MATH 322, SPRING 2019 MIDTERM 2, PRACTICE PROBLEMS

ROBERT HOUGH

Problem 1. Prove that each two-tensor on \mathbb{R}^{n} has a unique representation as a sum of a symmetric 2 tensor and an alternating 2 tensor.

Solution. The generic 2 tensor on \mathbb{R}^{n} may be written

$$
\sum_{1 \leq i, j \leq n} c_{i, j} x_{i} \otimes x_{j} .
$$

Write

$$
x_{i} \otimes x_{j}=\frac{1}{2}\left(x_{i} \otimes x_{j}+x_{j} \otimes x_{i}\right)+\frac{1}{2}\left(x_{i} \otimes x_{j}-x_{j} \otimes x_{i}\right) .
$$

This expresses $x_{i} \otimes x_{j}$ as the sum of a symmetric and alternating tensor. The general claim now holds by linearity.
The representation is unique, since if a 2 -tensor h has a representation $h=f_{1}+g_{1}=f_{2}+g_{2}$ where f_{1}, f_{2} are symmetric and g_{1}, g_{2} are alternating, then $f_{1}-f_{2}=g_{2}-g_{1}$ is both alternating and symmetric. Acting by a permutation of sign $-1, f_{1}-f_{2}=-\left(g_{2}-g_{1}\right)$, so both are 0 .

Problem 2. Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ be given by $\alpha(x, y)=\left(\begin{array}{c}x^{3} \\ x^{2} y \\ x y^{2} \\ y^{3}\end{array}\right)$. Calculate $d \alpha$ and $V(d \alpha)$.

Solution. We have

$$
d \alpha(x, y)=\left(\begin{array}{cc}
3 x^{2} & 0 \\
2 x y & x^{2} \\
y^{2} & 2 x y \\
0 & 3 y^{2}
\end{array}\right)
$$

and, hence,

$$
d \alpha(x, y)^{t} d \alpha(x, y)=\left(\begin{array}{cc}
9 x^{4}+4 x^{2} y^{2}+y^{4} & 2 x^{3} y+2 x y^{3} \\
2 x^{3} y+2 x y^{3} & x^{4}+4 x^{2} y^{2}+9 y^{4}
\end{array}\right)
$$

It follows that

$$
V(d \alpha)=\sqrt{\left(9 x^{4}+4 x^{2} y^{2}+y^{4}\right)\left(x^{4}+4 x^{2} y^{2}+9 y^{4}\right)-\left(2 x^{3} y+2 x y^{3}\right)^{2}}
$$

Problem 3. Let $\alpha=x_{1}+x_{2}+\ldots+x_{n}$ and let $\omega=\sum_{j=1}^{n}(-1)^{j} x_{1} \wedge \cdots \wedge \hat{x}_{j} \wedge$ $\cdots \wedge x_{n}$ where the hat indicates that x_{j} is omitted. Calculate $\alpha \wedge \omega$.
Solution. Recall that, in a tensor $x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{k}}$, if any index is repeated, the wedge product is 0 . Hence, expanding the two sums,

$$
\alpha \wedge \omega=\sum_{j=1}^{n}(-1)^{j} x_{j} \wedge x_{1} \wedge \cdots \wedge \hat{x}_{j} \wedge \cdots \wedge x_{n}
$$

Moving x_{j} into the missing slot requires $j-1$ transpositions, so

$$
(-1)^{j} x_{j} \wedge x_{1} \wedge \cdots \wedge \hat{x}_{j} \wedge \cdots \wedge x_{n}=-x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}
$$

