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Mixing and cut-off in cycle walks*

Robert Hough†

Abstract

Given a sequence (Xi,Ki)
∞
i=1 of Markov chains, the cut-off phenomenon describes

a period of transition to stationarity which is asymptotically lower order than the
mixing time. We study mixing times and the cut-off phenomenon in the total variation
metric in the case of random walk on the groups Z/pZ, p prime, with driving measure
uniform on a symmetric generating set A ⊂ Z/pZ.
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1 Introduction

The mixing analysis of random walk on a finite abelian group is a classical problem of
probability theory, with widespread applications; the Ehrnfest urn and sandpile models
of statistical mechanics are motivating examples [8, 17, 26]. Among the early results
in this area is a theorem of Greenhalgh [15], which shows that for generating set of
size k contained in Z/nZ, the mixing time of the corresponding random walk satisfies

tmix �k n
2
k−1 . A set of size k with mixing time bounded by�k n

2
k−1 log n is also exhibited.

Dou, Hildebrand and Wilson [13], [16], [28] consider the mixing of measures driven by
typical generating sets on cyclic and more general groups. Among the results of [16] is
that typical generating sets of size k = (log n)a, a > 1 produce a random walk satisfying
the cut-off phenomenon. We confine our attention to cyclic groups and symmetric
generating sets which are smaller than logarithmic size in the order of the group, and
prove a number of refined results on the mixing behavior. Our results are in a similar
spirit to those of Diaconis and Saloff-Coste [5] proven in the more general context of
random walk on groups of polynomial growth, but in narrowing our focus we emphasize

*This material is based upon work supported by the National Science Foundation under agreement No. DMS-
1128155. Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the National Science Foundation.
The author was partially supported by a Ric Weiland Graduate Research Fellowship at Stanford University.

†School of Mathematics, Institute of Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540, USA.
Current address: Dept. of Mathematics, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794
E-mail: robert.hough@stonybrook.edu

http://www.imstat.org/ejp/
http://dx.doi.org/10.1214/17-EJP108
http://arXiv.org/abs/1512.00571
mailto:robert.hough@stonybrook.edu


Cycle walks

strong uniformity in the number of generators of the random walk. Note that in the
context of random walk on nilpotent groups, the mixing of the walk projected to the
abelianization often controls the mixing in the group as a whole, see [14], [9].

To briefly summarize the results, Theorem 1.1 gives spectral upper and lower bounds
for the mixing time in a sharper form than previous results which have appeared in the
literature. A natural conjecture regarding random walk on a connected graph is that
the total variation mixing time is bounded by the maximum degree times the diameter
squared. A highlight of our work is Theorem 1.4, which verifies the conjecture for
the mixing time of random walk on the Cayley graph of Z/pZ with a small symmetric
generating set. Theorem 1.6 gives a lower bound for the period of transition to uni-
formity relative to the mixing time – a lower bound on the cut-off window. Theorem
1.7 determines the generic and worst case mixing behavior for a sequence of typical
symmetric random walks. We conclude by analyzing the mixing time of a walk which
may be considered an approximate embedding of the hypercube (Z/2Z)d into the cycle,
demonstrating a cut-off phenomenon.

1.1 Precise statement of results

Let P be the set of primes. Given p ∈P let A ⊂ Z/pZ be symmetric (x ∈ A if and
only if −x ∈ A), lazy (0 ∈ A) and generating (|A| > 1). Write A (p) be the collection of
symmetric, lazy, generating subsets of Z/pZ, and for k ∈ Z>0 write A (p, k) ⊂ A (p) be
those sets of size 2k + 1. Given A ∈ A (p) let µA denote the uniform measure on A,

µA =
1

|A|
∑
x∈A

δx.

The distribution at step n ≥ 1 of random walk driven by µA is given by the convolution
power

µ∗1A = µA, µ∗nA = µ
∗(n−1)
A ∗ µA, n > 1.

As n → ∞, µ∗nA converges to the uniform measure UZ/pZ on Z/pZ and we consider
asymptotic behavior of this convergence for large p. In particular, the behavior of these
walks as k = k(p) varies as a function of p, and as A varies in the set A (p, k) is studied.

Given measure space (X,B), a norm ‖ · ‖ on the space M (X) of probability measures
on X, a Markov chain Pn(·) with stationary measure ν ∈M (X), and 0 < ε < 1, define the
ε-mixing time

tmix(ε) = inf

{
n : sup

µ∈M (X)

‖Pn(µ)− ν‖ ≤ ε

}
and the standard mixing time tmix = tmix

(
1
e

)
. In the cases considered X is a (finite,

compact, locally compact) abelian group, and, due to the symmetry of the walk, it is
sufficient to take for µ the point mass at 0. Of primary interest is the total variation
norm, which for µ, ν ∈M (X) is given by

‖µ− ν‖TV(X) = sup
S∈B
|µ(S)− ν(S)|.

The mixing time with respect to this norm is indicated tmix
1 . Two further important

parameters in considering reversible Markov chains are the spectral gap of the transition
kernel

gap = 1− sup {|λ| : λ ∈ spec(P ) \ {±1}}

and the relaxation time

trel =
1

− log(1− gap)
≈ 1

gap
.
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Cycle walks

In stating our results we let τ0 denote the ratio tmix
1

trel
of the one dimensional Gaussian

diffusion

θ(x, t) =
∑
j∈Z

exp(−2π2tj2)e2πijx (1.1)

on (R/Z, dx); 2π2t = τ0 solves the equation∫ 1

0

|θ(x, t)− 1|dt =
2

e

and has numerical value1

τ0 = 0.56161265(1). (1.2)

In the context of random walk on Z/pZ with small symmetric generating sets, the
relaxation and total variation mixing times are related as follows.2

Theorem 1.1. Let p be prime, let 1 ≤ k ≤ log p
log log p and let A ∈ A (p, k). Denote trel, tmix

1

the relaxation time and total variation mixing time of µA on Z/pZ. We have

τ0e

4π
p

2
k .k τ0t

rel .p t
mix
1 .k 0.163ktrel.

Also, uniformly in k,
2k + 1

16πΓ
(
k
2 + 1

) 2
k

p
2
k .p t

rel.

Remark 1.2. The relationship tmix
1

trel
& τ0 exhibits Gaussian diffusion on R/Z as asymptot-

ically extremal for the ratio between the mixing and relaxation times.

Remark 1.3. The lower bound gives an explicit dependence on k in Greenhalgh’s
theorem. An upper bound of this type may be extracted from [5], Theorem 1.2, but the k
dependence there is, in worst case, exponential.

Theorem 1.1 relates the mixing time to spectral data, but in some cases it is more
desirable to understand the mixing time geometrically. Given symmetric generating
set A ⊂ Z/pZ denote C (A, p) the Cayley graph with vertices V = Z/pZ and edge set
E = {(n1, n2) ∈ (Z/pZ)2 : n1 − n2 ∈ A}. Write diam(C (A, p)) for the graph-theoretic
diameter of C (A, p). Since Z/pZ is abelian there is a more geometric notion of diameter

diamgeom(C (A, p)) = max
x∈Z/pZ

min
(
‖n‖2 : n ∈ Zk, ∃a ∈ Ak, n · a ≡ x mod p

)
.

One has (the second inequality is given in Lemma 2.4)3

diam(C (A, p)) ≥ diamgeom(C (A, p))�
√
trel

k
.

Random walk driven by µA on Z/pZ may be interpreted as random walk on C (A, p) in
which at each step the walker chooses a uniform edge leaving its current position.

Theorem 1.4. Let p be an odd prime and let A ∈ A (p) with |A| = 2k+ 1, 1 ≤ k ≤ log p
log log p .

The mixing time tmix
1 of random walk driven by µA satisfies, as p→∞,

tmix
1 � k · diamgeom(C (A, p))2.

1We use parentheses to indicate the last significant digit of numerical constants.
2We write A(x) .x B(x) meaning that there is a non-increasing function f : R+ → R+ with limx→∞ f(x) =

1 such that A(x) ≤ f(x)B(x), thus indicating the parameter which must grow for the asymptotic to hold.
3The notation A� B means B = O(A).
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Cycle walks

Remark 1.5. In the context of random walk on a cycle, Theorem 1.4 refines in two ways
the much more general Theorem 1.2 of [5], which applies in the context of groups of
moderate growth. The dependence on the number of generators k there is, in worst case,
exponential. Also, we replace the diameter there with the smaller geometric diameter
here. See also [27].

Given a sequence of triples (Xi, Pi, νi)
∞
i=1 where Xi is a measure space and Pi is a

Markov kernel on Xi which has νi ∈M (Xi) as its stationary distribution, the sequence
exhibits the cut-off phenomenon in total variation if for all 0 < ε < 1

2 ,

lim
i→∞

tmix
1,i (ε)

tmix
1,i (1− ε)

= 1.

The cut-off phenomenon is frequently observed in natural families of Markov chains
including the hypercube walk of [8] and riffle shuffling viewed as a random walk on
the symmetric group [1]. Especially in total variation, the cut-off phenomenon is still
imperfectly understood, so that there is significant interest in deciding its occurrence in
specific examples, see for instance [10], [12], [4], [2], [21].

One necessary condition for cut-off in total variation to occur is

lim
i→∞

tmix
1,i

trel
i

=∞,

see Chapter 18.3 of [20]. In particular, by Theorem 1.1 any sequence of walks generated
by {Ap mod p ⊂ Z/pZ}p∈P for which |Ap| remains bounded does not have cut-off, a
result first obtained in [5]. We give a different proof of this result found independently
by the author, which gives further information on the period of transition to uniformity.

Theorem 1.6. Let p ≥ 3 be prime, let 1 ≤ k ≤ log p
log log p and let A ∈ A (p, k). For any

0 < ε < 1
e the total variation mixing times of µA on Z/pZ satisfy

tmix
1 (ε)− tmix

1 (1− ε)�ε
tmix
1

k
.

In contrast to Theorem 1.6, our next theorem shows that the generic behavior when
|Ap| grows slowly is for there to be a sharp transition to uniformity with infrequent
exceptions. This Theorem answers a question raised in [6].

Theorem 1.7. Let k : P → Z>0 tend to∞ with p in such a way that k(p) ≤ log p
log log p . Let

sets {Ap mod p}p∈P be chosen independently with Ap chosen uniformly from A (p, k(p)).
The following hold with probability 1.

1. Let ρ : P → R+ satisfy
∑
p

1
ρ(p)k

= ∞. There is an infinite subsequence P0 ⊂ P
such that for p increasing through P0,

trel(p) &
e

π
ρ(p)2p

2
k(p) and tmix

1 (p) ∼ τ0trel(p).

In particular, the cut-off phenomenon does not occur for (Z/pZ, µAp ,UZ/pZ)p∈P .

2. Let ρ : P → R+ satisfy
∑
p

1
ρ(p)k

<∞. Then

tmix
1 (p) .

τ0e

π
ρ(p)2p

2
k(p) .

3. For any sequence {ε(p)}p∈P ⊂ R>0 satisfying ε(p)
√
k(p)→∞ there is a density 1

subset P0 ⊂P such that in the family (Z/pZ, µAp ,UZ/pZ)p∈P0 we have

tmix
1 (p) ∼ k(p)

2πe
p

2
k(p) ,
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and as p increases through P0

lim
∥∥∥µ(1−ε)tmix

1 (p)
Ap

−UZ/pZ
∥∥∥

TV(Z/pZ)
= 1, lim

∥∥∥µ(1+ε)tmix
1 (p)

Ap
−UZ/pZ

∥∥∥
TV(Z/pZ)

= 0.

In particular, the cut-off phenomenon occurs.

Remark 1.8. Since
∑
p

1
p =∞, items (1) and (3) of Theorem 1.7 demonstrate that almost

surely among a sequence of walks, infinitely often there are slowly mixing walks which

are slower than the typical behavior by a factor of� p
2

k(p)

k(p) .

Remark 1.9. (3) of Theorem 1.7 gives a cut-off sequence with, for 0 < ε < 1
2 , period of

transition between tmix
1 (1− ε) and tmix

1 (ε) of length Oε
(
tmix
1√
k

)
. While this is longer than

the lower bound tmix
1

k given in Theorem 1.6, it is much shorter than the true transition
period for many known examples giving cut-off. For instance, the transition period
of random walk on the hypercube is faster than the mixing time by a factor which is
logarithmic in the number of generators.

Our proofs of Theorems 1.1–1.7 approximate the distribution of random walk on
the cycle Z/pZ with that of a Gaussian diffusion on Rk/Λ where Λ is a co-volume p

lattice. In making the transition between these models we use the following quantitative
normal approximation lemma for which we don’t know an easy reference in the literature.
A proof is included in Appendix A.

Lemma 1.10. Let n, k(n) ≥ 1 with k2 = o (n) for large n. Let νk be the measure on Rk

which is uniform on {0,±ei, 1 ≤ i ≤ k}, where ei denotes the ith standard basis vector.
For σ > 0 set

ηk (σ, x) =

(
1

2πσ2

) k
2

exp

(
−‖x‖

2
2

2σ2

)
the standard Gaussian density. As n→∞ we have∥∥∥∥∥ν∗nk ∗ 1[− 1

2 ,
1
2 )
k − ηk

(√
2n

2k + 1
, ·

)∥∥∥∥∥
TV(Rk)

= o(1).

After transition to the diffusion model, the measure on lattices induced from the
random choice in Theorem 1.7 is close to the uniform measure on the (rescaled) p-
Hecke points, which are the index p lattices of Zk. It is known that, after rescaling to
volume 1, as p→∞ these lattices are equidistributed with respect to the induced Haar
measure in the space SLk(Z)\ SLk(R) of all volume 1 lattices in Rk. Statistics regarding
correlations of vectors in a random lattice are well-known, see for instance [25] for a
modern treatment. Although we estimate somewhat different quantities, the results
considered there may be useful in understanding our argument.

We conclude by giving an example of random walk on the cycle which has cut-off.
This may be considered an approximate embedding of the classical hypercube walk into
the cycle.

Theorem 1.11. For p ∈P let `2(p) = dlog2 pe (logarithm base 2) and let the power-of-2
set be A2,p = {0,±1,±2, ...,±2`2(p)−1} ⊂ Z/pZ. Set

c0 =

∞∑
j=1

(
1− cos

2π

2j

)
= 3.394649802(1).

The power-of-2 walk (Z/pZ, µA2,p
,UZ/pZ)p∈P has cut-off in total variation at mixing time

tmix
1 (p) ∼ `2(p) log `2(p)

2c0
.
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1.2 Discussion of method

Our arguments view random walk on the cycle Z/pZ with symmetric generating set
A, |A| = 2k + 1 as random walk on an index p quotient of Zk, in which a standard basis
vector is assigned to each non-zero symmetric pair {x,−x} of generators. The index p
lattice is the set Λ = {n ∈ Zk :

∑
x nxx ≡ 0 mod p}. In the case of Theorem 1.11, the

corresponding lattice is approximately cubic, and the argument is a perturbation of the
Fourier analytic analysis of the hypercube walk in [11]. In particular, the mixing time
and cut-off are the same in total variation and in L2.

For k ≤ log p
log log p , a random index p lattice gives a mixing time in total variation which

is less than the L2 mixing time by a constant, and thus the L2 methods of proving cut-off
are not immediately suitable. Thus in our first four Theorems the arguments are made
initially in time domain by first applying Lemma 1.10 to replace the discrete random
walk with a diffusion on Rk/Λ. This initial step is the reason for the restriction on the
size of k since the corresponding approximation fails for k > (1 + ε) log p

log log p . For larger
k there is a standard method of correcting the approximation using the saddle point
method, but we have not made an attempt to do so.

After having made the Gaussian approximation, Theorem 1.1 combines standard
spectral estimates with bounds for the shortest vector in a lattice (the lower bound)
and for sphere packing (the upper bound). Theorem 1.4 goes through in time domain,
using convexity. Theorem 1.6 goes through in time domain, and uses an estimate for the
derivative of the density in time.

Parts (1) and (2) of Theorem 4 study rare events in which the random lattice is
essentially one dimensional due to the presense of many short vectors. We study these
cases in frequency space. The dual lattice of an index p lattice of Zk is Λ∨ = Zk + `

where

` = `v = {av : 0 < a < p}, v ∈ 1

p
Zk \Zk

is a line. We are able to show that with high probability the large Fourier coefficients
arise from frequencies which are small multiples of a single vector. The analysis restricts
attention to primitive vectors, and their multiples by Farey fractions modulo p, which
are residues bq−1 mod p in which b and q are bounded.

Part (3) of Theorem 4 is proven in time domain again. After removing a small L1

error, the modified density may be estimated using a variance bound. In particular,
our argument requires averages concerning pairs of short vectors in a random lattice
which are discrete analogues of the averages performed by Siegel and Rogers [23], [22]
regarding the distribution of vectors in a random lattice.

1.3 Possible extensions

From the point of view of mixing of Markov chains, an attractive open problem is to
decide the Peres conjecture

cut-off ⇔ tmix/trel →∞

for random walk on a cycle.
Abelian groups are prevalent in arithmetic, and there would be interest in extending

the results to random walks on more general abelian groups. The class group of
an imaginary quadratic field grows like the discriminant to the power 1

2 + o(1), so a
reweighting of Theorem 1.7 with roughly d groups of order d would be of interest. The
techniques presented should translate without any great difficulty to studying random
walk on cycles of composite order. The general case has not been considered, but see
[28] for a study of random random walk on the hypercube.

