Math 639: Lecture 10

Intro to Martingales

Bob Hough

February 28, 2017

Bob Hough

Math 639: Lecture 10

February 28, 2017 1 / 55

___ ▶

3

Recall the definition of conditional expectation.

Definition

Given a probability space $(\Omega, \mathscr{F}_0, \operatorname{Prob})$, a σ -field $\mathscr{F} \subset \mathscr{F}_0$, and a random variable $X \in \mathscr{F}_0$ with $\operatorname{E}[|X|] < \infty$, the *conditional expectation of* X *given* \mathscr{F} , $\operatorname{E}[X|\mathscr{F}]$ is a \mathscr{F} -measurable random variable such that, for all $A \in \mathscr{F}$,

$$\int_{A} X dP = \int_{A} Y dP.$$

Example

Suppose X is independent of \mathscr{F} , that is, for all $B \in \mathscr{B}$ and $A \in \mathscr{F}$,

$$Prob({X \in B} \cap A) = Prob(X \in B) Prob(A).$$

Then $E[X|\mathscr{F}] = E[X]$, since if $A \in \mathscr{F}$,

$$\int_{\mathcal{A}} X dP = \mathsf{E}[X \mathbf{1}_{\mathcal{A}}] = \mathsf{E}[X] \mathsf{E}[\mathbf{1}_{\mathcal{A}}] = \int_{\mathcal{A}} \mathsf{E}[X] dP.$$

3

- 4 同 6 4 日 6 4 日 6

Conditional expectation

Example

- Suppose X and Y are independent. Let ϕ be a function with $E[|\phi(X, Y)|] < \infty$ and let $g(x) = E[\phi(x, Y)]$. Then $E[\phi(X, Y)|X] = g(X)$.
- To check this, let $A \in \sigma(X)$, then $A = \{X \in C\}$ for a measureable set C, and

$$\int_{A} \phi(X, Y) dP = \mathsf{E}[\phi(X, Y) \mathbf{1}_{C}(X)]$$
$$= \int \int \phi(x, y) \mathbf{1}_{C}(x) \nu(dy) \mu(dx)$$
$$= \int \mathbf{1}_{C}(x) g(x) \mu(dx) = \int_{A} g(X) dP$$

Bob Hough

Theorem

Conditional expectation satisfies the following properties.

Linearity

$$\mathsf{E}[aX + Y|\mathscr{F}] = a \mathsf{E}[X|\mathscr{F}] + \mathsf{E}[Y|\mathscr{F}].$$

2 If $X \leq Y$ then

 $\mathsf{E}[X|\mathscr{F}] \leqslant \mathsf{E}[Y|\mathscr{F}]$

3 If $X_n \ge 0$ and $X_n \uparrow X$ with $E[X] < \infty$, then

 $\mathsf{E}[X_n|\mathscr{F}] \uparrow \mathsf{E}[X|\mathscr{F}].$

Bo	h l	Ηc	11	σh
00			vu,	Б''

- 3

- 4 同 6 4 日 6 4 日 6

Proof.

For the first item, let $A \in \mathscr{F}$ and write

$$\int_{A} a \operatorname{E}[X|\mathscr{F}] + \operatorname{E}[Y|\mathscr{F}]dP = a \int_{A} \operatorname{E}[X|\mathscr{F}]dP + \int_{A} \operatorname{E}[Y|\mathscr{F}]dP$$
$$= a \int_{A} XdP + \int_{A} YdP = \int_{A} (aX + Y)dP.$$

For the second item,

$$\int_{A} \mathsf{E}[X|\mathscr{F}] dP = \int_{A} X dP \leqslant \int_{A} Y dP = \int_{A} \mathsf{E}[Y|\mathscr{F}] dP.$$
$$= \{\mathsf{E}[X|\mathscr{F}] - \mathsf{E}[Y|\mathscr{F}] > \epsilon\} \text{ to get the claim}$$

Let $A = \{ \mathsf{E}[X|\mathscr{F}] - \mathsf{E}[Y|\mathscr{F}] > \epsilon \}$ to get the claim.

Proof.