and, hence, $\alpha \wedge \omega=-n x_{1} \wedge \cdots \wedge x_{n}$.
Problem 4. On midterm 1, a coordinate patch α was defined from an open neighborhood U of 0 in $\mathbb{R}^{\frac{n(n-1)}{2}}$ to a neighborhood of the identity in the orthogonal group $O_{n}=\left\{M \in \mathbb{R}^{n \times n}, M^{t} M=I\right\}$. Let this coordinate patch be $\alpha: U \rightarrow V$. Let O be any orthogonal matrix, and define $\alpha_{O}: U \rightarrow O \cdot V=\{O \cdot M: M \in V\}$ by $\alpha_{O}(\underline{x})=O \cdot \alpha(\underline{x})$.
a. Prove that $V(d \alpha)=V\left(d \alpha_{O}\right)$. Deduce that the volume of V and $O \cdot V$ are equal.
b. Show that the same is true for $\alpha^{O}(\underline{x})=\alpha(\underline{x}) \cdot O$.

This says that the volume form $V(d \beta)$ on the orthogonal group is left and right translation invariant, and hence is a scalar multiple of Haar measure.

Solution. Recall that, since O is orthogonal, its rows are orthogonal, so

$$
\sum_{m=1}^{n} O_{i m} O_{j m}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

and its columns are orthogonal, so

$$
\sum_{m=1}^{n} O_{m i} O_{m j}=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array} .\right.
$$

a. Let $\alpha(\underline{x})=\alpha_{i, j}(\underline{x})$ with $1 \leq i, j \leq n$ be an $n \times n$ orthogonal matrix. Let $N=\frac{n(n-1)}{2}$. The matrix

$$
M_{\alpha}(\underline{x})=(d \alpha(\underline{x}))^{t} d \alpha(\underline{x})
$$

is an $N \times N$ matrix with entries

$$
M_{\alpha}(\underline{x})_{k, \ell}=\sum_{i, j=1}^{n} \frac{\partial \alpha(\underline{x})_{i, j}}{\partial x_{k}} \frac{\partial \alpha(\underline{x})_{i, j}}{\partial x_{\ell}},
$$

and $V(d \alpha(\underline{x}))=\operatorname{det}\left(M_{\alpha}(\underline{x})\right)^{\frac{1}{2}}$. By matrix multiplication,

$$
\alpha_{O}(\underline{x})_{i, j}=\sum_{r=1}^{n} O_{i, r} \alpha(\underline{x})_{r, j}
$$

and, hence,

$$
\frac{\partial \alpha_{O}(\underline{x})_{i, j}}{\partial x_{k}}=\sum_{r=1}^{n} O_{i, r} \frac{\partial \alpha(\underline{x})_{r, j}}{\partial x_{k}} .
$$

It follows that

$$
\begin{aligned}
M_{\alpha_{O}}(\underline{x})_{k, \ell} & =\sum_{i, j=1}^{n} \frac{\partial \alpha_{O}(\underline{x})_{i, j}}{\partial x_{k}} \frac{\partial \alpha_{O}(\underline{x})_{i, j}}{\partial x_{\ell}} \\
& =\sum_{i, j=1}^{n} \sum_{r_{1}=1}^{n} \sum_{r_{2}=1}^{n} O_{i, r_{1}} O_{i, r_{2}} \frac{\partial \alpha(\underline{x})_{r_{1}, j}}{\partial x_{k}} \frac{\partial \alpha(\underline{x})_{r_{2}, j}}{\partial x_{\ell}} .
\end{aligned}
$$

Summing over i selects $r_{1}=r_{2}=r$, say, so that

$$
M_{\alpha_{O}}(\underline{x})_{k, \ell}=\sum_{r, j=1}^{n} \frac{\partial \alpha(\underline{x})_{r, j}}{\partial x_{k}} \frac{\partial \alpha(\underline{x})_{r, j}}{\partial x_{\ell}}=M_{\alpha}(\underline{x})_{k, \ell} .
$$

Hence $V\left(d \alpha_{O}(\underline{x})\right)=V(d \alpha(\underline{x}))$ since the M matrices are equal. Similarly,

$$
\frac{\partial \alpha^{O}(\underline{x})_{i, j}}{\partial x_{k}}=\sum_{r=1}^{n} \frac{\partial \alpha(\underline{x})_{i, r}}{\partial x_{k}} O_{r, j}
$$

and the argument works as before, although the summation over j is now used to select $r_{1}=r_{2}$.