To model abelian sandpiles, asymmetric generating sets should be considered.
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Notation and conventions

Given groups G,H, H < G indicates that H is a subgroup of G and [G : H] denotes
the index. Sk is the symmetric group on k letters and we write (Z/2Z)k oSk = Ok(Z)

for the k × k orthogonal group over Z. For ring R = Z,Z/pZ, GLn(R) and SLn(R) are
the usual linear groups with entries in R. We denote e(x) = e2πix the standard additive
character on R/Z.

Given measure space (X,B), M (X) indicates the Borel probability measures on X.
When X is a finite set, UX denotes the uniform probability measure on X and when X

is a compact abelian group, UX denotes the probability Haar measure. In either case
expectation and variance with respect to UX are indicated EX and VarX. ‖ · ‖TV(X)

indicates the total variation norm on M (X).
Unless otherwise stated, ‖ · ‖ indicates the `2-norm on Rk, k ≥ 1, ‖ · ‖p denotes the `p

norm, p ≥ 1, and ‖ · ‖(R/Z)k denotes the `2 distance to the nearest integer lattice point.
Sk−1 is the unit sphere in Rk, Sk−1 = {x ∈ Rk : ‖x‖2 = 1}. Given x ∈ Rk, R ∈ R>0, and
p ≥ 1, Bp(x,R) denotes the `p ball

Bp(x,R) =
{
y ∈ Rk : ‖y − x‖p ≤ R

}
,

the ambient dimension being clear from the context. If p is not stated `2 is assumed.
Given further parameter 0 < τ < 1, S(x,R, τ) indicates the spherical shell

S(x,R, τ) =
{
y ∈ Rk : ‖x− y‖2 ∈ [(1− τ)R, (1 + τ)R]

}
.

For k ≥ 1,

Rk =

(
Γ
(
k
2 + 1

)
π
k
2

) 1
k

=

(
1 +

log(k + 1)

2k
+O

(
1

k

))√
k

2πe

is the radius of an `2 ball of unit volume in Rk. One may check that Rk >
√

k
2πe for all

k ≥ 1.
For k ≥ 1, given x ∈ Rk and σ ∈ R>0, ηk(σ, x) denotes the density at x of a symmetric

centered Gaussian distribution scaled by σ,

ηk(σ, x) =

(
1

2πσ2

) k
2

exp

(
−‖x‖

2
2

2σ2

)
.

By default, quantities considered depend upon a large prime parameter p varying
over a set of primes P0. We use the Vinogradov notation A� B with the same meaning
as A(p) = O(B(p)). A � B means A � B and B � A. For positive parameters A,B,
A ∼ B means limp→∞

A(p)
B(p) = 1 and A . B, resp. A & B means lim sup A(p)

B(p) ≤ 1,

resp. lim inf A(p)
B(p) ≥ 1. We also use the non-standard notation already introduced in

the introduction A .x B, with the meaning that there is a non-increasing function
f : R+ → R+ with limx→∞ f(x) = 1 such that A(x) ≤ f(x)B(x).

2 Background

This section collects together several statements regarding classical probability
theory and lattice theory on Rk, k ≥ 1.

2.1 Classical probability

See [6] for background regarding random walk on a group and [20] for a thorough
treatment of Markov chains. We have provided proofs of the statements which we use
for the reader’s convenience.
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We have already introduced the total variation distance between two probability
measures µ, ν on a measure space (X,B), by

‖µ− ν‖TV(X) = sup
S∈B
|µ(S)− ν(S)| .

In the case when µ has a density with respect to ν, equivalent characterizations are

‖µ− ν‖TV(X) =
1

2

∫
X

∣∣∣∣dµdν − 1

∣∣∣∣ dν =

∫
X

(
dµ

dν
− 1

)
1

(
dµ

dν
> 1

)
dν.

When µ is the distribution of a Markov chain with stationary measure ν define the
L2(dν) distance to stationarity by

‖µ− ν‖L2(dν) =
1

2

(∫ (
dµ

dν
− 1

)2

dν

) 1
2

with the convention that the norm is infinite if dµ
dν is not in L2(dν). The factor of 1

2 is for
consistency with the interpretation of total variation distance as half the L1(dν) norm.
For ε > 0 denote tmix

2 (ε) the ε-mixing time of the L2(dν) norm.

Lemma 2.1. Convolution with a probability measure is a contraction in the total variation
norm. Also, given symmetric probability measure µ on finite or compact abelian group
G, for any 0 < ε < 1 the total variation mixing time of random walk driven by µ satisfies
trel log 1

2ε ≤ t
mix
1 (ε) ≤ tmix

2 (ε) and 2π2

27 ε
3trel . tmix

1 (1− ε) as ε ↓ 0.

Proof. The contraction property follows from the triangle inequality.
To prove tmix

1 (ε) ≤ tmix
2 (ε), use the L1 characterization of the total variation metric

and Cauchy-Schwarz

‖µ∗n −UG‖TV(G) =
1

2

∫
G

∣∣∣∣dµ∗ndUG
− 1

∣∣∣∣ dUG ≤ ‖µ∗n −UG‖L2(dUG).

To prove the lower bounds regarding trel, observe that the eigenvalues of the transi-
tion kernel for the random walk are given by

spec(µ) =
{
Eµ[χ] : χ ∈ Ĝ

}
,

where Ĝ denotes the set of characters of G. Let χ1 generate the spectral gap. Since
‖χ1‖∞ ≤ 1, we have, for any n ≥ 1,

‖µ∗n −UG‖TV(G) ≥
1

2
|Eµ∗n [χ1]| = 1

2
|(Eµ[χ1])

n| ,

so that the first mixing time bound follows by taking logarithms.
To obtain the bound for tmix

1 (1 − ε), let ε0 > ε1 be small parameters, satisfying, for
some A,B > 0, ε0 = Aε2, ε1 = Bε3. Let n be maximal such that Eµ∗n [χ1] ≥ 1 − ε1.
Set S = {g ∈ G : Re(χ1(g)) ≥ 1 − ε0} and α = µ∗n(S). Bounding Re (χ|S) ≤ 1 and
Re (χ|Sc) ≤ 1− ε0,

(1− ε1) ≤ Eµ∗n [χ1] ≤ α+ (1− ε0)(1− α)

whence α ≥ 1− ε1
ε0

. According to uniform measure, Re(χ) has the same distribution as
cos(2πx) on (R/Z, dx), so that

UG(S) =
cos−1(1− ε0)

π
=

√
2ε0
π

(1 +O(ε0)).
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It follows that

‖µ∗n −UG‖TV(G) ≥ µ
∗n(S)−UG(S)

≥ 1− ε1
ε0
− cos−1(1− ε0)

π
= 1−

(
B

A
+

√
2A

π
+O(ε2)

)
ε.

Imposing the constraint µ∗n(S)−UG(S) ≥ 1− ε gives tmix
1 (1− ε) ≥ n+ 1. As ε ↓ 0, one

obtains the constraint
(
B
A +

√
2A
π +O(ε2)

)
< 1, which gives the asymptotic claimed with

A ∼ 2π2

9 , B ∼ 2π2

27 .

Define the standard symmetric centered normal distribution on Rk scaled by σ ∈ R>0

to be

ηk(σ, x) =
1

(2πσ2)
k
2

exp

(
−‖x‖22

2σ2

)
.

For t ∈ R>0, η(
√
tσ, x) is its t-fold convolution. We use several results regarding concen-

tration of the Gaussian measure.

Lemma 2.2. Let k ≥ 1 and σ > 0. There are positive constants C, {Cp}2≤p<∞ such that,
for any t > C,∫

x∈Rk
ηk(σ, x)1

(∣∣∣‖x‖2 − σ√k∣∣∣ > σt
)
dx ≤ exp

(
− (t− C)2

2

)
,

and, for all t > 0, for all 2 ≤ p <∞,∫
x∈Rk

ηk(σ, x)1
(
‖x‖p > Cpσk

1
p + tσ

)
dx ≤ exp

(
− t

2

2

)
.

Proof. All quantities scale with σ so we may assume σ = 1. Let γk denote the measure

on Rk with density γk(x) = 1

(2π)
k
2

exp
(
−‖x‖

2
2

2

)
. Let Mp, 2 ≤ p < ∞ denote the median

with respect to γk of ‖ · ‖p, that is, γk (x : ‖x‖p ≤Mp) = 1
2 . Since ‖ · ‖p is 1-Lipschitz on

(Rk, ‖ · ‖2) for p ≥ 2, Talagrand’s inequality ([19], p.21) gives, for any t > 0,

γk (x : |‖x‖p −Mp| > t) ≤ exp

(
− t

2

2

)
.

The first statement follows, since the mean, root mean square, and median of ‖ · ‖2
differ by constants, as is evident from the concentration around the median. The second
statement follows since Mp � k

1
p .

2.2 Lattices

Siegel’s Lectures on the Geometry of Numbers [24] are a recommended reference.
A lattice Λ < Rk is a discrete finite co-volume subgroup of Rk. Write

vol(Λ) =

∫
Rk/Λ

dx

for its co-volume. Fixing the usual inner product 〈·, ·〉 on Rk, the dual lattice of lattice Λ

is
Λ∨ =

{
λ′ ∈ Rk : ∀λ ∈ Λ, 〈λ′, λ〉 ∈ Z

}
.

This satisfies vol(Λ) · vol(Λ∨) = 1. For instance, the dual lattice to Λ = 2Z is 1
2Z. More

generally, if Λ = QZk for some Q ∈ GLk(R), then Λ∨ = (Q−1)tZk. We reserve λ∗ for the
shortest non-zero vector of Λ∨.
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Given lattice Λ < Rk, its norm-minimal fundamental domain (Voronoi cell) is

F (Λ) = {x ∈ Rk : ∀ λ ∈ Λ \ {0}, ‖x‖ < ‖x− λ‖}.

One may choose a set F 0(Λ)

F (Λ) ⊂ F 0(Λ) ⊂ F (Λ)

such that every x ∈ Rk/Λ has a unique representative in F 0(Λ).
Minkowski’s geometry of numbers gives an upper bound for the shortest non-zero

vector in a lattice.

Theorem 2.3 (Minkowski’s Theorem). Let Λ ⊂ Rk be a lattice and let C be a convex
symmetric body, i.e. x ∈ C ⇔ −x ∈ C. If

vol(C) > 2kvol(Λ)

then C contains a non-zero vector in Λ. In particular

min
λ∈Λ\{0}

‖λ‖2 ≤
2√
π

(
Γ

(
k

2
+ 1

)
vol(Λ)

) 1
k

∼
√

2k

πe
vol(Λ)

1
k .

with the asymptotic holding as k →∞.

For lattice Λ, the diameter of the norm-minimal fundamental domain and the shortest
non-zero vector in the dual lattice are related as follows.

Lemma 2.4. Let Λ be a lattice with norm-minimal fundamental domain F and dual
lattice Λ∨. Let λ∗ be the shortest non-zero vector in Λ∨. We have

‖λ∗‖2 · diam(F ) ≥ 1.

Proof. Let v = λ∗

‖λ∗‖2 and choose x the point on the boundary of F on the ray determined

by v. Write x = x0v. Since x ∈ ∂(F ) we may find y ∈ Λ \ {0} with
∣∣〈x, y〉∣∣ = 1

2‖y‖
2
2. Set

y = y0v + v′ where 〈v, v′〉 = 0. In particular, y0 6= 0 so
∣∣〈y, λ∗〉∣∣ = ‖λ∗‖2|y0| ≥ 1. Since

|x0y0| ≥ 1
2y

2
0 it follows that ‖x‖2 · ‖λ∗‖2 ≥ 1

2 . The diameter is at least as large as 2‖x‖2.

Given x ∈ Rk and R > 0, let B2(x,R) denote the ball

B2(x,R) = {y ∈ Rk : ‖x− y‖2 ≤ R}.

The following is an easy estimate for the number of lattice points contained in a ball.

Lemma 2.5. Let k ∈ Z>0, let x ∈ Rk and let R > k
3
2 . Then

∣∣Zk ∩B2(x,R)
∣∣ =

(
1 +O

(
k

3
2

R

))
vol(B2(x,R)).

Proof. Let µx,R =
∑
n∈Zk∩B2(x,R) δn. Since the hypercube

[
− 1

2 ,
1
2

)k
has diameter

√
k,

1B2(x,R−
√
k) ≤ µx,R ∗ 1[− 1

2 ,
1
2 )
k ≤ 1B2(x,R+

√
k)

and thus ∣∣Zk ∩B2(x,R)
∣∣ =

∫
Rk
µx,R ∗ 1[− 1

2 ,
1
2 )
k

=

(
1 +O

(√
k

R

))k
vol(B2(x,R))

=

(
1 +O

(
k

3
2

R

))
vol(B2(x,R)).
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We also use the following estimate counting lattice points of a more general lattice.

Lemma 2.6. Let Λ < Rk be a lattice with shortest non-zero vector λ∗. For any t ≥ 1,

log |Λ ∩B2(0, t‖λ∗‖)| .k k
[

1 + sin θ

2 sin θ
log

1 + sin θ

2 sin θ
− 1− sin θ

2 sin θ
log

1− sin θ

2 sin θ

]
,

where θ = 2 sin−1
(

1
2t

)
.

Proof. This follows from [18], see [3] for a nice exposition and related results. We sketch
the argument.

Write B2,j for a `2 ball in Rj . By rescaling we may assume ‖λ∗‖2 = 1. View Rk as a
hyperplane through zero in Rk+1, and consider the ball B̃ = B2,k+1(0, t) in Rk+1. Project
Λ∩B2,k(0, t) orthogonally onto B̃. The points remain 1-spaced and thus satisfy an angular
spacing of at least θ = 2 sin−1( 1

2t ). Let, as in [18], A(n, θ) denote the largest set S ⊂ Sn−1

which is separated by angle θ as above. Thus

Λ ∩B2,k(0, t) ≤ A(k + 1, θ).

The claimed estimate for A(k + 1, θ) is the main result of [18].

Given a probability measure µ ∈M (G), G = Zk or G = Rk, and a lattice Λ < G the
quotient measure µΛ is defined for f ∈ C(G/Λ) by

〈f, µΛ〉G/Λ = 〈f, µ〉G.

Quotienting commutes with convolution and contracts the total variation norm. For
lattice Λ < Rk, t ∈ R>0 and x ∈ Rk, the quotient measure of Gaussian ηk

(√
t, ·
)

is the
theta function

Θ(x, t; Λ) =
∑
λ∈Λ

ηk

(√
t, x+ λ

)
.

This has a representation in frequency space as

Θ(x, t; Λ) =
1

vol(Λ)

∑
λ∈Λ∨

exp
(
−2π2t‖λ‖22

)
e(λ · x).

To check the expansion, Fourier expand Θ in the orthonormal basis

{
e(λ·x)√
vol(Λ)

}
λ∈Λ∨

for

L2(Rk/Λ) (this is the usual proof of the Poisson summation formula). In the case of
a cubic lattice, where for some α ∈ R>0, Λ = αZk, the theta function is particularly
pleasant.

Lemma 2.7. Let k ∈ Z>0, α, t ∈ R>0 and x ∈ Rk. We have

Θ
(
x, t;αZk

)
=

k∏
i=1

Θ (xi, t;αZ) .

The one dimensional theta function Θ(x, t;αZ) satisfies

Θ(x, t;αZ) =

exp

(
−
α2‖ xα‖2R/Z

2t

)
√

2πt
+O

 exp
(
−α

2

8t

)
√

2πt
(
1− exp

(
−α2

8t

))


=
1

α
+O

 exp
(
− 2π2t

α2

)
α
(
1− exp

(
− 2π2t

α2

))
 .
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Proof. The factorization is immediate from the definition of Θ. The first estimate for
Θ(x, t;αZ) is the result of pulling out the largest term and bounding the remaining terms
by a geometric progression. For the second, apply the Poisson summation formula,∑

n∈Z
η1

(√
t, x+ αn

)
=

1

α

∑
n∈Z

exp

(
−2π2tn2

α2

)
e
(xn
α

)
and bound the n 6= 0 terms by a geometric progression.

2.3 Identification between generating sets and lattices

Our proofs of Theorems 1.1– 1.7 approximate random walk on Z/pZ with symmetric
generating set A, |A| = 2k+ 1 with a Gaussian diffusion on Rk/Λ where Λ is a co-volume
p lattice. The reduction is as follows.

Let Ok(Z) ∼= (Z/2Z)k oSk be the orthogonal group over Z consisting of signed k× k
permutation matrices, which acts naturally on Rk. Let

L = L(p, k) = {Λ < Zk : [Zk : Λ] = p}
L = L (p, k) = Ok(Z)\L(p, k)

be the set of index-p lattices of Zk, resp. those lattices up to Ok(Z)-equivalence. The
action is matrix multiplication on the left applied to lattice vectors. Define subsets

L0(p, k) =
{

Λ ∈ L(p, k) : λ ∈ Λ \ {0} ⇒ ‖λ‖22 > 2
}

L 0(p, k) = Ok(Z)\L0(p, k).

Let
A(p, k) =

{
a ∈ (F×p )k : ∀1 ≤ i < j ≤ k, ai 6= ±aj

}
.

