Math 639: Lecture 1
 Measure theory background

Bob Hough

January 24, 2017

Probability spaces

Definition

A probability space is a measure space $(\Omega, \mathscr{F}, \operatorname{Prob})$ with Prob a positive measure of mass 1.

- Ω is called the sample space, and $\omega \in \Omega$ are called outcomes.
- \mathscr{F}, a σ-algebra, is called the event space, and $A \in \mathscr{F}$ are called events.

Algebras of sets

Definition

A collection of sets \mathscr{S} is a semialgebra if

- If $S, T \in \mathscr{S}$ then $S \cap T \in \mathscr{S}$
- If $S \in \mathscr{S}$ then S^{c} is the finite disjoint union of sets of \mathscr{S}.

Example

The empty set together with those sets

$$
\left(a_{1}, b_{1}\right] \times \cdots \times\left(a_{d}, b_{d}\right] \subset \mathbb{R}^{d}, \quad-\infty \leq a_{i}<b_{i} \leq \infty
$$

form a semialgebra in \mathbb{R}^{d}.

Algebras of sets

Definition

A collection of sets \mathscr{S} is an algebra if it is closed under complements and intersections.

Lemma

If \mathscr{S} is a semialgebra, then $\overline{\mathscr{S}}$, given by finite disjoint unions from \mathscr{S}, is an algebra.

Definition

A σ-algebra of sets is an algebra which is closed under countable unions.

Borel σ-algebra

Definition

Given a collection of subsets $A_{\alpha} \subset \Omega$, the generated σ-algebra $\sigma\left(\left\{A_{\alpha}\right\}\right)$ is the smallest σ-algebra containing $\left\{A_{\alpha}\right\}$.

Definition

In the case that Ω has a topology \mathscr{T} of open sets, the Borel σ-algebra is $\sigma(\mathscr{T})$.

Borel σ-algebra

Definition

The product of measure spaces $\left(\Omega_{i}, \mathscr{F}_{i}\right), i=1, \ldots, n$ is the set $\Omega=\Omega_{1} \times \ldots \times \Omega_{n}$ with the σ-algebra $\mathscr{F}_{1} \times \ldots \times \mathscr{F}_{n}=\sigma\left(\bigcup_{i=1}^{n} \mathscr{F}_{i}\right)$.

Exercise

Let $d \geq 1$. With the usual topologies, the Borel σ-algebra $\mathscr{B}_{\mathbb{R}^{d}}$ is equal to $\mathscr{B}_{\mathbb{R}} \times \ldots \times \mathscr{B}_{\mathbb{R}}(d$ copies).

Dynkin's $\pi-\lambda$ Theorem

Definition

A π-system is a collection \mathscr{P} of sets closed under finite intersections. A λ-system is a collection \mathscr{L} of sets satisfying the following

- $\Omega \in \mathscr{L}$
- For any $A, B \in \mathscr{L}$ satisfying $A \subset B, B \backslash A \in \mathscr{L}$
- If $A_{1} \subset A_{2} \subset \ldots$ is a sequence from \mathscr{L} and $A=\bigcup_{i=1}^{\infty} A_{i}$ then $A \in \mathscr{L}$.

Dynkin's $\pi-\lambda$ Theorem

Lemma

Let \mathscr{L} be a λ-system which is closed under intersection. Then \mathscr{L} is a σ-algebra.

Proof.

- If $A \in \mathscr{L}$ then $A^{c}=\Omega \backslash A \in \mathscr{L}$.
- If $A, B \in \mathscr{L}$ then $A \cup B=\left(A^{c} \cap B^{c}\right)^{c} \in \mathscr{L}$.
- Thus, if $\left\{A_{i}\right\}_{i=1}^{\infty}$ is a sequence in \mathscr{L}, then for each $n, \bigcup_{i=1}^{n} A_{i} \in \mathscr{L}$, and hence $\bigcup_{i=1}^{\infty} A_{i} \in \mathscr{L}$.

Dynkin's $\pi-\lambda$ Theorem

Theorem (Dynkin's $\pi-\lambda$ Theorem)
If $\mathscr{P} \subset \mathscr{L}$ with \mathscr{P} a π-system and \mathscr{L} a λ-system then $\sigma(\mathscr{P}) \subset \mathscr{L}$.