Problem 5. Let $S^{n-1}=\left\{\underline{x} \in \mathbb{R}^{n}:\|\underline{x}\|_{2}=1\right\}$ be the unit sphere in \mathbb{R}^{n}. Parameterize the part of the unit sphere in the first octant by $\alpha: U \rightarrow V$, where $U=\left\{\underline{x} \in \mathbb{R}_{>0}^{n-1},\|\underline{x}\|_{2}<1\right\}$ and

$$
\alpha(\underline{x})=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1} \\
\sqrt{1-x_{1}^{2}-\cdots-x_{n-1}^{2}}
\end{array}\right) .
$$

Let $A: U \times \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}^{n}$ be defined by

$$
A(\underline{x}, t)=\left(\begin{array}{c}
t x_{1} \\
t x_{2} \\
\vdots \\
t x_{n-1} \\
t \sqrt{1-x_{1}^{2}-\cdots-x_{n-1}^{2}}
\end{array}\right) .
$$

a. Show that

$$
V(d \alpha)=\frac{1}{\sqrt{1-x_{1}^{2}-\cdots-x_{n-1}^{2}}}
$$

and $V(d A)=t^{n-1} V(d \alpha)$.
b. Show that

$$
\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x=\sqrt{2 \pi}
$$

by squaring and switching to polar coordinates. Then calculate

$$
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{x t} e^{-\frac{x^{2}}{2}} d x .
$$

Using this or otherwise, calculate the moments of the Gaussian distribution,

$$
M_{k}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{k} e^{-\frac{x^{2}}{2}} d x
$$

$M_{k}=0$ if k is odd and $M_{2 k}=\frac{(2 k)!}{2^{k} k!}$.
c. Using this or otherwise, calculate the moments of the coordinates of the sphere S^{n-1},

$$
m_{k}=\frac{\int_{S^{k-1}} x_{1}^{k} d V}{V\left(S^{k-1}\right)}
$$

by first doing the same calculation for

$$
M_{k}=\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} x_{1}^{k} e^{-\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{2}} d \underline{x}
$$

and switching to the parameterization of $\mathbb{R}_{>0}^{n}$ given in part a. You may express your answers in terms of the Gamma function, which is defined for $\Re(s)>0$ by

$$
\Gamma(s)=\int_{0}^{\infty} e^{-x} x^{s-1} d x .
$$

Solution.

a. Calculate

$$
d \alpha(\underline{x})=\binom{I_{n-1}}{-\frac{\underline{x}^{t}}{\sqrt{1-\| \underline{x}_{2}^{2}}}}
$$

From the formula, $V(X)^{2}=\sum_{I} \operatorname{det}\left(X_{I}\right)^{2}$ it follows that

$$
V(d \alpha(\underline{x}))^{2}=1+\sum_{j=1}^{n-1}\left(\operatorname{det}\left(\frac{I_{n-1}^{j}}{\frac{-x^{t}}{}} \begin{array}{l}
1-\|\underline{x}\|_{2}^{2}
\end{array}\right)\right)^{2}
$$

where I_{n-1}^{j} indicates the $(n-1) \times(n-1)$ identity matrix with j th row deleted. This proves

$$
V(d \alpha(\underline{x}))=\sqrt{1+\frac{\|\underline{x}\|_{2}^{2}}{1-\|\underline{x}\|_{2}^{2}}}=\frac{1}{\sqrt{1-\|\underline{x}\|_{2}^{2}}} .
$$

Next, calculate

$$
d A(\underline{x}, t)=\left(\begin{array}{cc}
t \cdot I_{n-1} & \underline{x} \\
\frac{-t \underline{x}^{t}}{\sqrt{1-\|\underline{x}\|_{2}^{2}}} & \sqrt{1-\|\underline{x}\|_{2}^{2}}
\end{array}\right) .
$$

