# MATH 307, FALL 2020 PRACTICE FINAL SOLUTION 

DECEMBER 9

Each problem is worth 10 points.

Problem 1. Determine the eigenvalues and eigenvectors of $\left(\begin{array}{ccc}1 & 2 & 0 \\ 2 & 3 & -1 \\ 0 & -1 & 1\end{array}\right)$.
Solution. Let $\lambda^{\prime}+1=\lambda$. The characteristic polynomial is

$$
P\left(\lambda^{\prime}\right)=\operatorname{det}\left(\begin{array}{ccc}
-\lambda^{\prime} & 2 & 0 \\
2 & 2-\lambda^{\prime} & -1 \\
0 & -1 & -\lambda^{\prime}
\end{array}\right)=-\lambda^{\prime}\left(\lambda^{\prime 2}-2 \lambda^{\prime}-5\right) .
$$

Thus the eigenvalues are $\lambda^{\prime}=0$ and $\lambda^{\prime}=1 \pm \sqrt{6}$ or $\lambda=1$ and $\lambda=2 \pm \sqrt{6}$.
The eigenvalue corresponding to $\lambda=1$ is in the null space of $\left(\begin{array}{ccc}0 & 2 & 0 \\ 2 & 2 & -1 \\ 0 & -1 & 0\end{array}\right)$ and hence is a multiple of $\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$. The eigenvector of $\lambda=2 \pm \sqrt{6}$ is in the null space of $\left(\begin{array}{ccc}-1 \mp \sqrt{6} & 2 & 0 \\ 2 & 1 \mp \sqrt{6} & -1 \\ 0 & -1 & -1 \mp \sqrt{6}\end{array}\right)$. Thus $v$ is a multiple of $\left(\begin{array}{c}\frac{2}{-1 \mp \sqrt{6}} \\ \frac{1}{-1} \\ -1 \mp \sqrt{6}\end{array}\right)$.

## Problem 2.

a. Calculate a potential function for $\mathbb{F}=\left(\begin{array}{c}\frac{-y}{x^{2}+y^{2}}+y z e^{x y z} \\ \frac{x}{x^{2}+y^{2}}+x z e^{x y z} \\ x y e^{x y z}+2 z\end{array}\right)$.
b. Calculate div $F$.
c. Let $\gamma(t)=\left(\begin{array}{c}1 \\ t^{2} \\ t^{10}\end{array}\right)$ for $0 \leq t \leq 1$. Calculate $\int_{\gamma} \mathbb{F} \cdot d x$.

Solution.
a. $f(x, y, z)=\arctan \left(\frac{y}{x}\right)+e^{x y z}+z^{2}$.
b. $\operatorname{div} \mathbb{F}=\left(x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}\right) e^{x y z}+2$.
c. Since the field is conservative this is $f(1,1,1)-f(1,0,0)=\arctan (1)+$ $e+1-\arctan (0)-1=\frac{\pi}{4}+e$.

## Problem 3.

a. Let $\mathbb{F}(x, y, z)=\left(\begin{array}{l}x^{3} \\ y^{3} \\ z^{3}\end{array}\right)$. Calculate $\operatorname{div} \mathbb{F}$ and $\operatorname{curl} \mathbb{F}$.
b. Determine an outward pointing normal vector $N$ to the surface $S=$ $\left\{x^{2}+y^{2}+z^{2}=1\right\}$ and calculate

$$
\int_{S} \mathbb{F} \cdot N d \sigma
$$

## Solution.

a. $\operatorname{div} \mathbb{F}=3 x^{2}+3 y^{2}+3 z^{2}, \operatorname{curl} \mathbb{F}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
b. The gradient of $x^{2}+y^{2}+z^{2}$ is in the direction $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$, which is a unit vector.
c. Let $B$ be the unit ball. By the divergence theorem

$$
\begin{aligned}
\int_{S} \mathbb{F} \cdot N d \sigma & =\int_{B} \operatorname{div} \mathbb{F} d V \\
& =\int_{x^{2}+y^{2}+z^{2} \leq 1} 3\left(x^{2}+y^{2}+z^{2}\right) d V \\
& =3 \int_{0}^{1} \rho^{4} d \rho \int_{0}^{\pi} \sin \phi d \phi \int_{0}^{2 \pi} d \theta \\
& =\frac{12 \pi}{5}
\end{aligned}
$$

