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Conditional expectation

Recall the definition of conditional expectation.

Definition

Given a probability space (€2, %y, Prob), a o-field .# < %, and a random
variable X € .%, with E[|X|] < o0, the conditional expectation of X given
F, E[X|Z] is a .Z-measurable random variable such that, for all A€ .7,

f XdP = J YdP.
A A )
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Conditional expectation

Example
Suppose X is independent of %, that is, for all B€ % and Ae %,

Prob({X € B} n A) = Prob(X € B) Prob(A).

Then E[X|.#] = E[X], since if Ae .Z,

f XdP = E[X14] = E[X] E[14] = j E[X]dP.
A A
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Conditional expectation

Example

@ Suppose X and Y are independent. Let ¢ be a function with

E[|6(X, Y)|] < o and let g(x) = E[¢(x, Y)]. Then
E[o(X, V)IX] = g(X).

@ To check this, let A€ o(X), then A= {X € C} for a measureable set
C, and
| ox. v)dp = Elo(x. V1100

ff¢xy1c v(dy)p(dx)
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Properties of conditional expectation

Theorem
Conditional expectation satisfies the following properties.
© Linearity
E[aX + Y|Z] = aE[X|Z#] + E[Y|.Z].
Q If X Y then
E[X|Z#] < E[Y|Z]

@ If X, >0 and X, 1 X with E[X] < <o, then

E[Xa|.#] 1 E[X|#].
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Properties of conditional expectation

Proof.
For the first item, let A € . % and write

f 2E[X|.Z] + E[Y|Z]dP aj E[X|#]dP +j E[Y|F]dP
A A A

:af XdP+f YdP=f(aX+Y)dP.
A A A

For the second item,

JE[XLOJ]dP:J XdPgJ Yszf E[Y|Z]dP.
A A A A

Let A= {E[X|.Z] — E[Y|Z] > €} to get the claim. O
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Properties of conditional expectation

Proof.
Let Y, = X — X,,. Since Y,, decreases, Z, = E[Y,,|-#] decreases to a limit

Zy. For Ae &,
f Z,dP = f Y,dP.
A A

Since Y, | 0, dominated convergence gives SA ZyndP = 0 for all A, so

Ol

oo=0 )
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Properties of conditional expectation

Theorem
If ¢ is convex and E[|X|], E[|¢(X)|] < oo, then

¢(E[X|.7]) < E[¢(X)|F].
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Properties of conditional expectation

Proof.
Let S ={(a,b) :a,be Q,ax+ b < ¢(x)}. Then
¢(x) = sup{ax + b: (a, b) € S}.

For all a,b € S,
E[o(X)|Z#] = aE[X|Z] + b

so E[¢p(X)|.F] = ¢(E[X|.7]). ]
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Properties of conditional expectation

Theorem J

Condlitional expectation is a contraction in LP, p > 1.

Bob Hough Math 639: Lecture 10 February 28, 2017 10 / 55



Properties of conditional expectation

Proof.
By convexity, | E[X|-Z]|P < E[|X|P|.Z]. Hence, taking expectation,

E[| E[X|#]|P] < E[E[IX|?|#]] = E[|X]"].
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Properties of conditional expectation

Theorem
If # <94 and E[X|¥] € .Z, then E[X|.Z] = E[X|¥].

Proof.
If Ae # < ¥, then

L XdP = L E[X|¥]dP.
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Properties of conditional expectation

Theorem

If #1 < %> then
Q E[E[X|71]|72] = E[X]F1]
@ E[E[X|%:]|.71] = E[X|-Z#1].
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Properties of conditional expectation

Proof.

The first item follows because E[X|.%1] is .%#>-measurable. To prove the
second item, note that both sides are .%7 measurable. Given

Ae ﬂl (@ ﬁz,

L E[X|.71]dP — JA XdP — JA E[X| Z2]dP.
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Properties of conditional expectation

Theorem
If X € # and E[|Y|],E[|XY|] < oo, then

E[XY|Z] = X E[Y|Z].
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Properties of conditional expectation

Proof.
First let Be .# and let X = 15 with Be %#. For Ac %,
f 15 E[Y|F]dP = J E[Y|Z]dP = f YdP = f 15 YdP.
AnB AnB A

The same holds for simple X by linearity, then for positive variables by
monotone convergence, and finally in general by splitting into positive and
negative parts. [

v
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Properties of conditional expectation

Theorem

Suppose E[X?] < co. E[X|.#] is the variable Y € .Z that minimizes the
mean square error E[(X — Y)2].

