MATH 322, SPRING 2019 FINAL EXAM

Solve problems 1 and 2, and four of problems 3-8. Each problem is worth 25 points.

Problem 1. Let $\omega=\ln \left(x^{2}+y^{2}+z^{2}\right) d x \wedge d y+\left(x^{2}+y^{2}+z^{2}\right) d x \wedge d z+$ $e^{x^{2}+y^{2}+z^{2}} d y \wedge d z$. Calculate $d \omega$.

Solution. We have

$$
\begin{aligned}
d \omega= & \frac{\partial}{\partial z}\left(\ln \left(x^{2}+y^{2}+z^{2}\right)\right) d z \wedge d x \wedge d y+\frac{\partial}{\partial y}\left(x^{2}+y^{2}+z^{2}\right) d y \wedge d x \wedge d z \\
& \quad+\frac{\partial}{\partial x}\left(e^{x^{2}+y^{2}+z^{2}}\right) d x \wedge d y \wedge d z \\
= & \left(\frac{2 z}{x^{2}+y^{2}+z^{2}}-2 y+2 x e^{x^{2}+y^{2}+z^{2}}\right) d x \wedge d y \wedge d z .
\end{aligned}
$$

Problem 2. Let $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be given by $\alpha(t)=\left(\begin{array}{c}t \\ t^{2} \\ \vdots \\ t^{n}\end{array}\right)$. Let $\omega=\sum_{i=1}^{n} x_{i} d x_{i}$. Calculate $\alpha^{*} \omega$.

Solution. We have

$$
\begin{aligned}
\alpha^{*} \omega & =\alpha^{*}\left(\sum_{i=1}^{n} x_{i} d x_{i}\right) \\
& =\sum_{i=1}^{n} \alpha_{i}(t) d \alpha_{i}(t) \\
& =\sum_{i=1}^{n} t^{i}\left(i t^{i-1}\right) d t \\
& =\sum_{i=1}^{n} i t^{2 i-1} d t
\end{aligned}
$$

Problem 3. Let M be a compact oriented n manifold with boundary in \mathbb{R}^{n} given the usual orientation. Let $\Theta_{n}=\frac{1}{n} \sum_{i=1}^{n}(-1)^{i-1} x_{i} d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots d x_{n}$, where the hat indicates that index i term is omitted. Prove that

$$
\int_{\partial M} \Theta_{n}=\operatorname{Vol}(M) .
$$

Let $\theta_{n}=\frac{1}{\|x\|^{n}} \Theta_{n}$ on $\mathbb{R}^{n} \backslash\{0\}$. Prove that θ_{n} is closed but not exact.
Solution. We have

$$
\begin{aligned}
d \Theta_{n} & =\frac{1}{n} \sum_{i=1}^{n}(-1)^{i-1} d x_{i} \wedge d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots d x_{n} \\
& =d x_{1} \wedge \cdots \wedge d x_{n} .
\end{aligned}
$$

Hence the first claim follows by Stokes' Theorem.
Write $\theta_{n}=\frac{1}{\|x\|^{n}} \wedge \Theta_{n}$ so that $d \theta_{n}=d\left(\frac{1}{\|x\|^{n}}\right) \wedge \Theta_{n}+\frac{1}{\|x\|^{n}} d \Theta_{n}$. Since $\|x\|=$ $\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$,

$$
d\left(\frac{1}{\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{\frac{n}{2}}}\right)=-\frac{n}{\|x\|^{n+2}} \sum_{i=1}^{n} x_{i} d x_{i} .
$$

It follows that

$$
\begin{aligned}
& d\left(\frac{1}{\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{\frac{n}{2}}}\right) \wedge \Theta_{n} \\
& =-\frac{1}{\|x\|^{n+2}} \sum_{i=1}^{n}(-1)^{i-1} x_{i}^{2} d x_{i} \wedge d x_{1} \wedge \cdots \wedge \widehat{d x_{i}} \wedge \cdots d x_{n} \\
& =-\frac{1}{\|x\|^{n}} d x_{1} \wedge \cdots \wedge d x_{n}
\end{aligned}
$$

Hence $d \theta_{n}=0$ and θ_{n} is closed. To prove that θ_{n} is not exact, let $S^{n-1}=$ $\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$ be the $n-1$ sphere and consider

$$
\int_{S^{n-1}} \theta_{n}=\int_{S^{n-1}} \Theta_{n} .
$$

By the previous part, this is the volume of the unit ball in \mathbb{R}^{n}. This shows that θ_{n} is not exact, since, otherwise, if $\theta_{n}=d \omega_{n}$, then $\int_{S^{n-1}} \theta_{n}=\int_{\partial S^{n-1}} \omega_{n}=0$ since ∂S^{n-1} is empty.