This is an $n \times n$ matrix, so $V(d A(\underline{x}, t))=|\operatorname{det}(d A(\underline{x}, t))|$. Since the first n columns are scaled by t, and pulling out a factor of $\frac{1}{\sqrt{1-\|x\|_{2}^{2}}}$ from the bottom row,

$$
\begin{aligned}
V(d A(\underline{x}, t)) & =\frac{t^{n-1}}{\sqrt{1-\|\underline{x}\|_{2}^{2}}}\left|\operatorname{det}\left(\begin{array}{cc}
I_{n-1} & \underline{x} \\
-\underline{x}^{t} & 1-\|\underline{x}\|_{2}^{2}
\end{array}\right)\right| \\
& =\frac{t^{n-1}}{\sqrt{1-\|\underline{x}\|_{2}^{2}}}\left|\operatorname{det}\left(\begin{array}{cc}
I_{n-1} & 0 \\
-\underline{x}^{t} & 1
\end{array}\right)\right| \\
& =\frac{t^{n-1}}{\sqrt{1-\|\underline{x}\|_{2}^{2}}},
\end{aligned}
$$

where the next to last line follows from performing column operations in the determinant.
b. We have

$$
\begin{aligned}
\left(\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x\right)^{2} & =\int_{\mathbb{R}^{2}} e^{\frac{-x^{2}-y^{2}}{2}} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-\frac{r^{2}}{2}} r d r d \theta=2 \pi .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
f(t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{x t-\frac{x^{2}}{2}} d x \\
& =e^{\frac{t^{2}}{2}} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-t)^{2}}{2}} d x=e^{\frac{t^{2}}{2}} .
\end{aligned}
$$

Expanding $e^{x t}=\sum_{n=0}^{\infty} \frac{(x t)^{n}}{n!}$, and exchanging the summation and integration, which is justified by absolute convergence,

$$
\begin{aligned}
e^{\frac{t^{2}}{2}} & =\sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(x t)^{n} e^{-\frac{x^{2}}{2}} d x \\
& =\sum_{n=0}^{\infty} \frac{M_{2 n} t^{2 n}}{(2 n)!},
\end{aligned}
$$

since the odd n terms integrate to 0 by symmetry. Since the power series have infinite radius of convergence, equating coefficients,

$$
M_{2 n}=\frac{(2 n)!}{2^{n} n!} .
$$

c. We have

$$
M_{k}=\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} x_{1}^{k} e^{-\frac{\| \|\| \|^{2}}{2}} d \underline{x}
$$

since integration in each $x_{j}, j>1$ integrates to 1 . Using the parametrization of part a.,

$$
\begin{aligned}
M_{k} & =\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{\underline{x} \in S^{n-1}} \int_{t=0}^{\infty}\left(t x_{1}\right)^{k} e^{-\frac{t^{2}}{2}} t^{n-1} d t d V(\underline{x}) \\
& =\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{\underline{x} \in S^{n-1}} x_{1}^{k} d V(\underline{x}) \int_{0}^{\infty} t^{n+k} e^{-\frac{t^{2}}{2}} \frac{d t}{t}
\end{aligned}
$$

Substituting $u=t^{2}$, so $\frac{1}{2} \log u=\log t$ and, hence, $\frac{1}{2} \frac{d u}{u}=\frac{d t}{t}$, the second integral is

$$
\frac{1}{2} \int_{0}^{\infty} u^{\frac{n+k}{2}} e^{-\frac{u}{2}} \frac{d u}{u}=2^{\frac{n+k}{2}-1} \Gamma\left(\frac{n+k}{2}\right)
$$