A (p, k) may be identified with Ok(Z)\A(p, k) by interpreting the factors of (Z/2Z)
k as

flipping signs, and the factor of Sk as rearranging the order of the coordinates in the
vector. Evidently the action is free, so that uniform measure on A(p, k) descends to
uniform measure on A (p, k).
F×p acts freely on A(p, k) dilating all coordinates simultaneously. F×p \A(p, k) and

L0(p, k) are in bijection via the map

A(p, k) 3 a φ7→ Λ(a) =

{
n ∈ Zk :

k∑
i=1

niai ≡ 0 mod p

}
∈ L0(p, k).

The map in the reverse direction is

Λ
φ7→ a(Λ) = {1, a2, · · · , ak : ∀i, e1 − aiei ≡ 0 mod p}.

It follows that uniform measure on A(p, k) pushes forward to uniform measure on L0(p, k).

Ok(Z) acts on L0(p, k), and we obtain a map F×p \A (p, k)
φ7→ L 0(p, k) which we write as

Λ(A). Note that the joint action of F×p ×Ok on A(p, k) need not be free, but this will not
concern us. We write UL,UL0 for uniform measure on L and L0.

Let ν = νk ∈ M (Zk) be the uniform measure on Sk = {0,±e1, ...,±ek}, ei the ith
standard basis vector. Let A ∈ A (p, k). For any n ≥ 1 the law of µ∗nA on Z/pZ and
(ν∗nk )Λ(A) on Zk/Λ(a) are equal. The above observations imply that we may sample the
laws of µ∗nA with A chosen according to UA (p,k) by instead sampling the laws of (ν∗nk )Λ

with Λ drawn according to UL0(p,k).
Combining this discussion with Minkowski’s theorem has the following consequence.

EJP 22 (2017), paper 90.
Page 12/49

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP108
http://www.imstat.org/ejp/


Cycle walks

Lemma 2.8. Let p be a large prime, let 1 ≤ k < 2 log p
log log p and let A ∈ A (p, k). Let Λ < Zk

be any lattice in the class of Λ(A) ∈ L , and let

`(A) = min{‖λ‖2 : 0 6= λ ∈ Λ∨}.

The relaxation time of random walk driven by µA on Z/pZ satisfies

trel ∼ 2k + 1

4π2`(A)2
.

Proof. The characters of Zk/Λ are given by the dual group, Λ∨/Zk. Let λ∗ = (λ1, ..., λk)

be a vector of minimal length in Λ∨ \ {0}. The claim follows on noting that the spectral
gap is given by

1− ν̂Λ(λ∗) =
1

2k + 1

k∑
j=1

(2− 2 cos (2πλj)) =
4π2

2k + 1

k∑
j=1

(
λ2
j +O(λ4

j )
)
.

The error is of lower order since ‖λ∗‖∞ �
√
kp−

1
k = o(1) by Minkowski’s Theorem.

Lemma 1.10 from the introduction has the following consequence.

Lemma 2.9. Let p ≥ 3 be a prime, let 1 ≤ k ≤ log p
log log p and let A ∈ A (p, k) with

Λ < Zk any representative of Λ(A) ∈ L 0(p, k). There is a function ε : R>0 → R>0 with
limx→∞ ε(x) = 0, such that, for n ≥ 1∥∥µ∗nA −UZ/pZ∥∥TV(Z/pZ)

=

∥∥∥∥Θ

(
·, 2n

2k + 1
; Λ

)
−URk/Λ

∥∥∥∥
TV(Rk/Λ)

+O
(
ε
( n
k2

))
.

Proof. Write Λ = Λ(A) and 1
[− 1

2 ,
1
2 )
k for the indicator function of the cube

[
− 1

2 ,
1
2

)k ⊂ Rk.

We have∥∥µ∗nA −UZ/pZ∥∥TV(Z/pZ)
=
∥∥ν∗nΛ −UZk/Λ

∥∥
TV(Zk/Λ)

=

∥∥∥∥ν∗nΛ ∗ 1[− 1
2 ,

1
2 )
k −URk/Λ

∥∥∥∥
TV(Rk/Λ)

and∣∣∣∣∣
∥∥∥∥ν∗nΛ ∗ 1[− 1

2 ,
1
2 )
k −URk/Λ

∥∥∥∥
TV(Rk/Λ)

−
∥∥∥∥Θ

(
x,

2n

2k + 1
; Λ

)
−URk/Λ

∥∥∥∥
TV(Rk/Λ)

∣∣∣∣∣
≤
∥∥∥∥ν∗nΛ ∗ 1[− 1

2 ,
1
2 )
k −Θ

(
x,

2n

2k + 1
; Λ

)∥∥∥∥
TV(Rk/Λ)

≤

∥∥∥∥∥ν∗n ∗ 1[− 1
2 ,

1
2 )
k − ηk

(√
2n

2k + 1
, ·

)∥∥∥∥∥
TV(Rk)

by two applications of the triangle inequality. The bound now follows from Lemma 1.10.

Combining the pieces above we prove the following lemma which is the main reduc-
tion in this section.

Lemma 2.10. Let 0 < ε < 1, and let k = k(p) satisfy 1 ≤ k ≤ log p
log log p . For any set

A ∈ A (p, k) with uniform measure µA of total variation mixing time tmix
1 (ε), we have, as

p→∞, for all n ≥ tmix
1 (ε)∥∥µ∗nA (x)−UZ/pZ
∥∥

TV(Z/pZ)
=

∥∥∥∥Θ

(
x,

2n

2k + 1
; Λ(A)

)
−URk/Λ(A)

∥∥∥∥
TV(Rk/Λ(A))

+ oε(1).
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Proof. By Minkowski’s geometry of numbers, the shortest non-zero vector in the dual
lattice Λ(A)∨ has length

`(A)�
√
kp
−1
k

so that Lemmas 2.1 and 2.8 give for the discrete walk tmix
1 (ε) � trel � p

2
k . The claim

now follows from Lemma 2.9, since k = o
(
p

1
k

)
.

3 Mixing time estimates

Let p be prime, A ∈ A (p) with |A| = 2k + 1 and 1 ≤ k ≤ log p
log log p . Let Λ = Λ(A) be any

lattice associated to A in Zk, as above.

Proof of Theorem 1.1. Theorem 1.1 is contained in the set of estimates

τ0
2k + 1

16πΓ
(
k
2 + 1

) 2
k

p
2
k .p τ0t

rel .p t
mix
1 .k 0.163ktrel.

since
2k + 1

16πΓ
(
k
2 + 1

) 2
k

→ e

4π
, k →∞.

Combining Lemma 2.8 and Minkowski’s theorem gives

trel ∼ 2k + 1

4π2`(A)2
≥ 2k + 1

16πΓ
(
k
2 + 1

) 2
k

p
2
k .

The estimate trel(1− log 2) ≤ tmix
1 is given in Lemma 2.1. To replace (1− log 2) with the

larger constant τ0, consider the theta function Θ
(
x, 2t

2k+1 ; Λ
)

, which has asymptotically

the same relaxation time as µA by Lemma 2.8. Let λ∗ be a shortest non-zero vector in
the dual space, and consider

Θ0

(
x,

2t

2k + 1
; Λ

)
=

1

p

∑
j∈Z

exp

(
−4π2t

2k + 1
‖λ∗‖22j2

)
e(jλ∗ · x),

which is found by projecting Θ in frequency space onto the line determined by λ∗.
Equivalently, identify Rk−1 with Rk ∩ (λ∗)⊥ and let ηk−1(T, ·) denote a Gaussian of
covariance matrix T 2I on this space. Write λ ∈ Λ∨ as λ = λ1 + λ2 where λ1 is the
projection to the span of λ∗ and λ2 is orthogonal to λ∗. One has, for T > 0,∫

Rk∩(λ∗)⊥
ηk−1(T, y)Θ

(
x+ y,

2t

2k + 1
; Λ

)
dy

=
∑
λ∈Λ∨

exp

(
− 4π2t

2k + 1
‖λ‖22 − 2π2T 2‖λ2‖22

)
e(λ1 · x)

and thus

Θ0

(
x,

2t

2k + 1
; Λ

)
= lim
T→∞

∫
Rk∩(λ∗)⊥

ηk−1(T, y)Θ

(
x+ y,

2t

2k + 1
; Λ

)
dy.

The convergence is uniform in x as the error at T is dominated by the case in which x is
orthogonal to λ∗ so that all the terms are positive. This justifies exchanging the limit and
integral in the following calculation. Let F be a fundamental domain for Rk/Λ.∥∥∥∥Θ0

(
x,

2t

2k + 1
; Λ

)
−URk/Λ

∥∥∥∥
TV(Rk/Λ)

=
1

2

∫
F

∣∣∣∣Θ0

(
x,

2t

2k + 1
; Λ

)
− 1

p

∣∣∣∣ dx
= lim
T→∞

1

2

∫
F

∣∣∣∣∣
∫
Rk∩(λ∗)⊥

ηk−1(T, y)

(
Θ

(
x+ y,

2t

2k + 1
; Λ

)
− 1

p

)
dy

∣∣∣∣∣ dx
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Applying the triangle inequality,

∥∥Θ0 −URk/Λ
∥∥

TV(Rk/Λ)
≤ lim
T→∞

1

2

∫
F

∫
Rk∩(λ∗)⊥

ηk−1(T, y)

∣∣∣∣Θ(x+ y,
2t

2k + 1
; Λ

)
− 1

p

∣∣∣∣ dydx
= lim
T→∞

∫
Rk∩(λ∗)⊥

ηk−1(T, y)
∥∥Θ−URk/Λ

∥∥
TV(Rk/Λ)

dy

=
∥∥Θ−URk/Λ

∥∥
TV(Rk/Λ)

.

Let
θ(x, t) =

∑
j∈Z

exp(−2π2tj2)e(jx)

denote the time t Gaussian diffusion on R/Z. For t > 0,∥∥∥∥Θ0

(
·, t

‖λ∗‖22
; Λ

)
−URk/Λ

∥∥∥∥
TV(Rk/Λ)

= ‖θ(·, t)−UR/Z‖TV(R/Z).

Since the latter distance is monotonically decreasing and smooth, and since for n ≥ tmix
1 ,

∥∥µ∗nA −UZk/Λ∥∥TV(Zk/Λ)
=

∥∥∥∥Θ

(
·, 2n

2k + 1
; Λ

)
−URk/Λ

∥∥∥∥
TV(Rk/Λ)

+ o(1)

by Lemma 2.10, it follows that tmix
1 & τ0t

rel.
To give the spectral upper bound for tmix

1 , again consider instead the distance from

uniformity of Θ
(
·, 2n

2k+1 ; Λ
)

on Rk/Λ. For t > 0,

∥∥∥∥Θ

(
·, 2t

2k + 1
; Λ

)
−URk/Λ

∥∥∥∥2

TV(Rk/Λ)

≤ 1

4

∑
λ∈Λ∨\{0}

exp

(
−8π2t‖λ‖22

2k + 1

)

Writing the sum as a Stieltjes integral, then integrating by parts, the right hand side
becomes

1

4

∫ ∞
s=1−

exp

(
−8π2t‖λ∗‖22s2

2k + 1

)
d (|Λ∨ ∩B2(0, s‖λ∗‖)|) (3.1)

=
4π2t‖λ∗‖22

2k + 1

∫ ∞
1−

s exp

(
−8π2t‖λ∗‖22s2

2k + 1

)
|Λ∨ ∩B2(0, s‖λ∗‖)| ds.

Set t = τ 2k+1
4π2‖λ∗‖22

so that τ ∼ t
trel
. Thus (3.1) simplifies to

(3.1) = τ

∫ ∞
1−

s exp
(
−2τs2

)
|Λ∨ ∩B2(0, s‖λ∗‖)| ds

≤ τ
∫ ∞

1−
s exp

(
−2τs2 + (1 + ε(k))kF (s)

)
ds

where ε(k)→ 0 as k →∞, and

F (s) =

[
1 + sin θ

2 sin θ
log

1 + sin θ

2 sin θ
− 1− sin θ

2 sin θ
log

1− sin θ

2 sin θ

]
, θ(s) = 2 sin−1

(
1

2s

)
see Lemma 2.6. The maximum of F (s)

s2 in s ≥ 1 occurs at s = 1.260816271(1) with

maximum < 0.324908241 and F (s)
s2 → 0 as s→∞. Thus, choosing 2τ = (0.325 + ε̃(k))k for

an appropriate function ε̃(k) tending to 0 as k →∞ the L2 distance is negligible so that
τtrel is an upper bound for tmix

2 ≥ tmix
1 .
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3.1 Geometric mixing time bound, proof of Theorem 1.4

Let p, A and Λ as above, and let F be the Voronoi cell for Rk/Λ. Note that Zk ∩F
contains a system of representatives for Zk/Λ, and that the Cayley graph C (A, p) is
isomorphic to C ({0,±ei : 1 ≤ i ≤ k},Zk/Λ). Thus

rad(F ) := sup {‖x‖2 : x ∈ F} = diamgeom(C (A, p)).

Proof of Theorem 1.4. Write D = diamgeom(C (A, p)) and assume, as we may, that t >
kD2. In view of Lemma 2.4, which proves D ≥ 1

`(A) , we have t � trel, and thus as in
Lemma 2.10∥∥µ∗tA −UZ/pZ∥∥TV(Z/pZ)

+ o(1) =

∥∥∥∥Θ

(
·, 2t

2k + 1
; Λ

)
−URk/Λ

∥∥∥∥
TV(Rk/Λ)

,

so we will estimate the right hand side.

Since, for any x, t, Ey∈F

[
Θ
(
x+ y, 2t

2k+1 ; Λ
)]

= 1
p , we may estimate using the triangle

inequality

∥∥Θ−URk/Λ
∥∥

TV(Rk/Λ)
=

1

2

∫
x∈F

∣∣∣∣Θ(x, 2t

2k + 1
; Λ

)
−Ey∈F

[
Θ

(
x+ y,

2t

2k + 1
; Λ

)]∣∣∣∣ dx
≤ 1

2

∫
x∈F

∑
λ∈Λ

∣∣∣∣∣ηk
(√

2t

2k + 1
, x− λ

)
−Ey∈F

[
ηk

(√
2t

2k + 1
, x+ y − λ

)]∣∣∣∣∣ dx.
Now use the inequality |1− ex| ≤ e|x| − 1 to obtain∥∥Θ−URk/Λ

∥∥
TV(Rk/Λ)

≤ 1

2

∫
x∈F

∑
λ∈Λ

ηk

(√
2t

2k + 1
, x− λ

)
Ey∈F

[
exp

(
2k + 1

4t

(
‖y‖22 + 2|〈x− λ, y〉|

))
− 1

]
dx.

Fold together the sum over λ and the integral over x, then integrate away all directions
in x orthogonal to y to obtain∥∥∥∥Θ

(
·, 2t

2k + 1
; Λ

)
−URk/Λ

∥∥∥∥
TV(Rk/Λ)

≤ 1

2

∫
x∈R

η1

(√
2t

2k + 1
, x

)
Ey∈F

[
exp

(
2k + 1

4t

(
‖y‖22 + ‖y‖2|x|

))
− 1

]
dx

� D

√
k

t
.

The last estimate follows on using 1√
2π

∫
x∈R e

− x22 +δ|x|dx = 1 +O(δ) as δ ↓ 0.

4 Transition window bound, proof of Theorem 1.6

We prove the following somewhat more general theorem.

Theorem 4.1. Let p be a large prime and let k ≤ log p
log log p . Let A ⊂ Z/pZ be a lazy

symmetric generating set of size |A| = 2k + 1. For any 1 > ε1 > ε2 > 0, for all
n < exp

(
2ε2
k

)
· tmix

1 (ε1) we have∥∥µ∗nA −UZ/pZ∥∥TV(Z/pZ)
≥ ε1 − ε2 + oε1,ε2(1).
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Proof. Let Λ < Zk be any lattice representing the class of Λ(A) ∈ L . By Lemma 2.10

we may replace
∥∥µ∗nA −UZ/pZ∥∥TV(Z/pZ)

with
∥∥∥Θ
(
x, 2n

2k+1 ; Λ
)
−URk/Λ

∥∥∥
TV(Rk/Λ)

making

error o(1).
Write n = σtmix

1 (ε1). Differentiating under the sum in the θ function,

d

dσ
Θ

(
x,

2σtmix
1 (ε1)

2k + 1
; Λ

) ∣∣∣∣∣
σ=σ′

≥ − k

2σ′
Θ

(
x,

2σ′tmix
1 (ε1)

2k + 1
; Λ

)
. (4.1)

Also,
∥∥∥Θ
(
x,

2σtmix
1 (ε1)

2k+1 ; Λ
)
−URk/Λ

∥∥∥
TV(Rk/Λ)

is a decreasing function of σ > 0. Define

P (σ) =

{
x ∈ Rk/Λ : Θ

(
x,

2σtmix
1 (ε1)

2k + 1
; Λ

)
>

1

p

}
.

Now for any σ, σ0 > 0,∥∥∥∥Θ

(
·, 2σtmix

1 (ε1)

2k + 1
; Λ

)
−URk/Λ

∥∥∥∥
TV(Rk/Λ)

=

∫
P (σ)

Θ

(
x,

2σtmix
1 (ε1)

2k + 1
; Λ

)
− 1

p
dx

≥
∫
P (σ0)

Θ

(
x,

2σtmix
1 (ε1)

2k + 1
; Λ

)
− 1

p
dx.

