MATH 322, SPRING 2019 MIDTERM 1, PRACTICE PROBLEMS

ROBERT HOUGH

Problem 1. Let $\|\cdot\|_2$ be the Euclidean norm on \mathbb{R}^n , $\|\underline{x}\|_2 = \sqrt{\sum_i x_i^2}$. Define the $2 \to 2$ operator norm on $\operatorname{Mat}_{n \times n}(\mathbb{R})$ by

$$||M||_{2\to 2} = \sup_{||\underline{x}||_2=1} ||M\underline{x}||_2.$$

- (1) Prove that the $2 \rightarrow 2$ operator norm is a norm on the vector space of $n \times n$ matrices.
- (2) Given $A, B \in Mat_{n \times n}(\mathbb{R})$, prove that $||AB||_{2\to 2} \leq ||A||_{2\to 2} ||B||_{2\to 2}$.
- (3) Let p(x) be a power series of the real variable x, with radius of convergence r. Prove that if $||A||_{2\to 2} < r$ then the series defining p(A) converges.
- (4) Recall that a symmetric $n \times n$ matrix $A = A^t$ can be diagonalized $A = O^t DO$ where O is orthogonal, $O^t O = I_n$ and $D = \text{diag}(\lambda_1, ..., \lambda_n)$ is diagonal. Prove that $||O||_{2\to 2} = 1$, $||D||_{2\to 2} = \max |\lambda_i|$ and if $\max |\lambda_i| < r$ then

$$p(A) = O^t \operatorname{diag}(p(\lambda_1), ..., p(\lambda_n))O.$$

Problem 2. The *Cantor middle thirds set* is the set of all numbers in [0, 1] which may be written as the sum

$$x = \sum_{n=0}^{\infty} \frac{x_n}{3^n}, \qquad x_n \in \{0, 2\}.$$

Prove that the Cantor middle thirds set has measure 0.

Problem 3. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 function, and let $E \subset \mathbb{R}^n$ be a set of measure 0. Prove that f(E) has measure 0.

Problem 4. Let S_n denote the group of permutations on $\{1, 2, ..., n\}$. For i < j, the transposition $\tau_{i,j} \in S_n$ denotes the map $\tau_{i,j}(i) = j$, $\tau_{i,j}(j) = i$ and $\tau_{i,j}(k) = k$ otherwise.

ROBERT HOUGH

- (1) Prove that the set of transpositions $\{\tau_{i,j} : 1 \le i < j \le n\}$ generate the symmetric group.
- (2) Given $\sigma \in S_n$, let $\iota(\sigma)$ denote the number of inversions in σ , that is, the number of i < j such that $\sigma(i) > \sigma(j)$. Define the sign of a permutation, $\operatorname{sgn}(\sigma)$ to be $(-1)^{\iota(\sigma)}$. Prove that if τ_{i_1,j_1} and τ_{i_2,j_2} are two transpositions, then $\operatorname{sgn}(\tau_{i_1,j_1}) = -1$ and $\operatorname{sgn}(\tau_{i_1,j_1} \circ \tau_{i_2,j_2}) = 1$. (Hint: if $\sigma(k) = k$, then the number of j < k with $\sigma(j) > k$ is equal to the number of j > k with $\sigma(j) < k$.)
- (3) Conclude that sgn : $S_n \to \{-1, 1\}$ is a group homomorphism.
- (4) Let $A \in Mat_{n \times n}(\mathbb{R})$ be an $n \times n$ matrix. Prove that

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n A_{i,\sigma(i)}$$

satisfies the axioms of the determinant.

Problem 5. Let $A \in Mat_{n \times n}(\mathbb{C})$. Show that the power series

$$e^{tA} = \sum_{n=0}^{\infty} \frac{(tA)^n}{n!}$$

is defined for all t and is C^{∞} . Prove that

$$\frac{d}{dt}e^{tA} = Ae^{tA}.$$

Explain how this can be used to solve a system of constant coefficient ODE's,

$$\begin{pmatrix} f' \\ f'' \\ \vdots \\ f^{(n+1)} \end{pmatrix} = A \begin{pmatrix} f \\ f' \\ \vdots \\ f^{(n)} \end{pmatrix}$$

with initial data

$$\begin{pmatrix} f(0) \\ f'(0) \\ \vdots \\ f^{(n)}(0) \end{pmatrix} = \underline{v}$$

Problem 6. A function $f: X \to Y$ between two metric spaces is said to be Lipschitz if there is a constant C > 0 such that, for all $x_1, x_2 \in X$,

$$d_Y(f(x_1), f(x_2)) \le C d_X(x_1, x_2).$$

Prove that if $f:\mathbb{R}^n\to\mathbb{R}^m$ is differentiable with bounded derivative, then f is Lipschitz.