MATH 322, SPRING 2019 FINAL, PRACTICE PROBLEMS

ROBERT HOUGH

Problem 1. Let $\alpha:(\theta, \phi) \mapsto(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$ be the spherical coordinate map. Let $\omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y$. Calculate $\alpha^{*} \omega$.
Solution. We have

$$
\begin{aligned}
\alpha^{*} d x & =-\sin \theta \sin \phi d \theta+\cos \theta \cos \phi d \phi \\
\alpha^{*} d y & =\cos \theta \sin \phi d \theta+\sin \theta \cos \phi d \phi \\
\alpha^{*} d z & =-\sin \phi d \phi .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\alpha^{*} \omega & =(\cos \theta \sin \phi)(\cos \theta \sin \phi d \theta+\sin \theta \cos \phi d \phi) \wedge(-\sin \phi d \phi) \\
& +\sin \theta \sin \phi(-\sin \phi d \phi) \wedge(-\sin \theta \sin \phi d \theta+\cos \theta \cos \phi d \phi) \\
& +\cos \phi(-\sin \theta \sin \phi d \theta+\cos \theta \cos \phi d \phi) \wedge(\cos \theta \sin \phi d \theta+\sin \theta \cos \phi d \phi) \\
& =-\cos ^{2} \theta \sin ^{3} \phi d \theta \wedge d \phi-\sin ^{2} \theta \sin ^{3} \phi d \theta \wedge d \phi \\
& -\left(\sin ^{2} \theta \cos ^{2} \phi \sin \phi+\cos ^{2} \theta \cos ^{2} \phi \sin \phi\right) d \theta \wedge d \phi \\
& =-\sin \phi d \theta \wedge d \phi .
\end{aligned}
$$

Problem 2. Let $\omega=e^{x y z} d x \wedge d y+x^{3} y d x \wedge d z+\sin (z) d x \wedge d y$. Calculate $d \omega$.
Solution. We have $d\left(e^{x y z}\right)=y z e^{x y z} d x+x z e^{x y z} d y+x y e^{x y z} d z, d\left(x^{3} y\right)=$ $3 x^{2} y d x+x^{3} d y$ and $d \sin z=\cos z d z$. Hence

$$
\begin{aligned}
d \omega & =d\left(e^{x y z}\right) d x \wedge d y+d\left(x^{3} y\right) d x \wedge d z+d(\sin z) d x \wedge d y \\
& =x y e^{x y z} d z \wedge d x \wedge d y+x^{3} d y \wedge d x \wedge d z+\cos z d z \wedge d x \wedge d y \\
& =\left(x y e^{x y z}-x^{3}+\cos z\right) d x \wedge d y \wedge d z
\end{aligned}
$$

Problem 3. Let C be the right circular cylinder $\left\{x^{2}+y^{2} \leq 1,0 \leq z \leq 5\right\}$, given the usual orientation in \mathbb{R}^{3}. Let

$$
\omega=e^{z} d x \wedge d y
$$

Calculate $\int_{\partial C} \omega$.
Solution. We have $d \omega=e^{z} d x \wedge d y \wedge d z$. By Stoke's theorem

$$
\int_{\partial C} \omega=\int_{C} d \omega=\int_{x^{2}+y^{2} \leq 1,0 \leq z \leq 5} e^{z}=\pi\left(e^{5}-1\right) .
$$

Problem 4. Let $\omega=\sum_{i=1}^{n} x_{i} d x_{i}$. Calculate $\int_{C} \omega$ where C is the oriented curve

$$
C=\left\{\cos (2 \pi t), \cos (4 \pi t), \ldots, \cos (2 n \pi t): 0 \leq t \leq \frac{1}{4}\right\} .
$$

Solution. Let $\theta=\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}$ so that $d \theta=\omega$. Parameterize C by

$$
\underline{r}(t)=\left(\begin{array}{c}
\cos (2 \pi t) \\
\cos (4 \pi t) \\
\vdots \\
\cos (2 n \pi t)
\end{array}\right), \quad 0 \leq t \leq \frac{1}{4} .
$$