Problem 4. Given linearly independent vectors $\underline{v}_{1}, \ldots, \underline{v}_{n-1}$ in \mathbb{R}^{n}, let X be the $n \times(n-1)$ matrix with columns $\underline{v}_{1}, \ldots, \underline{v}_{n-1}$ and let X_{i} be the $(n-1) \times(n-1)$ matrix obtained by omitting row i. Prove that

$$
\underline{n}=\frac{1}{\sqrt{\operatorname{det} X^{t} X}} \sum_{i=1}^{n}(-1)^{i-1}\left(\operatorname{det} X_{i}\right) \underline{e}_{i}
$$

is the unit vector normal to the span of $\underline{v}_{1}, \ldots, \underline{v}_{n-1}$ which makes $\underline{n}, \underline{v}_{1}, \ldots, \underline{v}_{n}$ a right handed frame. Hence conclude that the unit normal vector field of an oriented $n-1$ manifold in \mathbb{R}^{n} is continuous.
Solution. Let $\underline{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$ and expand by the first column to find

$$
\begin{aligned}
\operatorname{det}\left(\underline{x}, \underline{v}_{1}, \cdots, \underline{v}_{n-1}\right) & =\sum_{i=1}^{n} x_{i}(-1)^{i-1} \operatorname{det} X_{i} \\
& =\underline{x} \cdot\left(\sum_{i=1}^{n}(-1)^{i-1}\left(\operatorname{det} X_{i}\right) \underline{e}_{i}\right) .
\end{aligned}
$$

It follows that the determinant is proportional to the component of \underline{x} in the direction \underline{n}, and hence that this vector is orthogonal to the span of $\underline{v}_{1}, \ldots, \underline{v}_{n-1}$. Since, by Cauchy-Schwarz from lecture,

$$
V(X)^{2}=\operatorname{det}\left(X^{t} X\right)=\sum_{i=1}^{n}\left(\operatorname{det} X_{i}\right)^{2},
$$

\underline{n} is a unit vector. Furthermore,

$$
\operatorname{det}\left(\underline{n}, \underline{v}_{1}, \cdots, \underline{v}_{n-1}\right)=V(X)>0
$$

so the frame is right handed.

Problem 5. Given a differential k form ω and a vector \underline{n}, define the contraction of ω by \underline{n} to be the $k-1$ form $\underline{n} \neg \omega$ given by

$$
\underline{n} \neg \omega\left(\underline{v}_{1}, \ldots, \underline{v}_{k-1}\right)=\omega\left(\underline{n}, \underline{v}_{1}, \ldots, \underline{v}_{k-1}\right) .
$$

If $\underline{n}=c_{1} \underline{e}_{1}+\cdots+c_{n} \underline{e}_{n}$ calculate $\underline{n} \neg d x_{1} \wedge \cdots \wedge d x_{n}$.
Solution. We have, for $i_{1}<i_{2}<\cdots<i_{n-1}=(1,2, \ldots, \hat{j}, \ldots, n)$

$$
\begin{aligned}
& x_{1} \wedge \cdots \wedge x_{n}\left(\sum_{i=1}^{n} c_{i} \underline{e}_{i}, \underline{e}_{i_{1}}, \cdots, \underline{e}_{i_{n-1}}\right) \\
& =c_{j} x_{1} \wedge \cdots \wedge x_{n}\left(\underline{e}_{j}, \underline{e}_{1}, \underline{e}_{2}, \cdots, \widehat{e}_{j}, \cdots, \underline{e}_{n}\right) \\
& =(-1)^{j-1} c_{j} .
\end{aligned}
$$

Hence,

$$
\underline{n} \neg d x_{1} \wedge \cdots \wedge d x_{n}=\sum_{j=1}^{n}(-1)^{j-1} c_{j} d x_{1} \wedge \cdots \wedge \widehat{d x}_{j} \wedge \cdots \wedge d x_{n} .
$$

