MATH 322, SPRING 2019 MIDTERM 1

MARCH 4

Each problem is worth 20 points.

Problem 1. Prove that any two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on \mathbb{R}^{n} are equivalent, in the sense that there are constants $C_{1}, C_{2}>0$ such that, for any $\underline{v} \in V$,

$$
C_{1}\|\underline{v}\|_{1} \leq\|\underline{v}\|_{2} \leq C_{2}\|\underline{v}\|_{1} .
$$

(Hint: it suffices to assume that $\|\cdot\|_{2}$ is the usual Euclidean norm. Check that $\|\cdot\|_{1}$ is continuous with respect to $\|\cdot\|_{2}$ by considering $\|\cdot\|_{1}$ on the standard basis. Then consider $\|\cdot\|_{1}$ on the unit sphere in the $\|\cdot\|_{2}$ norm.)

Solution 1. By the triangle inequality, and then Cauchy-Schwarz,

$$
\begin{aligned}
\left\|a_{1} \underline{e}_{1}+\cdots+a_{n} \underline{e}_{n}\right\|_{1} & \leq\left\|a_{1} \underline{e}_{1}\right\|_{1}+\cdots+\left\|a_{n} \underline{e}_{n}\right\|_{1} \\
& \leq\left|a_{1}\right|\left\|\underline{e}_{1}\right\|_{1}+\cdots+\left|a_{n}\right|\left\|\underline{e}_{n}\right\|_{1} \\
& \leq \sqrt{a_{1}^{2}+\cdots+a_{n}^{2}} \sqrt{\left\|\underline{e}_{1}\right\|_{1}^{2}+\cdots+\left\|\underline{e}_{n}\right\|_{1}^{2}} \\
& \leq C\|\underline{a}\|_{2}
\end{aligned}
$$

for $C=\sqrt{\left\|\underline{e}_{1}\right\|_{1}^{2}+\cdots+\left\|\underline{e}_{n}\right\|_{1}^{2}}$. By the triangle inequality again,

$$
\left|\|\underline{x}\|_{1}-\|\underline{y}\|_{1}\right| \leq\|\underline{x}-\underline{y}\|_{1} \leq C\|\underline{x}-\underline{y}\|_{2} .
$$

This proves that $\|\cdot\|_{1}$ is continuous as a function on \mathbb{R}^{n} with the topology generated by $\|\cdot\|_{2}$. Since the sphere

$$
S=\left\{\underline{x} \in \mathbb{R}^{n}:\|\underline{x}\|_{2}=1\right\}
$$

is closed and bounded and hence compact in this topology, and $\|\cdot\|_{1}$ is continuous, $\|\cdot\|_{1}$ achieves its $\min m$ and max M on S. Since for $\underline{x} \in S$, $\underline{x} \neq \underline{0}, M \geq m>0$, and hence, for any $\underline{0} \neq \underline{v} \in \mathbb{R}^{n}, \underline{w}=\frac{v}{\|\underline{v}\|_{2}}$,

$$
m \leq\|\underline{w}\|_{1}=\frac{\|\underline{v}\|_{1}}{\|\underline{v}\|_{2}} \leq M .
$$

Problem 2. Prove the following statement from lecture. Let $A \subset \mathbb{R}^{n}$ be open and $f: A \rightarrow \mathbb{R}^{m}$ be C^{2} on A. Then for all $1 \leq i, j \leq n, D_{i} D_{j} f=D_{j} D_{i} f$. Solution 2. See Munkres, pp.52-54.

Problem 3. The $n \times n$ orthogonal group O_{n} is defined implicitly by

$$
O_{n}=\left\{A \in \operatorname{Mat}_{n \times n}: A^{t} A-I_{n}=0\right\} .
$$

Prove that there is a neighborhood U of $I_{n} \in O_{n}$, a neighborhood V of

$$
\underline{0} \in \mathbb{R}^{\frac{n(n-1)}{2}}=\left\{\epsilon_{i, j}, 1 \leq i<j \leq n: \epsilon_{i j} \in \mathbb{R}\right\}
$$

and a C^{∞} surjective map $f: V \rightarrow U$ given by

$$
f(\underline{\epsilon})=\left(\begin{array}{ccccc}
f_{1,1}(\underline{\epsilon}) & \epsilon_{1,2} & \epsilon_{1,3} & \cdots & \epsilon_{1, n} \\
f_{2,1}(\underline{\epsilon}) & f_{2,2}(\underline{\epsilon}) & \epsilon_{2,3} & \cdots & \epsilon_{2, n} \\
f_{3,1}(\underline{\epsilon}) & f_{3,2}(\underline{\epsilon}) & f_{3,3}(\underline{\epsilon}) & & \epsilon_{3, n} \\
\vdots & \vdots & & \ddots & \vdots \\
f_{n, 1}(\underline{\epsilon}) & f_{n, 2}(\underline{\epsilon}) & f_{n, 3}(\underline{\epsilon}) & \cdots & f_{n, n}(\underline{\epsilon})
\end{array}\right) .
$$

