MATH 320, FALL 2017 PRACTICE FINAL EXAM

DECEMBER 15

Each problem is worth 10 points.

Problem 1.

a. (4 points) State the definition of a sequence of functions on an interval $[a, b]$ which converges uniformly to a function f.
b. (6 points) Prove that a sequence of functions $\left\{f_{n}\right\}$ on an interval $[a, b]$ which is uniformly Cauchy converges uniformly to a limit function f on $[a, b]$.

Problem 2. A function f on $[a, b]$ is said to be convex on $[a, b]$ if for any $a \leq x<y \leq b$ and for any $0 \leq t \leq 1$,

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y) .
$$

a. (4 points) Prove that if f is convex on $[a, b]$, then for any $a \leq x<y \leq$ $z<w \leq b$,

$$
\frac{f(y)-f(x)}{y-x} \leq \frac{f(w)-f(z)}{w-z} .
$$

b. (6 points) Prove that if f is convex on $[a, b]$, then it is integrable there. (Hint: you may use, without proof, that an increasing function on an interval $[a, b]$ is integrable.)

Problem 3.

a. (7 points) A sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is defined recursively by

$$
\begin{aligned}
& a_{0}=0, \quad a_{1}=1 \\
& a_{n+1}=5 a_{n}-6 a_{n-1}, \quad n \geq 1 .
\end{aligned}
$$

Define $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Find a closed form expression for $f(x)$ and determine its radius of convergence.
b. (3 points) Determine, with proof, the value a_{1000}.

Problem 4.

a. (4 points) Let f be defined on $[0,1]$ by $f(x)=1$ if x is rational, $f(x)=0$ otherwise. Prove that f is not Riemann integrable.
b. (6 points) Let f be defined on $[0,1]$ by $f(x)=\frac{1}{q}$ if $x=\frac{p}{q}$ is rational in lowest terms, $f(x)=0$ otherwise. Prove that $\int_{0}^{1} f(x) d x=0$.

Problem 5. Determine the following limits.
a. (5 points)

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x-\log (1+x)}
$$

b. (5 points)

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N-1} \frac{1}{1+\left(\frac{j}{N}\right)^{2}} .
$$

Problem 6.

a. (4 points) Find the degree 3 Taylor polynomial of $e^{e^{x}-1}$ about $x=0$.
b. (6 points) Prove that the radius of convergence of the Taylor series for $e^{e^{x}-1}$ is at least 1.

Hint: Define a sequence of polynomials $P_{n}(u)$ such that $\left(\frac{d}{d x}\right)^{n} e^{e^{x}}=$ $e^{e^{x}} P_{n}\left(e^{x}\right) . P_{n}(1)$ is the sum of the coefficients.
(The actual radius of convergence is ∞. This is most easily checked with complex analysis.)