Problem 6. Let $\omega=\left(x^{2}+y^{2}\right) d x \wedge d y+e^{x} d x \wedge d z+e^{y} d y \wedge d z$. Prove that $d \omega=0$ and find θ such that $d \theta=\omega$. Then calculate

$$
\int_{H} \omega
$$

where H is the upper hemisphere $x^{2}+y^{2}+z^{2}=1, z \geq 0$ oriented with upward pointing unit normal.
Solution. Let $\theta=\frac{-y^{3}}{3} d x+\frac{x^{3}}{3} d y+\left(e^{x}+e^{y}\right) d z$. Then $d \theta=-y^{2} d y \wedge d x+$ $x^{2} d x \wedge d y+e^{x} d x \wedge d z+e^{y} d y \wedge d z=\omega$. Since ω is exact, it is closed.

Let D be the disc $\left\{x^{2}+y^{2} \leq 1, z=0\right\}$ oriented by upward pointing unit normal. Then $H-D=\partial M$ where M is the enclosed volume. Since $d \omega=0$, $\int_{M} d \omega=0=\int_{H} \omega-\int_{D} \omega$, so it suffices to calculate $\int_{D} \omega$. Here $d z$ vanishes, so

$$
\int_{H} \omega=\int_{x^{2}+y^{2} \leq 1}\left(x^{2}+y^{2}\right) d x \wedge d y=\int_{0}^{2 \pi} \int_{0}^{1} r^{3} d r d \theta=\frac{\pi}{2}
$$

Problem 7. Let σ be a C^{∞} function of compact support on $\mathbb{R}, \int_{\mathbb{R}} \sigma=1$, and define for $t>0, \sigma_{t}(x)=t \sigma(x t)$. Let f be continuous, of compact support on \mathbb{R}. Define the convolution $f * \sigma(x)=\int_{y} f(y) \sigma(x-y)$. Prove that

$$
\frac{d}{d x}(f * \sigma)(x)=f * \sigma^{\prime}(x)
$$

and hence that $f * \sigma$ is C^{∞}. Furthermore, prove

$$
\lim _{t \rightarrow \infty} \sup _{x \in \mathbb{R}}\left|f(x)-f * \sigma_{t}(x)\right|=0
$$

and hence that f may be approximated uniformly by C^{∞} functions.
Solution. We have

$$
\begin{aligned}
& \frac{f * \sigma(x+\delta)-f * \sigma(x)}{\delta}-f * \sigma^{\prime}(x) \\
& =\int_{y} f(y)\left[\frac{\sigma(x+\delta-y)-\sigma(x-y)}{\delta}-\sigma^{\prime}(x-y)\right] d y
\end{aligned}
$$

By Taylor's theorem, $\left|\frac{\sigma(x+\delta-y)-\sigma(x-y)}{\delta}-\sigma^{\prime}(x-y)\right| \leq \frac{\delta}{2}\left\|\sigma^{\prime \prime}\right\|_{\infty}$. Since f is bounded on a compact interval, the limit as $\delta \rightarrow 0$ is 0 , which proves the first claim. It follows that by taking repeated derivatives this way, $f * \sigma$ is C^{∞}.
To prove the latter claim, write, using that $\int_{-\infty}^{\infty} \sigma_{t}(y) d y=1$,

$$
f * \sigma_{t}(x)-f(x)=\int_{-\infty}^{\infty}(f(x-y)-f(x)) \sigma_{t}(y) d y
$$

and, hence, by the triangle inequality,

$$
\begin{aligned}
\left|f * \sigma_{t}(x)-f(x)\right| & \leq \int_{-\infty}^{\infty}|f(x-y)-f(x)| \sigma_{t}(y) d y \\
& \leq \sup \left\{|f(x-y)-f(x)|: y \in \operatorname{supp} \sigma_{t}\right\}
\end{aligned}
$$

Since f is continuous on a compact set, it is uniformly continuous there. The claim now follows, since the support of σ_{t} tends to 0 as $t \rightarrow \infty$.

