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ROBERT HOUGH

Problem 1. Prove that each two-tensor on Rn has a unique representation
as a sum of a symmetric 2 tensor and an alternating 2 tensor.

Solution. The generic 2 tensor on Rn may be written∑
1≤i,j≤n

ci,jxi ⊗ xj.

Write

xi ⊗ xj =
1

2
(xi ⊗ xj + xj ⊗ xi) +

1

2
(xi ⊗ xj − xj ⊗ xi).

This expresses xi⊗xj as the sum of a symmetric and alternating tensor. The
general claim now holds by linearity.

The representation is unique, since if a 2-tensor h has a representation
h = f1 + g1 = f2 + g2 where f1, f2 are symmetric and g1, g2 are alternating,
then f1 − f2 = g2 − g1 is both alternating and symmetric. Acting by a
permutation of sign −1, f1 − f2 = −(g2 − g1), so both are 0.

Problem 2. Let α : R2 → R4 be given by α(x, y) =


x3

x2y
xy2

y3

 . Calculate dα

and V (dα).

Solution. We have

dα(x, y) =


3x2 0
2xy x2

y2 2xy
0 3y2


1
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and, hence,

dα(x, y)tdα(x, y) =

(
9x4 + 4x2y2 + y4 2x3y + 2xy3

2x3y + 2xy3 x4 + 4x2y2 + 9y4

)
.

It follows that

V (dα) =
√

(9x4 + 4x2y2 + y4)(x4 + 4x2y2 + 9y4)− (2x3y + 2xy3)2.

Problem 3. Let α = x1 + x2 + ...+ xn and let ω =
∑n

j=1(−1)jx1 ∧ · · · ∧ x̂j ∧
· · · ∧ xn where the hat indicates that xj is omitted. Calculate α ∧ ω.

Solution. Recall that, in a tensor xi1∧xi2∧· · ·∧xik, if any index is repeated,
the wedge product is 0. Hence, expanding the two sums,

α ∧ ω =
n∑
j=1

(−1)jxj ∧ x1 ∧ · · · ∧ x̂j ∧ · · · ∧ xn.

Moving xj into the missing slot requires j − 1 transpositions, so

(−1)jxj ∧ x1 ∧ · · · ∧ x̂j ∧ · · · ∧ xn = −x1 ∧ x2 ∧ · · · ∧ xn
and, hence, α ∧ ω = −nx1 ∧ · · · ∧ xn.

Problem 4. On midterm 1, a coordinate patch α was defined from an

open neighborhood U of 0 in R
n(n−1)

2 to a neighborhood of the identity in
the orthogonal group On = {M ∈ Rn×n, M tM = I}. Let this coordi-
nate patch be α : U → V . Let O be any orthogonal matrix, and define
αO : U → O · V = {O ·M : M ∈ V } by αO(x) = O · α(x).

a. Prove that V (dα) = V (dαO). Deduce that the volume of V and O · V
are equal.

b. Show that the same is true for αO(x) = α(x) ·O.

This says that the volume form V (dβ) on the orthogonal group is left and
right translation invariant, and hence is a scalar multiple of Haar measure.

Solution. Recall that, since O is orthogonal, its rows are orthogonal, so
n∑

m=1

OimOjm =

{
1 i = j
0 i 6= j
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and its columns are orthogonal, so

n∑
m=1

OmiOmj =

{
1 i = j
0 i 6= j

.

a. Let α(x) = αi,j(x) with 1 ≤ i, j ≤ n be an n × n orthogonal matrix.

Let N = n(n−1)
2 . The matrix

Mα(x) = (dα(x))tdα(x)

is an N ×N matrix with entries

Mα(x)k,` =
n∑

i,j=1

∂α(x)i,j
∂xk

∂α(x)i,j
∂x`

,

and V (dα(x)) = det(Mα(x))
1
2 . By matrix multiplication,

αO(x)i,j =
n∑
r=1

Oi,rα(x)r,j

and, hence,

∂αO(x)i,j
∂xk

=
n∑
r=1

Oi,r
∂α(x)r,j
∂xk

.

It follows that

MαO(x)k,` =
n∑

i,j=1

∂αO(x)i,j
∂xk

∂αO(x)i,j
∂x`

=
n∑

i,j=1

n∑
r1=1

n∑
r2=1

Oi,r1Oi,r2

∂α(x)r1,j
∂xk

∂α(x)r2,j
∂x`

.

Summing over i selects r1 = r2 = r, say, so that

MαO(x)k,` =
n∑

r,j=1

∂α(x)r,j
∂xk

∂α(x)r,j
∂x`

= Mα(x)k,`.



4 ROBERT HOUGH

Hence V (dαO(x)) = V (dα(x)) since the M matrices are equal. Simi-
larly,

∂αO(x)i,j
∂xk

=
n∑
r=1

∂α(x)i,r
∂xk

Or,j

and the argument works as before, although the summation over j is
now used to select r1 = r2.