Let $Y_n = X - X_n$. Since Y_n decreases, $Z_n = \mathbb{E}[Y_n | \mathscr{F}]$ decreases to a limit Z_∞ . For $A \in \mathscr{F}$, $\int_A Z_n dP = \int_A Y_n dP.$ Since $Y_n \downarrow 0$, dominated convergence gives $\int_A Z_\infty dP = 0$ for all A, so $Z_\infty = 0$.

Theorem

If ϕ is convex and $E[|X|], E[|\phi(X)|] < \infty$, then

 $\phi(\mathsf{E}[X|\mathscr{F}]) \leqslant \mathsf{E}[\phi(X)|\mathscr{F}].$

Bob Hough

3

(人間) トイヨト イヨト

Proof. Let $S = \{(a, b) : a, b \in \mathbb{Q}, ax + b \le \phi(x)\}$. Then $\phi(x) = \sup\{ax + b : (a, b) \in S\}$. For all $a, b \in S$, $E[\phi(X)|\mathscr{F}] \ge a E[X|\mathscr{F}] + b$ so $E[\phi(X)|\mathscr{F}] \ge \phi(E[X|\mathscr{F}])$.

(日) (周) (三) (三)

Theorem

Conditional expectation is a contraction in L^p , $p \ge 1$.

D -				
во	D	HΟ	Πp	'n

3

- 4 回 ト - 4 回 ト

Proof.

By convexity, $|E[X|\mathscr{F}]|^{p} \leq E[|X|^{p}|\mathscr{F}]$. Hence, taking expectation, $E[|E[X|\mathscr{F}]|^{p}] \leq E[E[|X|^{p}|\mathscr{F}]] = E[|X|^{p}].$

Bob Hough

- 31

- 4 同 6 4 日 6 4 日 6

Theorem

If
$$\mathscr{F} \subset \mathscr{G}$$
 and $\mathsf{E}[X|\mathscr{G}] \in \mathscr{F}$, then $\mathsf{E}[X|\mathscr{F}] = \mathsf{E}[X|\mathscr{G}]$.

Proof.

If $A \in \mathscr{F} \subset \mathscr{G}$, then

$$\int_{A} X dP = \int_{A} \mathsf{E}[X|\mathscr{G}] dP.$$

Bo	h I	Ho	ιıσ	h
	~ .		чь.	

3

・ 同・ ・ ヨ・ ・ ヨ

Theorem

If $\mathscr{F}_1 \subset \mathscr{F}_2$ then

イロト イポト イヨト イヨト 二日

Proof.

The first item follows because $E[X|\mathscr{F}_1]$ is \mathscr{F}_2 -measurable. To prove the second item, note that both sides are \mathscr{F}_1 measurable. Given $A \in \mathscr{F}_1 \subset \mathscr{F}_2$,

$$\int_{A} \mathsf{E}[X|\mathscr{F}_{1}]dP = \int_{A} XdP = \int_{A} \mathsf{E}[X|\mathscr{F}_{2}]dP.$$

D	~	h	ш	~	~	h
ப	υ	υ.		υu	12	
					•	

Theorem

If $X \in \mathscr{F}$ and $E[|Y|], E[|XY|] < \infty$, then

$$\mathsf{E}[XY|\mathscr{F}] = X \, \mathsf{E}[Y|\mathscr{F}].$$

Bob Hough

Math 639: Lecture 10

February 28, 2017 15 / 55

3

(人間) トイヨト イヨト

Proof.

First let $B \in \mathscr{F}$ and let $X = \mathbf{1}_B$ with $B \in \mathscr{F}$. For $A \in \mathscr{F}$,

$$\int_{A} \mathbf{1}_{B} \mathsf{E}[Y|\mathscr{F}] dP = \int_{A \cap B} \mathsf{E}[Y|\mathscr{F}] dP = \int_{A \cap B} Y dP = \int_{A} \mathbf{1}_{B} Y dP.$$

The same holds for simple X by linearity, then for positive variables by monotone convergence, and finally in general by splitting into positive and negative parts.

Theorem

Suppose $E[X^2] < \infty$. $E[X|\mathscr{F}]$ is the variable $Y \in \mathscr{F}$ that minimizes the mean square error $E[(X - Y)^2]$.

