MATH 307, FALL 2020 MIDTERM 2 SOLUTIONS

OCTOBER 26

Each problem is worth 10 points.

Problem 1. Find all critical points of $f(x, y) = x^4 + xy + y^2$ and determine if each is a max, min, or saddle point.

Solution. At a critical point

$$\nabla f(x,y) = \begin{pmatrix} 4x^3 + y\\ x + 2y \end{pmatrix} = 0$$

Thus $y = -\frac{x}{2}$ and $4x^3 - \frac{x}{2} = 0$ so either x = 0, y = 0 or $x = \pm \frac{\sqrt{2}}{4}, y = \pm \frac{\sqrt{2}}{8}$. The Hessian is

$$H_f = \begin{pmatrix} 12x^2 & 1\\ 1 & 2 \end{pmatrix}$$

so that $D = 24x^2 - 1$. This is negative at (0, 0), which is a saddle point, and positive at $(\pm \frac{\sqrt{2}}{4}, \pm \frac{\sqrt{2}}{8})$, which is a local minimum since $f_{xx} > 0$.

Problem 2. Find the point closest to $\begin{pmatrix} 2\\3\\7 \end{pmatrix}$ on $S = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}.$

Solution. Let R be the rotation about the origin which carries $\begin{pmatrix} 2\\3\\7 \end{pmatrix}$ to

$$\begin{pmatrix} \sqrt{62} \\ 0 \\ 0 \end{pmatrix}$$
. The closest point to this point on the sphere is $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, and hence,
by rotational symmetry, the closest point on the sphere to $\begin{pmatrix} 2 \\ 3 \\ 7 \end{pmatrix}$ is $\frac{1}{\sqrt{62}} \begin{pmatrix} 2 \\ 3 \\ 7 \end{pmatrix}$.

Problem 3. Determine whether each limit exists.

b.

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\to(0,0)}} \frac{x^3 - 3x^2y + y^3}{x^2 + y^2}.$$
$$\lim_{\substack{(x,y)\to(0,0)\\x^2 + y^2}} \frac{x^2 - 2y^2}{x^2 + y^2}.$$

Solution.

- a. When $x^2 + y^2 = \delta$, $|x^3 3x^2y + y^3| \le 5\delta^{\frac{3}{2}}$, and hence the limit is 0. b. When y = 0, $\lim_{x\to 0} \frac{x^2 2y^2}{x^2 + y^2} = 1$, while when x = 0, $\lim_{y\to 0} \frac{x^2 2y^2}{x^2 + y^2} = -2$. Since the limits are not equal, the limit as $(x, y) \to (0, 0)$ together does not exist.

Problem 4. Find a vector normal to the surface xyz = 1000 at $\begin{pmatrix} 20\\5\\10 \end{pmatrix}$. Find

the equation of a tangent plane at the point. In a neighborhood of the point, z is a function of x and y. Find z_x and z_y .

Solution. Let
$$g(x, y, z) = xyz$$
. Then $\nabla g(x, y, z) = \begin{pmatrix} yz \\ xz \\ xy \end{pmatrix} = \begin{pmatrix} 50 \\ 200 \\ 100 \end{pmatrix}$, which is a normal vector. Thus the tangent plane has equation

is a normal vector. Thus the tangent plane has equation

$$50(x-20) + 200(y-5) + 100(z-10) = 0.$$

We have $z = \frac{1000}{xy}$. Thus

$$z_x = -\frac{1000}{x^2 y}, \qquad z_y = -\frac{1000}{xy^2}.$$

OCTOBER 26

Problem 5. Let $f(u,v) = \begin{pmatrix} u^3 - v^3 \\ u^3 + v^3 \\ 3u^2v \end{pmatrix}$, $g(x,y,z) = \begin{pmatrix} xy \\ yz \end{pmatrix}$. Calculate f',g' and $(g \circ f)'$.

Solution. We have $f'(u,v) = \begin{pmatrix} 3u^2 & -3v^2 \\ 3u^2 & 3v^2 \\ 6uv & 3u^2 \end{pmatrix}$ and $g'(x,y,z) = \begin{pmatrix} y & x & 0 \\ 0 & z & y \end{pmatrix}$. Thus

$$(g \circ f)'(u, v) = g'(f(u, v))f'(u, v)$$

= $\begin{pmatrix} u^3 + v^3 & u^3 - v^3 & 0 \\ 0 & 3u^2v & u^3 + v^3 \end{pmatrix} \begin{pmatrix} 3u^2 & -3v^2 \\ 3u^2 & 3v^2 \\ 6uv & 3u^2 \end{pmatrix}$
= $\begin{pmatrix} 6u^5 & -6v^5 \\ 15u^4v + 6uv^4 & 12u^2v^3 + 3u^5 \end{pmatrix}$.

Problem 6. Find the derivative of $F(x, y, z) = \begin{pmatrix} x^2 + y^2 + z^2 \\ 2xyz \\ x^3 + 2z^3 \end{pmatrix}$. Calculate F'(1, 2, 1) and $(F^{-1})'(6, 4, 3)$.

Solution. We have
$$F'(x, y, z) = \begin{pmatrix} 2x & 2y & 2z \\ 2yz & 2xz & 2xy \\ 3x^2 & 0 & 6z^2 \end{pmatrix}$$
 so that
 $F'(1, 2, 1) = \begin{pmatrix} 2 & 4 & 2 \\ 4 & 2 & 4 \\ 3 & 0 & 6 \end{pmatrix}.$

It follows that

$$\left(F^{-1}\right)'(6,4,3) = \begin{pmatrix} 2 & 4 & 2 \\ 4 & 2 & 4 \\ 3 & 0 & 6 \end{pmatrix}^{-1} = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{6} & 0 \\ \frac{1}{6} & -\frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

OCTOBER 26

MATH 307, FALL 2020 MIDTERM 2 SOLUTIONS