z X \mid \mathscr{F}] .
$$

Hence

$$
\mathrm{E}[Z \mathrm{E}[X \mid \mathscr{F}]]=\mathrm{E}[\mathrm{E}[Z X \mid \mathscr{F}]]=\mathrm{E}[Z X],
$$

or

$$
\mathrm{E}[Z(X-\mathrm{E}[X \mid \mathscr{F}])]=0, \quad \forall Z \in L^{2}(\mathscr{F})
$$

If $Y \in L^{2}(\mathscr{F})$ and $Z=\mathrm{E}[X \mid \mathscr{F}]-Y$, then

$$
\mathrm{E}\left[(X-Y)^{2}\right]=\mathrm{E}\left[(X-\mathrm{E}[X \mid \mathscr{F}])^{2}\right]+\mathrm{E}\left[Z^{2}\right]
$$

Martingales

Definition

A filtration is an increasing sequence of σ-algebras $\mathscr{F}_{1} \subset \mathscr{F}_{2} \subset \ldots$ A sequence $\left\{X_{n}\right\}$ is said to be adapted to \mathscr{F}_{n} if $X_{n} \in \mathscr{F}_{n}$ for all n. If $\left\{X_{n}\right\}$ satisfies

- $\mathrm{E}\left[\left|X_{n}\right|\right]<\infty$ for all n
- $\mathrm{E}\left[X_{n+1} \mid \mathscr{F}_{n}\right]=X_{n}$ for all n
then X is a martingale with respect to \mathscr{F}_{n}. If instead $\mathrm{E}\left[X_{n+1} \mid \mathscr{F}_{n}\right] \leqslant X_{n}$ then X is a supermartingale. If instead $\mathrm{E}\left[X_{n+1} \mid \mathscr{F}_{n}\right] \geqslant X_{n}$ then X is a submartingale.

Simple random walk

Example

Let ξ_{1}, ξ_{2}, \ldots be i.i.d. ± 1 with equal probability, and let $X_{n}=\xi_{1}+\cdots+\xi_{n}$. Set $\mathscr{F}_{n}=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$. Then

$$
\mathrm{E}\left[X_{n+1} \mid \mathscr{F}_{n}\right]=\mathrm{E}\left[X_{n} \mid \mathscr{F}_{n}\right]+\mathrm{E}\left[\xi_{n+1} \mid \mathscr{F}_{n}\right]=X_{n}+\mathrm{E}\left[\xi_{n+1}\right]=X_{n} .
$$

Superharmonic functions

Example

The name supermartingale comes from the fact that a superharmonic function, which satisfies $\Delta f \leqslant 0$, has

$$
f(x) \geqslant \frac{1}{|B(0, r)|} \int_{B(x, r)} f(y) d y
$$

Supermartingales and submartingales

Theorem
If X_{n} is a supermartingale then for $n>m, \mathrm{E}\left[X_{n} \mid \mathscr{F}_{m}\right] \leqslant X_{m}$.

Proof.

This holds for $n=m+1$ by definition. For $n=m+k$,

$$
\mathrm{E}\left[X_{m+k} \mid \mathscr{F}_{m}\right]=\mathrm{E}\left[\mathrm{E}\left[X_{m+k} \mid \mathscr{F}_{m+k-1}\right] \mid \mathscr{F}_{m}\right] \leqslant \mathrm{E}\left[X_{m+k-1} \mid \mathscr{F}_{m}\right] .
$$

The claim in general now follows by induction.

Supermartingales and submartingales

Theorem

If X_{n} is a submartingale, then for $n>m, \mathrm{E}\left[X_{n} \mid \mathscr{F}_{m}\right] \geqslant X_{m}$. If X_{n} is a martingale then for $n>m, \mathrm{E}\left[X_{n} \mid \mathscr{F}_{m}\right]=X_{m}$.

Proof.

If X_{n} is a submartingale, then $-X_{n}$ is a supermartingale, from which the first claim follows. The second follows since a martingale is both a submartingale and a supermartingale.