Hence,

$$
\int_{C} d \theta=\theta\left(\underline{r}\left(\frac{1}{4}\right)\right)-\theta(\underline{r}(0)) .
$$

Since $\cos \left(\frac{2 \pi k}{4}\right)^{2}$ is 1 if k is even and 0 if k is odd. Hence $\theta\left(\underline{r}\left(\frac{1}{4}\right)\right)=\frac{1}{2}\left\lfloor\frac{n}{2}\right\rfloor$ while $\theta(\underline{r}(0))=\frac{n}{2}$, so that the integral is

$$
\int_{C} d \theta=\frac{1}{2}\left\lfloor\frac{n}{2}\right\rfloor-\frac{n}{2} .
$$

Problem 5. Let \mathbb{T} be the torus in $\mathbb{R}^{4}, \mathbb{T}=\left\{x_{1}^{2}+x_{2}^{2}=a^{2}, x_{3}^{2}+x_{4}^{2}=b^{2}\right\}$. Prove that \mathbb{T} is orientable, and calculate its volume.

Solution. Parametrize \mathbb{T} with patches $(a \cos s, a \sin s, b \cos t, b \sin t)$ with s, t in either $\left(-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ or $\left(-\frac{3 \pi}{2}, \frac{\pi}{2}\right)$. The patches overlap positively, since they are equal on the overlap. If α is one of the patches,

$$
D \alpha=\left(\begin{array}{cc}
-a \sin s & 0 \\
a \cos s & 0 \\
0 & -b \sin t \\
0 & b \cos t
\end{array}\right)
$$

Thus

$$
V(D \alpha)=\left(\operatorname{det}\left(D \alpha^{t} D \alpha\right)\right)^{\frac{1}{2}}=|a b| .
$$

Hence the volume is $4 \pi^{2}|a b|$.
Problem 6. Let $\operatorname{tr}: \mathrm{Mat}_{n \times n} \rightarrow \mathbb{R}, \operatorname{tr} M=\sum_{i} M_{i i}$ be the trace map. Let O_{n} be the orthogonal group of $n \times n$ matrices. Calculate the moments

$$
\begin{aligned}
& m_{1}=\frac{\int_{O_{n}} \operatorname{tr}(M) d V}{\int_{O_{n}} 1 d V} \\
& m_{2}=\frac{\left.\int_{O_{n}} \operatorname{tr} M\right)^{2} d V}{\int_{O_{n}} 1 d V} .
\end{aligned}
$$

Solution. Since the volume integral is invariant under translation in the orthogonal group, it is invariant under permuting the coordinates, and under multiplying a row or column by -1 . We have

$$
\int_{O_{n}} \operatorname{tr}(M) d V=\int_{O_{n}} \sum_{i} M_{i i} d V=n \int_{O_{n}} M_{11} d V=0 .
$$

Thus $m_{1}=0$.
Also,

$$
\begin{aligned}
\int_{O_{n}} \operatorname{tr}(M)^{2} d V & =\int_{O_{n}}\left(n M_{11}^{2}+\left(n^{2}-n\right) M_{11} M_{22}\right) d V \\
& =\int_{O_{n}} n M_{11}^{2} d V \\
& =\int_{O_{n}} \sum_{i=1}^{n} M_{1 i}^{2} d V \\
& =\int_{O_{n}} 1 d V
\end{aligned}
$$

