MATH 320, FALL 2017 PRACTICE MIDTERM 2

NOVEMBER 7

Each problem is worth 10 points.

Problem 1.

a. (4 points) State the Intermediate Value Theorem.
b. (6 points) Prove that a continuous function $f:[0,1] \rightarrow[0,1]$ has a fixed point x, satisfying $f(x)=x$.

Solution.

a. Let f be continuous on the interval $[a, b]$. For all y between $f(a)$ and $f(b)$ there is a point $c \in[a, b]$ such that $f(c)=y$.
b. Let $g(x)=f(x)-x$, which is continuous on $[0,1]$. Solving $f(x)=x$ is equivalent to solving $g(x)=0$. If $g(0)=0$ or $g(1)=0$ then we are done, so assume otherwise. Then $g(0)>0$ and $g(1)<0$, so that the Intermediate Value Theorem implies that there is $c \in(0,1)$ such that $g(c)=0$.

Problem 2.

a. (3 points) Let f be a real valued function on a metric space (S, d). State one of the two equivalent definitions of continuity of f at a point $x \in S$.
b. (7 points) Prove that a continuous function on a closed bounded interval $[a, b]$ is bounded.

Solution.

a. f is continuous at x if, for all $\epsilon>0$ there is $\delta>0$ such that if $y \in S$ and $d(x, y)<\delta$, then $|f(x)-f(y)|<\epsilon$.
b. Suppose that f is unbounded. Then for each integer $n \geq 1$ there exists a point $x_{n} \in[a, b]$ such that $\left|f\left(x_{n}\right)\right|>n$. By the Bolzano-Weierstrass Theorem, there is a convergent subsequence $\left\{x_{n_{k}}\right\}$, converging to $x \in$ $[a, b]$. Then $f\left(x_{n_{k}}\right) \rightarrow f(x)$ as $k \rightarrow \infty$ by continuity, so $\left|f\left(x_{n_{k}}\right)\right| \rightarrow$ $|f(x)|$, but this violates the fact that $f\left(x_{n_{k}}\right)$ is unbounded.

Problem 3. (10 points) State the alternating series test. Using this, or otherwise, prove that the limit

$$
\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{1}{n}-\log N\right)
$$

exists and is finite. (Remark: this number is called Euler's constant.)
Solution. The alternating series test states that if $\left\{a_{n}\right\}$ is a decreasing sequence of non-negative real numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$, then the series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges to a limit a, and the partial sums

$$
S_{N}=\sum_{n=1}^{N}(-1)^{n+1} a_{n}
$$

satisfy $\left|S_{N}-a\right| \leq a_{N+1}$.
To evaluate the limit, write $\log N=\int_{1}^{N} \frac{d t}{t}$. We give two methods to prove that the limit exists. First, write

$$
\sum_{n=1}^{N} \frac{1}{n}-\log N=\sum_{n=1}^{N-1}\left(\frac{1}{n}-\int_{n}^{n+1} \frac{d t}{t}\right)+\frac{1}{N} .
$$

Since $\lim \frac{1}{N}=0$, it suffices to prove that $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\int_{n}^{n+1} \frac{d t}{t}\right)$ converges. Note that $a_{n}=\frac{1}{n}-\int_{n}^{n+1} \frac{d t}{t}$ is a sequence of positive terms, so it suffices to prove that its sequence of partial sums is bounded. Since $0 \leq a_{n} \leq \frac{1}{n}-\frac{1}{n+1}$,

$$
\sum_{n=1}^{N-1} a_{n} \leq \sum_{n=1}^{N-1}\left(\frac{1}{n}-\frac{1}{n+1}\right)=1-\frac{1}{N}
$$

which is bounded.
To use the alternating series test instead, define a sequence

$$
a_{2 n-1}=\int_{n-\frac{1}{2}}^{n} \frac{1}{t}-\frac{1}{n} d t, \quad a_{2 n}=\int_{n}^{n+\frac{1}{2}} \frac{1}{n}-\frac{1}{t} d t .
$$

By splitting the integral into pieces of length $\frac{1}{2}$,

$$
\sum_{n=1}^{N} \frac{1}{n}-\int_{1}^{N} \frac{d t}{t}=1-\int_{1}^{\frac{3}{2}} \frac{d t}{t}+\sum_{n=2}^{N-1}\left(-a_{2 n-1}+a_{2 n}\right)+\frac{1}{N}-\int_{N-\frac{1}{2}}^{N} \frac{d t}{t}
$$

Notice that $\int_{N-\frac{1}{2}}^{N} \frac{d t}{t}<\frac{1}{2 N-1}$, which tends to 0 as $N \rightarrow \infty$, so it suffices to prove that the alternating series $\sum_{n=2}^{\infty}\left(-a_{2 n-1}+a_{2 n}\right)$ converges. Since $a_{n} \geq 0$ and $a_{n} \rightarrow 0$, it suffices to check that a_{n} is decreasing.
We use several times the that, for $0<\delta<x$,

$$
\begin{equation*}
\frac{1}{x-\delta}+\frac{1}{x+\delta}=\frac{2 x}{x^{2}-\delta^{2}} \tag{1}
\end{equation*}
$$

is increasing in δ. Write

$$
a_{2 n-1}-a_{2 n}=\int_{0}^{\frac{1}{2}} \frac{1}{n-t}-\frac{2}{n}+\frac{1}{n+t} d t=\int_{0}^{\frac{1}{2}} \frac{2 n}{n^{2}-t^{2}}-\frac{2}{n} d t>0 .
$$

Also

$$
\begin{aligned}
a_{2 n}-a_{2 n+1} & =\int_{0}^{\frac{1}{2}}\left(\frac{1}{n}-\frac{1}{n+\frac{1}{2}-t}\right)-\left(\frac{1}{n+\frac{1}{2}+t}-\frac{1}{n+1}\right) d t \\
& =\int_{0}^{\frac{1}{2}} \frac{1}{n}+\frac{1}{n+1}-\frac{1}{n+\frac{1}{2}-t}-\frac{1}{n+\frac{1}{2}+t} d t .
\end{aligned}
$$

The integrand is non-negative by considering $x=n+\frac{1}{2}$ and comparing $\delta=\frac{1}{2}$ and $\delta=t, 0 \leq t \leq \frac{1}{2}$ in (1).

Problem 4.

a. (3 points) State the definition of a countable set S.
b. (7 points) Prove that the set of sequences $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ with values in $\{0,1\}$ is uncountable.

Solution.

a. The set S is countable if there is an onto map $f: \mathbb{N} \rightarrow S$. Equivalently, S is countable if there is an one-to-one map $g: S \rightarrow \mathbb{N}$.
b. Suppose for contradiction that there is an onto map f from \mathbb{N} to the set S of sequences taking values in $\{0,1\}$. Indicate the image of $k \in \mathbb{N}$ under this map by $\left\{a_{n}^{(k)}\right\}_{n \in \mathbb{N}}$. Define sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ by $a_{n}=1-a_{n}^{(n)}$, which takes values in $\{0,1\}$. Then for all $k,\left\{a_{n}\right\}_{n \in \mathbb{N}} \neq\left\{a_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ since $a_{k} \neq a_{k}^{(k)}$. Hence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is not in the image of f, a contradiction.