Dynkin's $\pi-\lambda$ Theorem

Proof.

Let $\ell(\mathscr{P})$ be the smallest λ-system containing \mathscr{P}. We show that $\ell(\mathscr{P})$ is a σ-algebra.

- Let $A \in \ell(\mathscr{P})$ and define $L_{A}=\{B: A \cap B \in \ell(\mathscr{P})\}$.
- We check that L_{A} is a λ-system.
$\Omega \in L_{A}$ since $A \in \ell(\mathscr{P})$
If $B, C \in L_{A}$ and $B \supset C$, then
$A \cap(B-C)=(A \cap B)-(A \cap C) \in \ell(\mathscr{P})$.
If $B_{1} \subset B_{2} \subset \ldots$ is a sequence from L_{A} with $B=\bigcup_{i=1}^{\infty} B_{i}$ then
$B_{1} \cap A \subset B_{2} \cap A \subset \ldots$ has $B \cap A=\bigcup_{i=1}^{\infty}\left(B_{i} \cap A\right)$, and hence
$B \cap A \in \ell(\mathscr{P})$ so $B \in L_{A}$.
- If $A \in \mathscr{P}$ then $L_{A}=\ell(\mathscr{P})$. Hence, if $B \in \ell(\mathscr{P})$ then $A \cap B \in \ell(\mathscr{P})$.

But then this implies $L_{B}=\ell(\mathscr{P})$. It follows that for all $A, B \in \ell(\mathscr{P})$, $A \cap B \in \ell(\mathscr{P})$.

Measures

Definition

A positive measure on an algebra \mathscr{A} is a set function μ which satisfies

- $\mu(A) \geq \mu(\emptyset)=0$ for all $A \in \mathscr{A}$
- If $A_{i} \in \mathscr{A}$ are disjoint and their union is in \mathscr{A}, then

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

If $\mu(\Omega)=1$ then μ is a probability measure.

Probability measure properties

A probability measure satisfies the following basic properties.

- (Monotonicity) If $A \subset B$ then $\operatorname{Prob}(A) \leq \operatorname{Prob}(B)$.
- (Sub-additivity) If $A \subset \bigcup_{i} A_{i}$ then $\operatorname{Prob}(A) \leq \sum_{i} \operatorname{Prob}\left(A_{i}\right)$
- (Continuity from below) If $A_{1} \subset A_{2} \subset \ldots$ and $A=\bigcup_{i} A_{i}$ then $\operatorname{Prob}\left(A_{i}\right) \uparrow \operatorname{Prob}(A)$
- (Continuity from above) If $A_{1} \supset A_{2} \supset \ldots$ and $A=\bigcap_{i} A_{i}$ then $\operatorname{Prob}\left(A_{i}\right) \downarrow \operatorname{Prob}(A)$.

Atomic measures

Definition

A probability space ($\Omega, \mathscr{F}, \operatorname{Prob}$) is non-atomic if $\operatorname{Prob}(A)>0$ implies that there exists $B \in \mathscr{F}$ satisfying $B \subset A$ and $0<\operatorname{Prob}(B)<\operatorname{Prob}(A)$.

Outer measures

Definition

An outer measure μ^{*} on a measurable space (Ω, \mathscr{F}) is a set function $\mu^{*}: \mathscr{F} \rightarrow[0, \infty]$ satisfying

- $\mu^{*}(\emptyset)=0$ and $\mu^{*}\left(A_{1}\right) \leq \mu^{*}\left(A_{2}\right)$ for any $A_{1}, A_{2} \in \mathscr{F}$ with $A_{1} \subset A_{2}$.
- $\mu^{*}\left(\cup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu^{*}\left(A_{n}\right)$ for any countable collection of sets $\left\{A_{n}\right\} \subset \mathscr{F}$.

Outer measures

Definition

Given an outer measure μ^{*} on a measurable space (Ω, \mathscr{F}), a set $A \in \mathscr{F}$ is measurable (in the sense of Carathéodory) if for each set $E \in \mathscr{F}$,

$$
\mu^{*}(E)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right)
$$

Outer measures

Theorem
Let μ^{*} be an outer measure on a measurable space (Ω, \mathscr{F}). The subset \mathscr{G} of μ^{*}-measurable sets in \mathscr{F} is a σ-algebra, and μ^{*} restricted to this subset is a measure.