Hence $m_{2}=1$.
Problem 7. Let $S^{n-1}=\left\{\underline{x} \in \mathbb{R}^{n}:\|\underline{x}\|=1\right\}$. Let O_{n} be the orthogonal group of $n \times n$ matrices M_{n} which satisfy $M_{n}^{t} M_{n}=I_{n}$.
a. Given $\underline{x} \in S^{n-1}$, let $O_{\underline{x}}$ be the orthogonal matrix which rotates \underline{e}_{1} to \underline{x} in the $\left(\underline{e}_{1}, \underline{x}\right)$ plane while preserving their orientation, while leaving the orthogonal complement of this plane fixed. Give a matrix representation of $O_{\underline{x}}$.
b. Identify the $(n-1) \times(n-1)$ orthogonal group O_{n-1} with matrices in O_{n} whose first row and column are \underline{e}_{1}. Prove that each matrix M_{n} in O_{n} has a unique representation as $O_{\underline{x}} M_{n-1}$ with $\underline{x} \in S^{n-1}$ and $M_{n-1} \in O_{n-1}$.
c. Using the described coordinates, or otherwise, calculate the volume of O_{n}. It may be helpful to use that the volume on O_{n} is invariant under left and right translation, which was proved in the problems for Midterm 2. This reduces to the case that \underline{x} is a neighborhood of \underline{e}_{1}.

Solution.

a. Given unit vector $\underline{x} \neq \underline{e}_{1}$, write $\underline{x}=x_{1} \underline{e}_{1}+\sqrt{1-x_{1}^{2}} \underline{\underline{x}}$ where $\underline{\tilde{x}}=\frac{\underline{\tilde{x}}}{\sqrt{1-x_{1}^{2}}}$. Let $\cos \theta=x_{1}, \sin \theta=\sqrt{1-x_{1}^{2}}$. Rotation by θ in the $\underline{e}_{1}, \underline{\tilde{x}}$ plane maps

$$
\begin{aligned}
& \underline{e}_{1} \mapsto x_{1} \underline{e}_{1}+\sqrt{1-x_{1}^{2}} \underline{\tilde{x}}, \\
& \underline{\tilde{x}} \mapsto-\sqrt{1-x_{1}^{2}} \underline{e}_{1}+x_{1} \underline{\tilde{x}} .
\end{aligned}
$$

Projection in the orthogonal plane is given by $I-\underline{e}_{1} e_{1}^{t}-\underline{\tilde{x}} \tilde{x}^{t}$. Hence a general vector \underline{v} is mapped to

$$
\begin{aligned}
& \left\langle\underline{v}, \underline{e}_{1}\right\rangle\left(x_{1} \underline{e}_{1}+\sqrt{1-x_{1}^{2}} \underline{\tilde{x}}\right)+\langle\underline{v}, \underline{\tilde{x}}\rangle\left(-\sqrt{1-x_{1}^{2}} \underline{e}_{1}+x_{1} \tilde{\tilde{x}}\right)+ \\
& +\left(I-\underline{e}_{1} \underline{e}_{1}^{t}-{\underline{\tilde{x}} \tilde{x}^{t}}^{t} \underline{v} .\right.
\end{aligned}
$$

Hence, letting \underline{x}^{\prime} be the last $n-1$ components of \underline{x} as a vector in \mathbb{R}^{n-1},

$$
\begin{aligned}
O_{\underline{x}} & =x_{1} \underline{e}_{1} e_{1}^{t}+\sqrt{1-x_{1}^{2}} \tilde{\tilde{x}}_{1}^{t}-\sqrt{1-x_{1}^{2}} \underline{e}_{1} \underline{\tilde{x}}^{t}+x_{1} \underline{\tilde{x}} \tilde{x}^{t}+I-\underline{e}_{1} \underline{e}_{1}^{t}-\underline{\tilde{x}} \tilde{x}^{t} \\
& =\left(\begin{array}{cc}
x_{1} & -\left(\underline{x^{\prime}}\right)^{t} \\
\underline{x}^{\prime} & I_{n-1}-\frac{\left.x^{\prime} \underline{x}^{\prime}\right)^{t}}{1+x_{1}}
\end{array}\right) .
\end{aligned}
$$

