Math 639: Lecture 1

Measure theory background

Bob Hough

January 24, 2017

Bo	ЬΙ	ц,	~	i m	h
00			υL	ъ	

Math 639: Lecture 1

January 24, 2017 1 / 54

A probability space is a measure space $(\Omega, \mathscr{F}, \text{Prob})$ with Prob a positive measure of mass 1.

- Ω is called the *sample space*, and $\omega \in \Omega$ are called outcomes.
- \mathscr{F} , a σ -algebra, is called the *event space*, and $A \in \mathscr{F}$ are called events.

(人間) トイヨト イヨト

Algebras of sets

Definition

A collection of sets \mathscr{S} is a *semialgebra* if

- If $S, T \in \mathscr{S}$ then $S \cap T \in \mathscr{S}$
- If $S \in \mathscr{S}$ then S^c is the finite disjoint union of sets of \mathscr{S} .

Example

The empty set together with those sets

$$(a_1, b_1] imes \cdots imes (a_d, b_d] \subset \mathbb{R}^d, \qquad -\infty \leq a_i < b_i \leq \infty$$

form a semialgebra in \mathbb{R}^d .

3

- 4 週 ト - 4 三 ト - 4 三 ト

Algebras of sets

Definition

A collection of sets $\mathscr S$ is an *algebra* if it is closed under complements and intersections.

Lemma

If \mathscr{S} is a semialgebra, then $\overline{\mathscr{S}}$, given by finite disjoint unions from \mathscr{S} , is an algebra.

Definition

A σ -algebra of sets is an algebra which is closed under countable unions.

Bo	h I	н	~	al	•
00			υu	g	ł

Given a collection of subsets $A_{\alpha} \subset \Omega$, the generated σ -algebra $\sigma(\{A_{\alpha}\})$ is the smallest σ -algebra containing $\{A_{\alpha}\}$.

Definition

In the case that Ω has a topology \mathscr{T} of open sets, the *Borel* σ -algebra is $\sigma(\mathcal{T}).$

- 4 同 6 4 日 6 4 日 6

The product of measure spaces $(\Omega_i, \mathscr{F}_i)$, i = 1, ..., n is the set $\Omega = \Omega_1 \times ... \times \Omega_n$ with the σ -algebra $\mathscr{F}_1 \times ... \times \mathscr{F}_n = \sigma (\bigcup_{i=1}^n \mathscr{F}_i)$.

Exercise

Let $d \geq 1$. With the usual topologies, the Borel σ -algebra $\mathscr{B}_{\mathbb{R}^d}$ is equal to $\mathscr{B}_{\mathbb{R}} \times ... \times \mathscr{B}_{\mathbb{R}}$ (d copies).

イロト 不得下 イヨト イヨト

A π -system is a collection \mathscr{P} of sets closed under finite intersections. A λ -system is a collection \mathscr{L} of sets satisfying the following

- $\Omega \in \mathscr{L}$
- For any $A, B \in \mathscr{L}$ satisfying $A \subset B, B \setminus A \in \mathscr{L}$
- If $A_1 \subset A_2 \subset ...$ is a sequence from \mathscr{L} and $A = \bigcup_{i=1}^{\infty} A_i$ then $A \in \mathscr{L}$.

(日) (四) (日) (日) (日)

Lemma

Let \mathscr{L} be a λ -system which is closed under intersection. Then \mathscr{L} is a σ -algebra.

Proof.

- If $A \in \mathscr{L}$ then $A^c = \Omega \setminus A \in \mathscr{L}$.
- If $A, B \in \mathscr{L}$ then $A \cup B = (A^c \cap B^c)^c \in \mathscr{L}$.
- Thus, if {A_i}[∞]_{i=1} is a sequence in *L*, then for each n, Uⁿ_{i=1} A_i ∈ *L*, and hence U[∞]_{i=1} A_i ∈ *L*.

・ロト ・四ト ・ヨト ・ヨト

Theorem (Dynkin's $\pi - \lambda$ Theorem)

If $\mathscr{P} \subset \mathscr{L}$ with \mathscr{P} a π -system and \mathscr{L} a λ -system then $\sigma(\mathscr{P}) \subset \mathscr{L}$.

