MATH 320, FALL 2017 MIDTERM 2

NOVEMBER 7

Each problem is worth 10 points.

Problem 1.

a. (3 points) Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Define $\limsup _{n \rightarrow \infty} a_{n}$.
b. (7 points) Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ be sequences of real numbers. Assume that $\limsup a_{n}$ and $\limsup b_{n}$ are finite. Prove that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n} .
$$

Give an example where equality does not hold.

Solution.

a. Define for integer $N \geq 1, s_{N}=\sup \left\{a_{n}: n \geq N\right\}$. If $s_{N}=\infty$ for all N then $\lim \sup _{n \rightarrow \infty} a_{n}=\infty$. Otherwise, $\lim \sup _{n \rightarrow \infty} a_{n}=\lim _{N \rightarrow \infty} s_{N}$.
b. For integer $N \geq 1$, let

$$
s_{N}=\sup \left\{a_{n}: n \geq N\right\}, \quad t_{N}=\sup \left\{b_{n}: n \geq N\right\},
$$

and assume that N is sufficiently large so that both of these suprema are finite. Since s_{N} is an upper bound for $\left\{a_{n}: n \geq N\right\}$ and t_{N} is an upper bound for $\left\{b_{n}: n \geq N\right\}, s_{N}+t_{N}$ is an upper bound for $\left\{a_{n}+b_{n}: n \geq N\right\}$, so

$$
r_{N}=\sup \left\{a_{n}+b_{n}: n \geq N\right\}
$$

satisfies $r_{N} \leq s_{N}+t_{N}$. Hence

$$
\begin{aligned}
\lim \sup \left(a_{n}+b_{n}\right) & =\lim _{N \rightarrow \infty} r_{N} \\
& \leq \lim _{N \rightarrow \infty}\left(s_{N}+t_{N}\right)=\lim \sup a_{n}+\lim \sup b_{n} .
\end{aligned}
$$

An example in which equality does not hold is

$$
a_{n}=\left\{\begin{array}{cc}
1 & n \text { odd } \\
0 & n \text { even }
\end{array}, \quad b_{n}=\left\{\begin{array}{cc}
0 & n \text { odd } \\
1 & n \text { even }
\end{array} .\right.\right.
$$

Then $\limsup a_{n}=\lim \sup b_{n}=1$, while $\lim \sup \left(a_{n}+b_{n}\right)=1$.

Problem 2.

a. (3 points) State the definition of a metric d on a set S.
b. (7 points) Given two points $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\underline{y}=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{R}^{n}, the ℓ^{1} and ℓ^{∞} distances between \underline{x} and \underline{y} are

$$
d_{1}(\underline{x}, \underline{y})=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|, \quad d_{\infty}(\underline{x}, \underline{y})=\max \left\{\left|x_{i}-y_{i}\right|, i=1, \ldots, n\right\} .
$$

Check that the ℓ^{1} and ℓ^{∞} distances are metrics on \mathbb{R}^{n}, then check that a sequence $\left\{\underline{x}_{k}\right\}_{k \in \mathbb{N}}$ of elements of \mathbb{R}^{n} converges in the ℓ^{1} metric if and only if it converges in the ℓ^{∞} metric.

Solution.

a. A metric d is a function $d: S \times S \rightarrow \mathbb{R}_{\geq 0}$ satisfying
i. For all $x \in S, d(x, x)=0$, and for all $x \neq y$ in $S, d(x, y)>0$.
ii. For all x, y in $S, d(x, y)=d(y, x)$.
iii. The triangle inequality holds: for all x, y, z in $S, d(x, z) \leq d(x, y)+$ $d(y, z)$.
b. ℓ^{1} metric:
i. By non-negativity of the absolute value,

$$
d_{1}(\underline{x}, \underline{y})=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|=0
$$

if and only if $x_{i}=y_{i}$ for all i, that is, if and only if $\underline{x}=\underline{y}$. Otherwise $d_{1}(\underline{x}, \underline{y})>0$.
ii.

$$
d_{1}(\underline{x}, \underline{y})=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|=\sum_{i=1}^{n}\left|y_{i}-x_{i}\right|=d_{1}(\underline{y}, \underline{x}) .
$$

iii. By the triangle inequality on \mathbb{R}^{1},

$$
\begin{aligned}
d_{1}(\underline{x}, \underline{z}) & =\sum_{i=1}^{n}\left|x_{i}-z_{i}\right| \\
& \leq \sum_{i=1}^{n}\left(\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|\right)=d_{1}(\underline{x}, \underline{y})+d_{1}(\underline{y}, \underline{z}) .
\end{aligned}
$$

ℓ^{∞} metric:
i. $d_{\infty}(\underline{x}, \underline{y})=\max _{i}\left\{\left|x_{i}-y_{i}\right|\right\}=0$ if and only if $\left|x_{i}-y_{i}\right|=0$ for all i, which holds if and only if $x_{i}=y_{i}$ for all i, that is $\underline{x}=\underline{y}$. Otherwise $d_{\infty}(\underline{x}, \underline{y})>0$.
ii. Since $\left|x_{i}-y_{i}\right|=\left|y_{i}-x_{i}\right|, d_{\infty}(\underline{x}, \underline{y})=d_{\infty}(\underline{y}, \underline{x})$.
iii. In $d_{\infty}(\underline{x}, \underline{z})$, let $\left|x_{i}-z_{i}\right|$ obtain the maximum. By the triangle inequality on \mathbb{R}^{1},

$$
\begin{aligned}
d_{\infty}(\underline{x}, \underline{z}) & =\left|x_{i}-z_{i}\right| \\
& \leq\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right| \leq d_{\infty}(\underline{x}, \underline{y})+d_{\infty}(\underline{y}, \underline{z}) .
\end{aligned}
$$