Thus for σ > σ0,∥∥∥∥Θ

(
·, 2σtmix

1 (ε1)

2k + 1
; Λ

)
−URk/Λ

∥∥∥∥
TV(Rk/Λ)

−
∥∥∥∥Θ

(
·, 2σ0t

mix
1 (ε1)

2k + 1
; Λ

)
−URk/Λ

∥∥∥∥
TV(Rk/Λ)

≥
∫
P (σ0)

Θ

(
x,

2σtmix
1 (ε1)

2k + 1
; Λ

)
−Θ

(
x,

2σ0t
mix
1 (ε1)

2k + 1
; Λ

)
dx (4.2)

Differentiate under the integral, then apply (4.1) and finally drop the restriction to P (σ0)

to obtain the estimate

(4.2) =

∫
P (σ0)

∫ σ

σ0

d

ds
Θ

(
x,

2stmix
1 (ε1)

2k + 1
; Λ

) ∣∣∣∣∣
s=σ′

dσ′dx

≥ −k
2

∫ σ

σ0

1

σ′

∫
P (σ0)

Θ

(
x,

2σ′tmix
1 (ε1)

2k + 1
; Λ

)
dxdσ′

≥ −k
2

log
σ

σ0
. (4.3)

Note that k = o
(
tmix
1 (ε1)

)
. Applying (4.3) with σ0 = 1 − 1

tmix
1 (ε1)

and σ = 1, which

corresponds to the random walk at the mixing time and the step before, we deduce∥∥∥∥Θ

(
·, 2tmix

1 (ε1)

2k + 1
; Λ

)
−URk/Λ

∥∥∥∥
TV(Rk/Λ)

= ε1 + oε1(1).

Applying (4.3) again, but now with σ0 = 1, σ = exp( 2ε2
k ), we obtain in the range tmix

1 (ε1) <

n < exp( 2ε2
k ) · tmix

1 (ε1),∥∥∥µ(n)
A −UZ/pZ

∥∥∥
TV(Z/pZ)

≥ ε1 − ε2 + oε1,ε2(1).

5 Random random walk, proof of Theorem 1.7

We record several facts regarding the uniform measure UL on the set L(p, k) of index
p lattices in Zk.
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Lemma 5.1. When Λ is chosen uniformly from L(p, k), the dual lattice Λ∨ has the
distribution of

{0, 1, · · · , p− 1}v
p

+Zk

where v is a uniform random vector in (Z/pZ)k \ {0}.
When Λ is chosen uniformly from L0(p, k), the dual lattice Λ∨ has the distribution of

{0, 1, · · · , p− 1}v
p

+Zk

where v is chosen uniformly from

D = {v ∈ (Z/pZ \ {0})k : ∀1 ≤ i < j ≤ k, vi 6= ±vj}.

Proof. In the case of L(p, k), the structure follows from [Λ : Zk] = p and 1
pZ

k < Λ, while
the uniformity follows from the fact that SLk(Z/pZ) acts transitively on the space of dual
lattices. This holds since any non-zero vector may be completed to a basis for (Z/pZ)k.

The further conditions imposed in the case of L0(p, k) are those necessary to ensure
that Λ does not contain a vector λ with ‖λ‖22 ∈ {1, 2}.

Lemma 5.2. Let p be prime, let k ≥ 2 and let v 6= w ∈ Zk. We have

UL(Λ : v, w ∈ Λ) =


1 v, w ∈ (pZ)k

pk−1−1
pk−1

|Zv +Zw mod p| = p
pk−2−1
pk−1

|Zv +Zw mod p| = p2

.

In particular, UL(L0(p, k)) ≥ 1−O
(
k2

p

)
.

Proof. These follow immediately from the distribution of the dual group.

5.1 Summary of argument

As the calculations in the remainder of this section are somewhat involved, we pause
to sketch the main ideas.

Theorem 1.7 has three claims, the first two of which consider the worst case mixing
time behavior, with the third considering typical behavior. When considering the walk
as a diffusion on Rk/Λ where Λ is a lattice, the spectrum of the transition kernel is
determined by the dual lattice Λ∨. In general, it is difficult to work on the spectral side
due to the high concentration of eigenvalues near the spectral gap, but in the worst
case regime we are able to show that for all behavior that persists, the dual lattice
is essentially one dimensional. When this occurs the mixing and relaxation times are
proportional and we obtain a slow transition.

In typical behavior the walk has a sharp transition to uniformity. The analysis in
this regime consists of separate arguments estimating the distance to uniformity at
times (1± ε)tmix

1 . When considering the walk at time (1− ε)tmix
1 we study the diffusion

Θ
(
x, 2t

2k+1 ; Λ
)

on the norm-minimal fundamental domain F (Λ) for Rk/Λ. For a particular

lattice Λ, F (Λ) is a highly complex convex body determined by a number of hyperplanes,
but in a statistical sense, for the purpose of the lower bound, F (Λ) behaves very much
like the volume p ball of Rk centered at the origin. A Gaussian in Rk centered at the
origin is concentrated on a thin spherical shell (see Lemma 2.2), and the mixing time
is essentially the time needed for this spherical shell to expand to the boundary of the
volume p ball. At time (1− ε)tmix

1 we are then able to show that the diffusion is typically
concentrated on a small measure part of F (Λ).
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For the upper bound at time (1 + ε)tmix
1 , we note that pZk < Λ, and we show that

the distribution of values of Θ
(
x, 2t

2k+1 ; Λ
)

is concentrated near 1 when x is chosen

uniformly from Rk/pZk and Λ is chosen at random from L(p, k). This is the most delicate
part of the argument. For instance, it is not sufficient to consider the expectation of(

Θ
(
x, 2t

2k+1 ; Λ
)
− 1
)2

as this gives an upper bound which is too weak, so we split Θ into

an L2-concentrated piece ΘM plus a small L1 error ΘE .

5.2 Slow mixing behavior

We prove Theorem 1.7 in two parts. In this section we prove parts (1) and (2) which
concern rare slow mixing walks. In Section 5.3 we prove part (3) regarding the typical
behavior. The main estimate regarding slow mixing behavior is the following theorem.

Theorem 5.3. Let p be a large prime, and let k = k(p) tending to∞ with p in such a way

that k ≤ log p
log log p . For any δ > 0, for all p sufficiently large, uniformly in δ p

1
k√
k
< ρ < (p log p)

1
k

δ ,
the following hold

1.

PA (p,k)

[
trel ≥ eρ2p

2
k

π

]
=

exp(o(k))

ρk
. (5.1)

2. Let, as in Theorem 1.7, τ0 be the ratio between total variation mixing time and

relaxation time for Gaussian diffusion on R/Z. For any C ≥ 1, and δp
4
k

k ≤ J ≤
p

4
k (log p)

2
k

δ

PA (p,k)

[
tmix
1 ≥ C(τ0 + δ)trel and

J

2
≤ trel ≤ J

]
≤ exp

(
k

2
log

k

C
+Oδ(k)

)
p2

Jk
(5.2)

PA (p,k)

[
tmix
1 ≤ (τ0 − δ)trel and

J

2
≤ trel ≤ J

]
≤ exp

(
k

2
log k +Oδ(k)

)
p2

Jk
.

Deduction of Theorem 1.7, parts (1) and (2). Before giving the proof of the Theorem we
prove an auxiliary claim.

Let δ > 0 be an arbitrarily small fixed quantity. We claim that with probability 1, only
finitely many of the events

Bp =

{
tmix
1 (p) ≥ δp 4

k and

∣∣∣∣ tmix
1 (p)

τ0trel(p)
− 1

∣∣∣∣ ≥ δ}

occur. Note that by Theorem 1.1, tmix
1 (p) ≥ δp 4

k implies trel(p)� δ p
4
k

k . Thus, combining
(5.1) and (5.2),

P (Bp) ≤
exp (k log k +Oδ(k))

p2
+

1

p log p
,

where the first term is handled with (5.2) and covers the range trel � p
4
k (log p)

2
k , the

worst case occuring when trel � p
4
k

k is minimized. Note k ≤ log p
log log p from which it follows

∑
p

P (Bp) ≤
∑
p

exp
(
− log p

log log p (log log log p+Oδ(1))
)

p
+

1

p log p

 <∞,

so that the claim holds by the Borel-Cantelli Lemma.
We now prove the Theorem.
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(1) Replace ρ(p) with ρ(p) := max
(
ρ(p), p

1
k

)
without altering the divergence of∑

p ρ(p)−k. Estimating with (5.1), by Borel-Cantelli, with probability 1 there is an infinite
sequence P0 ⊂P such that, for p→∞ through P0,

trel(p) &
e

π
ρ(p)2p

2
k .

The above remarks guarantee that, for this sequence, tmix
1 (p) ∼ τ0trel(p).

(2) Let δ > 0 be fixed. Estimate with (5.1) to obtain that with probability 1, for all but
finitely many p,

trel(p) ≤
(

1 +
δ

2

)
e

π
ρ(p)2p

2
k .

Since ρ(p) ≥ p 1
k eventually, the remarks above imply that with probability 1

tmix
1 (p) ≤ (1 + δ)

eτ0
π
ρ(p)2p

2
k

for all but finitely many p.

In proving Theorem 5.3 we introduce two commonly used pieces of terminology from
the theory of lattices. Let p be a prime and let k ≥ 1. Say that λ ∈ Zk is reduced (at p)

if λ ∈
[
−p2 ,

p
2

)k
. Any class λ ∈ (Z/pZ)k has a unique reduced representative r(λ) ∈ Zk.

Say that λ = (λ1, ..., λk) ∈ Zk is primitive if λ 6= 0 and GCD(λi : 1 ≤ i ≤ k) = 1.
Our proof of Theorem 5.3 depends upon the following two estimates, the first of

which estimates a mean concerning pairs of short vectors in the dual space.

Proposition 5.4. Let δ > 0 be a fixed constant. Let p and k(p) tend to∞ in such a way

that k ≤ log p
log log p . Let δp

1
k√
k
≤ ρ ≤ 1

δ (p log p)
1
k . For any δ√

k
≤ C ≤

√
k
δ , for any ε > 0,

EL0(p,k)

 ∑
λ1 6=±λ2∈Λ∨\{0}
pλi primitive

ηk

(
1

ρp
1
k

, λ1

)
ηk

(
1

Cρp
1
k

, λ2

) ≤ p2 +Oε

(
p

3
2 + 4

k+ε
)
. (5.3)

Remark 5.5. This proposition should be interpretted as expressing the approximate
independence of the appearance of a pair of short primitive vectors in the dual space.

Proof. It is enough to estimate with respect to UL(p,k) since this introduces a relative

error 1 +O
(
k2

p

)
, which is smaller than the error claimed.

Let S ⊂ (Z/pZ)k × Z/pZ denote the set of pairs (λ, a) such that λ ∈ (Z/pZ)k,
a ∈ Z/pZ \ {0,±1} and both reduced vectors r(λ) and r(aλ) are primitive. Also denote
for λ ∈ (Z/pZ)k, S (λ) ⊂ Z/pZ the fiber over λ.

Lemma 5.1 gives

EL(p,k)

 ∑
λ1 6=±λ2∈Λ∨\{0}
pλi primitive

ηk

(
1

ρp
1
k

, λ1

)
ηk

(
1

Cρp
1
k

, λ2

)
≤ p2k(p− 1)

pk − 1

∑
λ∈(Z∩(− p2 ,

p
2 ])

k

primitive

∑
a∈S (λ)

Φ1(λ)ΦC(aλ) + o(1), (5.4)

where

Φc(x) =
∑
n∈Zk

ηk

(
p1− 1

k

cρ
, x+ pn

)
.
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To briefly explain this formula, the factor of p2k results from scaling both the variable and
the standard deviation in the Gaussians by p. The condition λ1 ≡ aλ2 mod pZk for some
a follows from the characterization of Λ∨. The error term o(1) covers summation over
pairs λ1, λ2 for which one of λ1, λ2 is not reduced but both are primitive. The summation
in this case is bounded by, for some c > 0 and all B > 0

� p−k+1
∑

λ1,λ2∈( 1
pZ)

k

max(‖λ1‖∞,‖λ2‖∞> 1
2 )

ηk

(
1

ρp
1
k

, λ1

)
ηk

(
1

Cρp
1
k

, λ2

)

� pO(k) exp
(
−cp 2

k

)
= OB(p−B), (5.5)

since p
2
k dominates k log p.

We make several modifications to the sum of (5.4) which make it easier to estimate.
First we may exclude from S any pairs (λ, a) for which

max

(
ρp

1
k

∥∥∥∥λp
∥∥∥∥

(R/Z)k
, Cρp

1
k

∥∥∥∥aλp
∥∥∥∥

(R/Z)k

)
≥ Q :=

√
log p log log p

as these contribute, for any B > 0, OB(p−B). To obtain this, note that the cardinality of
the summation set is O(pk+1) since we have replaced summation over λ2 with summation
over a. Thus it suffices to show that for excluded pairs, Φ1(λ)ΦC(aλ)�B p−2k−2−B; to
see this, note that Φ is controlled by the contribution of the summand nearest 0.

Let S ′ be those choices of (λ, a) which remain. Denote by F (Q) the collection
of Farey fractions modulo p (the definition is non-standard since the numerator and
denominator are bounded by different quantities),

F (Q) =

{
bq−1 mod p : max

(
|b|, |q|

C

)
≤ ρp

1
k

2Q
, q 6= 0

}
.

We claim that for any reduced λ, S ′(λ mod p) ⊂ Z/pZ\F (Q). Indeed, suppose otherwise
and let a = bq−1 ∈ S ′(λ mod p) ∩ F (Q). Let η ≡ aλ mod p with η reduced. Then
bλ ≡ qη mod p, but the norm condition implies that in fact bλ = qη, which contradicts the
primitivity.

Replace S ′(λ) with Z/pZ \F (Q) and complete the sum over λ to obtain

(5.4) ≤ OB(p−B) +
p2k(p− 1)

pk − 1

∑
λ∈(Z/pZ)k

∑
a∈F(Q)c

Φ1(λ)ΦC(aλ).

Applying Plancherel on (Z/pZ)k, we obtain

(5.4) < OB(p−B) +
pk(p− 1)

pk − 1

∑
a∈F(Q)c

∑
ξ∈(Z/pZ)k

Φ̂1(aξ)Φ̂C(ξ)

where

Φ̂c(ξ) =
∑
n∈Zk

ηk

(
p1− 1

k

cρ
, n

)
exp

(
2πiξ · n

p

)
=
∑
n∈Zk

exp

(
−2π2p2− 2

k

c2ρ2

∥∥∥∥ξp + n

∥∥∥∥2

2

)
.

All but one term from the sum over n is negligible, and we obtain, for any ε > 0,

(5.4) =OB(p−B)

+
pk(p− 1)

pk − 1

∑
a∈F(Q)c

∑
ξ∈(Z/pZ)k

exp

(
−2π2p2− 2

k

ρ2

(
1

C2

∥∥∥∥ξp
∥∥∥∥2

(R/Z)k
+

∥∥∥∥aξp
∥∥∥∥2

(R/Z)k

))
.
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Due to the decay in the exponential, we may truncate summation over a and ξ to∥∥∥ ξp∥∥∥
(R/Z)k

,
∥∥∥aξp ∥∥∥

(R/Z)k
�ε p

−1+ 1
k+ε with negligible error.

From ξ = 0 pull out a term ∼ p2. To treat the remaining terms, suppose k ≥ 3, and let
ξ = qξ0 for q ∈ Z>0 and ξ0 primitive. Write aξ ≡ ζ mod p where ‖ζ‖Rk �ε p

1
k+ε. It follows

for 1 < i ≤ k, ξ0
1ζi ≡ ξ0

i ζ1 mod p, and in fact, ξ0
1ζi = ξ0

i ζ1 so ζ = bξ0 for some b ∈ Z. The
sum is thus bounded by

pk(p− 1)

pk − 1

∑
ξ∈Zk

1≤‖ξ‖�p
1
k

+ε

∑
max(|b|, |q|C )> ρp

1
k

2Q

exp

(
− 2π2

ρ2p
2
k

((
q2

C2
+ b2

)
‖ξ‖22

))
.

We may estimate this sum crudely by truncating summation over b, q at |b|, |q|C ≤ ρp
1
k+ε

with error OB(p−B). The total number of such b, q is� kO(1)ρ2p
2
k+2ε �ε′ p

4
k+ε′ . For all

such b, q, summation over ξ is bounded by (see Lemma 2.7)

p
∑

06=ξ∈Zk
exp

(
−π2‖ξ‖22

2Q2

)
< p

∑
ξ∈Z

exp

(
−π2ξ2

2Q2

)k

� p(2Q)k �ε p
3
2 +ε.

Next we determine the distribution of the shortest vector in the dual lattice. Recall

that Rk =

(
Γ( k2 +1)

π
k
2

) 1
k

is the radius of a volume 1 ball.

Proposition 5.6. Let δ > 0 be a fixed constant, and let p, k and ρ be such that k ≤ log p
log log p ,

and δp
1
k√
k
≤ ρ ≤ 1

δ (p log p)
1
k . Given Λ ∈ L0(p, k) denote λ∗ the shortest non-zero vector of

the dual lattice. One has

PL0(p,k)

[
‖λ∗‖2 ≤

Rk

ρp
1
k

]
=

1

2ρk

(
1 +O

(
eO(k)

ρk
+

k2ρ

p1− 1
k

))
.

