MATH 320, FALL 2017 PRACTICE FINAL EXAM

DECEMBER 15

Each problem is worth 10 points.

Problem 1.

a. (4 points) State the definition of a sequence of functions on an interval $[a, b]$ which converges uniformly to a function f.
b. (6 points) Prove that a sequence of functions $\left\{f_{n}\right\}$ on an interval $[a, b]$ which is uniformly Cauchy converges uniformly to a limit function f on $[a, b]$.

Solution.

a. $\left\{f_{n}\right\}$ converges uniformly to f if, for all $\epsilon>0$ there exists N such that $n>N$ implies

$$
\sup _{x \in[a, b]}\left|f_{n}(x)-f(x)\right|<\epsilon
$$

b. For a fixed $x \in[a, b]$,

$$
\left|f_{n}(x)-f_{m}(x)\right| \leq \sup _{y \in[a, b]}\left|f_{n}(y)-f_{m}(y)\right|
$$

so the sequence of real numbers $\left\{f_{n}(x)\right\}$ is Cauchy, and hence converges to a real number $f(x)$. To check that the pointwise convergence is in fact uniform, given $\epsilon>0$, let N be such that $m, n>N$ implies that for all $x \in[a, b]$,

$$
\left|f_{m}(x)-f_{n}(x)\right|<\frac{\epsilon}{2}
$$

Let $n \rightarrow \infty$ to conclude that, for $m>N$ and for all $x \in[a, b]$,

$$
\left|f_{m}(x)-f(x)\right| \leq \frac{\epsilon}{2}<\epsilon
$$

and hence $f_{m} \rightarrow f$ uniformly.

Problem 2. A function f on $[a, b]$ is said to be convex on $[a, b]$ if for any $a \leq x<y \leq b$ and for any $0 \leq t \leq 1$,

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

a. (4 points) Prove that if f is convex on $[a, b]$, then for any $a \leq x<y \leq$ $z<w \leq b$,

$$
\frac{f(y)-f(x)}{y-x} \leq \frac{f(w)-f(z)}{w-z} .
$$

b. (6 points) Prove that if f is convex on $[a, b]$, then it is integrable there. (Hint: you may use, without proof, that an increasing function on an interval $[a, b]$ is integrable.)

Solution.

a. Assume $0<t<1, c<d$ and write the equation of convexity as

$$
t(f(t c+(1-t) d)-f(c)) \leq(1-t)(f(d)-f(t c+(1-t) d))
$$

or, equivalently,

$$
\frac{f(t c+(1-t) d)-f(c)}{(1-t)(d-c)} \leq \frac{f(d)-f(t c+(1-t) d)}{t(d-c)} .
$$

Applying this with $t=\frac{z-y}{z-x}, c=x, d=z$ gives $t c+(1-t) d=y$, and thus

$$
\frac{f(y)-f(x)}{y-x} \leq \frac{f(z)-f(y)}{z-y} .
$$

Applying the inequality again, now with $c=y, d=w$ and $t=\frac{w-z}{w-y}$, gives $t c+(1-t) d=z$ and thus

$$
\frac{f(z)-f(y)}{z-y} \leq \frac{f(w)-f(z)}{w-z} .
$$

Combining the two yields

$$
\frac{f(y)-f(x)}{y-x} \leq \frac{f(w)-f(z)}{w-z} .
$$

b. We first check that f is bounded on $[a, b]$. By convexity, for $x \in[a, b]$, $f(x) \leq \max (f(a), f(b))$ so f is bounded above. To prove that f is bounded below, note that the graph of f on $\left[a, \frac{a+b}{2}\right]$ is bounded below by the line through $\left(\frac{a+b}{2}, f\left(\frac{a+b}{2}\right)\right)$ and $(b, f(b))$, while for $x \in\left[\frac{a+b}{2}, b\right]$, the graph of f is bounded below by the line through $(a, f(a))$ and $\left(\frac{a+b}{2}, f\left(\frac{a+b}{2}\right)\right)$. Hence f is bounded.