Thus

$$
M_{2 k}=\frac{(2 k)!}{2^{k} k!}=2^{\frac{n+2 k}{2}-1} \Gamma\left(\frac{n+2 k}{2}\right) \frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{\underline{x} \in S^{n-1}} x_{1}^{2 k} d V(\underline{x}),
$$

or

$$
\begin{aligned}
m_{2 k} & =\frac{\int_{S^{n-1}} x_{1}^{2 k} d V(\underline{x})}{\int_{S^{n-1}} d V(\underline{x})} \\
& =\frac{(2 k)!}{2^{2 k} k!} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n}{2}+k\right)} \\
& =\frac{(2 k)!}{2^{2 k} k!\frac{n}{2}\left(\frac{n}{2}+1\right) \cdots\left(\frac{n}{2}+k-1\right)} .
\end{aligned}
$$

The odd moments vanish by symmetry.
Problem 6. Let $e_{1}, e_{2}, \ldots, e_{n}$ be the standard basis vectors in \mathbb{R}^{n}, and let x_{1}, \ldots, x_{n} be the dual basis. Given an elementary alternating k form,

$$
\alpha=x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{k}}
$$

define the dual elementary alternating $n-k$ form by letting j_{1}, \ldots, j_{n-k} be the complementary indices in $\{1,2, \ldots, n\}$, so $\left\{i_{1}, \ldots, i_{k}\right\} \cup\left\{j_{1}, \ldots, j_{n-k}\right\}=$ $\{1,2, \ldots, n\}$ and defining

$$
\alpha^{*}=\epsilon x_{j_{1}} \wedge \cdots \wedge x_{j_{n-k}}
$$

where the sign ϵ is chosen so that $\alpha \wedge \alpha^{*}=x_{1} \wedge \cdots \wedge x_{n}$. Note that $x_{1} \wedge \cdots \wedge x_{n}$ has dual form 1. Extend duality linearly, so if

$$
\beta=\sum_{I} b_{I} x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}
$$

then

$$
\beta^{*}=\sum_{I} b_{I}\left(x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}\right)^{*} .
$$

a. Prove that

$$
\langle\alpha, \beta\rangle=\left(\alpha \wedge \beta^{*}\right)^{*}
$$

defines an inner product on $\mathcal{A}^{k}\left(\mathbb{R}^{n}\right)$ which makes the elementary k forms an orthonormal basis.
b. Given an $n \times k$ matrix M with column vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$, with entries $v_{i}=\sum_{j=1}^{n} m_{j i} e_{j}$, let the dual form be $\ell_{i}=\sum_{j=1}^{n} m_{j i} x_{j}$. Let

$$
\omega=\ell_{1} \wedge \ell_{2} \wedge \cdots \wedge \ell_{k}
$$

Prove that

$$
V(M)^{2}=\langle\omega, \omega\rangle=\left(\omega \wedge \omega^{*}\right)^{*}
$$

where $V(M)$ denotes the k-dimensional volume of the parallelpiped spanned by the column vectors of M.

Solution.

a. Note that $\alpha \wedge \beta^{*}$ is an alternating n form, hence is a multiple of $x_{1} \wedge$ $\cdots \wedge x_{n}$, so $\left(\alpha \wedge \beta^{*}\right)^{*}$ is a scalar. Since both the wedge product and dual are linear, $\left(\alpha \wedge \beta^{*}\right)^{*}$ is a bilinear form. Let

$$
\alpha=\sum c_{I} x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}
$$

If $I \neq J$ then $x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}$ and $\left(x_{j_{1}} \wedge \cdots \wedge x_{j_{k}}\right)^{*}$ have some index in common, so that

$$
\left(x_{i_{1}} \wedge \cdots x_{i_{k}}\right) \wedge\left(x_{j_{1}} \wedge \cdots \wedge x_{j_{k}}\right)^{*}=0
$$

