
MATH 320, FALL 2017 PRACTICE FINAL EXAM

DECEMBER 15

Each problem is worth 10 points.
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Problem 1.

a. (4 points) State the definition of a sequence of functions on an interval
[a, b] which converges uniformly to a function f .

b. (6 points) Prove that a sequence of functions {fn} on an interval [a, b]
which is uniformly Cauchy converges uniformly to a limit function f
on [a, b].

Solution.

a. {fn} converges uniformly to f if, for all ε > 0 there exists N such that
n > N implies

sup
x∈[a,b]

|fn(x)− f(x)| < ε.

b. For a fixed x ∈ [a, b],

|fn(x)− fm(x)| ≤ sup
y∈[a,b]

|fn(y)− fm(y)|,

so the sequence of real numbers {fn(x)} is Cauchy, and hence converges
to a real number f(x). To check that the pointwise convergence is in
fact uniform, given ε > 0, let N be such that m,n > N implies that
for all x ∈ [a, b],

|fm(x)− fn(x)| < ε

2
.

Let n→∞ to conclude that, for m > N and for all x ∈ [a, b],

|fm(x)− f(x)| ≤ ε

2
< ε

and hence fm → f uniformly.
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Problem 2. A function f on [a, b] is said to be convex on [a, b] if for any
a ≤ x < y ≤ b and for any 0 ≤ t ≤ 1,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

a. (4 points) Prove that if f is convex on [a, b], then for any a ≤ x < y ≤
z < w ≤ b,

f(y)− f(x)

y − x
≤ f(w)− f(z)

w − z
.

b. (6 points) Prove that if f is convex on [a, b], then it is integrable there.
(Hint: you may use, without proof, that an increasing function on an
interval [a, b] is integrable.)

Solution.

a. Assume 0 < t < 1, c < d and write the equation of convexity as

t (f(tc+ (1− t)d)− f(c)) ≤ (1− t) (f(d)− f(tc+ (1− t)d)) ,

or, equivalently,

f(tc+ (1− t)d)− f(c)

(1− t)(d− c)
≤ f(d)− f(tc+ (1− t)d)

t(d− c)
.

Applying this with t = z−y
z−x , c = x, d = z gives tc + (1 − t)d = y, and

thus
f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
.

Applying the inequality again, now with c = y, d = w and t = w−z
w−y ,

gives tc+ (1− t)d = z and thus

f(z)− f(y)

z − y
≤ f(w)− f(z)

w − z
.

Combining the two yields

f(y)− f(x)

y − x
≤ f(w)− f(z)

w − z
.
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b. We first check that f is bounded on [a, b]. By convexity, for x ∈ [a, b],
f(x) ≤ max(f(a), f(b)) so f is bounded above. To prove that f is
bounded below, note that the graph of f on [a, a+b2 ] is bounded below

by the line through (a+b2 , f(a+b2 )) and (b, f(b)), while for x ∈ [a+b2 , b],
the graph of f is bounded below by the line through (a, f(a)) and
(a+b2 , f(a+b2 )). Hence f is bounded.

Let M > 0 be such that |f(x)| ≤ M for x ∈ [a, b]. Given ε > 0, let
a0 = min(a+ ε

6M , b) and b0 = max(a0, b− ε
6M ). Since any pair of upper

and lower Darboux sums differ by at most ε
3 on [a, a0] and on [b0, b], it

suffices to check that f is integrable on [a0, b0], which we may assume
is a non-degenerate interval. For a0 ≤ x < y ≤ b0,

f(y)− f(x)

y − x
≥ f(a0)− f(a)

a0 − a
:= L.

Hence F (x) = f(x)−Lx is increasing on [a0, b0], hence integrable there.
It follows that f(x) is integrable there, also.
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Problem 3.

a. (7 points) A sequence {an}∞n=0 is defined recursively by

a0 = 0, a1 = 1

an+1 = 5an − 6an−1, n ≥ 1.

Define f(x) =
∑∞

n=0 anx
n. Find a closed form expression for f(x) and

determine it’s radius of convergence.
b. (3 points) Determine, with proof, the value a1000.

Solution.

a. It’s straightforward to check by induction that, for all n, |an| ≤ 11n.
Hence the series has radius of convergence at least 1

11 and converges

absolutely for |x| < 1
11 . For these x, applying the recurrence relation

and justifying the manipulations by absolute convergence,

f(x) =
∞∑
n=1

anx
n

= x+
∞∑
n=2

(5an−1 − 6an−2)x
n

= x+ 5xf(x)− 6x2f(x)

and hence (6x2 − 5x+ 1)f(x) = x or

f(x) =
x

(2x− 1)(3x− 1)
=

1

1− 3x
− 1

1− 2x
.