- 3

Proof.

For $Z \in L^2(\mathscr{F})$,

$$Z \operatorname{\mathsf{E}}[X|\mathscr{F}] = \operatorname{\mathsf{E}}[ZX|\mathscr{F}].$$

Hence

$$\mathsf{E}[Z \,\mathsf{E}[X|\mathscr{F}]] = \mathsf{E}[\mathsf{E}[ZX|\mathscr{F}]] = \mathsf{E}[ZX],$$

or

$$E[Z(X - E[X|\mathscr{F}])] = 0, \qquad \forall Z \in L^{2}(\mathscr{F}).$$

If $Y \in L^{2}(\mathscr{F})$ and $Z = E[X|\mathscr{F}] - Y$, then
$$E[(X - Y)^{2}] = E[(X - E[X|\mathscr{F}])^{2}] + E[Z^{2}].$$

3

(日) (同) (三) (三)

Definition

A *filtration* is an increasing sequence of σ -algebras $\mathscr{F}_1 \subset \mathscr{F}_2 \subset ...$ A sequence $\{X_n\}$ is said to be *adapted* to \mathscr{F}_n if $X_n \in \mathscr{F}_n$ for all *n*. If $\{X_n\}$ satisfies

•
$$E[|X_n|] < \infty$$
 for all n

•
$$E[X_{n+1}|\mathscr{F}_n] = X_n$$
 for all n

then X is a martingale with respect to \mathscr{F}_n . If instead $\mathbb{E}[X_{n+1}|\mathscr{F}_n] \leq X_n$ then X is a supermartingale. If instead $\mathbb{E}[X_{n+1}|\mathscr{F}_n] \geq X_n$ then X is a submartingale.

Example

Let $\xi_1, \xi_2, ...$ be i.i.d. ± 1 with equal probability, and let $X_n = \xi_1 + \cdots + \xi_n$. Set $\mathscr{F}_n = \sigma(\xi_1, ..., \xi_n)$. Then

$$\mathsf{E}[X_{n+1}|\mathscr{F}_n] = \mathsf{E}[X_n|\mathscr{F}_n] + \mathsf{E}[\xi_{n+1}|\mathscr{F}_n] = X_n + \mathsf{E}[\xi_{n+1}] = X_n.$$

3

- 4 同 6 4 日 6 4 日 6

Example

The name supermartingale comes from the fact that a superharmonic function, which satisfies $\Delta f \leq 0$, has

$$f(x) \ge \frac{1}{|B(0,r)|} \int_{B(x,r)} f(y) dy.$$

D - I	L 1				
во	D I	= (ווס	σι	n
				ο.	

Supermartingales and submartingales

Theorem

If X_n is a supermartingale then for n > m, $E[X_n | \mathscr{F}_m] \leq X_m$.

Proof.

This holds for n = m + 1 by definition. For n = m + k,

$$\mathsf{E}[X_{m+k}|\mathscr{F}_m] = \mathsf{E}[\mathsf{E}[X_{m+k}|\mathscr{F}_{m+k-1}]|\mathscr{F}_m] \leq \mathsf{E}[X_{m+k-1}|\mathscr{F}_m].$$

The claim in general now follows by induction.

- 4 目 ト - 4 日 ト - 4 日 ト

Theorem

If X_n is a submartingale, then for n > m, $E[X_n | \mathscr{F}_m] \ge X_m$. If X_n is a martingale then for n > m, $E[X_n | \mathscr{F}_m] = X_m$.

Proof.

If X_n is a submartingale, then $-X_n$ is a supermartingale, from which the first claim follows. The second follows since a martingale is both a submartingale and a supermartingale.

Supermartingales and submartingales

Theorem

If X_n is a martingale with respect to filtration \mathscr{F}_n and ϕ is a convex function with $\mathsf{E}[|\phi(X_n)|] < \infty$ for all n, then $\phi(X_n)$ is a submartingale with respect to \mathscr{F}_n . In particular, if $p \ge 1$ and $\mathsf{E}[|X_n|^p] < \infty$ for all n, then $|X_n|^p$ is a submartingale with respect to \mathscr{F}_n .

Proof.