Supermartingales and submartingales

Theorem

If X_{n} is a martingale with respect to filtration \mathscr{F}_{n} and ϕ is a convex function with $\mathrm{E}\left[\left|\phi\left(X_{n}\right)\right|\right]<\infty$ for all n, then $\phi\left(X_{n}\right)$ is a submartingale with respect to \mathscr{F}_{n}. In particular, if $p \geqslant 1$ and $\mathrm{E}\left[\left|X_{n}\right|^{p}\right]<\infty$ for all n, then $\left|X_{n}\right|^{p}$ is a submartingale with respect to \mathscr{F}_{n}.

Proof.

By Jensen's inequality,

$$
\mathrm{E}\left[\phi\left(X_{n+1}\right) \mid \mathscr{F}_{n}\right] \geqslant \phi\left(\mathrm{E}\left[X_{n+1} \mid \mathscr{F}_{n}\right]\right)=\phi\left(X_{n}\right) .
$$

Supermartingales and submartingales

Theorem

If X_{n} is a submartingale with respect to \mathscr{F}_{n} and ϕ is an increasing convex function with $\mathrm{E}\left[\left|\phi\left(X_{n}\right)\right|\right]<\infty$ for all n, then $\phi\left(X_{n}\right)$ is a submartingale with respect to \mathscr{F}_{n}. Consequently
(1) If X_{n} is a submartingale, then $\left(X_{n}-a\right)^{+}$is a submartingale.
(2) If X_{n} is a supermartingale, then $\min \left(X_{n}, a\right)$ is a supermartingale.

Proof.

By Jensen's inequality, and the fact that ϕ is increasing,

$$
\mathrm{E}\left[\phi\left(X_{n+1}\right) \mid \mathscr{F}_{n}\right] \geqslant \phi\left(\mathrm{E}\left[X_{n+1} \mid \mathscr{F}_{n}\right]\right) \geqslant \phi\left(X_{n}\right) .
$$

Predictable sequences

Definition

Let $\mathscr{F}_{n}, n \geqslant 0$ be a filtration. $H_{n}, n \geqslant 1$ is a predictable sequence if $H_{n} \in \mathscr{F}_{n-1}$ for all $n \geqslant 1$. The martingale transform of H_{n} with respect to the sequence of sub or super martingales $\left(X_{n}, \mathscr{F}_{n}\right)$ is

$$
Y_{0}=0, \quad Y_{n}=\sum_{k=1}^{n} H_{k}\left(X_{k}-X_{k-1}\right), n \geqslant 1
$$

Predictable sequences

Theorem

Suppose $\left\{Y_{n}\right\}$ is the martingale transform of \mathscr{F}_{n}-predictable $\left\{V_{n}\right\}$ with respect to a sub or super martingale $\left(X_{n}, \mathscr{F}_{n}\right)$.

- If Y_{n} is integrable and $\left(X_{n}, \mathscr{F}_{n}\right)$ is a martingale, then $\left(Y_{n}, \mathscr{F}_{n}\right)$ is also a martingale.
- If Y_{n} is integrable, $V_{n} \geqslant 0$ and $\left(X_{n}, \mathscr{F}_{n}\right)$ is a sub or super martingale, then Y_{n} is a sub or super martingale.

Proof.

Check

$$
\mathrm{E}\left[Y_{n+1}-Y_{n} \mid \mathscr{F}_{n}\right]=E\left[V_{n+1}\left(X_{n+1}-X_{n}\right) \mid \mathscr{F}_{n}\right]=V_{n+1} \mathrm{E}\left[X_{n+1}-X_{n} \mid \mathscr{F}_{n}\right],
$$

from which the claims follows.

Stopping times

Theorem

If $\left(X_{n}, \mathscr{F}_{n}\right)$ is a sub-martingale, or sup-martingale and $\theta \leqslant \tau$ are stopping times for $\left\{\mathscr{F}_{n}\right\}$ then $\left(X_{n \wedge \tau}-X_{n \wedge \theta}, \mathscr{F}_{n}\right)$ is also a sub or sup-martingale. In particular, taking $\theta=0,\left(X_{n \wedge \tau}, \mathscr{F}_{n}\right)$ is a sub or sup-martingale.