Bob Hough Math 639: Lecture 10 February 28, 2017 17 / 55



Properties of conditional expectation

Proof.
For Z € L?(.7),
ZE[X|F] = E[2X|.#].
Hence
E[Z E[X|.Z]] = E[E[ZX|.#]] = E[ZX],
or
E[Z(X —E[X|.Z])] =0, VZel*(F).
If Y el?(F)and Z=E[X|.Z] - Y, then

E[(X — Y)?] = E[(X — E[X|#])?] + E[Z°].
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Martingales

Definition
A filtration is an increasing sequence of o-algebras %) < %, c .... A
sequence {X,} is said to be adapted to %, if X, € %, for all n. If {X,}
satisfies

e E[|X,]] < oo for all n

o E[Xp+1|-Fn] = X, forall n

then X is a martingale with respect to .%,,. If instead E[X,11|-Z)] < X,
then X is a supermartingale. If instead E[X,1+1|-%n] = X, then X is a
submartingale.
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Simple random walk

Example

Let £&1,&, ... be i.i.d. +1 with equal probability, and let X, = & + - - - + &,..
Set .7, = 0(&1,..,&n). Then

E[Xn+1|9n] = E[Xn|yn] + E[§n+1|yn] = Xn + E[§n+1] = Xn-
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Superharmonic functions

Example

The name supermartingale comes from the fact that a superharmonic
function, which satisfies Af < 0, has

1
") (G0 by Y
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Supermartingales and submartingales

Theorem

If X, is a supermartingale then for n > m, E[Xp|-Fm] < Xm.

Proof.
This holds for n = m + 1 by definition. For n = m + k,

E[Xim+k|-Fm] = E[E[Xms k|- Fmrk—1]|Fm] < E[Xmtk—1]-Fm].

The claim in general now follows by induction. 0J
v
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Supermartingales and submartingales

Theorem

If X, is a submartingale, then for n > m, E[X,|.% ] = Xm. If X, is a
martingale then for n > m, E[X,|%m] = Xm.

Proof.

If X, is a submartingale, then —X,, is a supermartingale, from which the
first claim follows. The second follows since a martingale is both a
submartingale and a supermartingale. Ol

v
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Supermartingales and submartingales

Theorem

If X, is a martingale with respect to filtration %, and ¢ is a convex
function with E[|¢(X,)|] < oo for all n, then ¢(X,) is a submartingale with
respect to F,. In particular, if p =1 and E[|X,|P] < oo for all n, then

| Xn|P is a submartingale with respect to .F,.

Proof.
By Jensen's inequality,

E[p(Xn11)|Fn] = ¢(E[Xni1|Fn]) = ¢(Xn).
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Supermartingales and submartingales

Theorem

If X, is a submartingale with respect to .%, and ¢ is an increasing convex

function with E[|¢(X,)|] < oo for all n, then ¢(X,,) is a submartingale with
respect to .#,. Consequently

@ If X, is a submartingale, then (X, — a)* is a submartingale.

@ If X, is a supermartingale, then min(X,, a) is a supermartingale.

Proof.

By Jensen's inequality, and the fact that ¢ is increasing,

E[p(Xns1)|Fn] = ¢(E[Xni1|Fn]) = ¢(Xn).
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Predictable sequences

Definition
Let #,, n = 0 be a filtration. H,, n > 1 is a predictable sequence if

H, e %, 1 for all n = 1. The martingale transform of H, with respect to
the sequence of sub or super martingales (X, %#,) is

Yo =0, Y= Z Hie(Xic = Xik—1), n> 1.
k=1
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Predictable sequences

Theorem

Suppose {Y,} is the martingale transform of .7 ,-predictable {V,} with
respect to a sub or super martingale (X,, %,).

e If Y, is integrable and (X,, %#,) is a martingale, then (Y,, %,) is also
a martingale.

e IfY, is integrable, V,, = 0 and (X,, #,) is a sub or super martingale,
then Y, is a sub or super martingale.

Proof.
Check

E[Yn+1 - Yn|§n] = E[Vn+1(Xn+1 - Xn)‘gn] = Vn+1 E[Xn+1 - Xn‘fgzn]a

from which the claims follows.