Problem 4. Calculate the outward flux through the surface of the cylinder $C=\left\{(x, y, z): x^{2}+y^{2} \leq 1,-1 \leq z \leq 1\right\}$ of the field $\mathbb{F}(x, y, z)=\left(\begin{array}{c}x \\ y \\ e^{x y}\end{array}\right)$.
Solution. The unit normals of the top and bottom of the cylinder point in the opposite $z$ direction, so these integrals cancel. This leaves the flux through the curved part of the cylinder. Here the unit normal points radially in the $x y$ plane, and $F \cdot N=1$. Thus the total flux is $4 \pi$.

## Problem 5.

a. Given the curve $\gamma(t)=\left(\begin{array}{c}t \\ t^{2} \\ \frac{2}{3} t^{3}\end{array}\right)$. Calculate the unit tangent vector $T(t)$, the principal normal vector $N(t)$ and the binormal $B(t)$.
b. Find the length of the curve between $0 \leq t \leq 1$.

## Solution.

a. We have $\gamma^{\prime}(t)=\left(\begin{array}{c}1 \\ 2 t \\ 2 t^{2}\end{array}\right)$, so $\left\|\gamma^{\prime}\right\|=\sqrt{1+4 t^{2}+4 t^{4}}=\left(2 t^{2}+1\right)$. Thus

$$
T(t)=\frac{1}{2 t^{2}+1}\left(\begin{array}{c}
1 \\
2 t \\
2 t^{2}
\end{array}\right)
$$

Differentiating,

$$
T^{\prime}(t)=\frac{1}{\left(2 t^{2}+1\right)^{2}}\left(\begin{array}{c}
-4 t \\
-4 t^{2}+2 \\
4 t
\end{array}\right)
$$

and hence

$$
N(t)=\frac{1}{2 t^{2}+1}\left(\begin{array}{c}
-2 t \\
-2 t^{2}+1 \\
2 t
\end{array}\right) .
$$

We have

$$
\begin{aligned}
B(t) & =T(t) \times N(t) \\
& =\frac{1}{\left(2 t^{2}+1\right)^{2}} \operatorname{det}\left(\begin{array}{ccc}
i & j & k \\
1 & 2 t & 2 t^{2} \\
-2 t & -2 t^{2}+1 & 2 t
\end{array}\right) \\
& =\frac{1}{2 t^{2}+1}\left(\begin{array}{c}
2 t^{2} \\
-2 t \\
1
\end{array}\right) .
\end{aligned}
$$

b. The arc length is

$$
\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\| d t=\int_{0}^{1} 2 t^{2}+1 d t=\frac{5}{3}
$$

Problem 6. The distance $y(t)$ covered by a falling body of mass $m$ in time $t$ subject to atmospheric resistance satisfies

$$
\frac{d^{2} y}{d t^{2}}+\frac{k}{m} \frac{d y}{d t}=g
$$

where $g$ is the gravitational constant and $k$ is a friction coefficient.
a. Show that the law of motion satisfies

$$
y(t)=c_{1}+c_{2} e^{-\frac{k t}{m}}+\frac{m g}{k} t .
$$

b. Determine $c_{1}$ and $c_{2}$ such that $y(0)=y_{0}, y^{\prime}(0)=v_{0}$.