and, hence,
$\alpha \wedge \alpha^{*}=\sum_{I, J} c_{I} c_{J}\left(x_{i_{1}} \wedge \cdots x_{i_{k}}\right) \wedge\left(x_{j_{1}} \wedge \cdots \wedge x_{j_{k}}\right)^{*}=\sum_{I} c_{I}^{2} x_{1} \wedge \cdots \wedge x_{n}$
so $\langle\alpha, \alpha\rangle=\sum_{I} c_{I}^{2}$. This proves that \langle,$\rangle is non-degenerate, and that the$ elementary alternating forms are an orthonormal basis for this inner product.
b. We expand

$$
\begin{aligned}
\omega=\ell_{1} \wedge \cdots \wedge \ell_{k} & =\sum_{i_{1}=1}^{n} m_{i_{1}, 1} x_{i_{1}} \wedge \cdots \wedge \sum_{i_{k}=1}^{n} m_{i_{k}, k} x_{i_{k}} \\
& =\sum_{i_{1}, \ldots, i_{k}=1}^{n} m_{i_{1}, 1} \cdots m_{i_{k}, k} x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}
\end{aligned}
$$

Applying a permutation so that each set of indices is in order, and collecting the product according to the elementary alternating k form, this is

$$
\begin{aligned}
\omega= & \sum_{I} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) m_{i_{\sigma(1),}} \cdots m_{i_{\sigma(k)}, k} x_{i_{1}} \wedge \cdots \wedge x_{i_{k}} \\
& =\sum_{I}\left(\operatorname{det} M_{I}\right) x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}
\end{aligned}
$$

and, hence,

$$
\|\omega\|^{2}=\sum_{I}\left(\operatorname{det} M_{I}\right)^{2}=V(M)^{2}
$$

by the Pythagorean theorem.
Problem 7. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an invertible linear map, which acts on the standard basis e_{1}, \ldots, e_{n} by

$$
T e_{i}=\sum_{j=1}^{n} m_{i j} e_{j} .
$$

Let x_{1}, \ldots, x_{n} be the dual basis to e_{1}, \ldots, e_{n}. Prove

$$
T^{*}\left(x_{1} \wedge \cdots \wedge x_{n}\right)=\operatorname{det}\left(m_{i j}\right) x_{1} \wedge \cdots \wedge x_{n} .
$$

Solution. Since $T^{*}\left(x_{1} \wedge \cdots \wedge x_{n}\right)$ is an alternating n form, $T^{*}\left(x_{1} \wedge \cdots \wedge x_{n}\right)=$ $c\left(x_{1} \wedge \cdots \wedge x_{n}\right)$. Hence

$$
\begin{aligned}
c & =T^{*}\left(x_{1} \wedge \cdots \wedge x_{n}\right)\left(e_{1}, \ldots, e_{n}\right) \\
& =x_{1} \wedge \cdots \wedge x_{n}\left(T e_{1}, \ldots, T e_{n}\right) \\
& =x_{1} \wedge \cdots \wedge x_{n}\left(\sum_{i_{1}=1}^{n} m_{1 i_{1}} e_{i_{1}}, \sum_{i_{2}=1}^{n} m_{2 i_{2}} e_{i_{2}}, \cdots, \sum_{i_{n}=1}^{n} m_{n i_{n}} e_{i_{n}}\right) \\
& =\sum_{i_{1}, \ldots, i_{n}=1}^{n} m_{1 i_{1}} \cdots m_{n i_{n}} x_{1} \wedge \cdots \wedge x_{n}\left(e_{i_{1}}, \ldots, e_{i_{n}}\right) .
\end{aligned}
$$

Those tuples with a repeated index among i_{1}, \ldots, i_{n} evaluate to 0 , and the remaining ones are a permutation of $1,2, \ldots, n$, with evaluation on $x_{1} \wedge \cdots \wedge x_{n}$
equal to the sign of the permutation. Hence

$$
c=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) m_{1 \sigma(1)} \cdots m_{n \sigma(n)}=\operatorname{det}\left(m_{i j}\right) .
$$