Bob Hough

Dynkin's $\pi - \lambda$ Theorem

Proof.

Let $\ell(\mathscr{P})$ be the smallest λ -system containing \mathscr{P} . We show that $\ell(\mathscr{P})$ is a σ -algebra.

- Let $A \in \ell(\mathscr{P})$ and define $L_A = \{B : A \cap B \in \ell(\mathscr{P})\}.$
- We check that L_A is a λ -system.
 - $\Omega \in L_A$ since $A \in \ell(\mathscr{P})$
 - If $B, C \in L_A$ and $B \supset C$, then
 - $A \cap (B C) = (A \cap B) (A \cap C) \in \ell(\mathscr{P}).$
 - If $B_1 \subset B_2 \subset ...$ is a sequence from L_A with $B = \bigcup_{i=1}^{\infty} B_i$ then $B_1 \cap A \subset B_2 \cap A \subset ...$ has $B \cap A = \bigcup_{i=1}^{\infty} (B_i \cap A)$, and hence $B \cap A \in \ell(\mathscr{P})$ so $B \in L_A$.
- If $A \in \mathscr{P}$ then $L_A = \ell(\mathscr{P})$. Hence, if $B \in \ell(\mathscr{P})$ then $A \cap B \in \ell(\mathscr{P})$. But then this implies $L_B = \ell(\mathscr{P})$. It follows that for all $A, B \in \ell(\mathscr{P})$, $A \cap B \in \ell(\mathscr{P})$.

< 🗗 ▶

Measures

Definition

A positive measure on an algebra \mathscr{A} is a set function μ which satisfies

•
$$\mu(A) \geq \mu(\emptyset) = 0$$
 for all $A \in \mathscr{A}$

• If $A_i \in \mathscr{A}$ are disjoint and their union is in \mathscr{A} , then

$$\mu\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mu(A_i).$$

If $\mu(\Omega) = 1$ then μ is a probability measure.

- 4 同 6 4 日 6 4 日 6

A probability measure satisfies the following basic properties.

- (Monotonicity) If $A \subset B$ then $Prob(A) \leq Prob(B)$.
- (Sub-additivity) If $A \subset \bigcup_i A_i$ then $\operatorname{Prob}(A) \leq \sum_i \operatorname{Prob}(A_i)$
- (Continuity from below) If $A_1 \subset A_2 \subset ...$ and $A = \bigcup_i A_i$ then $Prob(A_i) \uparrow Prob(A)$
- (Continuity from above) If $A_1 \supset A_2 \supset ...$ and $A = \bigcap_i A_i$ then $\operatorname{Prob}(A_i) \downarrow \operatorname{Prob}(A)$.

A probability space $(\Omega, \mathscr{F}, \operatorname{Prob})$ is *non-atomic* if $\operatorname{Prob}(A) > 0$ implies that there exists $B \in \mathscr{F}$ satisfying $B \subset A$ and $0 < \operatorname{Prob}(B) < \operatorname{Prob}(A)$.

Bob Hough

Math 639: Lecture 1

January 24, 2017 13 / 54

- 3

(日) (周) (三) (三)

An outer measure μ^* on a measurable space (Ω, \mathscr{F}) is a set function $\mu^* : \mathscr{F} \to [0, \infty]$ satisfying

- $\mu^*(\emptyset) = 0$ and $\mu^*(A_1) \le \mu^*(A_2)$ for any $A_1, A_2 \in \mathscr{F}$ with $A_1 \subset A_2$.
- $\mu^* (\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu^*(A_n)$ for any countable collection of sets $\{A_n\} \subset \mathscr{F}$.

Given an outer measure μ^* on a measurable space (Ω, \mathscr{F}) , a set $A \in \mathscr{F}$ is *measurable* (in the sense of Carathéodory) if for each set $E \in \mathscr{F}$,

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

(日) (周) (三) (三)

Theorem

Let μ^* be an outer measure on a measurable space (Ω, \mathscr{F}) . The subset \mathscr{G} of μ^* -measurable sets in \mathscr{F} is a σ -algebra, and μ^* restricted to this subset is a measure.