Solution 3. Let $A=\left(\begin{array}{cccc}x_{1,1} & x_{1,2} & \cdots & x_{1, n} \\ x_{2,1} & x_{2,2} & \cdots & x_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n, 1} & x_{n, 2} & \cdots & x_{n, n}\end{array}\right) \in \mathbb{R}^{n \times n}$. Hence $M=A^{t} A$ has entries

$$
M_{i, j}=\sum_{k=1}^{n} x_{k, i} x_{k, j} .
$$

It follows that

$$
\frac{\partial M_{i, j}}{\partial x_{k, l}}=\delta_{l=i} x_{k, j}+\delta_{l=j} x_{k, i} .
$$

At the identity $A=I_{n}, x_{i, i}=1$ and $x_{i, j}=0$ if $i \neq j$, and hence, at the identity,

$$
\frac{\partial M_{i, j}}{\partial x_{k, l}}\left(I_{n}\right)=\delta_{l=i} \delta_{k=j}+\delta_{l=j} \delta_{k=i} .
$$

Since $F(A)=A^{t} A-I_{n}$ is symmetric, treat this as a map into the lower triangular coordinates, $i \geq j$. At the identity, $D F\left(I_{n}\right)$ has column corresponding to $x_{i, j}$ with $i \geq j$ equal to the standard basis vector at position i, j if $i>j$, and twice this vector if $i=j$. In particular, the minor of $D F\left(I_{n}\right)$ corresponding to the coordinates $x_{i, j}$ with $i \geq j$ is invertible. Since the map F is a polynomial, hence C^{∞}, the implicit function theorem applies to give an open set $V \subset \mathbb{R}^{\frac{n(n-1)}{2}}$ containing 0 identified with the coordinates $\left\{\epsilon_{i, j}\right\}$,
$1 \leq i<j \leq n$, and an open set $U \subset \operatorname{Mat}_{n \times n}(\mathbb{R})$ containing the identity, and a $C^{\infty} \operatorname{map} f: V \rightarrow \mathbb{R}^{\frac{n(n+1)}{2}}$ identified with $\left\{x_{i, j}\right\}, 1 \leq j \leq i \leq n$ such that f maps V onto $O_{n} \cap U$ as described in the problem statement.

Problem 4. Let $A \subset \mathbb{R}^{n}$ be open, containing 0 , and let $f: A \rightarrow \mathbb{R}$ be C^{r}. Prove the following multivariable Taylor's formula with integral remainder. If $\underline{x} \in \mathbb{R}^{n}$ is such that the line segment between $\underline{0}$ and \underline{x} is contained in A, then

$$
f(\underline{x})=\sum_{k=0}^{r-1} \sum_{j_{1}+\cdots+j_{n}=k} \frac{D_{1}^{j_{1}} \cdots D_{n}^{j_{n}} f(\underline{0}) x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}}{j_{1}!\cdots j_{n}!}+\int_{0}^{1} \frac{d^{r}}{d t^{r}} f(t \underline{x}) \frac{(1-t)^{r-1}}{(r-1)!} d t .
$$

(Hint: first calculate $\frac{d^{k}}{d t^{k}} f(t \underline{x})$. You may assume without proof the one dimensional version of Taylor's formula with integral remainder.)

Solution 4. The function $g(t)=f(t \underline{x})$ is C^{r} by the chain rule. Treating this function as a function of the single variable t,

$$
g(1)=f(\underline{x})=\sum_{k=0}^{r-1} \frac{g^{(k)}(\underline{0})}{k!} t^{k}+\int_{0}^{1} \frac{g^{(r)}(t)}{(r-1)!}(1-t)^{r-1} d t
$$

follows from the 1-dimensional Taylor's theorem with integral remainder, so it suffices to prove that

$$
\frac{g^{(k)}(t)}{k!}=\sum_{j_{1}+\cdots+j_{n}=k} \frac{D_{1}^{j_{1}} \cdots D_{n}^{j_{n}} f(t \underline{x}) x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}}{j_{1}!\cdots j_{n}!} .
$$

This is proved by induction.
The base case $k=0$ is trivial.
Assuming the validity for some $0 \leq k<r$, note that

$$
\frac{k!}{j_{1}!\cdots j_{n}!}
$$

is the number of words of length k containing letters of frequency $j_{1}, j_{2}, \ldots, j_{n}$. Since the mixed partials of order at most r commute, the identity may thus be rewritten

$$
g^{(k)}(t)=\sum_{s_{1}, s_{2}, \ldots, s_{k} \in\{1,2, \ldots, n\}} D_{s_{k}} D_{s_{k-1}} \cdots D_{s_{1}} f(t \underline{x}) x_{s_{1}} \cdots x_{s_{k}} .
$$

For differentiable H, the chain rule implies

$$
\frac{d}{d t} H(\underline{t x})=D H(t \underline{x})\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=D_{1} H(t \underline{x}) x_{1}+\cdots+D_{n} H(\underline{t}) x_{n} .
$$

Applying this to each term in the sum of $g^{(k)}(t)$,

$$
g^{(k+1)}(t)=\sum_{s_{k+1}=1}^{n} \sum_{s_{1}, \ldots, s_{k} \in\{1, \ldots, n\}} D_{s_{k+1}} D_{s_{k}} \cdots D_{s_{1}} f(t \underline{x}) x_{s_{1}} \cdots x_{s_{k}} x_{s_{k+1}},
$$

which proves the inductive step.