Stopping times

Proof.

- Suppose X_{n} is a sub-martingale, otherwise replace it with $-X_{n}$.
- Let $V_{k}=\mathbf{1}(\theta<k \leqslant \tau)$. Thus V_{k} is \mathscr{F}_{k-1}-measurable.
- Since

$$
X_{n \wedge \tau}-X_{n \wedge \theta}=\sum_{k=1}^{n} V_{k}\left(X_{k}-X_{k-1}\right)
$$

is a martingale transform, it is again a sub-martingale.

Upcrossing inequality

Example (Upcrossings)

Let $a<b$ and let $N_{0}=-1$. For $k \geqslant 1$,

$$
\begin{aligned}
N_{2 k-1} & =\inf \left\{m>N_{2 k-2}: X_{m} \leqslant a\right\} \\
N_{2 k} & =\inf \left\{m>N_{2 k-1}: X_{m} \geqslant b\right\} .
\end{aligned}
$$

The N_{j} are stopping times, and

$$
H_{m}= \begin{cases}1 & N_{2 k-1}<m \leqslant N_{2 k}, \text { some } k \\ 0 & \text { otherwise }\end{cases}
$$

is a predictable sequence.

Upcrossing inequality

Define $U_{n}=\sup \left\{k: N_{2 k} \leqslant n\right\}$ to be the number of upcrossings to time n.
Theorem (Upcrossing inequality)
If $X_{m}, m \geqslant 0$, is a submartingale, then

$$
(b-a) \mathrm{E}\left[U_{n}\right] \leqslant \mathrm{E}\left[\left(X_{n}-a\right)^{+}\right]-\mathrm{E}\left[\left(X_{0}-a\right)^{+}\right] .
$$

Upcrossing inequality

Proof.

- Let $Y_{m}=a+\left(X_{m}-a\right)^{+}$.
- Y_{m} is a submartingale, and it upcrosses $[a, b]$ the same number of times that X_{m} does.
- One has $(H \cdot Y)_{n} \geqslant(b-a) U_{n}$.
- Set $K=1-H$, and note that $\mathrm{E}\left[K \cdot Y_{n}\right] \geqslant \mathrm{E}\left[K \cdot Y_{0}\right]=0$. Hence $\mathrm{E}\left[H \cdot Y_{n}\right] \leqslant \mathrm{E}\left[Y_{n}-Y_{0}\right]$.

Martingale convergence theorem

Theorem (Martingale convergence theorem)
If X_{n} is a submartingale with sup $\mathrm{E}\left[X_{n}^{+}\right]<\infty$, then as $n \rightarrow \infty, X_{n}$ converges a.s. to a limit $X, \mathrm{E}[|X|]<\infty$.

Martingale convergence theorem

Proof.

- Since $(X-a)^{+} \leqslant X^{+}+|a|$,

$$
\mathrm{E}\left[U_{n}\right] \leqslant \frac{|a|+\mathrm{E}\left[X_{n}^{+}\right]}{b-a}
$$

- As $n \uparrow \infty, U_{n} \uparrow U$ the number of upcrossings of $[a, b]$ by the whole sequence.
- If $\sup \mathrm{E}\left[X_{n}^{+}\right]<\infty$ then $\mathrm{E}[U]<\infty$, so $U<\infty$ a.s., so for all rational a, b,

$$
\bigcup_{a, b \in \mathbb{Q}}\left\{\liminf X_{n}<a<b<\lim \sup X_{n}\right\}
$$

has probability 0 . Hence $\lim X_{n}$ exists with probability 1 .

Martingale convergence theorem

Proof.