See e.g. Royden pp.54-60.

- 4 同 6 4 日 6 4 日 6

An outer measure on $(\mathbb{R},2^{\mathbb{R}})$ is given by

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} b_i - a_i : A \subset \bigcup_{i=1}^{\infty} (a_i, b_i] \right\}.$$

Lebesgue measure is obtained by restricting μ^* to its measurable sets. The $\sigma\text{-algebra}$ so obtained is larger than the Borel $\sigma\text{-algebra}.$

(日) (周) (三) (三)

Theorem

Let μ be a σ -finite measure on an algebra \mathscr{A} . Then μ has a unique extension to $\sigma(\mathscr{A})$.

Bo		

3

- 4 同 ト 4 三 ト 4 三

Proof of uniqueness.

Let μ_1 and μ_2 be two extensions of μ to $\sigma(\mathscr{A})$. Let $A \in \mathscr{A}$ satisfy $\mu(A) < \infty$ and let

$$\mathscr{L} = \{B \in \sigma(\mathscr{A}) : \mu_1(A \cap B) = \mu_2(A \cap B)\}.$$

We show that \mathscr{L} is a λ -system. Since $\mathscr{A} \subset \mathscr{L}$ and \mathscr{A} is a π -system, it then follows that $\mathscr{L} = \sigma(\mathscr{A})$. Uniqueness then follows on taking a sequence $\{A_n\}$ with $A_n \uparrow \Omega$ and $\mu(A_n) < \infty$.

Carathéodory's Extension Theorem

Proof of uniqueness.

To verify the λ -system property, observe

- $\Omega \in \mathscr{L}$
- If $B, C \in \mathscr{L}$ with $C \subset B$, then

$$\mu_1(A \cap (B - C)) = \mu_1(A \cap B) - \mu_1(A \cap C)$$

= $\mu_2(A \cap B) - \mu_2(A \cap C) = \mu_2(A \cap (B - C))$

• If $B_n \in \mathscr{L}$ and $B_n \uparrow B$ then

$$\mu_1(A \cap B) = \lim_{n \to \infty} \mu_1(A \cap B_n) = \lim_{n \to \infty} \mu_2(A \cap B_n) = \mu_2(A \cap B).$$

Bob Hough

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Carathéodory's Extension Theorem

Proof of existence.

Define set function μ^* on $\sigma(\mathscr{A})$ by

$$\mu^*(E) = \inf \left\{ \sum_{i=1}^{\infty} \mu(A_i) : E \subset \bigcup_{i=1}^{\infty} A_i, A_i \in \mathscr{A} \right\}.$$

Evidently $\mu^*(A) = \mu(A)$ for $A \in \mathscr{A}$. Also, $A \in \mathscr{A}$ is measurable, since for $F \in \sigma(\mathscr{A})$ and $\epsilon > 0$ there exists $\{B_i\}_{i=1}^{\infty}$ a sequence from \mathscr{A} satisfying $\sum_i \mu(B_i) \leq \mu^*(F) + \epsilon$. Then

$$\mu(B_i) = \mu^*(B_i \cap A) + \mu^*(B_i \cap A^c)$$

$$\mu^*(F) + \epsilon \ge \sum_i \mu^*(B_i \cap A) + \sum_i \mu^*(B_i \cap A^c) \ge \mu^*(F \cap A) + \mu^*(F^c \cap A).$$

which gives the condition for measurability.

Bob Hough

- ∢ ≣ →

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proof of existence.

 $\boldsymbol{\mu}^*$ satisfies the properties of an outer measure, since

- If $E \subset F$ then $\mu^*(E) \leq \mu^*(F)$
- If $F \subset \bigcup_i F_i$ is a countable union, then $\mu^*(F) \leq \sum_i \mu^*(F_i)$.