Proof. By Lemma 2.5

EL(p,k)

[
#

{
0 6= λ ∈ Λ∨ ∩B2

(
0,
Rk

ρp
1
k

)}]
=

p− 1

pk − 1
#

{
0 6= λ ∈ Zk ∩B2

(
0,
Rkp

1− 1
k

ρ

)}

=
1

ρk

(
1 +O

(
kρ

p1− 1
k

))
.

By counting vectors λ with λ1 = 0 or λ1 = ±λ2 one finds

EL0(p,k)

[
#

{
0 6= λ ∈ Λ∨ ∩B2

(
0,
Rk

ρp
1
k

)}]
=

1

ρk

(
1 +O

(
k2ρ

p1− 1
k

))
. (5.6)

Let 0 < τ < 1 and observe that for all (1− τ)
√
k

p
1
k ρ

< ‖x‖2 ≤ (1 + τ)
√
k

p
1
k ρ

,

pρk exp

(
−k

2

(
(1 + τ)2 + log 2π

))
≤ ηk

(
1

p
1
k ρ
, x

)
≤ pρk exp

(
−k

2

(
(1− τ)2 + log 2π

))
.

(5.7)
Choosing C = 1 in Proposition 5.4 and inserting these bounds, one finds

PL0(p,k)

[
‖λ∗‖2 ≤

Rk

ρp
1
k

]
=

1

2ρk

(
1 +O

(
eO(k)

ρk
+

k2ρ

p1− 1
k

))
,

by subtracting the contribution to (5.6) from lattices with pairs of primitive short vectors,
and accounting for the factor of 2 from counting ±λ∗.
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Proof of Theorem 5.3. The estimate (5.1) regarding the distribution of trel follows from

Proposition 5.6 together with Rk ∼
√

k
2πe and trel ∼ k

2π2‖λ∗‖22
as k →∞.

For (5.2), choose ρ = 2
n
2 such that ρ2p

2
k � J . Equivalently, consider Λ for which the

shortest non-zero vector λ∗ of Λ∨ satisfies
√
k

ρp
1
k
� ‖λ∗‖2. For such λ∗,

ηk

(
1

ρp
1
k

, λ∗
)

= pρkeO(k). (5.8)

This majorant is used in what follows.
Let

Θ0

(
x,

2t

2k + 1
; Λ

)
=

1

p

∑
j∈Z

exp

(
−4π2t

2k + 1
‖λ∗‖22j2

)
e (jλ∗ · x)

denote the projection of Θ
(
x, 2t

2k+1 ; Λ
)

in frequency space onto the line determined by

λ∗. If
∣∣∣ tmix

1

τ0trel
− 1
∣∣∣ > ε then there is some t = (1 +O(ε))tmix

1 such that∥∥∥∥(Θ−Θ0)

(
·, 2t

2k + 1
; Λ

)∥∥∥∥
L1(Rk/Λ)

�ε 1. (5.9)

Apply Cauchy-Schwarz to obtain

1�ε

∑
λ∈Λ∨\Z·λ∗

exp

(
−8π2t

2k + 1
‖λ‖22

)
�

∑
λ∈Λ∨\{±λ∗}
pλ primitive

exp

(
−8π2t

2k + 1
‖λ‖22

)
. (5.10)

The latter sum may be written as

∑
λ∈Λ∨\{±λ∗}
pλ primitive

(
8πt

2k + 1

) k
2

ηk

(
1

4π

√
2k + 1

t
, λ

)
.

Since t � Ctrel � C k
‖λ∗‖22

� Cρ2p
2
k (take C � 1 in the case of the second estimate of

(5.2)) there is c � C such that

∑
λ∈Λ∨\{±λ∗}
pλ primitive

ηk

(√
k

c

1

ρp
1
k

, λ

)
� pρk

(
C

k

) k
2

eO(k).

Applying Proposition 5.4,

EL0(p,k)

 ∑
λ1 6=±λ2∈Λ∨\{0}
pλi primitive

ηk

(
1

ρp
1
k

, λ1

)
ηk

(√
k

c

1

ρp
1
k

, λ2

) ≤ p2 +Oε

(
p

3
2 + 4

k+ε
)

and thus, by specializing to λ1 = λ∗ and applying Markov’s inequality,

PL0(p,k)

‖λ∗‖2 � √k
ρp

1
k

and 1�ε

∑
λ∈Λ∨\Z·λ∗

exp

(
−8π2t

2k + 1
‖λ‖22

)
� ρ−2k exp

(
k

2
log

k

C
+O(k)

)
.

This verifies (5.2).
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5.3 Analysis of typical mixing behavior

We turn to analysis of the mixing behavior for A in the bulk of A (p, k) proving the
following theorem.

Theorem 5.7. Let p be prime, let 0 < ε = ε(p) < 1
2 and let 1 ≤ k ≤ log p

log log p . Set

tmix
1 = k

2πep
2
k . There is a function θ = θ(ε, k) > 0 tending to 0 as ε2k → ∞ and a set

A ∗(p, k) ⊂ A (p, k) satisfying

|A ∗(p, k)| ≥ (1− o(1)) |A (p, k)| ,

such that, for all A ∈ A ∗p,k,

∀n < (1− ε)tmix
1 ,

∥∥∥∥µ∗nA − 1

p

∥∥∥∥
TV(Z/pZ)

≥ 1− θ(ε, k) + o(1),

∀n > (1 + ε)tmix
1 ,

∥∥∥∥µ∗nA − 1

p

∥∥∥∥
TV(Z/pZ)

≤ θ(ε, k) + o(1)

where all quantities o(1) tend to zero as p→∞ uniformly in k.

We can now conclude our proof of Theorem 1.7.

Deduction of Theorem 1.7, part (3). For each j = 1, 2, ..., let E(p, j) be the event that

∀n < (1− ε(p))tmix
1 ,

∥∥∥∥µ∗nA − 1

p

∥∥∥∥
TV(Z/pZ)

> 1− 2−j ,

∀n > (1 + ε(p))tmix
1 ,

∥∥∥∥µ∗nA − 1

p

∥∥∥∥
TV(Z/pZ)

< 2−j .

For a fixed p, the events E(p, j) are nested in j. For each j ∈ Z>0, let Nj be min-
imal such that for all p > Nj , UA (p,k)[E(p, j)] ≥ 1 − 2−j . This is finite by Theorem
5.7. Define E∗(p) =

⋂
j:Nj<p

E(p, j) and let p ∈ P0 if and only if E∗(p) occurs. Since
UA (p,k) [E∗(p)]→ 1 as p→∞ and the events are independent, we have P0 has density 1
with probability 1, as desired.

In the remainder of this section we shall frequently be concerned with counting
lattice points within Euclidean balls B2(x,R) ⊂ Rk. It is useful to bear in mind that the
radius Rk of a ball of unit volume in Rk satisfies

Rk =

(
Γ
(
k
2 + 1

)
π
k
2

) 1
k

=

√
k

2πe

(
1 +

log k

2k
+O

(
1

k

))
.

Let ε = ε(p) as in the theorem and set δ = 1
2 (1 −

√
1− ε). Recall that, given lattice

Λ < Rk, F (Λ) is the norm-minimal fundamental domain of Λ,

F (Λ) =
{
x ∈ Rk : ∀λ ∈ Λ \ {0}, ‖x‖ < ‖λ− x‖

}
.

Let k = k(p) and set t = t(p, k) = (1− ε)tmix
1 ∼ (1− ε)R2

kp
2
k .

Lemma 5.8. As k, p→∞ in such a way that k ≤ log p
log log p we have

EL(p,k)

[∫
x∈B2

(
0,(1−δ)Rkp

1
k

)
∩F(Λ)

Θ

(
x,

2t

2k + 1
; Λ

)
dx

]
= 1− o(1). (5.11)
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Proof. Since Θ
(
x, 2t

2k+1 ; Λ
)
≥ ηk

(√
2t

2k+1 , x
)

,

EL(p,k)

[∫
x∈B2

(
0,(1−δ)Rkp

1
k

)
∩F(Λ)

Θ

(
x,

2t

2k + 1
; Λ

)
dx

]

≥
∫
‖x‖≤(1−δ)Rkp

1
k

ηk

(√
2t

2k + 1
, x

)
dx (5.12)

−E

[∫
‖x‖≤(1−δ)Rkp

1
k

ηk

(√
2t

2k + 1
, x

)
1 (∃ λ ∈ Λ \ {0} : ‖λ− x‖ < ‖x‖) dx

]
. (5.13)

Since δ ∼ ε
2 as ε ↓ 0, (5.12) = 1 − o(1) follows from concentration of the norm of a

Gaussian vector on scale 1√
k

times its median length, see Lemma 2.2.
We estimate

(5.13) ≤
∫
‖x‖≤(1−δ)Rkp

1
k

ηk

(√
2t

2k + 1
, x

)
E

 ∑
λ∈Λ\{0}

1 (‖λ− x‖ < ‖x‖)

 dx.
For k sufficiently large, any λ counted in the expectation satisfies ‖λ‖ < p, and thus, by
Lemma 5.2,

E

 ∑
λ∈Λ\{0}

1 (‖λ− x‖ < ‖x‖)

 =
pk−1 − 1

pk − 1
#{λ ∈ Zk : ‖λ− x‖ < ‖x‖}.

For any x ∈ Rk, any lattice point x̃ ∈ Zk which is the vertex of the unit lattice cube

containing x satisfies ‖x̃‖ =
(

1 +O
( √

k
‖x‖

))
‖x‖. Since k

3
2 = o(Rkp

1
k ), it follows that for

all ‖x‖ ≤ (1− δ)Rkp
1
k we have

pk−1 − 1

pk − 1
#{λ ∈ Zk : ‖λ− x‖ < ‖x‖} ≤

(
1− δ + o

(
1

k

))k
= o(1),

and thus

(5.13) = o

(∫
‖x‖≤(1−δ)Rkp

1
k

ηk

(√
2t

2k + 1
, x

)
dx

)
= o(1).

Proof of Theorem 5.7, lower bound. For n ≥ t(p,k)
2 , Lemma 2.9 gives

EA (p,k)

[∥∥µ∗nA −UZ/pZ∥∥TV(Z/pZ)

]
= o(1) + EL0(p,k)

[∥∥∥∥Θ

(
·, 2n

2k + 1
; Λ

)
− 1

p

∥∥∥∥
TV(Rk/Λ)

]
while, for all n < t(p, k),

(1 + o(1))EL0(p,k)

[∥∥∥∥Θ

(
·, 2n

2k + 1
; Λ

)
− 1

p

∥∥∥∥
TV(Rk/Λ)

]

≥ EL(p,k)

[∫
x∈B2

(
0,(1−δ)Rkp

1
k

)
∩F(Λ)

Θ

(
x,

2t

2k + 1
; Λ

)
− 1

p
dx

]
.

By Lemma 5.8, the expectation of the integral against Θ is 1− o(1), while the expectation
of the integral against 1

p is bounded by∫
x∈B2

(
0,(1−δ)Rkp

1
k

) 1

p
dx = (1− δ)k = o(1).
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5.3.1 Proof of Theorem 5.7, upper bound

The main proposition of the upper bound is as follows.

Proposition 5.9. Let p and k(p) tend to ∞ in such a way that k ≤ log p
log log p , and let

0 < ε(p) < 1 with ε(p)2k(p)→∞. Set t = t(p) = (1 + ε) k
2πep

2
k . For any fixed δ > 0

UL(p,k)×(R/pZ)k

[
(Λ, x) ∈ L(p, k)× (R/pZ)k :

∣∣∣∣Θ(x, 2t

2k + 1
; Λ

)
− 1

p

∣∣∣∣ < δ

p

]
= (1 + oδ(1)).

(5.14)

Deduction of Theorem 5.7, upper bound. For any Λ ∈ L0(p, k) we have pZk < Λ, and
thus∥∥∥∥Θ

(
x,

2t

2k + 1
; Λ

)
− 1

p

∥∥∥∥
TV(Rk/Λ)

=

∫
Rk/Λ

1

p
−min

(
Θ

(
x,

2t

2k + 1
; Λ

)
,

1

p

)
dx

= p−k+1

∫
x∈(R/pZ)k

1

p
−min

(
Θ

(
x,

2t

2k + 1
; Λ

)
,

1

p

)
dx

and so

(1 + o(1))EL0(p,k)

[∥∥∥∥Θ

(
x,

2t

2k + 1
; Λ

)
− 1

p

∥∥∥∥
TV(Rk/Λ)

]

= EL(p,k)

[∥∥∥∥Θ

(
x,

2t

2k + 1
; Λ

)
− 1

p

∥∥∥∥
TV(Rk/Λ)

]
< δ + o(1).

Let τ = τ(p) = ε(p)
2 . Given x ∈ Rk, define spherical shell

S(x,R, τ) =
{
y ∈ Rk : ‖y − x‖ ∈ [(1− τ)R, (1 + τ)R]

}
.

We use several times the estimate for x ∈ S(0,
√
t, τ)

ηk

(√
2t

2k + 1
, x

)
≤ 1

p
exp

(
−
(

3ε2

4
+O(ε3)

)
k

2

)
= o

(
1

p

)
. (5.15)

The critical part of Λ when considering Θ
(
x, 2t

2k+1 ; Λ
)

in L1 is Λc(x) = Λ∩S(x,
√
t, τ).

We split

Θ

(
x,

2t

2k + 1
; Λ

)
= ΘM

(
x,

2t

2k + 1
; Λ

)
+ ΘE

(
x,

2t

2k + 1
; Λ

)
;

ΘM

(
x,

2t

2k + 1
; Λ

)
=

∑
λ∈Λc(x)

ηk

(√
2t

2k + 1
, λ− x

)
.

Lemma 5.10. For all x ∈ (R/pZ)k,

EL(p,k)

[
ΘM

(
x,

2t

2k + 1
; Λ

)]
=

1

p
(1 + o(1)).

Proof. If p is sufficiently large then there is at most one point of pZk contained in Λc(x),
and so (5.15) gives

EL(p,k)

[
ΘM

(
x,

2t

2k + 1
; Λ

)]
= o

(
1

p

)
+
pk−1 − 1

pk − 1

∑
λ∈Zk

ηk

(√
2t

2k + 1
, λ− x

)
1
(
λ ∈ S

(
x,
√
t, τ
))

EJP 22 (2017), paper 90.
Page 26/49

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP108
http://www.imstat.org/ejp/


Cycle walks

Let v ∈ Rk be a unit vector, and let Dv denote the directional derivative in the x variable
in direction v. For any λ ∈ S

(
x,
√
t, 2τ

)
we have∣∣∣∣∣Dv

(
log ηk

(√
2t

2k + 1
, λ− x

))∣∣∣∣∣� k√
t
�
√
k

p
1
k

.

In particular, for any y ∈
[
− 1

2 ,
1
2

)k
, since ‖y‖2 ≤

√
k

2 , we have

ηk

(√
2t

2k + 1
, λ− x

)
= (1 + o(1))ηk

(√
2t

2k + 1
, λ− x− y

)
.

Thus the sum may be approximated with an integral, and the result follows.

Lemma 5.11. We have the following estimates.

EL(p,k)×(R/pZ)k

[
ΘM

(
x,

2t

2k + 1
; Λ

)]
=

1

p
(1 + o(1))

EL(p,k)×(R/pZ)k

[
ΘE

(
x,

2t

2k + 1
; Λ

)]
= o

(
1

p

)
and for k > 2,

E(R/pZ)k

[
VarL(p,k)

[
ΘM

(
x,

2t

2k + 1
; Λ

)]]
= o

(
1

p2

)
.

Proof. The evaluations of the means follow from Lemma 5.10.
In evaluating the variance term, we write, for λ1, λ2 ∈ Zk, λ1 ∼ λ2 if λ2 ≡ aλ1 mod p

for some 0, 1 6≡ a mod p. We have the following evaluations (see Lemma 5.2):

UL (Λ : λ1, λ2 ∈ Λ)−UL (Λ : λ1 ∈ Λ)UL (Λ : λ2 ∈ Λ)

=


0 λ1 ∈ pZk or λ2 ∈ pZk
O
(
p−k

)
λ1, λ2 ∈ Zk \ pZk, λ1 6= λ2, λ1 6∼ λ2

O
(
p−1
)

λ1, λ2 ∈ Zk \ pZk, λ1 ∼ λ2 or λ1 = λ2

.

The variance thus evaluates to

E(R/pZ)k

[
VarL(p,k)

[
ΘM

(
x,

2t

2k + 1
; Λ

)]]
�

1

pk

∑
λ1,λ2∈Zk\(pZ)k

(
1(λ1 ∼ λ2)

1

p
+O(p−k)

)
(5.16)

×
∫
x∈[− p2 ,

p
2 )k∩S(λ1,

√
t,τ)∩S(λ2,

√
t,τ)

ηk

(√
2t

2k + 1
, λ1 − x

)
ηk

(√
2t

2k + 1
, λ2 − x

)
dx

+
1

pk+1

∑
λ∈Zk\(pZ)k

∫
x∈[− p2 ,

p
2 )
k∩S(λ,

√
t,τ)

ηk

(√
2t

2k + 1
, λ− x

)2

dx. (5.17)

The term (5.17) captures λ1 = λ2. Replacing one Gaussian by the bound (5.15) and
then estimating as for the mean of ΘM gives a bound for this term of

(5.17) = o

(
1

p2

)
.

