MATH 322, SPRING 2019 MIDTERM 2, PRACTICE PROBLEMS

ROBERT HOUGH

Problem 1. Prove that each two-tensor on \mathbb{R}^{n} has a unique representation as a sum of a symmetric 2 tensor and an alternating 2 tensor.

Problem 2. Let $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ be given by $\alpha(x, y)=\left(\begin{array}{c}x^{3} \\ x^{2} y \\ x y^{2} \\ y^{3}\end{array}\right)$. Calculate $d \alpha$ and $V(d \alpha)$.

Problem 3. Let $\alpha=x_{1}+x_{2}+\ldots+x_{n}$ and let $\omega=\sum_{j=1}^{n}(-1)^{j} x_{1} \wedge \cdots \wedge$ $\hat{x}_{j} \wedge \cdots \wedge x_{n}$ where the hat indicates that x_{j} is omitted. Express $\alpha \wedge \omega$ in elementary alternating tensors.

Problem 4. On midterm 1, a coordinate patch α was defined from an open neighborhood U of 0 in $\mathbb{R}^{\frac{n(n-1)}{2}}$ to a neighborhood of the identity in the orthogonal group $O_{n}=\left\{M \in \mathbb{R}^{n \times n}, M^{t} M=I\right\}$. Let this coordinate patch be $\alpha: U \rightarrow V$. Let O be any orthogonal matrix, and define $\alpha_{O}: U \rightarrow O \cdot V=\{O \cdot M: M \in V\}$ by $\alpha_{O}(\underline{x})=O \cdot \alpha(\underline{x})$.
a. Prove that $V(d \alpha)=V\left(d \alpha_{O}\right)$. Deduce that the volume of V and $O \cdot V$ are equal.
b. Show that the same is true for $\alpha^{O}(\underline{x})=\alpha(\underline{x}) \cdot O$.

This says that the volume form $V(d \beta)$ on the orthogonal group is left and right translation invariant, and hence is a scalar multiple of Haar measure.

Problem 5. Let $S^{n-1}=\left\{\underline{x} \in \mathbb{R}^{n}:\|\underline{x}\|_{2}=1\right\}$ be the unit sphere in \mathbb{R}^{n}. Parameterize the part of the unit sphere in the first octant by $\alpha: U \rightarrow V$,
where $U=\left\{\underline{x} \in \mathbb{R}_{>0}^{n-1},\|\underline{x}\|_{2}<1\right\}$ and

$$
\alpha(\underline{x})=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1} \\
\sqrt{1-x_{1}^{2}-\cdots-x_{n-1}^{2}}
\end{array}\right)
$$

Let $A: U \times \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}^{n}$ be defined by

$$
A(\underline{x}, t)=\left(\begin{array}{c}
t x_{1} \\
t x_{2} \\
\vdots \\
t x_{n-1} \\
t \sqrt{1-x_{1}^{2}-\cdots-x_{n-1}^{2}}
\end{array}\right) .
$$

a. Show that

$$
V(d \alpha)=\frac{1}{\sqrt{1-x_{1}^{2}-\cdots-x_{n-1}^{2}}}
$$

and $V(d A)=t^{n-1} V(d \alpha)$.
b. Show that

$$
\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x=\sqrt{2 \pi}
$$

by squaring and switching to polar coordinates. Then calculate

$$
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{x t} e^{-\frac{x^{2}}{2}} d x
$$

Using this or otherwise, calculate the moments of the Gaussian distribution,

$$
M_{k}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{k} e^{-\frac{x^{2}}{2}} d x
$$

$M_{k}=0$ if k is odd and $M_{2 k}=\frac{(2 k)!}{2^{k} k!}$.
c. Using this or otherwise, calculate the moments of the coordinates of the sphere S^{n-1},

$$
m_{k}=\frac{\int_{S^{k-1}} x_{1}^{k} d V}{V\left(S^{k-1}\right)}
$$

by first doing the same calculation for

$$
M_{k}=\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} x_{1}^{k} e^{-\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{2}} d \underline{x}
$$

and switching to the parameterization of $\mathbb{R}_{>0}^{n}$ given in part a. You may express your answers in terms of the Gamma function, which is defined for $\Re(s)>0$ by

$$
\Gamma(s)=\int_{0}^{\infty} e^{-x} x^{s-1} d x
$$

Problem 6. Let $e_{1}, e_{2}, \ldots, e_{n}$ be the standard basis vectors in \mathbb{R}^{n}, and let x_{1}, \ldots, x_{n} be the dual basis. Given an elementary alternating k form,

$$
\alpha=x_{i_{1}} \wedge x_{i_{2}} \wedge \cdots \wedge x_{i_{k}}
$$

define the dual elementary alternating $n-k$ form by letting j_{1}, \ldots, j_{n-k} be the complementary indices in $\{1,2, \ldots, n\}$, so $\left\{i_{1}, \ldots, i_{k}\right\} \cup\left\{j_{1}, \ldots, j_{n-k}\right\}=$ $\{1,2, \ldots, n\}$ and defining

$$
\alpha^{*}=\epsilon x_{j_{1}} \wedge \cdots \wedge x_{j_{n-k}}
$$

where the sign ϵ is chosen so that $\alpha \wedge \alpha^{*}=x_{1} \wedge \cdots \wedge x_{n}$. Note that $x_{1} \wedge \cdots \wedge x_{n}$ has dual form 1. Extend duality linearly, so if

$$
\beta=\sum_{I} b_{I} x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}
$$

then

$$
\beta^{*}=\sum_{I} b_{I}\left(x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}\right)^{*}
$$

a. Prove that

$$
\langle\alpha, \beta\rangle=\left(\alpha \wedge \beta^{*}\right)^{*}
$$

defines an inner product on $\mathcal{A}^{k}\left(\mathbb{R}^{n}\right)$ which makes the elementary k forms an orthonormal basis.
b. Given an $n \times k$ matrix M with column vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$, with entries $v_{i}=\sum_{j=1}^{n} m_{j i} e_{j}$, let the dual form be $\ell_{i}=\sum_{j=1}^{n} m_{j i} x_{j}$. Let

$$
\omega=\ell_{1} \wedge \ell_{2} \wedge \cdots \wedge \ell_{k} .
$$

Prove that

$$
V(M)^{2}=\langle\omega, \omega\rangle=\left(\omega \wedge \omega^{*}\right)^{*}
$$

where $V(M)$ denotes the k-dimensional volume of the parallelpiped spanned by the column vectors of M.

Problem 7. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an invertible linear map, which acts on the standard basis e_{1}, \ldots, e_{n} by

$$
T e_{i}=\sum_{j=1}^{n} m_{i j} e_{j} .
$$

Let x_{1}, \ldots, x_{n} be the dual basis to e_{1}, \ldots, e_{n}. Prove

$$
T^{*}\left(x_{1} \wedge \cdots \wedge x_{n}\right)=\operatorname{det}\left(m_{i j}\right) x_{1} \wedge \cdots \wedge x_{n}
$$