The restriction of μ^* to its measurable sets gives the required extension of $\mu.$

Bo	ЬΙ	-1-		h
50	יט	10	ug	

A real valued *random variable* on a measure space $(\Omega, \mathscr{F}, \text{Prob})$ is a function $X : \Omega \to \mathbb{R}$ which is \mathscr{F} -measurable, that is, for each Borel set $B \subset \mathbb{R}$,

$$X^{-1}(B) = \{\omega : X(\omega) \in B\} \in \mathscr{F}.$$

A random vector in \mathbb{R}^d is a measurable map $X : \Omega \to \mathbb{R}^d$.

Given $A \in \mathscr{F}$, the indicator function of A is a random variable,

$$1_{\mathcal{A}}(\omega) = \left\{ egin{array}{cc} 1 & \omega \in \mathcal{A} \ 0 & \omega
ot \in \mathcal{A} \end{array}
ight.$$

Random variables

Theorem

If $X_1, ..., X_n$ are random variables and $f : (\mathbb{R}^n, \mathscr{B}_{\mathbb{R}^n}) \to (\mathbb{R}, \mathscr{B})$ is measurable, then $f(X_1, ..., X_n)$ is a random variable.

Theorem

If $X_1, X_2, ...$ are random variables then $X_1 + X_2 + ... + X_n$ is a random variable, and so are

$\inf X_n$,	$\sup X_n$,	$\lim \sup X_n$,	lim inf X_n .
n	n	n	n

Proof.

```
Exercise, or see Durrett, pp. 14-15.
```

Bo		

The *distribution* of a random variable X on \mathbb{R} is the probability measure μ on $(\mathbb{R}, \mathscr{B})$ defined by

 $\mu(A) = \operatorname{Prob}(X \in A).$

The distribution function of X is

 $F(x) = \operatorname{Prob}(X \leq x).$

Bo	b ŀ	Ho	ugh

Distributions

Theorem

Any distribution function F has the following properties:

F is nondecreasing.

3
$$\lim_{x\to\infty} F(x) = 1$$
, $\lim_{x\to-\infty} F(x) = 0$.

- So F is right continuous, that is, $\lim_{y\downarrow x} F(y) = F(x)$.
- If $F(x-) = \lim_{y \uparrow x} F(y)$ then $F(x-) = \operatorname{Prob}(X < x)$.

•
$$Prob(X = x) = F(x) - F(x-).$$

Furthermore, any function satisfying the first three items is the distribution function of a random variable.

イロト イポト イヨト イヨト

Proof.

All of the forward claims are straightforward.

For the reverse claim, let $\Omega = (0, 1)$, $\mathscr{F} = \mathscr{B}$ and set Prob to be Lebesgue measure. Define

$$X(\omega) = \sup\{y : F(y) < \omega\}.$$

Then

$$\{\omega: X(\omega) \leq x\} = \{\omega: \omega \leq F(x)\},\$$

which follows by the right-continuity of *F*. Hence $Prob(X \le x) = F(x)$.

Distributions

Definition

If X and Y induce the same distribution μ on $(\mathbb{R}, \mathscr{B})$, we say X and Y are equal in distribution. We write $X =_d Y$.

Definition

When the distribution function $F(x) = \operatorname{Prob}(X \leq x)$ has the form

$$F(x) = \int_{-\infty}^{x} f(y) dy$$

we say that X has density function f.

D.	- I-	ы.	بالم	
D	uu	пс	bugh	١.

- Uniform distribution on (0,1). Density f(x) = 1 for x ∈ (0,1) and 0 otherwise.
- Exponential distribution with rate λ. Density f(x) = λe^{-λx} for x > 0, 0 otherwise.
- Standard normal distribution. Density $f(x) = \frac{\exp(-\frac{x^2}{2})}{\sqrt{2\pi}}$.