The error termO(p−k) of (5.16) may be bounded by omitting the restriction on ‖λ2−x‖
and summing over λ2, the summation being bounded by a constant. The remaining
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summation over λ1 and integral over x are then evaluated as for the mean, and give an
error of O(p−k).

It remains to treat those terms from (5.16) with λ1 ∼ λ2. Let R(τ) = 2(1 + τ)
√
t.

Any λ1 ∼ λ2 contributing to the variance satisfies λ = λ1 − λ2 ∈ B(0, R(τ)) \ {0} and
λ1 ≡ (a + 1)λ mod pZk, λ2 ≡ aλ mod pZk for some a mod p. Arranging the summation
over λ and a, we find that the contribution of terms with λ1 ∼ λ2 to (5.16) is bounded by
(by expanding the integral, this is now independent of a, which we pull out)

� 1

pk

∑
λ∈Zk∩B(0,R(τ))\{0}

∫
x∈S(0,

√
t,τ)∩S(λ,

√
t,τ)

ηk

(√
2t

2k + 1
, x

)
ηk

(√
2t

2k + 1
, λ− x

)
dx.

The total number of such λ is� 2k(1 + τ)k(1 + ε)kp by estimating with the volume of the
ball, see Lemma 2.5. Putting in the bound (5.15) for one Gaussian and integrating the
second over all of Rk, we obtain an estimate from the terms with λ1 ∼ λ2 of� 8k

pk
.

Proof of Proposition 5.9. Consider separately the cases

|ΘE |,
∣∣∣∣EL(p,k)[ΘM ]− 1

p

∣∣∣∣ , |ΘM −EL(p,k)[ΘM ]| > δ

3p

and apply Markov’s inequality.

6 The power-of-2 random walk

6.1 A Chebyshev cut-off criterion

We begin by describing a commonly used second moment method for proving cut-off,
which we apply in analyzing the power-of-2 random walk. The following is a variant of
the lower bound method from [11], see also Wilson’s lemma in [20].

Given a probability measure µ on Z/pZ and frequency ξ ∈ Z/pZ, define the Fourier
coefficient of µ at ξ to be

µ̂(ξ) =
∑

x∈Z/pZ

µ(x)e

(
ξx

p

)
.

Define, as before, the L2 mixing time by

tmix
2 = inf

n ∈ Z>0 :
∑

06=ξ∈Z/pZ

|µ̂(ξ)|2n ≤ 4

e2


and the spectral gap

gap = 1− max
06=ξ∈Z/pZ

|µ̂(ξ)| .

Proposition 6.1. Let {Ap ⊂ Z/pZ}p∈P be a sequence of symmetric, lazy, generating
sets for Z/pZ, with µAp the corresponding uniform probability measure. Assume that
the spectral gap tends to 0 with increasing p.

Suppose the following holds for each fixed ε > 0. For each p ∈ P there exists

symmetric subset 0 6∈ Bp ⊂ Ẑ/pZ such that as p→∞,

• For all ξ ∈ Bp,
µ̂Ap(ξ) = 1− o(1). (6.1)

• For all n < (1− ε)tmix
2 (p)

1√
|Bp|

∑
ξ∈Bp

µ̂nAp(ξ)→∞ (6.2)
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• For all n < (1− ε)tmix
2 (p)∑

ξ1,ξ2∈Bp

µ̂nAp(ξ1 − ξ2) ≤ (1 + o(1))
∑

ξ1,ξ2∈Bp

µ̂nAp(ξ1)µ̂nAp(ξ2). (6.3)

Then the sequence {(Z/pZ, µAp ,UZ/pZ)} converges to uniform in total variation distance
with a cut-off at tmix

1 (p) ∼ tmix
2 (p) if and only if the condition

tmix
2 (p) gap(p)→∞ as p→∞ (6.4)

is satisfied.

Remark 6.2. The condition (6.3) is in fact equivalent to∑
ξ1,ξ2∈Bp

µ̂nAp(ξ1 − ξ2) = (1 + o(1))
∑

ξ1,ξ2∈Bp

µ̂nAp(ξ1)µ̂nAp(ξ2) (6.5)

since ∑
ξ1,ξ2∈Bp

µ̂nAp(ξ1 − ξ2) ≥
∑

ξ1,ξ2∈Bp

µ̂nAp(ξ1)µ̂nAp(ξ2)

by the following application of Cauchy-Schwarz:

∑
ξ1,ξ2∈Bp

µ̂nAp(ξ1)µ̂nAp(ξ2) =

∣∣∣∣∣∣
∑
ξ∈Bp

µ̂nAp(ξ)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑

x mod p

µ∗nAp(x)
∑
ξ∈Bp

e

(
ξx

p

)∣∣∣∣∣∣
2

≤

 ∑
x mod p

µ∗nAp(x)

 ∑
x mod p

µ∗nAp(x)
∑

ξ1,ξ2∈Bp

e

(
(ξ1 − ξ2)x

p

)
=

∑
ξ1,ξ2∈Bp

µ̂nAp(ξ1 − ξ2).

Proof of Proposition 6.1. Since tmix
1 ≤ tmix

2 , if the condition gap(p) · tmix
2 (p) → ∞ fails

then there is no cut-off in total variation, so we may assume that this condition holds.
Let ε > 0 be fixed. For n > (1 + ε)tmix

2 , by Cauchy-Schwarz,∥∥∥µ∗nAp −UZ/pZ∥∥∥2

TV(Z/pZ)
≤ 1

4

∑
ξ 6≡0 mod p

|µ̂Ap(ξ)|(2+2ε)tmix
2 (6.6)

≤ 1

4
(1− gap)2tmix

2 ε
∑

ξ 6≡0 mod p

∣∣µ̂Ap(ξ)
∣∣2tmix

2 → 0

since gap ·tmix
2 →∞.

To prove the lower bound, let n < (1 − ε)tmix
2 . Define function fp(x) on Z/pZ by

fp(x) = 1√
|Bp|

∑
ξ∈Bp µ̂Ap(ξ)e

(
−ξx
p

)
. Writing Eµ, Varµ for expectation and variance with

respect to probability measure µ, we have

EUZ/pZ [fp] =
1

p

∑
x mod p

1√
|Bp|

∑
ξ∈Bp

µ̂Ap(ξ)e

(
−ξx
p

)
=

1√
|Bp|

∑
ξ∈Bp

µ̂Ap(ξ)δξ=0 = 0 (6.7)
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since 0 6∈ Bp, and

VarUZ/pZ [fp] =
1

p

∑
x mod p

1

|Bp|
∑

ξ1,ξ2∈Bp

µ̂Ap(ξ1)µ̂Ap(ξ2)e

(
−(ξ1 − ξ2)x

p

)
(6.8)

=
1

|Bp|
∑
ξ∈Bp

µ̂Ap(ξ)2 ≤ 1.

Meanwhile

Eµ∗nAp [fp] =
∑

x mod p

1√
|Bp|

∑
ξ∈Bp

µ̂Ap(ξ)e

(
−ξx
p

)
µ∗nAp(x)

=
1√
|Bp|

∑
x mod p

∑
ξ∈Bp

µ̂Ap(ξ)e

(
−ξx
p

)
1

p

∑
η mod p

µ̂nAp(η)e

(
−ηx
p

)
(6.9)

=
1√
|Bp|

∑
ξ∈Bp

µ̂Ap(ξ)µ̂nAp(−ξ)

= (1 + o(1))
1√
|Bp|

∑
ξ∈Bp

µ̂nAp(ξ)

and

Eµ∗nAp

[
f2
p

]
=

∑
x mod p

1

|Bp|
∑

ξ1,ξ2∈Bp

µ̂Ap(ξ1)µ̂Ap(ξ2)e

(
−(ξ1 − ξ2)x

p

)
µ∗nAp(x)

=
1

|Bp|
∑

ξ1,ξ2∈Bp

µ̂Ap(ξ1)µ̂Ap(ξ2)µ̂nAp(−(ξ1 − ξ2)) (6.10)

= (1 + o(1))
1

|Bp|
∑

ξ1,ξ2∈Bp

µ̂nAp(ξ1 − ξ2).

It follows by condition (6.3) that

Varµ∗nAp [fp] = Eµ∗nAp

[
f2
p

]
−Eµ∗nAp [fp]

2
= o

(
Eµ∗nAp

[
f2
p

])
. (6.11)

Let Xp be the subset of Z/pZ defined by

Xp =

{
x : fp(x) ≤ 1

2
Eµ∗nAp [fp]

}
.

By (6.9) and condition (6.2),

Eµ∗nAp [fp]→∞. (6.12)

Hence Chebyshev’s inequality, (6.7), (6.8) and (6.12) imply

UZ/pZ [Xp] = 1− o(1)

while Chebyshev, (6.11) and (6.12) imply

µ∗nAp (Xp) = o(1).

We conclude∥∥∥µ∗nAp −UZ/pZ∥∥∥
TV(Z/pZ)

≥
∣∣∣UZ/pZ(Xp)− µ∗nAp(Xp)

∣∣∣ = 1− o(1).
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6.2 Proof of Theorem 1.11, lower bound

Recall that we set ` = `2(p) = dlog2 pe and

c0 =

∞∑
j=1

(
1− cos

2π

2j

)
.

We prove the lower bound of Theorem 1.11 conditional on tmix
2 . ` log `

2c0
, which is proven

in the next section. The proof of the lower bound is a reduction to the conditions of
Proposition 6.1.

Let J = o(log log p) be a parameter. With an eye toward applying Proposition 6.1, set

Bp =

{
ξ ∈ Ẑ/pZ : ∃ 1 ≤ j1 6= j2 ≤ `,

∥∥∥∥ξp − 2−j1 + 2−j2
∥∥∥∥
R/Z

≤ 2−`−J

}
.

Lemma 6.3. |Bp| � `2

2J
− `.

Proof. Let

S =

{
ξ mod p : ∃ 1 ≤ j ≤ `,

∥∥∥∥ξp − 1

2j

∥∥∥∥ ≤ 2−`
}
.

We have ` ≤ |S| ≤ 2`. For each s ∈ S write s
p in binary

s

p
= ∗.s1s2s3....

Partition S into 2J+1 sets S1, S2, ..., S2J+1 according to the digits s`s`+1...s`+J . To each
pair s 6= s′ ∈ Si we obtain r = s − s′ ∈ Bp. The multiplicity with which a given such r

arises in this way is O(1). Hence

|Bp| �
2J+1∑
j=1

|Sj |(|Sj | − 1) = −|S|+
2J+1∑
j=1

|Sj |2.

By Cauchy-Schwarz,

|S|2 =

∑
j

|Sj |

2

≤ 2J+1
∑
j

|Sj |2

so

|Bp| �
|S|2

2J+1
− |S| ≥ `2

2J+1
− `.

Lemma 6.4. For ξ ∈ Bp, µ̂A2,p
(ξ) ≥ 1− 4c0

2`+1 −O
(

1
2J`

)
.

Proof. After possibly replacing ξ with −ξ we may take ξ = 2−j1 − 2−j2 +O
(
2−`−J

)
with

j1 < j2. Then

1− µ̂A2,p(ξ) =
2

2`+ 1

`−1∑
i=0

(
1− cos

(
2π
(
2i−j1 − 2i−j2 +O

(
2i−`−J

))))
= O

(
1

2J`

)
+

2

2`+ 1

j1−1∑
i=0

(
1− cos

(
2π
(
2i−j1 − 2i−j2

)))
+

j2−1∑
i=j1

(
1− cos

(
2π2i−j2

))
≤ O

(
1

2J`

)
+

2

2`+ 1

[
j1−1∑
i=−∞

(
1− cos

(
2π2i−j1

))
+

j2−1∑
i=−∞

(
1− cos

(
2π2i−j2

))]

=
4c0

2`+ 1
+O

(
1

2J`

)
.
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Lemma 6.5. For all but O
(
J`3
)

pairs ξ1 6= ξ2 ∈ Bp

µ̂A2,p
(ξ1 − ξ2) = 1− 8c0

2`+ 1
+O

(
1

2J`

)
.

For all but O
(
J2`2

)
pairs ξ1 6= ξ2 ∈ Bp,

µ̂A2,p
(ξ1 − ξ2) ≤ 1− 6c0

2`+ 1
+O

(
1

2J`

)
.

For all but O
(
J3`
)

pairs ξ1 6= ξ2 ∈ Bp,

µ̂A2,p
(ξ1 − ξ2) ≤ 1− 4c0

2`+ 1
+O

(
1

2J`

)
.

Proof. Write ξ1
p = 2−j1 − 2−j2 + O

(
2−`−J

)
, ξ2p = 2−j3 − 2−j4 + O

(
2−`−J

)
. By excluding

at most O
(
J`3
)

quadruples (j1, j2, j3, j4) we may assume ji > J for all i and |ji − jk| ≥ J
for all i 6= k in {1, 2, 3, 4}. Then

1− µ̂A2,p(ξ) =
2

2`+ 1

`−1∑
i=0

(
1− cos

(
2π
(
2i−j1 − 2i−j2 − 2i−j3 + 2i−j4 +O

(
2i−`−J

))))
= O

(
1

2J`

)
+

2

2`+ 1

 4∑
k=1

jk−1∑
i=jk−J

(
1− cos

(
2π2i−jk

))
= O

(
1

2J`

)
+

8c0
2`+ 1

.

For the second statement, by excluding O
(
J2`2

)
tuples (j1, j2, j3, j4) we may assume that

three of j1, j2, j3, j4 are larger than J and mutually separated by at least J . One argues
as before, using the additional calculation that for 1 < j < J ,

J∑
i=1

(
1− cos

(
2π
(
2−i ± 2j−i

)))
≥

J∑
i=1

(
1− cos

(
2π2−i

))
= c0 +O

(
2−J

)
,

which holds since for all i, j > 0,

‖2−i ± 2j−i‖R/Z ≥ ‖2−i‖R/Z.

The third statement is similar.

Proof of Theorem 1.11, lower bound. Let ε > 0 be given, and suppose that n < (1 −
ε) ` log `

2c0
.

Set J = 2 log log ` and define Bp as above. It suffices to show that Bp satisfies
conditions (6.2) and (6.5) of Proposition 6.1.

By Lemma 6.4

1√
|Bp|

∑
ξ∈Bp

(µ̂A2,p
(ξ))n ≥

√
|Bp| exp

[
(1− ε)` log `

2c0

(
−4c0
2`+ 1

+O

(
1

2J`

))]

≥
√
|Bp|`ε−1

(
1 +O

(
log `

2J

))
.

In particular Lemma 6.3 implies

1√
|Bp|

∑
ξ∈Bp

(µ̂A2,p
(ξ))n � `ε

2
J
2

= `ε−o(1)

and condition (6.2) is satisfied.
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To check (6.5), split ξ1, ξ2 ∈ Bp according as ξ1 = ξ2, or ξ1, ξ2 fall into one of the
several cases enumerated in Lemma 6.5. This gives

∑
ξ1,ξ2∈Bp

(
µ̂A2,p(ξ1 − ξ2)

)n ≤ |Bp|+ |Bp|2 exp

[
(1− ε)` log `

2c0

(
−4c0

`
+O

(
1

2J`

))]

+O
(
J`3
)

exp

[
(1− ε)` log `

2c0

(
−3c0
`

+O

(
1

2J`

))]
+O

(
J2`2

)
exp

[
(1− ε)

(
` log `

2c0

(
−2c0
`

+O

(
1

2J`

)))]
+O

(
J3`
)
.

By Lemma 6.3, |Bp| = `2−o(1), and thus all but the second term is an error term. Condition
(6.5) holds, since

|Bp|2 exp

[
(1− ε)` log `

2c0

(
−4c0

`

)]
≤ (1 + o(1))

∑
ξ∈Bp

(µ̂A2,p
(ξ))n

2

.

6.3 Proof of Theorem 1.11, upper bound

We prove the following somewhat more precise estimate.

Proposition 6.6. For all 0 < β < log `, for all n ≥ `
2c0

(log `+ β) we have

‖µ∗nA2,p
−UZ/pZ‖2TV(Z/pZ) � e−β +

e−
β
c0 log `

`
1
c0

.

Remark 6.7. The second term results from a discrepancy between the eigenvalue
generating the spectral gap and the bulk of the large spectrum which determines the
mixing time. With more effort, the factor of log ` could be removed.

The proof uses the following frequently used application of the Cauchy-Schwarz
inequality, see [6] for an introduction to these types of estimates, also [7].

Lemma 6.8. Let µ be a probability measure on finite abelian group G. We have the
upper bound

‖µ−UG‖TV(G) ≤
1

2

 ∑
06=χ∈Ĝ

|µ̂(χ)|2
 1

2

.

In particular,

‖µ∗nA2,p
−UZ/pZ‖TV(Z/pZ) ≤

1

2

 ∑
06≡ξ mod p

∣∣µ̂A2,p(ξ)
∣∣2n 1

2

. (6.13)

Proof. We have

‖µ−UG‖TV(G) =
1

2

∑
x∈G
|µ(x)−UG(x)| .

Hence, by Cauchy-Schwarz,

‖µ−U(G)‖TV(G) ≤
1

2

(
|G|

∑
x∈G
|µ(x)−UG(x)|2

) 1
2

=
1

2

 ∑
06=χ∈Ĝ

|µ̂(χ)|2
 1

2

.
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The above lemma reduces to estimation of the size of the Fourier coefficients µ̂A2,p
(ξ).