By Jensen's inequality,

$$\mathsf{E}[\phi(X_{n+1})|\mathscr{F}_n] \ge \phi(\mathsf{E}[X_{n+1}|\mathscr{F}_n]) = \phi(X_n).$$

R	oh	H	ou	σh
~	~~			ь

Supermartingales and submartingales

Theorem

If X_n is a submartingale with respect to \mathscr{F}_n and ϕ is an increasing convex function with $\mathbb{E}[|\phi(X_n)|] < \infty$ for all n, then $\phi(X_n)$ is a submartingale with respect to \mathscr{F}_n . Consequently

- **1** If X_n is a submartingale, then $(X_n a)^+$ is a submartingale.
- 2 If X_n is a supermartingale, then $\min(X_n, a)$ is a supermartingale.

Proof.

By Jensen's inequality, and the fact that ϕ is increasing,

$$\mathsf{E}[\phi(X_{n+1})|\mathscr{F}_n] \ge \phi(\mathsf{E}[X_{n+1}|\mathscr{F}_n]) \ge \phi(X_n).$$

Definition

Let \mathscr{F}_n , $n \ge 0$ be a filtration. H_n , $n \ge 1$ is a *predictable sequence* if $H_n \in \mathscr{F}_{n-1}$ for all $n \ge 1$. The *martingale transform* of H_n with respect to the sequence of sub or super martingales (X_n, \mathscr{F}_n) is

$$Y_0 = 0,$$
 $Y_n = \sum_{k=1}^n H_k(X_k - X_{k-1}), n \ge 1.$

D	~	h	ш	~	~	h
ப	υ	υ.		υu	12	
					•	

Predictable sequences

Theorem

Suppose $\{Y_n\}$ is the martingale transform of \mathscr{F}_n -predictable $\{V_n\}$ with respect to a sub or super martingale (X_n, \mathscr{F}_n) .

- If Y_n is integrable and (X_n, \mathscr{F}_n) is a martingale, then (Y_n, \mathscr{F}_n) is also a martingale.
- If Y_n is integrable, $V_n \ge 0$ and (X_n, \mathscr{F}_n) is a sub or super martingale, then Y_n is a sub or super martingale.

Proof.

Check

$$\mathsf{E}[Y_{n+1}-Y_n|\mathscr{F}_n]=\mathsf{E}[V_{n+1}(X_{n+1}-X_n)|\mathscr{F}_n]=V_{n+1}\mathsf{E}[X_{n+1}-X_n|\mathscr{F}_n],$$

from which the claims follows.

Bob Hough

February 28, 2017 27 / 55

< 白沙 ▶ <

Theorem

If (X_n, \mathscr{F}_n) is a sub-martingale, or sup-martingale and $\theta \leq \tau$ are stopping times for $\{\mathscr{F}_n\}$ then $(X_{n \wedge \tau} - X_{n \wedge \theta}, \mathscr{F}_n)$ is also a sub or sup-martingale. In particular, taking $\theta = 0$, $(X_{n \wedge \tau}, \mathscr{F}_n)$ is a sub or sup-martingale.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Proof.

- Suppose X_n is a sub-martingale, otherwise replace it with $-X_n$.
- Let $V_k = \mathbf{1}(\theta < k \leq \tau)$. Thus V_k is \mathscr{F}_{k-1} -measurable.
- Since

$$X_{n\wedge\tau} - X_{n\wedge\theta} = \sum_{k=1}^{n} V_k (X_k - X_{k-1})$$

is a martingale transform, it is again a sub-martingale.

			-
Bob Hough	Math 639: Lecture 10	February 28, 2017	29

55

Upcrossing inequality

Example (Upcrossings)

Let a < b and let $N_0 = -1$. For $k \ge 1$,

$$N_{2k-1} = \inf\{m > N_{2k-2} : X_m \le a\}$$

$$N_{2k} = \inf\{m > N_{2k-1} : X_m \ge b\}.$$

The N_i are stopping times, and

$$H_m = \begin{cases} 1 & N_{2k-1} < m \le N_{2k}, \text{ some } k \\ 0 & \text{otherwise} \end{cases}$$

is a predictable sequence.