- We have $\mathrm{E}\left[X^{+}\right] \leqslant \liminf \mathrm{E}\left[X_{n}^{+}\right]<\infty$.
- Also, $\mathrm{E}\left[X_{n}^{-}\right]=\mathrm{E}\left[X_{n}^{+}\right]-\mathrm{E}\left[X_{n}\right] \leqslant \mathrm{E}\left[X_{n}^{+}\right]-\mathrm{E}\left[X_{0}\right]$
- $\mathrm{E}\left[X^{-}\right] \leqslant \liminf _{n \rightarrow \infty} \mathrm{E}\left[X_{n}^{-}\right] \leqslant \sup _{n} \mathrm{E}\left[X_{n}^{+}\right]-\mathrm{E}\left[X_{0}\right]<\infty$.

Supermartingale version

Theorem

If $X_{n} \geqslant 0$ is a supermartingale, then as $n \rightarrow \infty, X_{n} \rightarrow X$ a.s. and $\mathrm{E}[X] \leqslant \mathrm{E}\left[X_{0}\right]$.

Proof.

$-X_{n} \leqslant 0$ is a submartingale.

Examples

Example

- Let $S_{0}=1, S_{n}=1+\xi_{1}+\cdots+\xi_{n}$ be simple random walk.
- Let $N=\inf \left\{n: S_{n}=0\right\}$ and $X_{n}=S_{N \wedge n}$.
- X_{n} is a non-negative martingale, which converges a.s. to a finite limit, which is zero.
- Since $\mathrm{E}\left[X_{n}\right]=\mathrm{E}\left[X_{0}\right]=1$ for all n, the convergence is not in L^{1}.

Doob's decomposition

Theorem (Doob's decomposition)
Any submartingale $X_{n}, n \geqslant 0$, can be written in a unique way as $X_{n}=M_{n}+A_{n}$, where M_{n} is a martingale and A_{n} is a predictable increasing sequence with $A_{0}=0$.

Doob's decomposition

Proof.

- Let $A_{0}=0$ and for $n \geqslant 1$,

$$
A_{n}=A_{n-1}+\mathrm{E}\left[X_{n}-X_{n-1} \mid \mathscr{F}_{n-1}\right] .
$$

By construction, $\left\{A_{n}\right\}$ is \mathscr{F}_{n-1}-measurable.

- To check that $Y_{n}=X_{n}-A_{n}$ is a martingale, calculate

$$
\begin{aligned}
\mathrm{E}\left[Y_{n}-Y_{n-1} \mid \mathscr{F}_{n-1}\right] & =\mathrm{E}\left[X_{n}-X_{n-1}-\left(A_{n}-A_{n-1}\right) \mid \mathscr{F}_{n-1}\right] \\
& =\mathrm{E}\left[X_{n}-X_{n-1} \mid \mathscr{F}_{n-1}\right]-\left(A_{n}-A_{n-1}\right)=0 .
\end{aligned}
$$

Bounded increments

Theorem
Let X_{1}, X_{2}, \ldots be a martingale with $\left|X_{n+1}-X_{n}\right| \leqslant M<\infty$. Let

$$
\begin{aligned}
& C=\left\{\lim X_{n} \text { exists and is finite }\right\} \\
& D=\left\{\lim \sup X_{n}=\infty, \lim \inf X_{n}=-\infty\right\} .
\end{aligned}
$$

Then $\operatorname{Prob}(C \cup D)=1$.

Bounded increments

Proof.

- We can assume $X_{0}=0$ by replacing X_{n} with $X_{n}-X_{0}$.
- Let $N=\inf \left\{n: X_{n} \leqslant-K\right\}$. Then $X_{n \wedge N}$ is bounded below, so converges, and hence X_{n} converges on $\{N=\infty\}$.
- Letting $K \rightarrow \infty$ the limit exists on $\left\{\lim \inf X_{n}>-\infty\right\}$. Replacing X_{n} with $-X_{n}$, the claim follows.

Borel-Cantelli revisited

Theorem (Second Borel-Cantelli lemma)
Let $\mathscr{F}_{n}, n \geqslant 0$ be a filtration with $\mathscr{F}_{0}=\{\varnothing, \Omega\}$ and $A_{n}, n \geqslant 1$ a sequence of events with $A_{n} \in \mathscr{F}_{n}$. Then

$$
\left\{A_{n} \text { i.o. }\right\}=\left\{\sum_{n=1}^{\infty} \operatorname{Prob}\left(A_{n} \mid \mathscr{F}_{n-1}\right)=\infty\right\}
$$

Borel-Cantelli revisited

Proof.