In estimating these coefficients it will be convenient to use the following modified binary
expansion of ξ

p .

Lemma 6.9. Let p ≥ 3 be prime. For each 0 6≡ ξ mod p there is an increasing sequence
I = {ij}∞j=1 ⊂ Z>0, and ε = ±1 such that

ξ

p
≡ ε

∞∑
j=1

(−1)j2−ij mod 1.

This representation is unique.

Proof. Write − ξp in binary as ∗.s1s2s3... with each si ∈ {0, 1}, then write ξ
p = − ξp −

(
− 2ξ

p

)
where

(
− 2ξ

p

)
is obtained by a left shift, and then the subtraction is performed bitwise.

The uniqueness follows because any two distinct such representations (ε, {ij}), (ε′, {i′j})
differ by� 2−J , where J is min(i1, i

′
1) if ε 6= ε′, and otherwise is the least integer which

appears in the symmetric difference {ij}∆{i′j}.

6.3.1 Index sequences

We introduce several notions which will be useful in the remainder of the argument.
Given a real parameter J > 0, define a J -sequence of non-negative integers to

be an ordered set A ⊂ Z≥0, with members enumerated A = a1 < a2 < ... such that
any pair of consecutive elements differ by at most J . |A| denotes the cardinality. Set
i(A) = a1, t(A) = sup(A). A J -sequence with a1 = 0 is called normalized. Given
J -sequence A = a1 < a2 < ..., its off-set sequence is the normalized J -sequence
A′ = 0 < a2 − a1 < a3 − a1 < .... For instance,

1, 3, 7, 8, 10, 14

is a 4-sequence with offset sequence

0, 2, 6, 7, 9, 13.

A J -sequence is called non-trivial if it contains a pair of elements that differ by more
than 1. We denote J the set of J -sequences, J0 the set of normalized J -sequences and
J ′

0 = J0 \ {{0}, {0, 1}} the set of non-trivial normalized J -sequences.
A J -sequence A contained in sequence B ⊂ Z≥0 is called a J -subsequence. We

say that J -subsequence A ⊂ B is maximal if it is not properly contained in another
J -subsequence A′ ⊂ B. Given parameter J , one easily checks that any B ⊂ Z≥0 has a
unique partition into maximal J -subsequences. For instance, in the first sequence above,

1, 3; 7, 8, 10; 14

is a partition into maximal 2-subsequences.
We write C (B) for the set of maximal J -subsequences of B. The J -sequences in

C (B) are J -separated in the sense that if A1 6= A2 ∈ C (B) and x1 ∈ A1, x2 ∈ A2 then
|x1 − x2| > J . The sequences in C (B) are naturally ordered by, for A1, A2 ∈ C (B),
A1 < A2 if and only if for any x1 ∈ A1, x2 ∈ A2, x1 < x2.

In the remainder of the argument we think of the non-zero bits in the expansion of ξ
p

above as partitioned into maximal J -sequences. These J -separated parts do not interact
significantly in calculating the Fourier transform. The argument that follows quantifies
the interaction.
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Let J ≥ log2 ` be a parameter. Given ξ mod p, represent ξ as (I (ξ), ε(ξ)) as above.
Truncate I (ξ) to I ′(ξ) = I (ξ) ∩ (0, `] (note that ε and I ′ determine ξ) and set

σ(ξ) = |I ′(ξ)|, C (ξ) = C (I ′(ξ)). (6.14)

We call C (ξ) the set of clumps of ξ, each clump being a J -sequence. If there exists
C ∈ C (ξ) with i(C) ≤ J we say that C is initial. A clump C with t(C) > `− J is final. We
write Cinit(ξ), Cfin(ξ) for the initial and final clump, with the convention that Cinit = ∅ if
there is no initial clump, and similarly Cfin. A clump is typical if it is neither initial nor
final. C0(ξ) ⊂ C (ξ) is the subset of typical clumps.

Given frequency ξ, define the savings of ξ to be

sav(ξ) =
2`+ 1

2

(
1− µ̂A2,p

(ξ)
)

=

`−1∑
l=0

(
1− cos

(
2π

( ∞∑
k=1

(−1)k2l−ik

)))
. (6.15)

For a typical clump C ∈ C0(ξ) also define

sav(C) =
∑

i(C)−J≤l<t(C)

[
1− cos

(
2π
∑
ik∈C

(−1)k2l−ik

)]
. (6.16)

Lemma 6.10. We have

sav(ξ) ≥
∑

C∈C0(ξ)

sav(C) + |Cinit(ξ)|+ |Cfin(ξ)|+O
(
2−J |C |

)
.

Proof. Since the clumps C ∈ C are J -separated, we have

sav(ξ) ≥
∑

C∈C0(ξ)

∑
i(C)−J≤l<t(C)

[
1− cos

(
2π
∑
ik∈C

(−1)k2l−ik

)
+O

(
2−J−t(C)+l

)]

+
∑

i∈Cinit(ξ)

(
1− cos

(π
2

))
+

∑
i∈Cfin(ξ)

(
1− cos

(π
2

))
,

where in the last two sums we specialize to j = i − 1, and note that for any fixed l
1
2 ≥

∣∣∣∑ij≥l(−1)ij2l−ij−1
∣∣∣ ≥ 1

4 .

In a similar spirit we have the following crude estimate for savings.

Lemma 6.11. Let 0 6≡ ξ ∈ Ẑ/pZ and let C ∈ C0(ξ). We have sav(C) ≥ |C|.

Proof. Write C = i1 < · · · < ij . We have

sav(C) =

ij−1∑
l=i1−J

[
1− cos

(
2π

j∑
m=1

(−1)m2l−im

)]
≥

j∑
m=1

(
1− cos

(π
2

))
by specializing to l = im − 1, m = 1, ..., j.

Lemma 6.12. Let 0 6≡ ξ ∈ Ẑ/pZ. For fixed δ3 > 0, for σ(ξ) as in (6.14),

|µ̂(ξ)| ≤ max

(
1− 2σ(ξ)

2`+ 1
, 1− δ3

)
.

Proof. The bound µ̂(ξ) ≤ 1 − 2σ(ξ)
2`+1 follows from Lemmas 6.10 and 6.11. The bound

µ̂(ξ) ≥ 1− δ3 follows from 1
2 (cos θ + cos 2θ) ≥ −1 + c for a fixed c > 0.
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For typical clumps we require slightly stronger estimates.

Lemma 6.13. Let 0 6≡ ξ ∈ Ẑ/pZ. Let C ∈ C0(ξ), and suppose that |C| = j > 1.
Enumerate C = i1 < i2 < ... < ij . There exists fixed δ1 > 0 such that if i2 > i1 + 1

then sav(C) > sav(C ′) + δ1 where C ′ is the J -sequence formed by i2 − 1, i2, ..., ij , i.e. by
shifting i1 to the place adjacent to i2.

Proof. We have

sav(C)− sav(C ′) =∑
i1−J≤l<i2−1

[
1− cos

(
2π

j∑
m=1

(−1)m2l−im

)]
−

∑
i2−J−1≤l<i2−1

[
1− cos

(
2π

(
−2l+1−i2 +

j∑
m=2

(−1)m2l−im

))]
.

Set

x =

j∑
m=3

(−1)m−12−im+i2−1, 0 ≤ x ≤ 1

4
.

Take only the first J terms of the first sum, to obtain for some δ1 > 0

sav(C)− sav(C ′) ≥
J∑
l=1

[
cos

(
2π

2l

(
−3

4
− x

2

))
− cos

(
2π

2l

(
−1

2
− x
))]

> δ1

by noting that the worst case is i1 = i2 − 2.

Lemma 6.14. Let 0 6≡ ξ ∈ Ẑ/pZ. Let C ∈ C0(ξ), and suppose that |C| = j > 1,
C = i1 < · · · < ij with i2 = i1 + 1. Then sav(C) ≥ sav(C ′) where C ′ is the J -sequence
formed by i2, ..., ij , i.e. by dropping i1. Furthermore, if j ≥ 3 and i3 = i1 + 2 then there
exists fixed δ2 > 0 such that sav(C) > sav(C ′) + δ2.

Proof. We have

sav(C)− sav(C ′) =

i1−1∑
l=i1−J

[
1− cos

(
2π

j∑
m=1

(−1)m2l−im

)]
−

i1−1∑
l=i1−J+1

[
1− cos

(
2π

j∑
m=2

(−1)m2l−im

)]
.

Replace l with i1 − 1− l and set x =
∑j
m=2(−1)m2im−i1−1, 1

8 ≤ x ≤
1
4 to obtain

sav(C)− sav(C ′) ≥
J−2∑
l=0

[
cos

(
2πx

2l

)
− cos

(
2π(x− 1

2 )

2l

)]
. (6.17)

In the case j ≥ 3 and i3 = i1 + 2 we have x ≤ 3
16 which proves

(6.17) ≥ cos

(
3π

8

)
− cos

(
5π

8

)
.

The previous two lemmas imply the following one.

Lemma 6.15. Let 0 6≡ ξ ∈ Ẑ/pZ. Let C ∈ C0(ξ) be a typical clump of C (ξ) with digits
i1 < i2 < ... < ij . If j = 1 or j = 2 and i2 = i1 + 1 we have

sav(C) ≥ c0 +O(2−J).

Furthermore, there is a δ > 0 such that, if j ≥ 3 or j = 2 and i2 > i1 + 1 then

sav(C) ≥ c0 + δj.
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Proof. By a sequence of steps in which we either (i) move the first index of C adjacent to
the second, or (ii) delete the first, we reduce to case of C0 containing a single element,
which satisfies sav(C0) = c0 −O(2−J).

We collect together several easy combinatorial estimates. Given frequency ξ we
are most interested in typical clumps C ∈ C0(ξ) which consist of a single index, or
a pair of adjacent indices. Let the number of these be x1(ξ) and x2(ξ). Let x3(ξ) =

|C0(ξ)| − x1(ξ)− x2(ξ) be the number of non-trivial clumps in C0(ξ), and let m = σ(ξ)−
|Cinit| − |Cfin| − x1(ξ)− 2x2(ξ) be the number of indices contained in the clumps counted
in x3(ξ).

Given m ≥ 0 and x3 ≥ 0, let

T (m,x3) =

{
A ∈ (J ′

0)x3 :

x3∑
i=1

|Aj | = m

}

be the collection of x3-tuples of non-trivial normalized J -sequences of total cardinality
m. Given initial and final clumps Cinit and Cfin, T ∈ T (m,x3) and integers x1, x2 ≥ 0,
let N (Cinit, Cfin, x1, x2, T ) denote the number of ξ with initial clump Cinit, final clump
Cfin, x1 typical clumps with a single index, x2 typical clumps which consist of a pair
of consecutive indices and x3 non-trivial typical clumps, whose offsets taken in order
are given by T . For any j ≥ 0, let I(j) (resp. F (j)) be the number of J -sequences on j

indices which may appear as the initial (resp. final) clump of I (ξ), ξ ∈ Ẑ/pZ \ {0}.
Lemma 6.16. Let x1, x2, x3,m, T be as above and let Cinit, Cfin be any initial and final
clumps (possibly empty). We have the bounds

|T (m,x3)| ≤ (J + 1)m−1

and, for any T ∈ T (m,x3),

N (Cinit, Cfin, x1, x2, T ) ≤ 2
`x1+x2+x3

x1!x2!x3!
.

Also, for any j ≥ 0,

I(j), F (j) ≤ Jj .

Proof. To bound |T |, neglecting x3 and the non-triviality condition, choose for each
index 1 ≤ j < m a distance 1 ≤ d(j) ≤ J + 1 between j and j + 1 in the arrangement,
with a distance of J + 1 indicating that a new clump begins with j + 1.

Similarly, the bound for I(j) follows on choosing a first index in one of at most J
ways, and then choosing sequentially distances between the consecutive indices. For
F (j), choose counting from the back instead.

The bound for N (Cinit, Cfin, x1, x2, T ) follows on choosing a first index for each clump,
the factor of 2 coming from choosing the sign.

Our results on savings may be summarized as follows.

Lemma 6.17. Let 0 6≡ ξ ∈ Ẑ/pZ have parameters x1, x2, x3,m,Cinit, Cfin as above. There
is a fixed 0 < δ < 1

2 such that

sav(ξ) ≥ c0(x1 + x2 + x3) + δm+ |Cinit|+ |Cfin| −O
(
x1 + x2 + x3

2J

)
.
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Proof of Proposition 6.6. Let log J = o(log `) and fix some θ, 1 − 1
c0
< θ < 1. By Lemma

6.8 ∥∥∥µ∗nA2,p
−UZ/pZ

∥∥∥2

TV(Z/pZ)
≤ 1

4

∑
ξ 6≡0 mod p

∣∣µ̂A2,p
(ξ)
∣∣2n

=
1

4

 ∑
1≤σ(ξ)<`θ

+
∑

`θ≤σ(ξ)<δ3`

+
∑

δ3`≤σ(ξ)

∣∣µ̂A2,p
(ξ)
∣∣2n

=
1

4
(S1 + S2 + S3) .

By Lemma 6.12, for some c > 0,

S3 ≤ 2`
(

1− 2`δ3
2`+ 1

) `
c0

(log `+β)

= O(e−c` log `). (6.18)

By Lemma 6.12, again for some c > 0,

S2 ≤ 2
∑

`θ≤j<δ3`

(
`

j

)(
1− 2j

2`+ 1

) `
c0

(log `+β)

�
∑

`θ≤j<δ3`

exp

(
j log `− j log j + j − 2`j

(2`+ 1)c0
log `− 2j`β

c0(2`+ 1)

)

� e−c`
θβ

∑
`θ≤j<δ3`

exp

((
−θ + 1− 1

c0

)
j log `+ j

)
= O

(
e−c`

θ(β+log `)
)
. (6.19)

Conditioning on x1(ξ), x2(ξ), x3(ξ),m as in Lemma 6.16 and i = |Cinit|, f = |Cfin| we
find

S1 ≤ 2
∑

1≤j<`θ

∑
x1+2x2+m+i+f=j

∑
|Cinit|=i,|Cfin|=j

∑
x3≤bm2 c

×
∑

T∈T (m,x3)

N (Cinit, Cfin, x1, x2, T )

(
1− 2 sav

2`+ 1

) `
c0

(log `+β)

where sav = c0(x1 + x2 + x3) + δm+ i+ f −O
(
x1+x2+x3

2J

)
. Inserting the estimates for |T |

and N from Lemma 6.16, we obtain

S1 �
∑

1≤j<`θ

∑
x1+2x2+m+i+f=j

(J + 1)m+i+f `
x1+x2

x1!x2!∑
x3≤bm2 c

m>0⇒x3>0

`x3

x3!
exp

(
−
(
x1 + x2 + x3 +

δm+ i+ f

c0
−O

(
x1 + x2 + x3

2J

))
(log `+ β)

)
.

Assume that log `
2J

= o(1). Then, when m ≥ 1 we find that the sum over x3 is

O (exp(−β)) .

The terms for which x1 = x2 = 0 thus contribute O

(
J

eβ`
δ
c0

+o(1)
+ J

e
β
c0 `

1
c0

)
. When x1+x2 6=

0 summation over i, f,m reduces to 1 + o(1). Thus

S1 ≤O
(

J

e
β
c0 `

1
c0

)
+O

(
exp

(
−β +O

(
log `+ β

2J

)))
.

Choose 2J = ` to complete the proof.
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A Local limit theorem on Rk

For k > 1 recall that we define the measure on Zk,

νk =
1

2k + 1

δ0 +

k∑
j=1

(δej + δ−ej )


and that we write

ηk (σ, x) =
1

(2πσ2)
k
2

exp

(
−‖x‖

2
2

2σ2

)
for the density of the centered standard normal distribution on Rk. In this appendix we
prove Lemma 1.10, which we recall for convenience.

Lemma. Let n, k(n) ≥ 1 with k2 = o (n) for large n. As n→∞ we have∥∥∥∥∥ν∗nk ∗ 1[− 1
2 ,

1
2 )
k − ηk

(√
2n

2k + 1
, ·

)∥∥∥∥∥
TV(Rk)

= o(1).

We actually prove a stronger estimate, which is a local limit theorem on Rk for which
we don’t know an easy reference.

Lemma A.1. Let n, k(n) ≥ 1 with k2 = o (n) for large n. Uniformly for α ∈ Zk such that

‖α‖22 ≤ 2kn
2k+1 + n logn√

k
, and ‖α‖44 � n2

k

(
1 + logn√

k

)
, as n→∞,

ν∗nk (α) = {1 + o(1)} ηk

(√
2n

2k + 1
, α

)
.

The deduction of Lemma 1.10 is as follows.

Proof of Lemma 1.10. We have, for any A, δ > 0, and for some C > 0,∫
‖x‖22>

2kn
2k+1 +δ n logn√

k

ηk

(√
2n

2k + 1
, x

)
dx = Oδ,A

(
n−A

)
∫
‖x‖44>C

n2

k

(
1+ logn√

k

) ηk
(√

2n

2k + 1
, x

)
dx = OA

(
n−A

)
see Lemma 2.2, so it suffices to estimate the difference

ν∗nk ∗ 1[− 1
2 ,

1
2 )
k(x)− ηk

(√
2n

2k + 1
, x

)

for ‖x‖22 ≤ 2kn
2k+1 +O

(
n logn√

k

)
and ‖x‖44 � n2

k

(
1 + logn√

k

)
.