Bo	h I	Ηd	วม	σh

- 3

(日) (周) (三) (三)

Define $U_n = \sup\{k : N_{2k} \leq n\}$ to be the number of upcrossings to time *n*.

Theorem (Upcrossing inequality) If X_m , $m \ge 0$, is a submartingale, then $(b-a) E[U_n] \le E[(X_n - a)^+] - E[(X_0 - a)^+].$

Upcrossing inequality

Proof.

- Let $Y_m = a + (X_m a)^+$.
- *Y_m* is a submartingale, and it upcrosses [*a*, *b*] the same number of times that *X_m* does.

• One has
$$(H \cdot Y)_n \ge (b-a)U_n$$
.

• Set K = 1 - H, and note that $E[K \cdot Y_n] \ge E[K \cdot Y_0] = 0$. Hence $E[H \cdot Y_n] \le E[Y_n - Y_0]$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem (Martingale convergence theorem)

If X_n is a submartingale with sup $E[X_n^+] < \infty$, then as $n \to \infty$, X_n converges a.s. to a limit X, $E[|X|] < \infty$.

Bob Hough

イロト イポト イヨト イヨト 二日

Martingale convergence theorem

Proof.

• Since $(X - a)^+ \leq X^+ + |a|$,

$$\mathsf{E}[U_n] \leqslant \frac{|\mathsf{a}| + \mathsf{E}[X_n^+]}{b - \mathsf{a}}.$$

- As n ↑∞, U_n ↑ U the number of upcrossings of [a, b] by the whole sequence.
- If sup $E[X_n^+] < \infty$ then $E[U] < \infty$, so $U < \infty$ a.s., so for all rational a, b, d

$$\bigcup_{a,b\in\mathbb{Q}} \{\liminf X_n < a < b < \limsup X_n\}$$

has probability 0. Hence $\lim X_n$ exists with probability 1.

イロト イポト イヨト イヨト

Martingale convergence theorem

Proof.

- We have $E[X^+] \leq \liminf E[X_n^+] < \infty$.
- Also, $E[X_n^-] = E[X_n^+] E[X_n] \le E[X_n^+] E[X_0]$
- $\mathsf{E}[X^-] \leq \liminf_{n \to \infty} \mathsf{E}[X_n^-] \leq \sup_n \mathsf{E}[X_n^+] \mathsf{E}[X_0] < \infty.$

Theorem

If $X_n \ge 0$ is a supermartingale, then as $n \to \infty$, $X_n \to X$ a.s. and $E[X] \le E[X_0]$.

Proof.

 $-X_n \leq 0$ is a submartingale.

イロト イポト イヨト イヨト 二日

Example

- Let $S_0 = 1$, $S_n = 1 + \xi_1 + \cdots + \xi_n$ be simple random walk.
- Let $N = \inf\{n : S_n = 0\}$ and $X_n = S_{N \wedge n}$.
- X_n is a non-negative martingale, which converges a.s. to a finite limit, which is zero.
- Since $E[X_n] = E[X_0] = 1$ for all *n*, the convergence is not in L^1 .

イロト イポト イヨト イヨト 二日

Theorem (Doob's decomposition)

Any submartingale X_n , $n \ge 0$, can be written in a unique way as $X_n = M_n + A_n$, where M_n is a martingale and A_n is a predictable increasing sequence with $A_0 = 0$.

Doob's decomposition

Proof.

• Let $A_0 = 0$ and for $n \ge 1$,

$$A_n = A_{n-1} + \mathsf{E}[X_n - X_{n-1}|\mathscr{F}_{n-1}].$$

By construction, $\{A_n\}$ is \mathscr{F}_{n-1} -measurable.

• To check that $Y_n = X_n - A_n$ is a martingale, calculate

$$\mathsf{E}[Y_n - Y_{n-1} | \mathscr{F}_{n-1}] = \mathsf{E}[X_n - X_{n-1} - (A_n - A_{n-1}) | \mathscr{F}_{n-1}]$$

= $\mathsf{E}[X_n - X_{n-1} | \mathscr{F}_{n-1}] - (A_n - A_{n-1}) = 0.$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem

Let $X_1, X_2, ...$ be a martingale with $|X_{n+1} - X_n| \leq M < \infty$. Let

$$C = \{\lim X_n \text{ exists and is finite}\}$$
$$D = \{\limsup X_n = \infty, \ \liminf X_n = -\infty\}$$

Then $Prob(C \cup D) = 1$.

