MATH 307, FALL 2020 MIDTERM 2 SOLUTIONS

OCTOBER 26

Each problem is worth 10 points.

Problem 1. Find all critical points of $f(x, y)=x^{4}+x y+y^{2}$ and determine if each is a max, min, or saddle point.
Solution. At a critical point

$$
\nabla f(x, y)=\binom{4 x^{3}+y}{x+2 y}=0
$$

Thus $y=-\frac{x}{2}$ and $4 x^{3}-\frac{x}{2}=0$ so either $x=0, y=0$ or $x= \pm \frac{\sqrt{2}}{4}, y=\mp \frac{\sqrt{2}}{8}$. The Hessian is

$$
H_{f}=\left(\begin{array}{cc}
12 x^{2} & 1 \\
1 & 2
\end{array}\right)
$$

so that $D=24 x^{2}-1$. This is negative at $(0,0)$, which is a saddle point, and positive at $\left(\pm \frac{\sqrt{2}}{4}, \mp \frac{\sqrt{2}}{8}\right)$, which is a local minimum since $f_{x x}>0$.

Problem 2. Find the point closest to $\left(\begin{array}{l}2 \\ 3 \\ 7\end{array}\right)$ on $S=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=\right.$ $1\}$.
Solution. Let R be the rotation about the origin which carries $\left(\begin{array}{l}2 \\ 3 \\ 7\end{array}\right)$ to $\left(\begin{array}{c}\sqrt{62} \\ 0 \\ 0\end{array}\right)$. The closest point to this point on the sphere is $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, and hence, by rotational symmetry, the closest point on the sphere to $\left(\begin{array}{l}2 \\ 3 \\ 7\end{array}\right)$ is $\frac{1}{\sqrt{62}}\left(\begin{array}{l}2 \\ 3 \\ 7\end{array}\right)$.

Problem 3. Determine whether each limit exists.
a.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}-3 x^{2} y+y^{3}}{x^{2}+y^{2}}
$$

b.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-2 y^{2}}{x^{2}+y^{2}}
$$

Solution.

a. When $x^{2}+y^{2}=\delta,\left|x^{3}-3 x^{2} y+y^{3}\right| \leq 5 \delta^{\frac{3}{2}}$, and hence the limit is 0 .
b. When $y=0, \lim _{x \rightarrow 0} \frac{x^{2}-2 y^{2}}{x^{2}+y^{2}}=1$, while when $x=0, \lim _{y \rightarrow 0} \frac{x^{2}-2 y^{2}}{x^{2}+y^{2}}=-2$. Since the limits are not equal, the limit as $(x, y) \rightarrow(0,0)$ together does not exist.

Problem 4. Find a vector normal to the surface $x y z=1000$ at $\left(\begin{array}{c}20 \\ 5 \\ 10\end{array}\right)$. Find the equation of a tangent plane at the point. In a neighborhood of the point, z is a function of x and y. Find z_{x} and z_{y}.
Solution. Let $g(x, y, z)=x y z$. Then $\nabla g(x, y, z)=\left(\begin{array}{c}y z \\ x z \\ x y\end{array}\right)=\left(\begin{array}{c}50 \\ 200 \\ 100\end{array}\right)$, which is a normal vector. Thus the tangent plane has equation

$$
50(x-20)+200(y-5)+100(z-10)=0 .
$$

We have $z=\frac{1000}{x y}$. Thus

$$
z_{x}=-\frac{1000}{x^{2} y}, \quad z_{y}=-\frac{1000}{x y^{2}} .
$$

Problem 5. Let $f(u, v)=\left(\begin{array}{c}u^{3}-v^{3} \\ u^{3}+v^{3} \\ 3 u^{2} v\end{array}\right), g(x, y, z)=\binom{x y}{y z}$. Calculate f^{\prime}, g^{\prime} and $(g \circ f)^{\prime}$.
Solution. We have $f^{\prime}(u, v)=\left(\begin{array}{cc}3 u^{2} & -3 v^{2} \\ 3 u^{2} & 3 v^{2} \\ 6 u v & 3 u^{2}\end{array}\right)$ and $g^{\prime}(x, y, z)=\left(\begin{array}{lll}y & x & 0 \\ 0 & z & y\end{array}\right)$. Thus

$$
\begin{aligned}
(g \circ f)^{\prime}(u, v) & =g^{\prime}(f(u, v)) f^{\prime}(u, v) \\
& =\left(\begin{array}{ccc}
u^{3}+v^{3} & u^{3}-v^{3} & 0 \\
0 & 3 u^{2} v & u^{3}+v^{3}
\end{array}\right)\left(\begin{array}{cc}
3 u^{2} & -3 v^{2} \\
3 u^{2} & 3 v^{2} \\
6 u v & 3 u^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
6 u^{5} & -6 v^{5} \\
15 u^{4} v+6 u v^{4} & 12 u^{2} v^{3}+3 u^{5}
\end{array}\right)
\end{aligned}
$$

Problem 6. Find the derivative of $F(x, y, z)=\left(\begin{array}{c}x^{2}+y^{2}+z^{2} \\ 2 x y z \\ x^{3}+2 z^{3}\end{array}\right)$. Calculate $F^{\prime}(1,2,1)$ and $\left(F^{-1}\right)^{\prime}(6,4,3)$.
Solution. We have $F^{\prime}(x, y, z)=\left(\begin{array}{ccc}2 x & 2 y & 2 z \\ 2 y z & 2 x z & 2 x y \\ 3 x^{2} & 0 & 6 z^{2}\end{array}\right)$ so that

$$
F^{\prime}(1,2,1)=\left(\begin{array}{lll}
2 & 4 & 2 \\
4 & 2 & 4 \\
3 & 0 & 6
\end{array}\right)
$$

It follows that

$$
\left(F^{-1}\right)^{\prime}(6,4,3)=\left(\begin{array}{lll}
2 & 4 & 2 \\
4 & 2 & 4 \\
3 & 0 & 6
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
\frac{1}{3} & -\frac{1}{6} & 0 \\
\frac{1}{6} & -\frac{1}{3} & \frac{1}{3}
\end{array}\right) .
$$