See e.g. Royden pp.54-60.

Lebesgue measure

An outer measure on $\left(\mathbb{R}, 2^{\mathbb{R}}\right)$ is given by

$$
\mu^{*}(A)=\inf \left\{\sum_{i=1}^{\infty} b_{i}-a_{i}: A \subset \bigcup_{i=1}^{\infty}\left(a_{i}, b_{i}\right]\right\} .
$$

Lebesgue measure is obtained by restricting μ^{*} to its measurable sets. The σ-algebra so obtained is larger than the Borel σ-algebra.

Carathéodory's Extension Theorem

Theorem

Let μ be a σ-finite measure on an algebra \mathscr{A}. Then μ has a unique extension to $\sigma(\mathscr{A})$.

Carathéodory's Extension Theorem

Proof of uniqueness.

Let μ_{1} and μ_{2} be two extensions of μ to $\sigma(\mathscr{A})$. Let $A \in \mathscr{A}$ satisfy $\mu(A)<\infty$ and let

$$
\mathscr{L}=\left\{B \in \sigma(\mathscr{A}): \mu_{1}(A \cap B)=\mu_{2}(A \cap B)\right\}
$$

We show that \mathscr{L} is a λ-system. Since $\mathscr{A} \subset \mathscr{L}$ and \mathscr{A} is a π-system, it then follows that $\mathscr{L}=\sigma(\mathscr{A})$. Uniqueness then follows on taking a sequence $\left\{A_{n}\right\}$ with $A_{n} \uparrow \Omega$ and $\mu\left(A_{n}\right)<\infty$.

Carathéodory's Extension Theorem

Proof of uniqueness.

To verify the λ-system property, observe

- $\Omega \in \mathscr{L}$
- If $B, C \in \mathscr{L}$ with $C \subset B$, then

$$
\begin{aligned}
\mu_{1}(A \cap(B-C)) & =\mu_{1}(A \cap B)-\mu_{1}(A \cap C) \\
& =\mu_{2}(A \cap B)-\mu_{2}(A \cap C)=\mu_{2}(A \cap(B-C))
\end{aligned}
$$

- If $B_{n} \in \mathscr{L}$ and $B_{n} \uparrow B$ then

$$
\mu_{1}(A \cap B)=\lim _{n \rightarrow \infty} \mu_{1}\left(A \cap B_{n}\right)=\lim _{n \rightarrow \infty} \mu_{2}\left(A \cap B_{n}\right)=\mu_{2}(A \cap B)
$$

Carathéodory's Extension Theorem

Proof of existence.

Define set function μ^{*} on $\sigma(\mathscr{A})$ by

$$
\mu^{*}(E)=\inf \left\{\sum_{i=1}^{\infty} \mu\left(A_{i}\right): E \subset \bigcup_{i=1}^{\infty} A_{i}, A_{i} \in \mathscr{A}\right\}
$$

Evidently $\mu^{*}(A)=\mu(A)$ for $A \in \mathscr{A}$. Also, $A \in \mathscr{A}$ is measurable, since for $F \in \sigma(\mathscr{A})$ and $\epsilon>0$ there exists $\left\{B_{i}\right\}_{i=1}^{\infty}$ a sequence from \mathscr{A} satisfying $\sum_{i} \mu\left(B_{i}\right) \leq \mu^{*}(F)+\epsilon$. Then

$$
\begin{aligned}
\mu\left(B_{i}\right) & =\mu^{*}\left(B_{i} \cap A\right)+\mu^{*}\left(B_{i} \cap A^{c}\right) \\
\mu^{*}(F)+\epsilon & \geq \sum_{i} \mu^{*}\left(B_{i} \cap A\right)+\sum_{i} \mu^{*}\left(B_{i} \cap A^{c}\right) \geq \mu^{*}(F \cap A)+\mu^{*}\left(F^{c} \cap A\right) .
\end{aligned}
$$

which gives the condition for measurability.