イロト イポト イヨト イヨト 二日

Example distributions

- Uniform distribution on the Cantor set. Define distribution function F by F(x) = 0 for $x \le 0$, F(x) = 1 for $x \ge 1$, $F(x) = \frac{1}{2}$ for $x \in [\frac{1}{3}, \frac{2}{3}]$, $F(x) = \frac{1}{4}$ for $x \in [\frac{1}{9}, \frac{2}{9}]$, $F(x) = \frac{3}{4}$ for $x \in [\frac{7}{9}, \frac{8}{9}]$,....
- Point mass at 0. The distribution function has F(x) = 0 for x < 0, F(x) = 1 for $x \ge 0$.
- Lognormal distribution. Let X be a standard Gaussian variable.
 exp(X) is lognormal.
- Chi-square distribution. Let X be a standard Gaussian variable. X^2 has a chi-squared distribution.

イロト 不得下 イヨト イヨト

- Bernoulli distribution, parameter p. Prob(X = 1) = p, Prob(X = 0) = 1 - p.
- Poisson distribution, parameter λ . X is supported on \mathbb{Z} and $\operatorname{Prob}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$.
- Geometric distribution, success probability p ∈ (0, 1). X is supported on Z and Prob(X = k) = p(1 − p)^{k−1}, for k = 1, 2,

- 3

イロト 不得下 イヨト イヨト

The Lebesgue integral against a $\sigma\text{-finite}$ measure is defined as usual for

- Simple functions
- Bounded functions
- Onnegative functions
- General functions

3

- E

< 🗇 🕨

Theorem (Jensen's inequality)

Let ϕ be convex on $\mathbb R.$ If μ is a probability measure, and f and $\phi(f)$ are integrable then

$$\phi\left(\int f d\mu\right) \leq \int \phi(f) d\mu.$$

Bol	ЬΙ	н.	~	i m	h
00			υı	ъ	

Proof.

Let $c = \int f d\mu$ and let $\ell(x) = ax + b$ be a linear function which satisfies $\ell(c) = \phi(c)$ and $\phi(x) \ge \ell(x)$. Thus

$$\int \phi(f) d\mu \geq \int (af+b) d\mu = \phi\left(\int f d\mu
ight)$$

Bo	ЬI	10	110	h
Ъυ	וט	10	ug	

3

- 4 回 ト - 4 回 ト

Hölder's inequality

Theorem

If
$$p,q\in(1,\infty)$$
 with $rac{1}{p}+rac{1}{q}=1$, then $\int |fg|d\mu\leq \|f\|_p\|g\|_q.$

Bol	Ы	ц,	~	i m	h
00			υL	чs	

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Proof.

We may assume that $||f||_p > 0$ and $||g||_q > 0$, since otherwise both sides vanish. Dividing both sides by $||f||_p ||g||_q$, we may assume that $||f||_p = ||g||_q = 1$. For fixed $y \ge 0$, $\phi(x) = \frac{x^p}{p} + \frac{y^q}{q} - xy$ has a minimum in $x \ge 0$ at $x_0 = y^{\frac{1}{p-1}}$ and $x_0^p = y^{\frac{p}{p-1}} = y^q$, so $\phi(x_0) = 0$.

Thus $xy \leq \frac{x^p}{p} + \frac{y^q}{q}$ in $x, y \geq 0$. The claim follows by setting x = |f|, y = |g| and integrating.

Bounded convergence theorem

Definition

We say that $f_n \rightarrow f$ in measure if, for any $\epsilon > 0$,

$$\mu(\{x: |f_n(x)-f(x)| > \epsilon\}) \to 0$$

as $n \to \infty$.

Theorem (Bounded convergence theorem)

Let E be a set with $\mu(E) < \infty$. Suppose f_n vanishes on E^c , $|f_n(x)| \le M$, and $f_n \to f$ in measure. Then

$$\int f d\mu = \lim_{n\to\infty} \int f_n d\mu.$$

Bo	b ŀ	Ног	ıøh

イロト イポト イヨト イヨト 二日

Bounded convergence theorem

Proof.