Ol

v
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Stopping times

Theorem

If (Xn, Fn) is a sub-martingale, or sup-martingale and 6 < T are stopping
times for {F,} then (Xoar — Xnao, Fn) is also a sub or sup-martingale. In
particular, taking 0 =0, (Xpar,Fn) is a sub or sup-martingale.
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Stopping times

Proof.
@ Suppose X, is a sub-martingale, otherwise replace it with —X,,.
o Let Vy =1(0 < k < 7). Thus Vj is F_1-measurable.
@ Since .
Xonr = Xaro = D Vi(Xe = Xk-1)
k=1

is a martingale transform, it is again a sub-martingale.
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Upcrossing inequality

Example (Upcrossings)
Let a< bandlet Ng =—1. For k> 1

N2k—1 inf{m > Ngk,Q Xm
N2k = |nf{m > Ngk,1 Xm

a}
b}.

VoA

The N; are stopping times, and

H. — 1 Ngk 1< m< N2k7 some k
10 otherwise

is a predictable sequence.

Bob Hough Math 639: Lecture 10 February 28, 2017 30 /55



Upcrossing inequality

Define U, = sup{k : Nox < n} to be the number of upcrossings to time n.
Theorem (Upcrossing inequality)

If Xm, m =0, is a submartingale, then

(b—a) E[Un] < E[(X, —a)"] — E[(Xo—a)"].
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Upcrossing inequality

Proof.
o let Ym=a+ (Xn—a)'.
® Yy, is a submartingale, and it upcrosses [a, b| the same number of
times that X, does.
@ Onehas (H-Y), > (b—a)U,.
@ Set K =1— H, and note that E[K - Y| = E[K - Yp] = 0. Hence
E[H - ¥,] < E[Y, — Yo,
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Martingale convergence theorem

Theorem (Martingale convergence theorem)

If X, is a submartingale with sup E[X;] < oo, then as n — o0, X,
converges a.s. to a limit X, E[|X]] < .
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Martingale convergence theorem

Proof.
@ Since (X —a)t < X* +a,

|al + E[X,]
E[Un] < b _ 3 .

@ As n 1 oo, U, 1 U the number of upcrossings of [a, b] by the whole
sequence.

o If supE[X ] < 0 then E[U] < 0, so U < o a.s., so for all rational
a, b,
U {liminf X, < a < b < limsup X,}
a,beQ

has probability 0. Hence lim X, exists with probability 1.

Ol

v
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Martingale convergence theorem

Proof.
e We have E[XT] < liminf E[X ] < o0.
o Also, E[X; ] = E[X;] — E[Xa] < E[X;] — E[X,]
e E[X7] <liminf,_o E[X, ] <sup, E[X;] — E[Xp] < o0
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Supermartingale version

Theorem

If X, = 0 is a supermartingale, then as n — o0, X, — X a.s. and
E[X] < E[Xo].

Proof.

—Xp < 0 is a submartingale. O
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Examples

Example
o let Sp=1,5,=1+& +---+ &, be simple random walk.
o Let N=inf{n:S, =0} and X, = Sy.n-
@ X, is a non-negative martingale, which converges a.s. to a finite limit,
which is zero.
e Since E[X,] = E[Xp] = 1 for all n, the convergence is not in L!.
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Doob’s decomposition

Theorem (Doob’s decomposition)

Any submartingale X,, n = 0, can be written in a unique way as
Xy = M, + A, where M,, is a martingale and A, is a predictable
increasing sequence with Ag = 0.
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Doob’s decomposition

Proof.
@ Let Ap =0 and for n > 1,

An = An—l + E[Xn - Xn—l’fgzn—l]-

By construction, {A,} is .%,_1-measurable.

@ To check that Y, = X, — A, is a martingale, calculate

E[Yn - Yn—l’rg.n—l] = [Xn - Xn—l - (An - An—1)|yn—1]

E
E[Xp — Xo_1|Zn_1] — (An — An_1) = 0.
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Bounded increments

Theorem

Let X1, Xy, ... be a martingale with |X,+1 — X,| < M < o0, Let

C = {lim X, exists and is finite}

D = {limsup X, = o0, liminf X, = —o0}.
Then Prob(C u D) = 1.
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Bounded increments

Proof.
@ We can assume Xy = 0 by replacing X, with X, — Xp.
o Let N =inf{n: X, < —K}. Then X,y is bounded below, so
converges, and hence X, converges on {N = oo}.
@ Letting K — oo the limit exists on {liminf X, > —co}. Replacing X,
with —X,,, the claim follows.