Carathéodory's Extension Theorem

Proof of existence.

μ^{*} satisfies the properties of an outer measure, since

- If $E \subset F$ then $\mu^{*}(E) \leq \mu^{*}(F)$
- If $F \subset \bigcup_{i} F_{i}$ is a countable union, then $\mu^{*}(F) \leq \sum_{i} \mu^{*}\left(F_{i}\right)$.

The restriction of μ^{*} to its measurable sets gives the required extension of μ.

Random variables

Definition

A real valued random variable on a measure space $(\Omega, \mathscr{F}, \operatorname{Prob})$ is a function $X: \Omega \rightarrow \mathbb{R}$ which is \mathscr{F}-measurable, that is, for each Borel set $B \subset \mathbb{R}$,

$$
X^{-1}(B)=\{\omega: X(\omega) \in B\} \in \mathscr{F} .
$$

A random vector in \mathbb{R}^{d} is a measurable map $X: \Omega \rightarrow \mathbb{R}^{d}$.
Given $A \in \mathscr{F}$, the indicator function of A is a random variable,

$$
1_{A}(\omega)=\left\{\begin{array}{ll}
1 & \omega \in A \\
0 & \omega \notin A
\end{array} .\right.
$$

Random variables

Theorem

If X_{1}, \ldots, X_{n} are random variables and $f:\left(\mathbb{R}^{n}, \mathscr{B}_{\mathbb{R}^{n}}\right) \rightarrow(\mathbb{R}, \mathscr{B})$ is measurable, then $f\left(X_{1}, \ldots, X_{n}\right)$ is a random variable.

Theorem
If X_{1}, X_{2}, \ldots are random variables then $X_{1}+X_{2}+\ldots+X_{n}$ is a random variable, and so are
$\inf _{n} X_{n}, \quad \sup _{n} X_{n}, \quad \underset{n}{\limsup } X_{n}, \quad \lim _{n} \inf _{n} X_{n}$.

Proof.

Exercise, or see Durrett, pp. 14-15.

Distributions

Definition

The distribution of a random variable X on \mathbb{R} is the probability measure μ on $(\mathbb{R}, \mathscr{B})$ defined by

$$
\mu(A)=\operatorname{Prob}(X \in A)
$$

The distribution function of X is

$$
F(x)=\operatorname{Prob}(X \leq x)
$$

Distributions

Theorem

Any distribution function F has the following properties:
(1) F is nondecreasing.
(2) $\lim _{x \rightarrow \infty} F(x)=1, \lim _{x \rightarrow-\infty} F(x)=0$.
(3) F is right continuous, that is, $\lim _{y \downarrow x} F(y)=F(x)$.
(9) If $F(x-)=\lim _{y \uparrow x} F(y)$ then $F(x-)=\operatorname{Prob}(X<x)$.
(5) $\operatorname{Prob}(X=x)=F(x)-F(x-)$.

Furthermore, any function satisfying the first three items is the distribution function of a random variable.

Distributions

Proof.

All of the forward claims are straightforward.
For the reverse claim, let $\Omega=(0,1), \mathscr{F}=\mathscr{B}$ and set Prob to be Lebesgue measure. Define

$$
X(\omega)=\sup \{y: F(y)<\omega\}
$$

Then

$$
\{\omega: X(\omega) \leq x\}=\{\omega: \omega \leq F(x)\}
$$

which follows by the right-continuity of F. Hence $\operatorname{Prob}(X \leq x)=F(x)$.

Distributions

Definition

If X and Y induce the same distribution μ on $(\mathbb{R}, \mathscr{B})$, we say X and Y are equal in distribution. We write $X={ }_{d} Y$.

Definition

When the distribution function $F(x)=\operatorname{Prob}(X \leq x)$ has the form

$$
F(x)=\int_{-\infty}^{x} f(y) d y
$$

we say that X has density function f.

Example distributions

- Uniform distribution on (0,1). Density $f(x)=1$ for $x \in(0,1)$ and 0 otherwise.
- Exponential distribution with rate λ. Density $f(x)=\lambda e^{-\lambda x}$ for $x>0$, 0 otherwise.
- Standard normal distribution. Density $f(x)=\frac{\exp \left(-\frac{x^{2}}{2}\right)}{\sqrt{2 \pi}}$.