3

イロト イヨト イヨト

Proof.

- We can assume $X_0 = 0$ by replacing X_n with $X_n X_0$.
- Let $N = \inf\{n : X_n \leq -K\}$. Then $X_{n \wedge N}$ is bounded below, so converges, and hence X_n converges on $\{N = \infty\}$.
- Letting $K \to \infty$ the limit exists on {lim inf $X_n > -\infty$ }. Replacing X_n with $-X_n$, the claim follows.

Theorem (Second Borel-Cantelli lemma)

Let \mathscr{F}_n , $n \ge 0$ be a filtration with $\mathscr{F}_0 = \{\emptyset, \Omega\}$ and A_n , $n \ge 1$ a sequence of events with $A_n \in \mathscr{F}_n$. Then

$$\{A_n \text{ i.o.}\} = \left\{ \sum_{n=1}^{\infty} \operatorname{Prob}(A_n | \mathscr{F}_{n-1}) = \infty \right\}.$$

D-		ы.		
во	D	-10	ווכ	øη
				o

- 3

Borel-Cantelli revisited

Proof.

- Let $X_0 = 0$ and $X_n = \sum_{m=1}^n (\mathbf{1}_{A_m} \operatorname{Prob}(A_m | \mathscr{F}_{m-1}))$ for $n \ge 1$. Thus $|X_n X_{n-1}| \le 1$.
- Using the decomposition $C \cup D$ of the previous theorem, on C where the limit exists,

$$\sum_{n=1}^{\infty} \mathbf{1}_{A_n} = \infty \iff \sum_{n=1}^{\infty} \operatorname{Prob}(A_n | \mathscr{F}_{n-1}) = \infty.$$

On D, where the lim sup is ∞ and the lim inf is $-\infty$

$$\sum_{n=1}^{\infty} \mathbf{1}_{A_n} = \infty \text{ and } \sum_{n=1}^{\infty} \operatorname{Prob}(A_n | \mathscr{F}_{n-1}) = \infty.$$

- 32

イロト イポト イヨト イヨト

Lemma

Let μ be a finite measure and ν a probability measure on (Ω, \mathscr{F}) . Let $\mathscr{F}_n \uparrow \mathscr{F}$ be σ -algebras. Let μ_n and ν_n be the restrictions of μ and ν to \mathscr{F}_n . Suppose $\mu_n \ll \nu_n$ for all n, and let $X_n = \frac{d\mu_n}{d\nu_n}$ is a martingale with respect to \mathscr{F}_n .

Radon-Nikodym derivatives

Proof.

• Let $A \in \mathscr{F}_n$. Calculate $\int_{A} X_n d\nu = \int_{A} X_n d\nu_n = \mu_n(A) = \mu(A).$ • Hence if $A \in \mathscr{F}_{m-1}$ $\int_{A} X_m d\nu = \mu(A) = \int_{A} X_{m-1} d\nu$ so $E[X_m | \mathscr{F}_{m-1}] = X_{m-1}$.

Theorem

With the set-up as in the previous lemma, let $X = \limsup X_n$. Then

$$\mu(A) = \int_A X d\nu + \mu(A \cap \{X = \infty\}).$$

For a proof, see Durrett pp. 242-243.

3

- 4 同 6 4 日 6 4 日 6

Definition

Let ξ_i^n , $i, n \ge 1$ be i.i.d. nonnegative integer-valued random variables. The *Galton-Watson process* is a sequence Z_n , $n \ge 0$ by $Z_0 = 1$ and

$$Z_{n+1} = \begin{cases} \xi_1^{n+1} + \dots + \xi_{Z_n}^{n+1} & Z_n > 0\\ 0 & Z_n = 0 \end{cases}$$

 $p_k = \text{Prob}(\xi_i^n = k)$ is called the *offspring distribution*.