b. Let \underline{x} be the first column of $M_{n} \in O_{n}$. Then $O_{x}^{-1} M_{n}$ has first column and first row \underline{e}_{1}, hence is a matrix in O_{n-1} embedded in O_{n} as described. This proves that the map is onto. The uniqueness follows since $O_{\underline{x}} M_{n-1}$ has first column equal to \underline{x}.
c. Let $S(\underline{x}, \delta)$ be the set of matrices in O_{n} whose first column has distance from \underline{x} at most δ. Then $O_{\underline{x}} \cdot S\left(\underline{e}_{1}, \delta\right)=S(\underline{x}, \delta)$. Since the volume form on O_{n} is invariant under left translation, $\operatorname{Vol} S(\underline{x}, \delta)=\operatorname{Vol} S\left(\underline{e}_{1}, \delta\right)$ for all $\underline{x} \in S^{n-1}$ and hence is equal to a constant c times the volume of $\left\{\underline{y} \in S^{n-1}: d\left(\underline{y}, \underline{e}_{1}\right) \leq \delta\right\}$. It follows that the volume of O_{n} is $c \operatorname{Vol}\left(S^{n-1}\right)=c \frac{2 \frac{n}{2}}{\left.\overline{(x} \frac{n}{2}\right)}$.
To calculate the constant c, let δ be coordinates on M_{n-1} in a neighborhood of the identity, identified with $\delta=0$, and parametrize S^{n-1} near \underline{e}_{1} by $\underline{x}=\left(\begin{array}{c}\sqrt{1-\epsilon_{1}^{2}-\cdots-\epsilon_{n-1}^{2}} \\ \epsilon_{1} \\ \vdots \\ \epsilon_{n-1}\end{array}\right)$. Thus the coordinate chart is given by

$$
M=\left(\begin{array}{cc}
\sqrt{1-\epsilon_{1}^{2}-\cdots-\epsilon_{n-1}^{2}} & -\epsilon_{1} \cdots-\epsilon_{n-1} \\
\epsilon_{1} & \\
\vdots & I_{n-1}-\frac{\epsilon \epsilon^{t}}{1+\sqrt{1-\epsilon_{1}^{2}-\cdots-\epsilon_{n-1}^{2}}}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & M_{n-1}(\delta)
\end{array}\right) .
$$

This coordinate chart can be translated arbitrarily on the right by a matrix from M_{n-1} without changing the first column, so that to calculate the volume, it suffices to determine the volume form when $\delta=0$ and for ϵ in a neighborhood of the identity.

We have, at $\epsilon=\delta=0$,
in which the -1 occurs in the first row, $i+1$ st slot, and the 1 occurs in the first column, $i+1$ st row. Since

$$
V(D M)=\left(\operatorname{det} D M^{t} D M\right)^{\frac{1}{2}}
$$

and $D M^{t} D M$ has entries of type,

$$
\sum_{i, j} \frac{\partial M_{i, j}}{\partial \epsilon_{l}} \frac{\partial M_{i, j}}{\partial \epsilon_{m}}, \sum_{i, j} \frac{\partial M_{i, j}}{\partial \delta_{l}} \frac{\partial M_{i, j}}{\partial \epsilon_{m}}, \sum_{i, j} \frac{\partial M_{i, j}}{\partial \delta_{l}} \frac{\partial M_{i, j}}{\partial \delta_{m}}
$$

at $\epsilon=\delta=0$ those cross terms with derivatives in δ and ϵ are 0 , so that the matrix $D M^{t} D M$ has two blocks, corresponding to the ϵ and δ variables. The δ has determinant $V\left(D M_{n-1}\right)^{2}$ on O_{n-1}, while the ϵ matrix is $2 I_{n-1}$ and hence has determinant 2^{n-1}. Hence $V(D M)=$ $2^{\frac{n-1}{2}} V\left(D M_{n-1}\right)$. Meanwhile, the chart

$$
\underline{x}=\left(\begin{array}{c}
\sqrt{1-\epsilon_{1}^{2}-\cdots-\epsilon_{n-1}^{2}} \\
\epsilon_{1} \\
\vdots \\
\epsilon_{n-1}
\end{array}\right)
$$

has

$$
D \underline{x}(0)=\binom{0}{I_{n-1}}
$$

and hence has $V(D \underline{x}(0))=1$. Thus

$$
V(D M(0,0))=2^{\frac{n-1}{2}} V(D \underline{x}(0)) V\left(D M_{n-1}(0)\right) .
$$