Example distributions

- Uniform distribution on the Cantor set. Define distribution function F by $F(x)=0$ for $x \leq 0, F(x)=1$ for $x \geq 1, F(x)=\frac{1}{2}$ for $x \in\left[\frac{1}{3}, \frac{2}{3}\right]$, $F(x)=\frac{1}{4}$ for $x \in\left[\frac{1}{9}, \frac{2}{9}\right], F(x)=\frac{3}{4}$ for $x \in\left[\frac{7}{9}, \frac{8}{9}\right], \ldots$.
- Point mass at 0 . The distribution function has $F(x)=0$ for $x<0$, $F(x)=1$ for $x \geq 0$.
- Lognormal distribution. Let X be a standard Gaussian variable. $\exp (X)$ is lognormal.
- Chi-square distribution. Let X be a standard Gaussian variable. X^{2} has a chi-squared distribution.

Example distributions on \mathbb{Z}

- Bernoulli distribution, parameter $p . \operatorname{Prob}(X=1)=p$, $\operatorname{Prob}(X=0)=1-p$.
- Poisson distribution, parameter $\lambda . X$ is supported on \mathbb{Z} and $\operatorname{Prob}(X=k)=e^{-\lambda \frac{\lambda^{k}}{k!} .}$
- Geometric distribution, success probability $p \in(0,1)$. X is supported on \mathbb{Z} and $\operatorname{Prob}(X=k)=p(1-p)^{k-1}$, for $k=1,2, \ldots$

Integration

The Lebesgue integral against a σ-finite measure is defined as usual for
(1) Simple functions
(2) Bounded functions
(3) Nonnegative functions
(4) General functions

Integral inequalities

Theorem (Jensen's inequality)
Let ϕ be convex on \mathbb{R}. If μ is a probability measure, and f and $\phi(f)$ are integrable then

$$
\phi\left(\int f d \mu\right) \leq \int \phi(f) d \mu .
$$

Jensen's inequality

Proof.

Let $c=\int f d \mu$ and let $\ell(x)=a x+b$ be a linear function which satisfies $\ell(c)=\phi(c)$ and $\phi(x) \geq \ell(x)$. Thus

$$
\int \phi(f) d \mu \geq \int(a f+b) d \mu=\phi\left(\int f d \mu\right) .
$$

Hölder's inequality

Theorem

If $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\int|f g| d \mu \leq\|f\|_{p}\|g\|_{q} .
$$

Hölder's inequality

Proof.

We may assume that $\|f\|_{p}>0$ and $\|g\|_{q}>0$, since otherwise both sides vanish. Dividing both sides by $\|f\|_{p}\|g\|_{q}$, we may assume that $\|f\|_{p}=\|g\|_{q}=1$.
For fixed $y \geq 0$,

$$
\phi(x)=\frac{x^{p}}{p}+\frac{y^{q}}{q}-x y
$$

has a minimum in $x \geq 0$ at $x_{0}=y^{\frac{1}{p-1}}$ and $x_{0}^{p}=y^{\frac{p}{p-1}}=y^{q}$, so $\phi\left(x_{0}\right)=0$. Thus $x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q}$ in $x, y \geq 0$. The claim follows by setting $x=|f|$, $y=|g|$ and integrating.

Bounded convergence theorem

Definition

We say that $f_{n} \rightarrow f$ in measure if, for any $\epsilon>0$,

$$
\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right) \rightarrow 0
$$

as $n \rightarrow \infty$.

Theorem (Bounded convergence theorem)
Let E be a set with $\mu(E)<\infty$. Suppose f_{n} vanishes on $E^{c},\left|f_{n}(x)\right| \leq M$, and $f_{n} \rightarrow f$ in measure. Then

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

Bounded convergence theorem

Proof.