## Solution.

a. The system has particular solution $y_{p}=\frac{m g}{k} t$. The homogeneous system is $\left(D+\frac{k}{m}\right) D y=0$, which has homogeneous solution $c_{1}+c_{2} e^{-\frac{k}{m} t}$. This obtains the solution.
b. We have $y(0)=c_{1}+c_{2}=y_{0}, y^{\prime}(0)=\frac{m g}{k}-\frac{k}{m} c_{2}=v_{0}$, so

$$
c_{2}=\frac{m}{k}\left(\frac{m g}{k}-v_{0}\right), \quad c_{1}=y_{0}-c_{2} .
$$

Problem 7. Find the closest point to $(1,2)$ of the ellipse

$$
x^{2}+4 y^{2}=1
$$

Solution. The distance function squared is $(x-1)^{2}+(y-2)^{2}$. By Lagrange multipliers, the optimal point satisfies

$$
\binom{x-1}{y-2}=\lambda\binom{x}{4 y}
$$

or $4 y(x-1)=x(y-2)$ or $3 x y+2 x-4 y=0$. Let $u=x+2 y, v=x-2 y$. We have

$$
\begin{aligned}
& \left(x^{2}+4 x y+4 y^{2}\right)+\frac{8}{3}(x-2 y)=u^{2}+\frac{8}{3} v=1 \\
& \left(x^{2}-4 x y+4 y^{2}\right)-\frac{8}{3}(x-2 y)=v^{2}-\frac{8}{3} v=1 .
\end{aligned}
$$

The latter equation has solutions $v=-\frac{1}{3}$ and $v=3$. Since $u^{2}+v^{2}=2$ on the ellipse, we conclude $v=-\frac{1}{3}$. Thus $u= \pm \frac{\sqrt{17}}{3}$. We have $x=\frac{u+v}{2}=$ $\frac{ \pm \sqrt{17}-1}{6}, y=\frac{u-v}{4}=\frac{ \pm \sqrt{17}+1}{12}$. The minimum occurs at the positive solution, $\left(\frac{\sqrt{17}-1}{6}, \frac{\sqrt{17}+1}{12}\right)$.

Problem 8. Find the tangent plane and a normal vector to the surface $x^{2}+2 y^{2}-z^{2}=2$ at $(1,1,1)$.
Solution. The gradient of the level curve is $\left(\begin{array}{c}2 x \\ 4 y \\ -2 z\end{array}\right)=\left(\begin{array}{c}2 \\ 4 \\ -2\end{array}\right)$. The equation of the tangent plane is $2(x-1)+4(y-1)-2(z-1)=0$ or $2 x+4 y-2 z=4$.

Problem 9. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ and $G: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be given by

$$
F(x, y, z)=\left(\begin{array}{c}
x y \\
y z \\
z x \\
x^{2}+y^{2}+z^{2}
\end{array}\right), \quad G(s, t, u, v)=\binom{s^{2}+t^{2}}{u^{2}-v^{2}} .
$$

Calculate $F^{\prime}, G^{\prime}$ and $(G \circ F)^{\prime}$.
Solution. We have

$$
F^{\prime}=\left(\begin{array}{ccc}
y & x & 0 \\
0 & z & y \\
z & 0 & x \\
2 x & 2 y & 2 z
\end{array}\right) .
$$

We have

$$
G^{\prime}=\left(\begin{array}{cccc}
2 s & 2 t & 0 & 0 \\
0 & 0 & 2 u & -2 v
\end{array}\right) .
$$

We have, by the chain rule,

$$
\begin{aligned}
& (G \circ F)^{\prime}(x, y, z)=G^{\prime}(F(x, y, z)) F^{\prime}(x, y, z) \\
& =\left(\begin{array}{cccc}
2 x y & 2 y z & 0 & 0 \\
0 & 0 & 2 z x & -2\left(x^{2}+y^{2}+z^{2}\right)
\end{array}\right)\left(\begin{array}{ccc}
y & x & 0 \\
0 & z & y \\
z & 0 & x \\
2 x & 2 y & 2 z
\end{array}\right) \\
& =\left(\begin{array}{ccc}
2 x y^{2} & 2 x^{2} y+2 y z^{2} & 2 y^{2} z \\
2 z^{2} x-4 x\left(x^{2}+y^{2}+z^{2}\right) & -4 y\left(x^{2}+y^{2}+z^{2}\right) & 2 z x^{2}-4 z\left(x^{2}+y^{2}+z^{2}\right)
\end{array}\right) .
\end{aligned}
$$