Ol

v
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Borel-Cantelli revisited

Theorem (Second Borel-Cantelli lemma)

Let #,, n =0 be a filtration with %y = {J,Q} and A,, n > 1 a sequence
of events with A, € .%,. Then

{An io} = {i Prob(An|Fn-1) = oo} .

n=1
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Borel-Cantelli revisited

Proof.
o Let Xo =0and X, =3 _,(1a, — Prob(An|#m_1)) for n > 1. Thus
’Xn - anl‘ < L

@ Using the decomposition C U D of the previous theorem, on C where
the limit exists,

[06]
1y, =0 < Z Prob(Ap|-Z#n-1) = 0.
1 n=1

8

3
Il

On D, where the limsup is o0 and the liminf is —o0

a0 00}
Z 14, = 0 and Z Prob(Ap|-F#n-1) = 0.
n=1

n=1

Bob Hough Math 639: Lecture 10 February 28, 2017 43 / 55



Radon-Nikodym derivatives

Lemma

Let v be a finite measure and v a probability measure on (2, F). Let
Fn 1 F be o-algebras. Let u, and v, be the restrictions of u and v to
Zn. Suppose u, < v, for all n, and let X, = %‘;—: is a martingale with

respect to .
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Radon-Nikodym derivatives

Proof.
o Let Ae .Z,. Calculate

L Xpdv = L Xodtn = in(A) = u(A).

@ Henceif Ae %1
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Radon-Nikodym derivatives

Theorem
With the set-up as in the previous lemma, let X = limsup X,,. Then

pu(A) = L Xdv + pu(An {X = 0}).

For a proof, see Durrett pp. 242-243.
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Branching processes

Definition

Let £, /,n > 1 be i.i.d. nonnegative integer-valued random variables. The
Galton- Watson process is a sequence Z,, n = 0 by Zy =1 and
7 _ f+1 44 §n+1 Zn =0
n+1 0 Zn -0

px = Prob(&§! = k) is called the offspring distribution.
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Branching processes

Lemma

Let Zp=o(&:i>1,1<m<n)and p=E[(]€(0,c0). Then 2 is a
martingale with respect to .%,.
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Branching processes

Proof.

Calculate

E[Zn+1|gn] = Z E[Zn+11(Zn = k)|32'n]

x
Il
—

I
18

x
Il
-

I
18

x
Il

s =

w >y 1(Z, = k)k = pz,.

k=1

B[] + -+ &U(Zn = K)|70]

1(Z, = k) E[ f+1 +"'+f£+l‘ﬁn]
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Branching processes

Theorem

If n < 1 then Z, = 0 for all n sufficiently large, so % — 0.

Proof.

E [5—] — E[Z] = 1, 50 E[Z,] = u". Since Z, > 1 when Z, # 0,
Prob(Z, # 0) < 1" — 0. O
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Branching processes

Theorem
If 4 =1 and Prob(¢ = 1) < 1 then Z, = 0 for all n sufficiently large. J
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Branching processes

Proof.
@ When =1, Z, is a non-negative martingale.

@ Z, has an almost sure finite limit Zy, and since Z, is integer valued,
Z, = Zy, for all n sufficiently large.

@ Since Prob(§" = 1) < 1, the only possibility is Z, = 0.
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Branching processes

For s € [0,1], let #(s) = Y7, pks* where px = Prob(¢M = k).

Theorem
If p = E[€] > 1 then Prob(Z, = 0 for some n) = p, the unique fixed
point of ¢ in [0,1).
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Branching processes

Proof.
Calculate
Qo0
¢(s) = >, kpes* 1 =0
k=1
Q0
¢"(s) = ), k(k—1)pxs* >0
k=2
Thus ¢ is increasing and convex and limgt1 ¢/(s) = Y11 kpk = p. DJ
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Branching processes

Proof.

o Let 0, = Prob(Z,, = 0). By conditioning on Z1, 0, = >t pk0%,_1,
since each child of the first generation must die out.

@ We check that there is a unique 0 < p < 1 such that ¢(p) = p
Indeed, ¢(0) >0, and ¢(1) =1, ¢/(1) = > 1 implies that
»(1 —€) <1 — e for some e > 0. This proves the existence of a fixed
point less than 1. The fixed point is unique since ¢ is strictly convex.

@ 0, 1 p follows since 0y = 0, ¢ is increasing, and ¢(p) = p, so that 0,
is increasing and 0, < p for all m.

Ol
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