Let $\epsilon>0, G_{n}=\left\{x:\left|f_{n}(x)-f(x)\right|<\epsilon\right\}$ and $B_{n}=E-G_{n}$. Thus

$$
\begin{aligned}
\left|\int f d \mu-\int f_{n} d \mu\right| & \leq \int\left|f-f_{n}\right| d \mu \\
& =\int_{G_{n}}\left|f-f_{n}\right| d \mu+\int_{B_{n}}\left|f-f_{n}\right| d \mu \\
& \leq \epsilon \mu(E)+2 M \mu\left(B_{n}\right) .
\end{aligned}
$$

Since $f_{n} \rightarrow f$ in measure, $\mu\left(B_{n}\right) \rightarrow 0$. The proof follows on letting $\epsilon \downarrow 0$.

Fatou's lemma

Lemma (Fatou's lemma)
If $f_{n} \geq 0$ then

$$
\liminf _{n \rightarrow \infty} \int f_{n} d \mu \geq \int\left(\liminf _{n \rightarrow \infty} f_{n}\right) d \mu
$$

Fatou's lemma

Proof.

Let $g_{n}(x)=\inf _{m \geq n} f_{m}(x)$, and note that

$$
g_{n}(x) \uparrow g(x)=\liminf _{n \rightarrow \infty} f_{n}(x)
$$

It suffices to verify that $\lim _{n \rightarrow \infty} \int g_{n} d \mu \geq \int g d \mu$. To do so, let $E_{m} \uparrow \Omega$ be sets of finite measure. For each fixed m, as $n \rightarrow \infty$,

$$
\int g_{n} d \mu \geq \int_{E_{m}} g_{n} \wedge m d \mu \rightarrow \int_{E_{m}} g \wedge m d \mu
$$

Letting $m \rightarrow \infty$ proves the result.

Monotone convergence theorem

Theorem (Monotone convergence theorem)
If $f_{n} \geq 0$ and $f_{n} \uparrow f$ then

$$
\int f_{n} d \mu \uparrow \int f d \mu .
$$

Monotone convergence theorem

Proof.

By Fatou's lemma, $\lim _{n \rightarrow \infty} \int f_{n} d \mu \geq \int f d \mu$. The reverse inequality is immediate.

Dominated convergence theorem

Theorem (Dominated convergence theorem)
If $f_{n} \rightarrow f$ a.e., $\left|f_{n}\right| \leq g$ for all n and g is integrable, then $\int f_{n} d \mu \rightarrow \int f d \mu$.

Dominated convergence theorem

Proof.

Since $f_{n}+g \geq 0$, Fatou's lemma gives

$$
\liminf _{n \rightarrow \infty} \int\left(f_{n}+g\right) d \mu \geq \int(f+g) d \mu
$$

Thus liminf $\operatorname{inc}_{n \rightarrow \infty} \int f_{n} d \mu \geq \int f d \mu$. To prove the limit, replace f_{n} with $-f_{n}$.

Expected value

Definition

Let X be a random variable on ($\Omega, \mathscr{F}, \operatorname{Prob}$), and write $X=X^{+}+X^{-}$in a positive and negative part.
The expected value of X^{+}is $\mathrm{E}\left[X^{+}\right]=\int X^{+} d P$, similarly X^{-}. If either $\mathrm{E}\left[X^{+}\right]$or $\mathrm{E}\left[X^{-}\right]$is finite we say $\mathrm{E}[X]$ exists and its value is

$$
\mathrm{E}[X]=\mathrm{E}\left[X^{+}\right]+\mathrm{E}\left[X^{-}\right] .
$$

$\mathrm{E}[X]$ is also called the mean, μ.

Expected value

Theorem

Suppose $X_{n} \rightarrow X$ a.s. Let g and h be continuous functions on \mathbb{R} satisfying

- $g \geq 0$ and $g(x) \rightarrow \infty$ as $|x| \rightarrow \infty$
- $|h(x)| / g(x) \rightarrow 0$ as $|x| \rightarrow \infty$
- There exists $K \geq 0$ such that $\mathrm{E}\left[g\left(X_{n}\right)\right] \leq K$ for all n.

Then $\mathrm{E}\left[h\left(X_{n}\right)\right] \rightarrow \mathrm{E}[h(X)]$ as $n \rightarrow \infty$.
A common application of this theorem takes $h(x)=x$ and $g(x)=|x|^{p}$ for some $p>1$.

Expected value

Proof.

The proof method is an example of truncation.

