MATH 307, FALL 2020 MIDTERM 1 SOLUTIONS

SEPTEMBER 28

Each problem is worth 10 points.

Problem 1.

a. Determine the distance between $\binom{1}{2}$ and the line

$$
\ell(t)=\binom{1}{-1}+t\binom{4}{3} .
$$

b. Determine the distance between the point $\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ and the plane $2 x+$ $4 y+z=0$.

Solution.

a. This is equal to the distance between $\binom{0}{3}$ and the line through 0 , $\binom{4 t}{3 t}$. The a unit vector orthogonal to the line is $u=\binom{\frac{-3}{5}}{\frac{4}{5}}$, and hence the distance to the line is $\binom{0}{3} \cdot u=\frac{12}{5}$.
b. A unit vector orthogonal to the plane is given by $u=\frac{1}{\sqrt{21}}\left(\begin{array}{l}2 \\ 4 \\ 1\end{array}\right)$, and hence the distance to the plane is

$$
\left|\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \cdot u\right|=\frac{1}{\sqrt{21}} .
$$

Problem 2.

a. Find the length of the vectors $\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ and the angle between them.
b. Calculate the angle between $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ and the plane $2 x+3 y-z=0$.

Solution.

a. Let $u=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right), v=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$. Then $|u|=\sqrt{2},|v|=\sqrt{5}$ and $u \cdot v=2$. The angle between them satisfies $\cos \theta=\frac{u \cdot v}{|u||v|}=\frac{2}{\sqrt{10}}$.
b. Let $w=\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)$ which is perpendicular to the plane. Thus the angle with the plane is $\frac{\pi}{2}-\theta$, where θ is the angle between $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)$. We have

$$
\theta=\cos ^{-1} \frac{8}{\sqrt{70}}
$$

Problem 3.

a. Calculate

$$
\operatorname{det}\left(\begin{array}{llll}
2 & 0 & 2 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
3 & 0 & 3 & 1
\end{array}\right) .
$$

b. Calculate the inverse matrix of the matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Solution.

a. Subtract the third column from the first, then the first from the second, and second from fourth to conclude

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{llll}
2 & 0 & 2 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
3 & 0 & 3 & 1
\end{array}\right) & =\operatorname{det}\left(\begin{array}{llll}
0 & 0 & 2 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 3 & 1
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{llll}
0 & 0 & 2 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 3 & 1
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{llll}
0 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 3 & 1
\end{array}\right)=-2
\end{aligned}
$$

b. By row reduction

$$
\begin{aligned}
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{lll}
1 & 2 & 0 \\
4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & -7 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & -3 \\
-4 & 1 & 12 \\
0 & 0 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & -3 \\
\frac{4}{7} & -\frac{1}{7} & -\frac{12}{7} \\
0 & 0 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
-\frac{1}{7} & \frac{2}{7} & \frac{3}{7} \\
\frac{4}{7} & -\frac{1}{7} & -\frac{12}{7} \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

The last matrix is the inverse.

Problem 4. Calculate the area of the triangle with vertices $\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
Solution. Two sides of the triangle have vectors $u=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $v=\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)$. The area is $\frac{1}{2}|u \times v|$. Notices that $u \times v=w \times v$ where $w=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ with w, v orthogonal, so the area is $\frac{1}{2}|v||w|=\frac{3}{\sqrt{2}}$.

Problem 5.

a. Find the tangent line to $\gamma(t)=\left(\begin{array}{c}\cos t \\ \sin t \\ t\end{array}\right)$ at $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
b. Sketch the curve between $0 \leq t \leq 2 \pi$.

Solution.

a. We have $\gamma^{\prime}(t)=\left(\begin{array}{c}-\sin t \\ \cos t \\ 1\end{array}\right)$ which, at $t=0$ has $\gamma^{\prime}(0)=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$. The tangent line is thus $\left(\begin{array}{l}1 \\ t \\ t\end{array}\right)$ with $t \in \mathbb{R}$.
b. The graph is the segment with $0 \leq t \leq 2 \pi$ of the picture

Problem 6.

a. Determine the velocity and acceleration of the trajectory

$$
x(t)=\left(\begin{array}{c}
t^{2} \\
2 t \\
2
\end{array}\right)
$$

b. Find the closest points of this curve to $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.

Solution.

a. $v(t)=\left(\begin{array}{c}2 t \\ 2 \\ 0\end{array}\right), a(t)=\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$.
b. This distance is $\sqrt{t^{4}+4 t^{2}+4}$, which is minimized at $t=0$. Thus the closest point is $\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)$.