Let
$$\epsilon > 0$$
, $G_n = \{x : |f_n(x) - f(x)| < \epsilon\}$ and $B_n = E - G_n$. Thus

$$\left| \int f d\mu - \int f_n d\mu \right| \le \int |f - f_n| d\mu$$

$$= \int_{G_n} |f - f_n| d\mu + \int_{B_n} |f - f_n| d\mu$$

$$\le \epsilon \mu(E) + 2M\mu(B_n).$$

Since $f_n \to f$ in measure, $\mu(B_n) \to 0$. The proof follows on letting $\epsilon \downarrow 0$.

F	റ	b I	н	പ	ıσ	h
-		~ .		•••	۰ъ	

- 3

(日) (周) (三) (三)

Lemma (Fatou's lemma)
If
$$f_n \ge 0$$
 then

$$\liminf_{n \to \infty} \int f_n d\mu \ge \int \left(\liminf_{n \to \infty} f_n\right) d\mu.$$

D .	L 1			
Bo	n I	oш	σn	а

3

イロト イヨト イヨト イヨト

Fatou's lemma

Proof.

Let $g_n(x) = \inf_{m \ge n} f_m(x)$, and note that

$$g_n(x) \uparrow g(x) = \liminf_{n \to \infty} f_n(x).$$

It suffices to verify that $\lim_{n\to\infty} \int g_n d\mu \ge \int g d\mu$. To do so, let $E_m \uparrow \Omega$ be sets of finite measure. For each fixed *m*, as $n \to \infty$,

$$\int g_n d\mu \geq \int_{E_m} g_n \wedge m d\mu \rightarrow \int_{E_m} g \wedge m d\mu$$

Letting $m \to \infty$ proves the result.

イロト 不得下 イヨト イヨト

Theorem (Monotone convergence theorem) If $f_n \ge 0$ and $f_n \uparrow f$ then

$$\int f_n d\mu \uparrow \int f d\mu.$$

Bo	b ŀ	Ног	ıøh

3

(人間) トイヨト イヨト

By Fatou's lemma, $\lim_{n\to\infty} \int f_n d\mu \ge \int f d\mu$. The reverse inequality is immediate.

D	~	h	ш	ou	~	h
ъ	U	υ		υu	ы	

Theorem (Dominated convergence theorem) If $f_n \to f$ a.e., $|f_n| \leq g$ for all n and g is integrable, then $\int f_n d\mu \to \int f d\mu$.

- 4 週 ト - 4 三 ト - 4 三 ト

Since $f_n + g \ge 0$, Fatou's lemma gives

$$\liminf_{n\to\infty}\int (f_n+g)d\mu\geq\int (f+g)d\mu.$$

Thus $\liminf_{n\to\infty} \int f_n d\mu \ge \int f d\mu$. To prove the limit, replace f_n with $-f_n$.

Bo		

- 3

(日) (周) (三) (三)

Definition

Let X be a random variable on $(\Omega, \mathscr{F}, \operatorname{Prob})$, and write $X = X^+ + X^-$ in a positive and negative part.

The expected value of X^+ is $E[X^+] = \int X^+ dP$, similarly X^- . If either $E[X^+]$ or $E[X^-]$ is finite we say E[X] exists and its value is

$$\mathsf{E}[X] = \mathsf{E}[X^+] + \mathsf{E}[X^-].$$

E[X] is also called the mean, μ .

- 4 同 6 4 日 6 4 日 6

Theorem

Suppose $X_n \to X$ a.s. Let g and h be continuous functions on \mathbb{R} satisfying

•
$$g \geq 0$$
 and $g(x)
ightarrow \infty$ as $|x|
ightarrow \infty$

•
$$|h(x)|/g(x)
ightarrow 0$$
 as $|x|
ightarrow \infty$

• There exists $K \ge 0$ such that $E[g(X_n)] \le K$ for all n.

Then $E[h(X_n)] \rightarrow E[h(X)]$ as $n \rightarrow \infty$.

A common application of this theorem takes h(x) = x and $g(x) = |x|^p$ for some p > 1.

イロト 不得下 イヨト イヨト

The proof method is an example of truncation.