- Assume w.l.o.g. that $h(0)=0$.
- Let $M>0$ be such that $\operatorname{Prob}(X=M)=0$ and $g(x)>0$ for $|x|>M$.
- Define $\bar{Y}=Y \mathbf{1}_{(|Y| \leq M)}$. By bounded convergence, $\mathrm{E}\left[h\left(\bar{X}_{n}\right)\right] \rightarrow \mathrm{E}[h(\bar{X})]$.

Expected value

Proof.

- Use

$$
\begin{aligned}
|\mathrm{E}[h(\bar{Y})]-\mathrm{E}[h(Y)]| & \leq \mathrm{E}[|h(\bar{Y})-h(Y)|] \\
& =\mathrm{E}\left[|h(Y)| \mathbf{1}_{(|Y|>M)}\right] \leq \epsilon_{M} \mathrm{E}[g(Y)]
\end{aligned}
$$

where $\epsilon_{M}=\sup \left\{\frac{|h(x)|}{g(x)}:|x|>M\right\}$.

- Thus $\left|\mathrm{E}\left[h\left(\overline{X_{n}}\right)\right]-E\left[h\left(X_{n}\right)\right]\right| \leq K \epsilon_{M}$. Also,

$$
\mathrm{E}[g(X)] \leq \liminf _{n \rightarrow \infty} \mathrm{E}\left[g\left(X_{n}\right)\right] \leq K
$$

so $|\mathrm{E}[h(\bar{X})]-\mathrm{E}[h(X)]| \leq K \epsilon_{M}$.

Expected value

Proof.

- It follows from the triangle inequality that

$$
\left|\mathrm{E}\left[h\left(X_{n}\right)\right]-\mathrm{E}[h(X)]\right| \leq 2 K_{\epsilon_{M}}+\left|\mathrm{E}\left[h\left(\bar{X}_{n}\right)\right]-\mathrm{E}[h(\bar{X})]\right| .
$$

Letting first n, then m tend to infinity proves the claim.

Change of variable formula

Theorem

Let X be a random element of (S, \mathscr{S}) with distribution μ, that is, $\mu(A)=\operatorname{Prob}(X \in A)$. If f is measurable from $(S, \mathscr{S}) \rightarrow(\mathbb{R}, \mathscr{B})$ and is such that $f \geq 0$ or $E[|f(X)|]<\infty$, then

$$
\mathrm{E}[f(X)]=\int_{S} f(y) \mu(d y)
$$

Change of variable formula

Proof.

- If $B \in \mathscr{S}$ and $f=\mathbf{1}_{B}$ then

$$
\mathrm{E}\left[\mathbf{1}_{B}(X)\right]=\operatorname{Prob}(X \in B)=\mu(B)=\int_{S} \mathbf{1}_{B}(y) \mu(d y) .
$$

- The equality thus holds for simple functions by linearity.
- The equality holds for non-negative functions f by taking a sequence of simple functions $f_{n} \uparrow f$ and applying monotone convergence.
- The equality holds for general f by linearity again.

Variance

Definition

Let X be a random variable which is square integrable. The variance of X is

$$
\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-E[X]^{2}
$$

and the standard deviation is $\sigma=\operatorname{Var}(X)^{\frac{1}{2}}$.

Markov's inequality

Theorem
Let $X \geq 0$ be a non-negative random variable with finite mean μ. Then for all $\lambda \geq 1$,

$$
\operatorname{Prob}(X>\lambda \mu) \leq \frac{1}{\lambda} .
$$

Proof.

The result holds if $\mu=0$, so assume otherwise. Write

$$
\lambda \mu \operatorname{Prob}(X>\lambda \mu) \leq \mathrm{E}\left[X 1_{(X>\lambda \mu)}\right] \leq \mathrm{E}[X]=\mu
$$

to conclude.

Chebyshev's inequality

Theorem

Let X be a square-integrable random variable with mean μ and standard deviation σ. Then for all $\lambda \geq 1$,

$$
\operatorname{Prob}(|X-\mu|>\lambda \sigma) \leq \frac{1}{\lambda^{2}}
$$

Proof.

Apply Markov's inequality to $(X-\mu)^{2}$.