By right invariance of V under multiplication by elements of M_{n-1}, this is invariant under right multiplication by elements of M_{n-1}. By continuity of V, the constant is essentially unchanged in a neighborhood of \underline{e}_{1} in S^{n-1}. It follows that

$$
\operatorname{Vol}\left(O_{n}\right)=2^{\frac{n-1}{2}} \operatorname{Vol}\left(S^{n-1}\right) \operatorname{Vol}\left(O_{n-1}\right) .
$$

Iterating this identity, together with the formula $\operatorname{Vol}\left(S^{n-1}\right)=\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}$ obtains the formula

$$
\operatorname{Vol}\left(O_{n}\right)=2^{\frac{n(n-1)}{4}} \prod_{j=1}^{n} \frac{2 \pi^{\frac{j}{2}}}{\Gamma\left(\frac{j}{2}\right)}=2^{\frac{n(n+3)}{4}} \pi^{\frac{n(n+1)}{4}} \prod_{j=1}^{n} \frac{1}{\Gamma\left(\frac{j}{2}\right)} .
$$

This formula was first obtained by Hurwitz.
Problem 8. Let $S^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$ be the unit circle. Let $\gamma, \delta: S^{1} \rightarrow \mathbb{R}^{3}$ be non-intersecting smooth loops, so $\gamma(s) \neq \delta(t)$ for all s, t. Define $F_{\gamma, \delta}(s, t)=\gamma(s)-\delta(t)$. Let

$$
\ell(\gamma, \delta):=\frac{1}{4 \pi} \int_{S^{1} \times S^{1}} F_{\gamma, \delta}^{*}\left(\frac{x d y \wedge d z+y d z \wedge d x+z d y \wedge d z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right)
$$

be the linking number. Prove
a. $\ell(\gamma, \delta)$ is unchanged if γ and δ are continously deformed without intersecting.
b. $\ell(\gamma, \delta) \in \mathbb{Z}$.
c. If $\gamma(s)=(\cos s, \sin s, 0)$ for $s \in[0,2 \pi]$ and $\delta(t)=\left(-1+\frac{1}{2} \cos t, 0, \frac{1}{2} \sin t\right)$ for $t \in[0,2 \pi]$, then $\ell(\gamma, \delta)=1$.

Solution.

a. Let

$$
\theta_{3}=\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} .
$$

It is straightforward to check that $d \theta_{3}=0$. The fact that $\ell(\gamma, \delta)$ is unchanged under homotopy follows from the Lemma from Lecture on the change of the integral of a closed form under homotopy.
b. Perform a homotopy which translates δ continuously to a large translate T after which δ and γ are separated by a hyperplane. In this case the curve $\gamma(t)-\delta(s)$ is separated from 0 by a hyperplane, so the resulting surface is contractible. Hence, after translation, the integral is 0 . The integral varies continuously except at points where the paths intersect. At a point of intersection, deform both paths by a small semi-circular loop on either side of the intersection point. The difference between the paths prior to intersection and post intersection is thus homotopic to a curve as in part c, hence contributes an integer change.
c. The surface

$$
\gamma(s)-\delta(t)=\left(1+\cos s-\frac{1}{2} \cos t, \sin s,-\frac{1}{2} \sin t\right)
$$

is a torus containing 0 . Slice the torus with two planes to cut away the part containing 0 . The remaining surface is contractible in $\mathbb{R}^{3} \backslash\{0\}$. The cut part is homotopic to a sphere centered at 0 . Integrating θ_{3} over a sphere centered at 0 gives 1 .