Problem 5. Let Sn−1 = {x ∈ Rn : ‖x‖2 = 1} be the unit sphere in Rn.
Parameterize the part of the unit sphere in the first octant by α : U → V ,
where U = {x ∈ Rn−1

>0 , ‖x‖2 < 1} and

α(x) =


x1
x2
...

xn−1√
1− x21 − · · · − x2n−1

 .

Let A : U × R>0 → Rn
>0 be defined by

A(x, t) =


tx1
tx2
...

txn−1

t
√

1− x21 − · · · − x2n−1

 .

a. Show that

V (dα) =
1√

1− x21 − · · · − x2n−1

and V (dA) = tn−1V (dα).
b. Show that ∫ ∞

−∞
e−

x2

2 dx =
√

2π
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by squaring and switching to polar coordinates. Then calculate

f(t) =
1√
2π

∫ ∞
−∞

exte−
x2

2 dx.

Using this or otherwise, calculate the moments of the Gaussian distri-
bution,

Mk =
1√
2π

∫ ∞
−∞

xke−
x2

2 dx,

Mk = 0 if k is odd and M2k = (2k)!
2kk!

.
c. Using this or otherwise, calculate the moments of the coordinates of

the sphere Sn−1,

mk =

∫
Sk−1 x

k
1dV

V (Sk−1)

by first doing the same calculation for

Mk =
1

(2π)
n
2

∫
Rn
xk1e

−x
2
1+···+x

2
n

2 dx

and switching to the parameterization of Rn
>0 given in part a. You may

express your answers in terms of the Gamma function, which is defined
for <(s) > 0 by

Γ(s) =

∫ ∞
0

e−xxs−1dx.

Solution.

a. Calculate

dα(x) =

(
In−1

− xt√
1−‖x‖22

)
.

From the formula, V (X)2 =
∑

I det(XI)
2 it follows that

V (dα(x))2 = 1 +
n−1∑
j=1

(
det

(
Ijn−1
−xt√
1−‖x‖22

))2
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where Ijn−1 indicates the (n− 1)× (n− 1) identity matrix with jth row
deleted. This proves

V (dα(x)) =

√
1 +

‖x‖22
1− ‖x‖22

=
1√

1− ‖x‖22
.

Next, calculate

dA(x, t) =

(
t · In−1 x
−txt√
1−‖x‖22

√
1− ‖x‖22

)
.

This is an n × n matrix, so V (dA(x, t)) = | det(dA(x, t))|. Since the
first n columns are scaled by t, and pulling out a factor of 1√

1−‖x‖22
from

the bottom row,

V (dA(x, t)) =
tn−1√

1− ‖x‖22

∣∣∣∣det

(
In−1 x
−xt 1− ‖x‖22

)∣∣∣∣
=

tn−1√
1− ‖x‖22

∣∣∣∣det

(
In−1 0
−xt 1

)∣∣∣∣
=

tn−1√
1− ‖x‖22

,

where the next to last line follows from performing column operations
in the determinant.

b. We have (∫ ∞
−∞

e−
x2

2 dx

)2

=

∫
R2

e
−x2−y2

2 dxdy

=

∫ 2π

0

∫ ∞
0

e−
r2

2 rdrdθ = 2π.
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Similarly,

f(t) =
1√
2π

∫ ∞
−∞

ext−
x2

2 dx

= e
t2

2
1√
2π

∫ ∞
−∞

e−
(x−t)2

2 dx = e
t2

2 .

Expanding ext =
∑∞

n=0
(xt)n

n! , and exchanging the summation and inte-
gration, which is justified by absolute convergence,

e
t2

2 =
∞∑
n=0

1

n!

1√
2π

∫ ∞
−∞

(xt)ne−
x2

2 dx

=
∞∑
n=0

M2nt
2n

(2n)!
,

since the odd n terms integrate to 0 by symmetry. Since the power
series have infinite radius of convergence, equating coefficients,

M2n =
(2n)!

2nn!
.

c. We have

Mk =
1

(2π)
n
2

∫
Rn
xk1e

−‖x‖
2
2

2 dx

since integration in each xj, j > 1 integrates to 1. Using the parametriza-
tion of part a.,

Mk =
1

(2π)
n
2

∫
x∈Sn−1

∫ ∞
t=0

(tx1)
ke−

t2

2 tn−1dtdV (x)

=
1

(2π)
n
2

∫
x∈Sn−1

xk1dV (x)

∫ ∞
0

tn+ke−
t2

2
dt

t
.

Substituting u = t2, so 1
2 log u = log t and, hence, 1

2
du
u = dt

t , the second
integral is

1

2

∫ ∞
0

u
n+k
2 e−

u
2
du

u
= 2

n+k
2 −1Γ

(
n+ k

2

)
.
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Thus

M2k =
(2k)!

2kk!
= 2

n+2k
2 −1Γ

(
n+ 2k

2

)
1

(2π)
n
2

∫
x∈Sn−1

x2k1 dV (x),

or

m2k =

∫
Sn−1 x

2k
1 dV (x)∫

Sn−1 dV (x)

=
(2k)!