Problem 8. Let M_{1} be a compact oriented k manifold without boundary in \mathbb{R}^{m} and M_{2} a compact oriented ℓ manifold without boundary in \mathbb{R}^{n}. Prove that $M_{1} \times M_{2}=\left\{(\underline{x}, \underline{y}): \underline{x} \in M_{1}, \underline{y} \in M_{2}\right\}$ is a compact oriented $k+\ell$ manifold without boundary in \mathbb{R}^{n+m}, given the orientation of the product coordinates charts.

Let $\pi_{1}: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{m}$ be projection to the first m coordinates and π_{2} : $\mathbb{R}^{m+n} \rightarrow \mathbb{R}^{n}$ be projection to the last n coordinates. Let ω be a k form defined on an open set containing M_{1} and η be an ℓ form defined on an open set containing M_{2}. Prove that

$$
\int_{M_{1} \times M_{2}} \pi_{1}^{*} \omega \wedge \pi_{2}^{*} \eta=\int_{M_{1}} \omega \int_{M_{2}} \eta .
$$

Solution. Let $\alpha: U_{1} \rightarrow V_{1}$ be a coordinate chart of M_{1} and $\beta: U_{2} \rightarrow V_{2}$ be a coordinate chart of M_{2}, so that U_{1} is open in \mathbb{R}^{k} and U_{2} is open in \mathbb{R}^{ℓ}. Then $\alpha \times \beta: U_{1} \times U_{2} \rightarrow V_{1} \times V_{2}$ maps an open set of $\mathbb{R}^{k+\ell}$ to $M_{1} \times M_{2}$. Since

$$
D(\alpha \times \beta)=\left(\begin{array}{cc}
D \alpha & 0 \\
0 & D \beta
\end{array}\right),
$$

$D(\alpha \times \beta)$ has rank $k+\ell$. Also, $\alpha \times \beta$ has the minimum regularity of α and β. Continuity of the inverse function follows from $(\alpha \times \beta)^{-1}=\alpha^{-1} \times \beta^{-1}$. Thus $\alpha \times \beta$ is a coordinate chart, and the collection of charts covering M_{1} times those covering M_{2} cover $M_{1} \times M_{2}$. If α_{1} and α_{2} overlap positively with transition function $g_{\alpha_{1}, \alpha_{2}}$ and β_{1} and β_{2} overlap positively with transition function $g_{\beta_{1}, \beta_{2}}$, then $\alpha_{1} \times \beta_{1}$ and $\alpha_{2} \times \beta_{2}$ have transition function $g_{\alpha_{1}, \alpha_{2}} \times g_{\beta_{1}, \beta_{2}}$, and

$$
\operatorname{det} D\left(g_{\alpha_{1}, \alpha_{2}} \times g_{\beta_{1}, \beta_{2}}\right)=\operatorname{det} D g_{\alpha_{1}, \alpha_{2}} \times \operatorname{det} D g_{\beta_{1}, \beta_{2}}>0
$$

Thus $M_{1} \times M_{2}$ is oriented. Since M_{1}, M_{2} are closed and bounded, so is their product, which is compact. The coordinate charts all have open sets in $\mathbb{R}^{k+\ell}$, so $M_{1} \times M_{2}$ does not have a boundary. This proves the first set of claims.

Let $d x_{1}, \ldots, d x_{m}$ be dual to the standard basis vectors in \mathbb{R}^{m}, and $d y_{1}, \ldots, d y_{n}$ dual to the standard basis vectors in \mathbb{R}^{n}. By linearity, it suffices to consider the case that ω and η have support whose intersections with M_{1}, M_{2} is contained in a single coordinate patch. Also, we may assume that $\omega=f_{I}(x) d x_{I}$
and $\eta=g_{J}(y) d y_{J}$. Then $\pi_{1}^{*} \omega \wedge \pi_{2}^{*} \eta=f_{I}(x) g_{J}(y) d x_{I} \wedge d y_{J}$. Thus

$$
(\alpha \times \beta)^{*}\left(\pi_{1}^{*} \omega \wedge \pi_{2}^{*} \eta\right)=\left(f_{I} \circ \alpha\right)\left(g_{J} \circ \beta\right) \operatorname{det}\left(D \alpha_{I}\right) \operatorname{det}\left(D \beta_{J}\right) d z
$$

where $d z$ is the volume form on $\mathbb{R}^{k+\ell}$. The product claim now follows by Fubini's theorem.