Let $M>0$ be such that $|f(x)| \leq M$ for $x \in[a, b]$. Given $\epsilon>0$, let $a_{0}=\min \left(a+\frac{\epsilon}{6 M}, b\right)$ and $b_{0}=\max \left(a_{0}, b-\frac{\epsilon}{6 M}\right)$. Since any pair of upper and lower Darboux sums differ by at most $\frac{\epsilon}{3}$ on $\left[a, a_{0}\right]$ and on $\left[b_{0}, b\right]$, it suffices to check that f is integrable on $\left[a_{0}, b_{0}\right]$, which we may assume is a non-degenerate interval. For $a_{0} \leq x<y \leq b_{0}$,

$$
\frac{f(y)-f(x)}{y-x} \geq \frac{f\left(a_{0}\right)-f(a)}{a_{0}-a}:=L
$$

Hence $F(x)=f(x)-L x$ is increasing on $\left[a_{0}, b_{0}\right]$, hence integrable there. It follows that $f(x)$ is integrable there, also.

Problem 3.

a. (7 points) A sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is defined recursively by

$$
\begin{aligned}
& a_{0}=0, \quad a_{1}=1 \\
& a_{n+1}=5 a_{n}-6 a_{n-1}, \quad n \geq 1 .
\end{aligned}
$$

Define $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Find a closed form expression for $f(x)$ and determine it's radius of convergence.
b. (3 points) Determine, with proof, the value a_{1000}.

Solution.

a. It's straightforward to check by induction that, for all $n,\left|a_{n}\right| \leq 11^{n}$. Hence the series has radius of convergence at least $\frac{1}{11}$ and converges absolutely for $|x|<\frac{1}{11}$. For these x, applying the recurrence relation and justifying the manipulations by absolute convergence,

$$
\begin{aligned}
f(x) & =\sum_{n=1}^{\infty} a_{n} x^{n} \\
& =x+\sum_{n=2}^{\infty}\left(5 a_{n-1}-6 a_{n-2}\right) x^{n} \\
& =x+5 x f(x)-6 x^{2} f(x)
\end{aligned}
$$

and hence $\left(6 x^{2}-5 x+1\right) f(x)=x$ or

$$
f(x)=\frac{x}{(2 x-1)(3 x-1)}=\frac{1}{1-3 x}-\frac{1}{1-2 x} .
$$

Since the power series for $f(x)$ and the geometric series $\frac{1}{1-3 x}$ and $\frac{1}{1-2 x}$ all have radius of convergence at least $\frac{1}{11}$ about 0 , differentiating n times and setting $x=0$ determines the coefficients term-by-term, so $a_{n}=3^{n}-2^{n}$. Thus the full radius of convergence of $f(x)$ is $\frac{1}{3}$.
b. $3^{1000}-2^{1000}$.

Problem 4.

a. (4 points) Let f be defined on $[0,1]$ by $f(x)=1$ if x is rational, $f(x)=0$ otherwise. Prove that f is not Riemann integrable.
b. (6 points) Let f be defined on $[0,1]$ by $f(x)=\frac{1}{q}$ if $x=\frac{p}{q}$ is rational in lowest terms, $f(x)=0$ otherwise. Prove that $\int_{0}^{1} f(x) d x=0$.

Solution.

a. It follows from the Archimedean property of the real numbers that every non-empty interval contains both rational and irrational numbers. Hence, for any partition of $[0,1]$ the upper Darboux integral is 1 while the lower Darboux integral is 0 , so f is not integrable.
b. The number of rationals in $[0,1]$ with denominator in lowest terms at most q is no more than $q^{2}+1$. For fixed q, form a partition of $[0,1]$ by including the endpoints of each interval of length $\frac{1}{2^{q}}$ centered at each rational in lowest terms of denominator at most q. Outside these intervals, f is bounded by $\frac{1}{q}$, so that the upper Darboux integral is bounded by $\frac{q^{2}+1}{2^{q}}+\frac{1}{q}$. Note that the lower Darboux integral is 0 for all partitions by arguing as in part a. Letting $q \rightarrow \infty, \frac{q^{2}+1}{2^{q}}+\frac{1}{q} \rightarrow 0$, so the integral exists and is 0 .