- Assume w.l.o.g. that h(0) = 0.
- Let M > 0 be such that Prob(X = M) = 0 and g(x) > 0 for |x| > M.
- Define $\overline{Y} = Y \mathbf{1}_{(|Y| \le M)}$. By bounded convergence, $E[h(\overline{X}_n)] \to E[h(\overline{X})]$.

イロト 不得下 イヨト イヨト

Expected value

Proof.

• Use

$$\begin{aligned} \left| \mathsf{E}[h(\overline{Y})] - \mathsf{E}[h(Y)] \right| &\leq \mathsf{E}[|h(\overline{Y}) - h(Y)|] \\ &= \mathsf{E}[|h(Y)|\mathbf{1}_{(|Y| > M)}] \leq \epsilon_M \, \mathsf{E}[g(Y)] \end{aligned}$$

where
$$\epsilon_M = \sup\{\frac{|h(x)|}{g(x)} : |x| > M\}.$$

• Thus $|E[h(\overline{X_n})] - E[h(X_n)]| \le K \epsilon_M$. Also,
 $E[g(X)] \le \liminf_{n \to \infty} E[g(X_n)] \le K$
so $|E[h(\overline{X})] - E[h(X)]| \le K \epsilon_M$.

E 990

<ロ> (日) (日) (日) (日) (日)

• It follows from the triangle inequality that

$$\mathsf{E}[h(X_n)] - \mathsf{E}[h(X)]| \le 2K\epsilon_M + |\mathsf{E}[h(\overline{X}_n)] - \mathsf{E}[h(\overline{X})]|.$$

Letting first n, then m tend to infinity proves the claim.

Bo		

< 🗗 🕨

Theorem

Let X be a random element of (S, \mathscr{S}) with distribution μ , that is, $\mu(A) = \operatorname{Prob}(X \in A)$. If f is measurable from $(S, \mathscr{S}) \to (\mathbb{R}, \mathscr{B})$ and is such that $f \ge 0$ or $E[|f(X)|] < \infty$, then

$$\mathsf{E}[f(X)] = \int_{S} f(y) \mu(dy).$$

р.	эb	ы	

(日) (同) (日) (日)

Change of variable formula

Proof.

• If $B \in \mathscr{S}$ and $f = \mathbf{1}_B$ then

$$\mathsf{E}[\mathbf{1}_B(X)] = \mathsf{Prob}(X \in B) = \mu(B) = \int_S \mathbf{1}_B(y)\mu(dy).$$

- The equality thus holds for simple functions by linearity.
- The equality holds for non-negative functions f by taking a sequence of simple functions $f_n \uparrow f$ and applying monotone convergence.
- The equality holds for general f by linearity again.

・ロト ・ 同ト ・ ヨト ・ ヨ

Definition

Let X be a random variable which is square integrable. The variance of X is

$$\operatorname{Var}(X) = \operatorname{\mathsf{E}}\left[X^2\right] - \operatorname{\mathsf{E}}\left[X\right]^2$$

and the standard deviation is $\sigma = Var(X)^{\frac{1}{2}}$.

Bo	h l	Ho	ııσ	h
00		10	чъ	

3

< ロ > < 同 > < 三 > < 三

Markov's inequality

Theorem

Let $X \ge 0$ be a non-negative random variable with finite mean μ . Then for all $\lambda \ge 1$,

$$\mathsf{Prob}(X > \lambda \mu) \leq rac{1}{\lambda}.$$

Proof.

The result holds if $\mu = 0$, so assume otherwise. Write

$$\lambda \mu \operatorname{Prob}(X > \lambda \mu) \leq \mathsf{E}\left[X \mathbb{1}_{(X > \lambda \mu)}\right] \leq \mathsf{E}[X] = \mu$$

to conclude.

Bo		

Chebyshev's inequality

Theorem

Let X be a square-integrable random variable with mean μ and standard deviation σ . Then for all $\lambda \geq 1$,

$$\mathsf{Prob}(|X - \mu| > \lambda \sigma) \leq \frac{1}{\lambda^2}.$$

Proof.

Apply Markov's inequality to $(X - \mu)^2$.

3

- 4 同 6 4 日 6 4 日 6