MATH 307, FALL 2020 PRACTICE MIDTERM 1 SOLUTIONS

SEPTEMBER 28

Each problem is worth 10 points.

Problem 1. Determine the distance between $\left(\begin{array}{l}4 \\ 0 \\ 0\end{array}\right)$ and the line $\ell(t)=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+$ $t\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$.
Solution. The distance is equal to the distance from $\left(\begin{array}{c}3 \\ -1 \\ 0\end{array}\right)$ to the line through 0 with direction $u=\left(\begin{array}{c}\frac{2}{\sqrt{5}} \\ 0 \\ \frac{1}{\sqrt{5}}\end{array}\right)$. The component of $\left(\begin{array}{c}3 \\ -1 \\ 0\end{array}\right)$ in direction u is $\left(\begin{array}{c}\frac{12}{5} \\ 0 \\ \frac{6}{5}\end{array}\right)$, and the component orthogonal is $\left(\begin{array}{c}\frac{3}{5} \\ -1 \\ \frac{-6}{5}\end{array}\right)$. Thus the distance to the line is $d^{2}=\frac{9}{25}+1+\frac{36}{25}$ or $d=\sqrt{\frac{14}{5}}$.

Problem 2. Express $u=\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$ as a component parallel to $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and a component perpendicular.
Solution. Let $w=\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$. Thus the component in the direction of $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
is $(u \cdot w) w=\left(\begin{array}{c}\frac{3}{2} \\ 0 \\ \frac{3}{2}\end{array}\right)$ and the component orthogonal is $\left(\begin{array}{c}\frac{1}{2} \\ 0 \\ -\frac{1}{2}\end{array}\right)$.

Problem 3. For each of the linear systems below, express the system in row-reduced form and give the solution set.
a.

$$
\begin{aligned}
x+2 z & =7 \\
2 x+y+z & =3 \\
y+2 z & =1 .
\end{aligned}
$$

b.

$$
\begin{aligned}
x+y+z & =10 \\
2 x+y & =7 .
\end{aligned}
$$

Solution. a. The following systems are equivalent

$$
\begin{aligned}
\left(\begin{array}{lll|l}
1 & 0 & 2 & 7 \\
2 & 1 & 1 & 3 \\
0 & 1 & 2 & 1
\end{array}\right) & \equiv\left(\begin{array}{ccc|c}
1 & 0 & 2 & 7 \\
0 & 1 & -3 & -11 \\
0 & 1 & 2 & 1
\end{array}\right) \\
& \equiv\left(\begin{array}{ccc|c}
1 & 0 & 2 & 7 \\
0 & 1 & -3 & -11 \\
0 & 0 & 5 & 12
\end{array}\right) \\
& \equiv\left(\begin{array}{ccc|c}
1 & 0 & 2 & 7 \\
0 & 1 & -3 & -11 \\
0 & 0 & 1 & \frac{12}{5}
\end{array}\right) \\
& \equiv\left(\begin{array}{lll|l}
1 & 0 & 0 & \frac{11}{5} \\
0 & 1 & 0 & -\frac{19}{5} \\
0 & 0 & 1 & \frac{12}{5}
\end{array}\right)
\end{aligned}
$$

Hence $x=\frac{11}{5}, y=\frac{-19}{5}, z=\frac{12}{5}$.
b. The following systems are equivalent

$$
\begin{aligned}
\left(\begin{array}{lll|l}
1 & 1 & 1 & 10 \\
2 & 1 & 0 & 7
\end{array}\right) & \equiv\left(\begin{array}{ccc|c}
1 & 1 & 1 & 10 \\
0 & -1 & -2 & -13
\end{array}\right) \\
& \equiv\left(\begin{array}{ccc|c}
1 & 0 & -1 & -3 \\
0 & 1 & 2 & 13
\end{array}\right)
\end{aligned}
$$

Hence the solution set is

$$
\left\{\left(\begin{array}{c}
z-3 \\
-2 z+13 \\
z
\end{array}\right): z \in \mathbb{R}\right\}
$$

Problem 4.

a. Calculate the inverse matrix of

$$
\left(\begin{array}{lll}
3 & 1 & 1 \\
2 & 0 & 1 \\
1 & 1 & 1
\end{array}\right) .
$$

b. Calculate the determinant

$$
\operatorname{det}\left(\begin{array}{lll}
3 & 1 & 1 \\
2 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Solution. a. The following matrices are equivalent

$$
\begin{aligned}
&\left(\begin{array}{lll|lll}
3 & 1 & 1 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \equiv\left(\begin{array}{ccc|ccc}
2 & 0 & 0 & 1 & 0 & -1 \\
1 & -1 & 0 & 0 & 1 & -1 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \equiv\left(\begin{array}{ccc|ccc}
2 & 0 & 0 & 1 & 0 & -1 \\
-1 & 1 & 0 & 0 & -1 & 1 \\
2 & 0 & 1 & 0 & 1 & 0
\end{array}\right) \\
& \equiv\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\
0 & 1 & 0 & \frac{1}{2} & -1 & \frac{1}{2} \\
0 & 0 & 1 & -1 & 1 & 1
\end{array}\right) . \\
& \text { Thus the inverse is }\left(\begin{array}{ccc}
\frac{1}{2} & 0 & -\frac{1}{2} \\
\frac{1}{2} & -1 & \frac{1}{2} \\
-1 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

b. We have

$$
\operatorname{det}\left(\begin{array}{lll}
3 & 1 & 1 \\
2 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & -1 & 0 \\
1 & 1 & 1
\end{array}\right)=-2 .
$$

Problem 5. Find the equation of the plane through

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
3 \\
0
\end{array}\right) .
$$

Solution. The two vectors $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 3 \\ 0\end{array}\right)$ are parallel to the plane, so their cross product

$$
n=\operatorname{det}\left(\begin{array}{ccc}
\underline{i} & \underline{j} & \underline{k} \\
1 & 1 & 1 \\
-1 & 3 & 0
\end{array}\right)=\left(\begin{array}{c}
-3 \\
-1 \\
4
\end{array}\right)
$$

is orthogonal to it. Thus the plane has equation

$$
-3 x-y+4 z=-3 .
$$

Problem 6. Find the equation of the plane tangent to $2 x^{2}+2 y^{2}-z^{2}=12$ at $\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right)$.
Solution. Let $f(x, y, z)=2 x^{2}+2 y^{2}-z^{2}-12$. Then $\nabla f=\left(\begin{array}{c}4 x \\ 4 y \\ -2 z\end{array}\right)$. Thus

$$
\nabla f(2,2,2)=\left(\begin{array}{c}
8 \\
8 \\
-4
\end{array}\right)
$$

so the equation of the tangent plane is $8 x+8 y-4 z=24$.

