MATH 307, FALL 2020 PRACTICE MIDTERM 2 SOLUTIONS

OCTOBER 26

Each problem is worth 10 points.

Problem 1. Find all critical points of $f(x, y)=x^{4}-x^{2}+y^{2}$ and determine if each is a local min, a local max or a saddle point.

Solution. We have

$$
\nabla f(x, y)=\binom{4 x^{3}-2 x}{2 y}
$$

Thus the critical points are $(0,0)$ and $\left(\pm \frac{1}{\sqrt{2}}, 0\right)$. The Hessian is $\left(\begin{array}{cc}12 x^{2}-2 & 0 \\ 0 & 2\end{array}\right)$. Thus $(0,0)$ is a saddle point and the other critical points are local minima.

Problem 2.

a. Maximize $x^{3}+2 y^{3}$ on $\left\{x^{2}+y^{2} \leq 1\right\}$.
b. Maximize $x^{3}+y$ on $\left\{x^{2}+y^{2}=1\right\}$.

Solution.

a. Let $f(x, y)=x^{3}+2 y^{3}$ so that $\nabla f(x, y)=\binom{3 x^{2}}{6 y^{2}}$. Thus the only critical point is at $(0,0)$ with value 0 , but this is neither a max nor min as there are positive and negative points in any neighborhood of $(0,0)$. Thus the max or min appears on $\left\{x^{2}+y^{2}=1\right\}$. By Lagrange multipliers, an extreme point satisfies

$$
\binom{3 x^{2}}{6 y^{2}}=\lambda\binom{2 x}{2 y}
$$

or $\left(\frac{x}{y}\right)^{2}=2\left(\frac{x}{y}\right)$ or $x=0$ or $y=0$. This obtains the potential solutions $(0, \pm 1),(\pm 1,0),\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right),\left(-\frac{2}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right)$. The maximum is 2 at $(0,1)$.
b. By Lagrange multipliers,

$$
\binom{3 x^{2}}{1}=\lambda\binom{x}{y}
$$

Thus either $x=0$ and $y= \pm 1$ or $3 x y=1$. In the latter case $(x+y)^{2}=$ $\frac{5}{3},(x-y)^{2}=\frac{1}{3}$. The maximum is evidently obtained with x, y positive, so we may assume $(x+y)=\sqrt{\frac{5}{3}}$. This obtains the candidates

$$
x=\frac{\sqrt{5} \pm 1}{2 \sqrt{3}}, \quad y=\frac{\sqrt{5} \mp 1}{2 \sqrt{3}} .
$$

The maximum among these candidates is $\left(\frac{\sqrt{5}+1}{2 \sqrt{3}}, \frac{\sqrt{5}-1}{2 \sqrt{3}}\right)$ with value $\frac{1+5 \sqrt{5}}{6 \sqrt{3}}$.

Problem 3. Determine if the function

$$
f(x, y)= \begin{cases}\frac{x^{3}-y^{3}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

is continuous and differentiable at 0 .
Solution. If $x^{2}+y^{2}=\delta>0$, then $|x|^{3} \leq \delta^{\frac{3}{2}}$ and $|y|^{3} \leq \delta^{\frac{3}{2}}$ so $\left|\frac{x^{3}-y^{3}}{x^{2}+y^{2}}\right| \leq 2 \delta^{\frac{1}{2}}$, which tends to 0 as $\delta \rightarrow 0$. Thus f is continuous at 0 .

We will check that f is not differentiable at 0 . Its matrix of partial derivatives is given by $\left(\begin{array}{ll}1 & -1\end{array}\right)$. Let $u=\binom{u_{1}}{u_{2}}$ be a unit vector. If f were differentiable, the directional derivative in direction u would be $u_{1}-u_{2}$. However,

$$
\lim _{t \rightarrow 0} \frac{f(t u)-f(0)}{t}=\lim _{t \rightarrow 0} u_{1}^{3}-u_{2}^{3}
$$

This is a contradiction.

Problem 4. Let $f(x, y, z)=\binom{e^{x y z}}{x y}$, and $g(u, v)=u^{2}+v^{2}$. Calculate f^{\prime}, g^{\prime} and $(g \circ f)^{\prime}$.

Solution. We have

$$
f^{\prime}(x, y, z)=\left(\begin{array}{ccc}
y z e^{x y z} & x z e^{x y z} & x y e^{x y z} \\
y & x & 0
\end{array}\right), \quad g^{\prime}(u, v)=\left(\begin{array}{cc}
2 u & 0 \\
0 & 2 v
\end{array}\right)
$$

Thus

$$
\begin{aligned}
(g \circ f)^{\prime}(x, y, z) & =g^{\prime}(f(x, y, z)) f^{\prime}(x, y, z) \\
& =\left(\begin{array}{cc}
2 e^{x y z} & 0 \\
0 & 2 x y
\end{array}\right)\left(\begin{array}{ccc}
y z e^{x y z} & x z e^{x y z} & x y e^{x y z} \\
y & x & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
2 y z e^{2 x y z} & 2 x z e^{2 x y z} & 2 x y e^{2 x y z} \\
2 x y^{2} & 2 x^{2} y & 0
\end{array}\right) .
\end{aligned}
$$

Problem 5. Let $F(u, v)=\binom{u^{3}-v^{3}}{3 u^{2} v}$. Find $F^{\prime}(1,2)$ and $\left(F^{-1}\right)^{\prime}(-7,6)$.
Solution. We have

$$
F^{\prime}(u, v)=\left(\begin{array}{cc}
3 u^{2} & -3 v^{2} \\
6 u v & 3 u^{2}
\end{array}\right), \quad F^{\prime}(1,2)=\left(\begin{array}{cc}
3 & -12 \\
12 & 3
\end{array}\right) .
$$

By the inverse function theorem, since F^{\prime} is non-singular, F has a local inverse at $F(1,2)=(-7,6)$. The derivative satisfies

$$
\left(F^{-1}\right)^{\prime}(-7,6)=\left(F^{\prime}(1,2)\right)^{-1}=\frac{1}{153}\left(\begin{array}{cc}
3 & 12 \\
-12 & 3
\end{array}\right) .
$$

Problem 6. Find the volume of the largest rectangular solid with sides parallel to the coordinate planes, which fits inside $\frac{x^{2}}{9}+\frac{y^{2}}{4}+z^{2}=1$.
Solution. This is equivalent to maximizing $8 x y z$ subject to $\frac{x^{2}}{9}+\frac{y^{2}}{4}+z^{2}=1$. Substitute $x_{1}=3 x, y_{1}=2 y, z_{1}=z$ so that this becomes maximize $48 x_{1} y_{1} z_{1}$ subject to $x_{1}^{2}+y_{1}^{2}+z_{1}^{2}=1$. By Lagrange multipliers, the optimum is attained where

$$
\left(\begin{array}{l}
y_{1} z_{1} \\
x_{1} z_{1} \\
x_{1} y_{1}
\end{array}\right)=\lambda\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right) .
$$

We may assume $x_{1}, y_{1}, z_{1} \geq 0$, and thus all three must be equal to obtain the optimum, thus all equal to $\frac{1}{\sqrt{3}}$. The optimum is thus $\frac{16}{\sqrt{3}}$.