Problem 5. Determine the following limits.
a. (5 points)

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x-\log (1+x)}
$$

b. (5 points)

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N-1} \frac{1}{1+\left(\frac{j}{N}\right)^{2}}
$$

Solution.

a. Since $\cos 0=1$ and $\log 1=0$ the limit is indeterminant of type $\frac{0}{0}$. Applying l'Hospital, differentiating top and bottom yields $\lim _{x \rightarrow 0} \frac{-\sin x}{1-\frac{1}{1+x}}$. Again, $\sin 0=0$ the denominator has value 0 at 0 also. Hence the limit is indeterminant of type $\frac{0}{0}$, so applying l'Hospital one further time yields

$$
\lim _{x \rightarrow 0} \frac{-\cos x}{\frac{1}{(1+x)^{2}}}=-1 .
$$

b. The function $\frac{1}{1+x^{2}}$ is continuous, hence integrable on $[0,1]$. The object in the limit is the upper Darboux sum for a partition of $[0,1]$ into N equal size intervals, and hence, since the mesh size tends to 0 , the limit is the integral, which is

$$
\int_{0}^{1} \frac{d x}{1+x^{2}}=\left.\arctan x\right|_{0} ^{1}=\frac{\pi}{4} .
$$

Problem 6.

a. (4 points) Find the degree 3 Taylor polynomial of $e^{e^{x}-1}$ about $x=0$.
b. (6 points) Prove that the radius of convergence of the Taylor series for $e^{e^{x}-1}$ is at least 1 .

Solution.

a. Write, using Taylor expansion, $e^{x}-1=x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+O\left(x^{4}\right)$ where $O\left(x^{4}\right)$ denotes a quantity bounded in size by a constant times x^{4} as $x \rightarrow 0$. Then $\left(e^{x}-1\right)^{2}=x^{2}+x^{3}+O\left(x^{4}\right)$ and $\left(e^{x}-1\right)^{3}=x^{3}+O\left(x^{4}\right)$. Note that $u=e^{x}-1$ tends to 0 as $x \rightarrow 0$ and $e^{x}-1=O(x)$ as $x \rightarrow 0$. Hence,

$$
\begin{aligned}
e^{u} & =1+u+\frac{u^{2}}{2}+\frac{u^{3}}{6}+O\left(u^{4}\right) \\
& =1+\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{6}\right)+\frac{1}{2}\left(x^{2}+x^{3}\right)+\frac{1}{6} x^{3}+O\left(x^{4}\right) \\
& =1+x+x^{2}+\frac{5}{6} x^{3}+O\left(x^{4}\right)
\end{aligned}
$$

so the degree 3 Taylor polynomial is $1+x+x^{2}+\frac{5}{6} x^{3}$.
b. Let $P_{n}(u)$ be a sequence of polynomials such that

$$
\left(\frac{d}{d x}\right)^{n}\left(e^{e^{x}-1}\right)=e^{e^{x}-1} P_{n}\left(e^{x}\right)
$$

Differentiating, using the chain and product rules, proves the recurrence relation

$$
P_{0}(u)=1, \quad P_{n+1}(u)=u\left(P_{n}(u)+P_{n}^{\prime}(u)\right) .
$$

The Taylor series of $e^{e^{x}-1}$ about 0 is

$$
\sum_{n=0}^{\infty} \frac{P_{n}(1)}{n!} x^{n} .
$$

The recurrence condition guarantees that P_{n} is a polynomial with nonnegative integer coefficients, of degree at most n. We check by induction that, for all n, the sum of the coefficients of P_{n}, which is equal to $P_{n}(1)$,
is at most $n!$, so that the radius of convergence is at least 1 . Indeed, $P_{0}(1)=1=0$!, and for $n \geq 0, P_{n}^{\prime}(1) \leq n P_{n}(1)$, so

$$
P_{n+1}(1)=P_{n}(1)+P_{n}^{\prime}(1) \leq(n+1) P_{n}(1) \leq(n+1)!
$$

by invoking the inductive assumption.