- Let $X_{0}=0$ and $X_{n}=\sum_{m=1}^{n}\left(\mathbf{1}_{A_{m}}-\operatorname{Prob}\left(A_{m} \mid \mathscr{F}_{m-1}\right)\right)$ for $n \geqslant 1$. Thus $\left|X_{n}-X_{n-1}\right| \leqslant 1$.
- Using the decomposition $C \cup D$ of the previous theorem, on C where the limit exists,

$$
\sum_{n=1}^{\infty} \mathbf{1}_{A_{n}}=\infty \Leftrightarrow \sum_{n=1}^{\infty} \operatorname{Prob}\left(A_{n} \mid \mathscr{F}_{n-1}\right)=\infty
$$

On D, where the limsup is ∞ and the liminf is $-\infty$

$$
\sum_{n=1}^{\infty} \mathbf{1}_{A_{n}}=\infty \text { and } \sum_{n=1}^{\infty} \operatorname{Prob}\left(A_{n} \mid \mathscr{F}_{n-1}\right)=\infty
$$

Radon-Nikodym derivatives

Lemma

Let μ be a finite measure and ν a probability measure on (Ω, \mathscr{F}). Let $\mathscr{F}_{n} \uparrow \mathscr{F}$ be σ-algebras. Let μ_{n} and ν_{n} be the restrictions of μ and ν to \mathscr{F}_{n}. Suppose $\mu_{n} \ll \nu_{n}$ for all n, and let $X_{n}=\frac{d \mu_{n}}{d \nu_{n}}$ is a martingale with respect to \mathscr{F}_{n}.

Radon-Nikodym derivatives

Proof.

- Let $A \in \mathscr{F}_{n}$. Calculate

$$
\int_{A} X_{n} d \nu=\int_{A} X_{n} d \nu_{n}=\mu_{n}(A)=\mu(A) .
$$

- Hence if $A \in \mathscr{F}_{m-1}$

$$
\int_{A} X_{m} d \nu=\mu(A)=\int_{A} X_{m-1} d \nu
$$

so $\mathrm{E}\left[X_{m} \mid \mathscr{F}_{m-1}\right]=X_{m-1}$.

Radon-Nikodym derivatives

Theorem

With the set-up as in the previous lemma, let $X=\lim \sup X_{n}$. Then

$$
\mu(A)=\int_{A} X d \nu+\mu(A \cap\{X=\infty\})
$$

For a proof, see Durrett pp. 242-243.

Branching processes

Definition

Let $\xi_{i}^{n}, i, n \geqslant 1$ be i.i.d. nonnegative integer-valued random variables. The Galton-Watson process is a sequence $Z_{n}, n \geqslant 0$ by $Z_{0}=1$ and

$$
Z_{n+1}= \begin{cases}\xi_{1}^{n+1}+\cdots+\xi_{Z_{n}}^{n+1} & Z_{n}>0 \\ 0 & Z_{n}=0\end{cases}
$$

$p_{k}=\operatorname{Prob}\left(\xi_{i}^{n}=k\right)$ is called the offspring distribution.

Branching processes

Lemma

Let $\mathscr{F}_{n}=\sigma\left(\xi_{i}^{m}: i \geqslant 1,1 \leqslant m \leqslant n\right)$ and $\mu=\mathrm{E}\left[\xi_{i}^{m}\right] \in(0, \infty)$. Then $\frac{z_{n}}{\mu^{n}}$ is a martingale with respect to \mathscr{F}_{n}.

Branching processes

Proof.