Since the power series for f(x) and the geometric series 1
1−3x and 1

1−2x
all have radius of convergence at least 1

11 about 0, differentiating n
times and setting x = 0 determines the coefficients term-by-term, so
an = 3n − 2n. Thus the full radius of convergence of f(x) is 1

3 .
b. 31000 − 21000.



6 DECEMBER 15

Problem 4.

a. (4 points) Let f be defined on [0, 1] by f(x) = 1 if x is rational, f(x) = 0
otherwise. Prove that f is not Riemann integrable.

b. (6 points) Let f be defined on [0, 1] by f(x) = 1
q if x = p

q is rational in

lowest terms, f(x) = 0 otherwise. Prove that
∫ 1

0 f(x)dx = 0.

Solution.

a. It follows from the Archimedean property of the real numbers that ev-
ery non-empty interval contains both rational and irrational numbers.
Hence, for any partition of [0, 1] the upper Darboux integral is 1 while
the lower Darboux integral is 0, so f is not integrable.

b. The number of rationals in [0, 1] with denominator in lowest terms at
most q is no more than q2 + 1. For fixed q, form a partition of [0, 1]
by including the endpoints of each interval of length 1

2q centered at
each rational in lowest terms of denominator at most q. Outside these
intervals, f is bounded by 1

q , so that the upper Darboux integral is

bounded by q2+1
2q + 1

q . Note that the lower Darboux integral is 0 for all

partitions by arguing as in part a. Letting q → ∞, q2+1
2q + 1

q → 0, so
the integral exists and is 0.
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Problem 5. Determine the following limits.

a. (5 points)

lim
x→0

cosx− 1

x− log(1 + x)
.

b. (5 points)

lim
N→∞

1

N

N−1∑
j=0

1

1 +
(
j
N

)2 .
Solution.

a. Since cos 0 = 1 and log 1 = 0 the limit is indeterminant of type 0
0 .

Applying l’Hospital, differentiating top and bottom yields limx→0
− sinx
1− 1

1+x

.

Again, sin 0 = 0 the denominator has value 0 at 0 also. Hence the limit
is indeterminant of type 0

0 , so applying l’Hospital one further time
yields

lim
x→0

− cosx
1

(1+x)2

= −1.

b. The function 1
1+x2 is continuous, hence integrable on [0, 1]. The object

in the limit is the upper Darboux sum for a partition of [0, 1] into N
equal size intervals, and hence, since the mesh size tends to 0, the limit
is the integral, which is∫ 1

0

dx

1 + x2
= arctanx

∣∣∣1
0

=
π

4
.
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Problem 6.

a. (4 points) Find the degree 3 Taylor polynomial of ee
x−1 about x = 0.

b. (6 points) Prove that the radius of convergence of the Taylor series for
ee

x−1 is at least 1.

Solution.

a. Write, using Taylor expansion, ex−1 = x+ x2

2 + x3

6 +O(x4) where O(x4)
denotes a quantity bounded in size by a constant times x4 as x → 0.
Then (ex−1)2 = x2 +x3 +O(x4) and (ex−1)3 = x3 +O(x4). Note that
u = ex − 1 tends to 0 as x→ 0 and ex − 1 = O(x) as x→ 0. Hence,

eu = 1 + u+
u2

2
+
u3

6
+O(u4)

= 1 +

(
x+

x2

2
+
x3

6

)
+

1

2
(x2 + x3) +

1

6
x3 +O(x4)

= 1 + x+ x2 +
5

6
x3 +O(x4)

so the degree 3 Taylor polynomial is 1 + x+ x2 + 5
6x

3.
b. Let Pn(u) be a sequence of polynomials such that(

d

dx

)n (
ee

x−1) = ee
x−1Pn(e

x).

Differentiating, using the chain and product rules, proves the recur-
rence relation

P0(u) = 1, Pn+1(u) = u(Pn(u) + P ′n(u)).

The Taylor series of ee
x−1 about 0 is

∞∑
n=0

Pn(1)

n!
xn.

The recurrence condition guarantees that Pn is a polynomial with non-
negative integer coefficients, of degree at most n. We check by induction
that, for all n, the sum of the coefficients of Pn, which is equal to Pn(1),
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is at most n!, so that the radius of convergence is at least 1. Indeed,
P0(1) = 1 = 0!, and for n ≥ 0, P ′n(1) ≤ nPn(1), so

Pn+1(1) = Pn(1) + P ′n(1) ≤ (n+ 1)Pn(1) ≤ (n+ 1)!

by invoking the inductive assumption.


