MATH 322, SPRING 2019 FINAL, PRACTICE PROBLEMS

ROBERT HOUGH

Problem 1. Let $\alpha:(\theta, \phi) \mapsto(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$ be the spherical coordinate map. Let $\omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y$. Calculate $\alpha^{*} \omega$.

Problem 2. Let $\omega=e^{x y z} d x \wedge d y+x^{3} y d x \wedge d z+\sin (z) d x \wedge d y$. Calculate $d \omega$. Problem 3. Let C be the right circular cylinder $\left\{x^{2}+y^{2} \leq 1,0 \leq z \leq 5\right\}$, given the usual orientation in \mathbb{R}^{3}. Let

$$
\omega=e^{z} d x \wedge d y
$$

Calculate $\int_{\partial C} \omega$.
Problem 4. Let $\omega=\sum_{i=1}^{n} x_{i} d x_{i}$. Calculate $\int_{C} \omega$ where C is the oriented curve

$$
C=\left\{\cos (2 \pi t), \cos (4 \pi t), \ldots, \cos (2 n \pi t): 0 \leq t \leq \frac{1}{4}\right\}
$$

Problem 5. Let \mathbb{T} be the torus in $\mathbb{R}^{4}, \mathbb{T}=\left\{x_{1}^{2}+x_{2}^{2}=a^{2}, x_{3}^{2}+x_{4}^{2}=b^{2}\right\}$. Prove that \mathbb{T} is orientable, and calculate its volume.

Problem 6. Let $\operatorname{tr}: \mathrm{Mat}_{n \times n} \rightarrow \mathbb{R}, \operatorname{tr} M=\sum_{i} M_{i i}$ be the trace map. Let O_{n} be the orthogonal group of $n \times n$ matrices. Calculate the moments

$$
\begin{aligned}
& m_{1}=\frac{\int_{O_{n}} \operatorname{tr}(M) d V}{\int_{O_{n}} 1 d V} \\
& m_{2}=\frac{\left.\int_{O_{n}} \operatorname{tr} M\right)^{2} d V}{\int_{O_{n}} 1 d V}
\end{aligned}
$$

Problem 7. Let $S^{n-1}=\left\{\underline{x} \in \mathbb{R}^{n}:\|\underline{x}\|=1\right\}$. Let O_{n} be the orthogonal group of $n \times n$ matrices M_{n} which satisfy $M_{n}^{t} M_{n}=I_{n}$.
a. Given $\underline{x} \in S^{n-1}$, let $O_{\underline{x}}$ be the orthogonal matrix which rotates \underline{e}_{1} to \underline{x} in the $\left(\underline{e}_{1}, \underline{x}\right)$ plane while preserving their orientation, while leaving the orthogonal complement of this plane fixed. Give a matrix representation of $O_{\underline{x}}$.
b. Identify the $(n-1) \times(n-1)$ orthogonal group O_{n-1} with matrices in O_{n} whose first row and column are \underline{e}_{1}. Prove that each matrix M_{n} in O_{n} has a unique representation as $O_{\underline{x}} M_{n-1}$ with $\underline{x} \in S^{n-1}$ and $M_{n-1} \in O_{n-1}$.
c. Using the described coordinates, or otherwise, calculate the volume of O_{n}. It may be helpful to use that the volume on O_{n} is invariant under left and right translation, which was proved in the problems for Midterm 2. This reduces to the case that \underline{x} is a neighborhood of \underline{e}_{1}.
Problem 8. Let $S^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$ be the unit circle. Let $\gamma, \delta: S^{1} \rightarrow \mathbb{R}^{3}$ be non-intersecting smooth loops, so $\gamma(s) \neq \delta(t)$ for all s, t. Define $F_{\gamma, \delta}(s, t)=\gamma(s)-\delta(t)$. Let

$$
\ell(\gamma, \delta):=\frac{1}{4 \pi} \int_{S^{1} \times S^{1}} F_{\gamma, \delta}^{*}\left(\frac{x d y \wedge d z+y d z \wedge d x+z d y \wedge d z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\right)
$$

be the linking number. Prove
a. $\ell(\gamma, \delta)$ is unchanged if γ and δ are continously deformed without intersecting.
b. $\ell(\gamma, \delta) \in \mathbb{Z}$.
c. If $\gamma(s)=(\cos s, \sin s, 0)$ for $s \in[0,2 \pi]$ and $\delta(t)=\left(-1+\frac{1}{2} \cos t, 0, \frac{1}{2} \sin t\right)$ for $t \in[0,2 \pi]$, then $\ell(\gamma, \delta)=1$.