The inequality

$$
d_{\infty}(\underline{x}, \underline{y}) \leq d_{1}(\underline{x}, \underline{y}) \leq n d_{\infty}(\underline{x}, \underline{y})
$$

implies that $\lim _{k \rightarrow \infty} d_{\infty}\left(\underline{x}_{k}, \underline{x}\right)=0$ if and only if $\lim _{k \rightarrow \infty} d_{1}\left(\underline{x}_{k}, \underline{x}\right)=0$, so $\left\{\underline{x}_{k}\right\}_{k \in \mathbb{N}}$ converges in d_{1} if and only if it converges in d_{∞}.

Problem 3. The binomial coefficients are defined for integers $0 \leq k \leq n$ by $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
a. (5 points) Decide, with proof, whether the series $\sum_{n=1}^{\infty} \frac{1}{\binom{2 n}{n}}$ converges.
b. (5 points) Prove that $\frac{\binom{2 n}{n}}{2^{2 n}} \rightarrow 0$ as $n \rightarrow \infty$.
[Hint: first check that $\frac{\left({ }_{2}^{2 n}\right)}{2^{2 n}}=\frac{2 n-1}{2 n} \cdot \frac{2 n-3}{2 n-2} \cdots \cdots \frac{1}{2}$.]

Solution.

a. We check that the series converges by the ratio test. For $n \geq 1$,

$$
\frac{\binom{2 n}{n}}{\binom{2 n+2}{n+1}}=\frac{(n+1)^{2}}{(2 n+2)(2 n+1)} \rightarrow \frac{1}{4}<1
$$

as $n \rightarrow \infty$, so that the condition of the ratio test is met.
b. We first check the identity for $\frac{\binom{2 n}{n}}{2^{2 n}}$ by induction.

Base case $(n=1)$: We have $\frac{\binom{2}{1}}{2^{2}}=\frac{1}{2}$ as wanted. Inductive step: Assume for some $n \geq 1$ that

$$
\frac{\binom{2 n}{n}}{2^{2 n}}=\frac{2 n-1}{2 n} \cdot \frac{2 n-3}{2 n-2} \cdots \cdot \frac{1}{2}
$$

Then

$$
\begin{aligned}
\frac{\binom{2 n+2}{n+1}}{2^{2 n+2}} & =\frac{(2 n+2)(2 n+1)}{4(n+1)^{2}} \cdot \frac{\binom{2 n}{n}}{2^{2 n}} \\
& =\frac{2 n+1}{2 n+2} \cdot \frac{2 n-1}{2 n} \cdots \cdot \frac{1}{2}
\end{aligned}
$$

completing the inductive step.
Let, for $n \geq 2$,

$$
\begin{aligned}
s_{n} & =\frac{2 n-1}{2 n} \cdot \frac{2 n-3}{2 n-2} \cdots \cdot \frac{1}{2}=\frac{\binom{2 n}{n}}{2^{2 n}} \\
t_{n} & =\frac{2 n-2}{2 n-1} \cdot \frac{2 n-4}{2 n-3} \cdots \cdot \frac{2}{3}
\end{aligned}
$$

Note that the product defining t_{n} has one fewer term than that defining s_{n}. By comparing term-by-term,

$$
t_{n}>s_{n}>\frac{1}{2} t_{n} .
$$

Also, both sequences are bounded below, and decreasing, hence converge to a non-negative limit. Let $s_{n} \rightarrow s, t_{n} \rightarrow t$. Then $s_{n} t_{n} \rightarrow s t$. But $s_{n} t_{n}$ is a telescoping product, equal to $\frac{1}{2 n}$, so $s t=0$. The inequalities imply $t \geq s \geq \frac{t}{2}$ and hence $s=t=0$.

Problem 4. (10 points) Prove that a continuous function on a closed bounded interval $[a, b]$ is uniformly continuous.
Solution. Suppose for contradiction that f is continuous, but not uniformly continuous on $[a, b]$. Let $\epsilon>0$ violate the definition of uniform continuity for f. Hence there are sequences of points $\left\{x_{n}\right\}_{n \in \mathbb{N}},\left\{y_{n}\right\}_{n \in \mathbb{N}}$ in $[a, b]$ with $\left|x_{n}-y_{n}\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon$. By the Bolzano-Weierstrass Theorem there is a subsequence $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ which converges to $x \in[a, b]$. By the triangle inequality,

$$
\left|x-y_{n_{k}}\right| \leq\left|x-x_{n_{k}}\right|+\left|x_{n_{k}}-y_{n_{k}}\right| \leq\left|x-x_{n_{k}}\right|+\frac{1}{n_{k}}
$$

tends to 0 as $k \rightarrow \infty$, so $y_{n_{k}} \rightarrow x$, also. By continuity of f at $x, f\left(x_{n_{k}}\right) \rightarrow f(x)$ and $f\left(y_{n_{k}}\right) \rightarrow f(x)$, so $\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right| \rightarrow 0$, a contradiction.