- 本間 と えき と えき とうき

Lemma

Let $\mathscr{F}_n = \sigma(\xi_i^m : i \ge 1, 1 \le m \le n)$ and $\mu = \mathsf{E}[\xi_i^m] \in (0, \infty)$. Then $\frac{Z_n}{\mu^n}$ is a martingale with respect to \mathscr{F}_n .

Branching processes

Proof.

Calculate

$$E[Z_{n+1}|\mathscr{F}_n] = \sum_{k=1}^{\infty} E[Z_{n+1}\mathbf{1}(Z_n = k)|\mathscr{F}_n]$$

= $\sum_{k=1}^{\infty} E[(\xi_1^{n+1} + \dots + \xi_k^{n+1})\mathbf{1}(Z_n = k)|\mathscr{F}_n]$
= $\sum_{k=1}^{\infty} \mathbf{1}(Z_n = k) E[\xi_1^{n+1} + \dots + \xi_k^{n+1}|\mathscr{F}_n]$
= $\mu \sum_{k=1}^{\infty} \mathbf{1}(Z_n = k)k = \mu Z_n.$

Bob Hough

February 28, 2017 49 / 55

- 2

<ロ> (日) (日) (日) (日) (日)

Theorem

If
$$\mu < 1$$
 then $Z_n = 0$ for all n sufficiently large, so $rac{Z_n}{\mu^n} o 0$.

Proof.

$$\mathsf{E}\left[\frac{Z_n}{\mu^n}\right] = \mathsf{E}[Z_0] = 1$$
, so $\mathsf{E}[Z_n] = \mu^n$. Since $Z_n \ge 1$ when $Z_n \ne 0$,
 $\mathsf{Prob}(Z_n \ne 0) \le \mu^n \rightarrow 0$.

Bob Hough

3

<ロ> (日) (日) (日) (日) (日)

Theorem

If $\mu = 1$ and $Prob(\xi_i^m = 1) < 1$ then $Z_n = 0$ for all n sufficiently large.

D			
RO	h F		uan
00		10	

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Proof.

- When $\mu = 1$, Z_n is a non-negative martingale.
- Z_n has an almost sure finite limit Z_∞ , and since Z_n is integer valued, $Z_n = Z_\infty$ for all *n* sufficiently large.
- Since $\operatorname{Prob}(\xi_i^m = 1) < 1$, the only possibility is $Z_{\infty} = 0$.

R.	h	. н	10		۳h
	υL	· ·	10	ч	вu

- 3

For $s \in [0, 1]$, let $\phi(s) = \sum_{k=0}^{\infty} p_k s^k$ where $p_k = \operatorname{Prob}(\xi_i^m = k)$.

Theorem

If $\mu = E[\xi_i^m] > 1$ then $Prob(Z_n = 0$ for some $n) = \rho$, the unique fixed point of ϕ in [0, 1).

Branching processes

Proof.

Calculate

$$\phi'(s) = \sum_{k=1}^{\infty} k p_k s^{k-1} \ge 0$$

$$\phi''(s) = \sum_{k=2}^{\infty} k (k-1) p_k s^{k-2} \ge 0.$$

Thus ϕ is increasing and convex and $\lim_{s\uparrow 1} \phi'(s) = \sum_{k=1}^{\infty} kp_k = \mu$.

イロト イポト イヨト イヨト 二日

Branching processes

Proof.

- Let $\theta_m = \operatorname{Prob}(Z_m = 0)$. By conditioning on Z_1 , $\theta_m = \sum_{k=0}^{\infty} p_k \theta_{m-1}^k$, since each child of the first generation must die out.
- We check that there is a unique 0 ≤ ρ < 1 such that φ(ρ) = ρ. Indeed, φ(0) ≥ 0, and φ(1) = 1, φ'(1) = μ > 1 implies that φ(1 - ε) < 1 - ε for some ε > 0. This proves the existence of a fixed point less than 1. The fixed point is unique since φ is strictly convex.
- $\theta_m \uparrow \rho$ follows since $\theta_0 = 0$, ϕ is increasing, and $\phi(\rho) = \rho$, so that θ_m is increasing and $\theta_m \leq \rho$ for all m.

- 3