MATH 322, SPRING 2019 MIDTERM 1, PRACTICE PROBLEMS

ROBERT HOUGH

Problem 1. Let $\|\cdot\|_{2}$ be the Euclidean norm on $\mathbb{R}^{n},\|\underline{x}\|_{2}=\sqrt{\sum_{i} x_{i}^{2}}$. Define the $2 \rightarrow 2$ operator norm on $\operatorname{Mat}_{n \times n}(\mathbb{R})$ by

$$
\|M\|_{2 \rightarrow 2}=\sup _{\|\underline{x}\|_{2}=1}\|M \underline{x}\|_{2} .
$$

(1) Prove that the $2 \rightarrow 2$ operator norm is a norm on the vector space of $n \times n$ matrices.
(2) Given $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{R})$, prove that $\|A B\|_{2 \rightarrow 2} \leq\|A\|_{2 \rightarrow 2}\|B\|_{2 \rightarrow 2}$.
(3) Let $p(x)$ be a power series of the real variable x, with radius of convergence r. Prove that if $\|A\|_{2 \rightarrow 2}<r$ then the series defining $p(A)$ converges.
(4) Recall that a symmetric $n \times n$ matrix $A=A^{t}$ can be diagonalized $A=O^{t} D O$ where O is orthogonal, $O^{t} O=I_{n}$ and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is diagonal. Prove that $\|O\|_{2 \rightarrow 2}=1,\|D\|_{2 \rightarrow 2}=\max \left|\lambda_{i}\right|$ and if $\max \left|\lambda_{i}\right|<$ r then

$$
p(A)=O^{t} \operatorname{diag}\left(p\left(\lambda_{1}\right), \ldots, p\left(\lambda_{n}\right)\right) O .
$$

Problem 2. The Cantor middle thirds set is the set of all numbers in $[0,1]$ which may be written as the sum

$$
x=\sum_{n=0}^{\infty} \frac{x_{n}}{3^{n}}, \quad x_{n} \in\{0,2\} .
$$

Prove that the Cantor middle thirds set has measure 0 .
Problem 3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{1} function, and let $E \subset \mathbb{R}^{n}$ be a set of measure 0. Prove that $f(E)$ has measure 0 .

Problem 4. Let S_{n} denote the group of permutations on $\{1,2, \ldots, n\}$. For $i<j$, the transposition $\tau_{i, j} \in S_{n}$ denotes the map $\tau_{i, j}(i)=j, \tau_{i, j}(j)=i$ and $\tau_{i, j}(k)=k$ otherwise.
(1) Prove that the set of transpositions $\left\{\tau_{i, j}: 1 \leq i<j \leq n\right\}$ generate the symmetric group.
(2) Given $\sigma \in S_{n}$, let $\iota(\sigma)$ denote the number of inversions in σ, that is, the number of $i<j$ such that $\sigma(i)>\sigma(j)$. Define the sign of a permutation, $\operatorname{sgn}(\sigma)$ to be $(-1)^{\iota(\sigma)}$. Prove that if $\tau_{i_{1}, j_{1}}$ and $\tau_{i_{2}, j_{2}}$ are two transpositions, then $\operatorname{sgn}\left(\tau_{i_{1}, j_{1}}\right)=-1$ and $\operatorname{sgn}\left(\tau_{i_{1}, j_{1}} \circ \tau_{i_{2}, j_{2}}\right)=1$. (Hint: if $\sigma(k)=k$, then the number of $j<k$ with $\sigma(j)>k$ is equal to the number of $j>k$ with $\sigma(j)<k$.)
(3) Conclude that sgn : $S_{n} \rightarrow\{-1,1\}$ is a group homomorphism.
(4) Let $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ be an $n \times n$ matrix. Prove that

$$
\operatorname{det} A=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

satisfies the axioms of the determinant.
Problem 5. Let $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$. Show that the power series

$$
e^{t A}=\sum_{n=0}^{\infty} \frac{(t A)^{n}}{n!}
$$

is defined for all t and is C^{∞}. Prove that

$$
\frac{d}{d t} e^{t A}=A e^{t A}
$$

Explain how this can be used to solve a system of constant coefficient ODE's,

$$
\left(\begin{array}{c}
f^{\prime} \\
f^{\prime \prime} \\
\vdots \\
f^{(n+1)}
\end{array}\right)=A\left(\begin{array}{c}
f \\
f^{\prime} \\
\vdots \\
f^{(n)}
\end{array}\right)
$$

with initial data

$$
\left(\begin{array}{c}
f(0) \\
f^{\prime}(0) \\
\vdots \\
f^{(n)}(0)
\end{array}\right)=\underline{v} .
$$

Problem 6. A function $f: X \rightarrow Y$ between two metric spaces is said to be Lipschitz if there is a constant $C>0$ such that, for all $x_{1}, x_{2} \in X$,

$$
d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq C d_{X}\left(x_{1}, x_{2}\right) .
$$

Prove that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable with bounded derivative, then f is Lipschitz.

