MATH 320, FALL 2017 MIDTERM 2

NOVEMBER 7

Each problem is worth 10 points.

Problem 1.

a. (3 points) Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of real numbers. Define $\limsup a_{n}$.

$$
n \rightarrow \infty
$$

b. (7 points) Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ be sequences of real numbers. Assume that $\limsup a_{n}$ and $\lim \sup b_{n}$ are finite. Prove that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}
$$

Give an example where equality does not hold.

Problem 2.

a. (4 points) State the definition of a metric d on a set S.
b. (6 points) Given two points $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\underline{y}=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{R}^{n}, the ℓ^{1} and ℓ^{∞} distances between \underline{x} and \underline{y} are

$$
d_{1}(\underline{x}, \underline{y})=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|, \quad d_{\infty}(\underline{x}, \underline{y})=\max \left\{\left|x_{i}-y_{i}\right|, i=1, \ldots, n\right\} .
$$

Check that the ℓ^{1} and ℓ^{∞} distances are metrics on \mathbb{R}^{n}, then check that a sequence $\left\{\underline{x}_{k}\right\}_{k \in \mathbb{N}}$ of elements of \mathbb{R}^{n} converges in the ℓ^{1} metric if and only if it converges in the ℓ^{∞} metric.

Problem 3. The binomial coefficients are defined for integers $0 \leq k \leq n$ by $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
a. (5 points) Decide, with proof, whether the series $\sum_{n=1}^{\infty} \frac{1}{\binom{2 n}{n}}$ converges.

[Hint: first check that $\frac{\left(\frac{2 n}{2 n}\right)}{2^{2 n}}=\frac{2 n-1}{2 n} \cdot \frac{2 n-3}{2 n-2} \cdots \cdots \frac{1}{2}$.]

Problem 4. (10 points) Prove that a continuous function on a closed bounded interval $[a, b]$ is uniformly continuous.