Calculate

$$
\begin{aligned}
\mathrm{E}\left[Z_{n+1} \mid \mathscr{F}_{n}\right] & =\sum_{k=1}^{\infty} \mathrm{E}\left[Z_{n+1} \mathbf{1}\left(Z_{n}=k\right) \mid \mathscr{F}_{n}\right] \\
& =\sum_{k=1}^{\infty} \mathrm{E}\left[\left(\xi_{1}^{n+1}+\cdots+\xi_{k}^{n+1}\right) \mathbf{1}\left(Z_{n}=k\right) \mid \mathscr{F}_{n}\right] \\
& =\sum_{k=1}^{\infty} \mathbf{1}\left(Z_{n}=k\right) \mathrm{E}\left[\xi_{1}^{n+1}+\cdots+\xi_{k}^{n+1} \mid \mathscr{F}_{n}\right] \\
& =\mu \sum_{k=1}^{\infty} \mathbf{1}\left(Z_{n}=k\right) k=\mu Z_{n}
\end{aligned}
$$

Branching processes

Theorem
If $\mu<1$ then $Z_{n}=0$ for all n sufficiently large, so $\frac{Z_{n}}{\mu^{n}} \rightarrow 0$.

$$
\begin{aligned}
& \text { Proof. } \\
& \mathrm{E}\left[\frac{Z_{n}}{\mu^{n}}\right]=\mathrm{E}\left[Z_{0}\right]=1 \text {, so } \mathrm{E}\left[Z_{n}\right]=\mu^{n} \text {. Since } Z_{n} \geqslant 1 \text { when } Z_{n} \neq 0, \\
& \operatorname{Prob}\left(Z_{n} \neq 0\right) \leqslant \mu^{n} \rightarrow 0 .
\end{aligned}
$$

Branching processes

Theorem
If $\mu=1$ and $\operatorname{Prob}\left(\xi_{i}^{m}=1\right)<1$ then $Z_{n}=0$ for all n sufficiently large.

Branching processes

Proof.

- When $\mu=1, Z_{n}$ is a non-negative martingale.
- Z_{n} has an almost sure finite limit Z_{∞}, and since Z_{n} is integer valued, $Z_{n}=Z_{\infty}$ for all n sufficiently large.
- Since $\operatorname{Prob}\left(\xi_{i}^{m}=1\right)<1$, the only possibility is $Z_{\infty}=0$.

Branching processes

For $s \in[0,1]$, let $\phi(s)=\sum_{k=0}^{\infty} p_{k} s^{k}$ where $p_{k}=\operatorname{Prob}\left(\xi_{i}^{m}=k\right)$.

Theorem

If $\mu=\mathrm{E}\left[\xi_{i}^{m}\right]>1$ then $\operatorname{Prob}\left(Z_{n}=0\right.$ for some $\left.n\right)=\rho$, the unique fixed point of ϕ in $[0,1)$.

Branching processes

Proof.

Calculate

$$
\begin{aligned}
& \phi^{\prime}(s)=\sum_{k=1}^{\infty} k p_{k} s^{k-1} \geqslant 0 \\
& \phi^{\prime \prime}(s)=\sum_{k=2}^{\infty} k(k-1) p_{k} s^{k-2} \geqslant 0 .
\end{aligned}
$$

Thus ϕ is increasing and convex and $\lim _{s \uparrow 1} \phi^{\prime}(s)=\sum_{k=1}^{\infty} k p_{k}=\mu$.

Branching processes

Proof.

- Let $\theta_{m}=\operatorname{Prob}\left(Z_{m}=0\right)$. By conditioning on $Z_{1}, \theta_{m}=\sum_{k=0}^{\infty} p_{k} \theta_{m-1}^{k}$, since each child of the first generation must die out.
- We check that there is a unique $0 \leqslant \rho<1$ such that $\phi(\rho)=\rho$. Indeed, $\phi(0) \geqslant 0$, and $\phi(1)=1, \phi^{\prime}(1)=\mu>1$ implies that $\phi(1-\epsilon)<1-\epsilon$ for some $\epsilon>0$. This proves the existence of a fixed point less than 1 . The fixed point is unique since ϕ is strictly convex.
- $\theta_{m} \uparrow \rho$ follows since $\theta_{0}=0, \phi$ is increasing, and $\phi(\rho)=\rho$, so that θ_{m} is increasing and $\theta_{m} \leqslant \rho$ for all m.