22kk!

Γ
(
n
2

)
Γ
(
n
2 + k

)
=

(2k)!

22kk!

1
n
2 (n2 + 1) · · · (n2 + k − 1)

.

The odd moments vanish by symmetry.

Problem 6. Let e1, e2, ..., en be the standard basis vectors in Rn, and let
x1, ..., xn be the dual basis. Given an elementary alternating k form,

α = xi1 ∧ xi2 ∧ · · · ∧ xik
define the dual elementary alternating n − k form by letting j1, ..., jn−k be
the complementary indices in {1, 2, ..., n}, so {i1, ..., ik} ∪ {j1, ..., jn−k} =
{1, 2, ..., n} and defining

α∗ = εxj1 ∧ · · · ∧ xjn−k
where the sign ε is chosen so that α∧α∗ = x1∧· · ·∧xn. Note that x1∧· · ·∧xn
has dual form 1. Extend duality linearly, so if

β =
∑
I

bIxi1 ∧ · · · ∧ xik

then

β∗ =
∑
I

bI(xi1 ∧ · · · ∧ xik)∗.

a. Prove that

〈α, β〉 = (α ∧ β∗)∗

defines an inner product on Ak(Rn) which makes the elementary k
forms an orthonormal basis.
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b. Given an n × k matrix M with column vectors v1, ..., vk ∈ Rn, with
entries vi =

∑n
j=1mjiej, let the dual form be `i =

∑n
j=1mjixj. Let

ω = `1 ∧ `2 ∧ · · · ∧ `k.

Prove that

V (M)2 = 〈ω, ω〉 = (ω ∧ ω∗)∗,
where V (M) denotes the k-dimensional volume of the parallelpiped
spanned by the column vectors of M .

Solution.

a. Note that α ∧ β∗ is an alternating n form, hence is a multiple of x1 ∧
· · · ∧ xn, so (α ∧ β∗)∗ is a scalar. Since both the wedge product and
dual are linear, (α ∧ β∗)∗ is a bilinear form. Let

α =
∑

cIxi1 ∧ · · · ∧ xik.

If I 6= J then xi1 ∧ · · · ∧ xik and (xj1 ∧ · · · ∧ xjk)∗ have some index in
common, so that

(xi1 ∧ · · · xik) ∧ (xj1 ∧ · · · ∧ xjk)∗ = 0,

and, hence,

α ∧ α∗ =
∑
I,J

cIcJ(xi1 ∧ · · · xik) ∧ (xj1 ∧ · · · ∧ xjk)∗ =
∑
I

c2Ix1 ∧ · · · ∧ xn

so 〈α, α〉 =
∑

I c
2
I . This proves that 〈, 〉 is non-degenerate, and that the

elementary alternating forms are an orthonormal basis for this inner
product.

b. We expand

ω = `1 ∧ · · · ∧ `k =
n∑

i1=1

mi1,1xi1 ∧ · · · ∧
n∑

ik=1

mik,kxik

=
n∑

i1,...,ik=1

mi1,1 · · ·mik,kxi1 ∧ · · · ∧ xik.
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Applying a permutation so that each set of indices is in order, and
collecting the product according to the elementary alternating k form,
this is

ω =
∑
I

∑
σ∈Sk

sgn(σ)miσ(1),1 · · ·miσ(k),kxi1 ∧ · · · ∧ xik

=
∑
I

(detMI)xi1 ∧ · · · ∧ xik

and, hence,

‖ω‖2 =
∑
I

(detMI)
2 = V (M)2

by the Pythagorean theorem.

Problem 7. Let T : Rn → Rn be an invertible linear map, which acts on the
standard basis e1, ..., en by

Tei =
n∑
j=1

mijej.

Let x1, ..., xn be the dual basis to e1, ..., en. Prove

T ∗(x1 ∧ · · · ∧ xn) = det(mij)x1 ∧ · · · ∧ xn.

Solution. Since T ∗(x1∧· · ·∧xn) is an alternating n form, T ∗(x1∧· · ·∧xn) =
c(x1 ∧ · · · ∧ xn). Hence

c = T ∗(x1 ∧ · · · ∧ xn)(e1, ..., en)
= x1 ∧ · · · ∧ xn(Te1, ..., T en)

= x1 ∧ · · · ∧ xn

(
n∑

i1=1

m1i1ei1,
n∑

i2=1

m2i2ei2, · · · ,
n∑

in=1

mninein

)

=
n∑

i1,...,in=1

m1i1 · · ·mninx1 ∧ · · · ∧ xn(ei1, ..., ein).

Those tuples with a repeated index among i1, ..., in evaluate to 0, and the
remaining ones are a permutation of 1, 2, ..., n, with evaluation on x1∧· · ·∧xn
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equal to the sign of the permutation. Hence

c =
∑
σ∈Sn

sgn(σ)m1σ(1) · · ·mnσ(n) = det(mij).