For x ∈ Zk satisfying this upper bound and for y ∈ [− 1
2 ,

1
2 )k,

ηk

(√
2n

2k + 1
, x+ y

)
= ηk

(√
2n

2k + 1
, x

)
exp

(
−2k + 1

4n

(
2x · y + ‖y‖22

))

= (1 + o(1))ηk

(√
2n

2k + 1
, x

)
exp

(
−

(2k + 1)x · y
2n

)
.
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Therefore∫
[− 1

2 ,
1
2 )
k

∣∣∣∣∣ηk
(√

2n

2k + 1
, x+ y

)
− ηk

(√
2n

2k + 1
, x

)∣∣∣∣∣ dy
= ηk

(√
2n

2k + 1
, x

)(
o(1) + (1 + o(1))

∫
[− 1

2 ,
1
2 )
k

∣∣∣∣exp

(
−

(2k + 1)x · y
2n

)
− 1

∣∣∣∣ dy
)
.

We claim that for all ‖x‖22 � 2kn
2k+1 + n logn√

k
,∫

[− 1
2 ,

1
2 )
k

∣∣∣∣exp

(
−

(2k + 1)x · y
2n

)
− 1

∣∣∣∣ dy = o(1). (A.1)

To see that this suffices for the proof, let

B =

{
x ∈ Zk : ‖x‖22 ≤

2kn

2k + 1
+
n log n√

k
, ‖x‖44 ≤ C

n2

k

(
1 +

log n√
k

)}
and estimate

∑
x∈B

∫
[− 1

2 ,
1
2 )
k

∣∣∣∣∣ηk
(√

2n

2k + 1
, x+ y

)
− ηk

(√
2n

2k + 1
, x

)∣∣∣∣∣ dy
≤ o(1)

∑
x∈B

ηk

(√
2n

2k + 1
, x

)
= o(1)

∑
x∈B

(1 + o(1))η∗nk (x) = o(1)

where in the last line we apply Lemma A.1. Since

∑
x∈B

∫
[− 1

2 ,
1
2 )
k
ηk

(√
2n

2k + 1
, x+ y

)
dy = 1 + o(1)

it follows that
∑
x∈B η∗nk (x) = 1 + o(1) so that∥∥∥∥∥ν∗nk ∗ 1[− 1

2 ,
1
2 )
k − ηk

(√
2n

2k + 1
, ·

)∥∥∥∥∥
TV(Rk)

=
∑
x∈Zk

∫
[− 1

2 ,
1
2 )
k

∣∣∣∣∣ηk
(√

2n

2k + 1
, x+ y

)
− ηk

(√
2n

2k + 1
, x

)∣∣∣∣∣ dy = o(1)

by bounding both terms in the sum over x ∈ Bc separately.

To prove (A.1), choose a parameter A = A(n, k) → ∞ with n such that A = o
(√

n
k

)
and partition

[
− 1

2 ,
1
2

)k
= Sgood tSbad with

Sgood =

{
y ∈

[
−1

2
,

1

2

)k
: |x · y| ≤ A

√
n

(
1 +

log n√
k

)}
.

By Azuma’s inequality, for some fixed C > 0,

meas

(
y ∈

[
−1

2
,

1

2

)k
:
∣∣x · y∣∣ > t

√
n

(
1 +

log n√
k

))
≤ 2 exp

(
− t

2

C

)
,
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and thus meas(Sgood) = 1− o(1). Since exp
(
− (2k+1)x·y

2n

)
= 1 + o(1) for all y ∈ Sgood we

have ∫
y∈Sgood

∣∣∣∣exp

(
−

(2k + 1)x · y
2n

)
− 1

∣∣∣∣ dy = o(1).

Meanwhile,∫
y∈Sbad

∣∣∣∣exp

(
−

(2k + 1)x · y
2n

)
− 1

∣∣∣∣ dy ≤ ∫
y∈Sbad

exp

(∣∣∣∣ (2k + 1)x · y
2n

∣∣∣∣) dy
= −

∫ ∞
A

exp

 t(2k + 1)
(

1 + logn√
k

)
√
n

 dmeas

(
y : |y · x| > t

√
n

(
1 +

log n√
k

))

� exp

(
−A2

C
+ o(1)

)
= o(1).

The proof of Lemma A.1 is a standard application of the saddle point method. As
there are several intermediate lemmas, it may help the reader to skip ahead to first read
the eventual proof. Associate to νk the generating function

f(z1, ..., zk) =
1

2k + 1

(
1 + z1 + z−1

1 + ...+ zk + z−1
k

)
,

so that νk(α) = Cα[f ], where for Laurent series in multiple variables

g(z1, ..., zk) =

∞∑
n1,...,nk=−∞

an1,...,nkz
n1
1 ...znkk

we write Cα[g] = aα. The generating function associated to ν∗nk is thus fn.
By symmetry we may assume α ≥ 0 coordinatewise. By Cauchy’s theorem, for any

R1, ..., Rk > 0

ν∗nk (α) =

(
1

2πi

)k ∫
|z1|=R1

· · ·
∫
|zk|=Rk

f(z1, ..., zk)n

zα1
1 ...zαkk

dz1

z1
· · · dzk

zk

=
1

Rα1
1 ...Rαkk

∫
(R/Z)k

f0(θ1, ..., θk)ne (−α · θ) dθ, (A.2)

where
f0(θ1, ..., θk) = f(R1e(θ1), ..., Rke(θk)).

and α · θ is the usual dot product on Rk. The asymptotic in Lemma A.1 is derived by
choosing R1, ..., Rk such that the phase in f0(θ)n is approximately equal to e(α · θ) for θ
near 0. The main contribution of the integral then comes from small θ.

Let Dsm be the domain

Dsm =

{
θ ∈ (R/Z)

k
: ‖θ‖∞ ≤

1

12

}
.

For θ ∈ Dsm define

F (θ) = n log

[
1

2k + 1

(
1 +R1e(θ1) +

e(−θ1)

R1
+ ...+Rke(θk) +

e(−θk)

Rk

)]
− (α1 logR1 + ...+ αk logRk)− 2πiα · θ.

Evidently F (θ) gives a continuous definition of log f0(θ)ne(−α·θ)
R
α1
1 ...R

αk
k

on Dsm.
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Lemma A.2. The first few partial derivatives of F (θ) are given as follows

DjF (θ) = 2πi

 n

2k + 1

Rje(θj)− e(−θj)
Rj

f0(θ)
− αj


Dj1Dj2F (θ) =

4π2n

(2k + 1)2

(
Rj1e(θj1)− e(−θj1 )

Rj1

)(
Rj2e(θj2)− e(−θj2 )

Rj2

)
f0(θ)2

, j1 6= j2

D2
jF (θ) = − 4π2n

2k + 1

Rje(θj) +
e(−θj)
Rj

f0(θ)
+

4π2n

(2k + 1)2

(
Rje(θj)− e(−θj)

Rj

)2

f0(θ)2

Dj1Dj2Dj3F (θ) =

−16π3in

(2k + 1)3

(
Rj1e(θj1)− e(−θj1 )

Rj1

)(
Rj2e(θj2)− e(−θj2 )

Rj2

)(
Rj3e(θj3)− e(−θj3 )

Rj3

)
f0(θ)3

,

j1, j2, j3 distinct

D2
j1Dj2F (θ) =

8π3in

(2k + 1)2

(
Rj1e(θj1) +

e(−θj1 )

Rj1

)(
Rj2e(θj2)− e(−θj2 )

Rj2

)
f0(θ)2

− 16π3in

(2k + 1)3

(
Rj1e(θj1)− e(−θj1 )

Rj1

)2 (
Rj2e(θj2)− e(−θj2 )

Rj2

)
f0(θ)3

, j1 6= j2

D3
jF (θ) = − 8π3in

2k + 1

Rje(θj)− e(−θj)
Rj

f0(θ)

+
24π3in

(2k + 1)2

(
Rje(θj) +

e(−θj)
Rj

)(
Rje(θj)− e(−θj)

Rj

)
f0(θ)2

− 16π3in

(2k + 1)3

(
Rje(θj)− e(−θj)

Rj

)3

f0(θ)3
.

Choose Rj by solving the stationary phase equation, for each j, DjF (0) = 0, thus

n

2k + 1

Rj − 1
Rj

f0(0)
− αj = 0. (A.3)

Lemma A.3. Let n, k(n) ∈ Z>0 with k2 = o(n) as n → ∞. Let α ∈ Zk and assume

‖α‖22 ≤ n
(

1 + logn√
k

)
and ‖α‖44 � n2

k

(
1 + logn√

k

)
. The stationary phase equations (A.3)

have a solution and the solution satisfies

f0(0) = 1 +
2k + 1

4n2
‖α‖22 +O

(
k3

n4
‖α‖44

)
(A.4)

Rj +
1

Rj
= 2 +

(
f0(0)αj

2k + 1

2n

)2

+O

(
k4α4

j

n4

)
(A.5)

= 2 +O

(
α2
jk

2

n2

)

logRj =
2k + 1

2n
f0(0)αj +O

(
k3α3

j

n3

)
. (A.6)
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Proof. We have the system of equations

f0(0) = 1 +
1

2k + 1

k∑
j=1

(
Rj +

1

Rj
− 2

)
. (A.7)

and

Rj +
1

Rj
=

√
4 +

(
f0(0)αj

2k + 1

n

)2

. (A.8)

Beginning from an initial guess f0(0) = 2, solve for each Rj in Rj ≥ 1 according to (A.8),
sequentially update f0(0) and then the Rj . This produces a decreasing sequence of
guesses for f0(0) and for each Rj , as is evident since the first step is decreasing, e.g.
since

Rj +
1

Rj
− 2 ≤

f0,old(0)2α2
j (2k + 1)2

4n2

and therefore,

f0,new(0) ≤ 1 +
2k + 1

4n2
f0,old(0)2‖α‖22 ≤ 1 +O

(
1

n

)
.

As f0(0) is bounded below, the sequence necessarily converges.

To verify the asymptotics, note that f0(0) = O(1) leads to

Rj +
1

Rj
= 2 +

(
f0(0)αj

2k+1
n

)2
2 +

√
4 +

(
f0(0)αj

2k+1
n

)2
= 2 +

(
f0(0)αj

2k + 1

2n

)2

+O

(
k4α4

j

n4

)
,

which satisfies the claimed asymptotic.

Inserted into the formula for f0(0), this yields

f0(0) = 1 +
2k + 1

4n2
‖α‖22f0(0)2 +O

(
k3

n4
‖α‖44

)
.

The error introduced by the factor of f0(0)2 may be absorbed into the last error term,
since ‖α‖42 ≤ k‖α‖44.

Combining the stationary phase equation with (A.5) we find

Rj = 1 +
2k + 1

2n
f0(0)αj +

1

2

(
2k + 1

2n
f0(0)αj

)2

+O

(
k4

n4
α4
j

)
,

so

logRj =
2k + 1

2n
f0(0)αj +O

(
k3α3

j

n3

)
.

Lemma A.4. Let n, k(n) ∈ Z>0 with k(n)2 = o(n) as n → ∞. Let α ∈ Zk and assume

‖α‖22 ≤ n
(

1 + logn√
k

)
and ‖α‖44 � n2

k

(
1 + logn√

k

)
. Let Rj be determined by the saddle
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point equations (A.3). For θ ∈ Dsm we have

F (0) = −2k + 1

4n
‖α‖22 +O

(
k3

n3
‖α‖44

)
DjF (0) = 0

Dj1Dj2F (0) =
4π2αj1αj2

n
, j1 6= j2

D2
jF (0) =

−8π2n

2k + 1
+

2π2‖α‖22
n

+O

(
kα2

j

n

)
+O

(
k2

n3
‖α‖44

)
Dj1Dj2Dj3F (θ) = O

(
n

k3

(
|θj1 |+

k|αj1 |
n

)(
|θj2 |+

k|αj2 |
n

)(
|θj3 |+

k|αj3 |
n

))
,

j1, j2, j3 distinct

D2
j1Dj2F (θ) = O

(
n

k2

(
|θj2 |+

k|αj2 |
n

))
, j1 6= j2

D3
jF (θ) = O

(
n

k

(
|θj |+

k|αj |
n

))
.

Proof. We have

F (0) = n log f(0)−
∑
j

αj logRj

=
2k + 1

4n
‖α‖22 −

2k + 1

2n
f0(0)‖α‖22 +O

(
k3

n3
‖α‖44

)
= −2k + 1

4n
‖α‖22 +O

(
k3

n3
‖α‖44

)
.

At the saddle point, the first derivatives vanish. The mixed derivatives are evaluated by
plugging in

Rj −
1

Rj
=

2k + 1

n
f0(0)αj .

We have

D2
jF (0) = − 4π2n

2k + 1

Rj + 1
Rj

f0(0)
+

4π2α2
j

n

= − 8π2n

2k + 1

1

f0(0)
+O

(
kα2

j

n

)

= − 8π2n

2k + 1
+

2π2‖α‖22
n

+O

(
kα2

j

n

)
+O

(
k2

n3
‖α‖44

)
.

The triple derivatives are estimated by Taylor expanding e(θ) to degree 1 in the
numerator, using Rj − 1

Rj
� kαj

n and Rj + 1
Rj
, f0(θ) � 1.

Lemma A.5. Let n, k(n) ∈ Z>0 with k2 = o(n) as n → ∞. Let α ∈ Zk and assume

‖α‖22 ≤ n
(

1 + logn√
k

)
and ‖α‖44 � n2

k

(
1 + logn√

k

)
. Let θ ∈ Dsm. We have

F (θ)− F (0) =
−4π2n

2k + 1
‖θ‖22 +O

((
1 +

log n√
k

)
‖θ‖22 +

√
k

(
1 +

log n√
k

)
‖θ‖24

)
+O

(
n

k3
‖θ‖62 +

n

k2
‖θ‖42 +

√
n

k

(
1 +

log n√
k

)
‖θ‖32

)
+O

(
n

k
‖θ‖44 +

√
n

k
1
4

(
1 +

log n√
k

)
‖θ‖34

)
.
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In particular, for any fixed constants c2, c4 > 0, for ‖θ‖2 ≤ c2 k

n
1
2

and ‖θ‖4 ≤ c4 k
3
4

n
1
2

we have

F (θ)− F (0) +
4π2n

2k + 1
‖θ‖22 = o(1), (A.9)

while for ‖θ‖2 ≤ c2 k

n
1
2

and ‖θ‖4 = o(1),

F (θ)− F (0) +
4π2n

2k + 1
‖θ‖22 � o(1) +

n

k
‖θ‖44 +

(
1 +

log n√
k

)(√
k‖θ‖24 +

√
n

k
1
4

‖θ‖34
)
, (A.10)

and in general for ‖θ‖∞ < δ < 1
12 ,

F (θ)− F (0) +
4π2n

2k + 1
‖θ‖22 � δ2n

k
‖θ‖22 +

(
1 +

log n√
k

)(√
n

k
‖θ‖2 +

√
n

k
1
4

‖θ‖
3
2
2

)
. (A.11)

Proof. By Taylor’s theorem, for θ ∈ Dsm, for some 0 ≤ tθ ≤ 1,

F (θ)− F (0) =
1

2
D2(0)(θ, θ) +

1

6
D3(tθθ)(θ, θ, θ)

where D2 and D3 represent the second and third derivatives of F . Write

D2(0) =
−8π2n

2k + 1
Ik + D̃2(0)

We have

D̃2(0)(θ, θ)� ‖α‖
2
2‖θ‖22
n

+
k‖α‖24‖θ‖24

n
+
k2

n3
‖α‖44‖θ‖22

�
(

1 +
log n√
k

)
‖θ‖22 +

√
k

(
1 +

log n√
k

)
‖θ‖24

Also, ∣∣D3(tθθ)(θ, θ, θ)
∣∣� n

k3

(
‖θ‖62 +

k3

n3
‖θ‖32‖α‖32

)
+

n

k2

(
‖θ‖42 +

k

n
‖θ‖32‖α‖2

)
+
n

k

(
‖θ‖44 +

k

n
‖θ‖34‖α‖4

)
� n

k3
‖θ‖62 +

n

k2
‖θ‖42 +

√
n

k

(
1 +

log n√
k

)
‖θ‖32

+
n

k
‖θ‖44 +

√
n

k
1
4

(
1 +

log n√
k

)
‖θ‖34.

For (A.11) use ‖θ‖4 ≤ δ
1
2 ‖θ‖

1
2
2 , and ‖θ‖2 ≤ δ

√
k.

Lemma A.6. Keep the same assumptions on k, n and α as in Lemma A.5. We have

|Im f0(θ)| � ‖α‖2‖θ‖2
n

.

Moreover, there is a constant c > 0 such that, if Re(f0(θ)) > 0 then∣∣∣∣f0(θ)

f0(0)

∣∣∣∣ ≤ 1− c

k
‖θ‖2(R/Z)k ,
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and if Re(f0(θ)) < 0 then∣∣∣∣f0(θ)

f0(0)

∣∣∣∣ ≤ 1− c

k
− c

k

∥∥∥∥θ − (1

2

)
k

∥∥∥∥2

(R/Z)k
,

where
(

1
2

)
k

denotes the vector of Rk, all of whose coordinates are 1
2 .

Proof. We have

|Im f0(θ)| =

∣∣∣∣∣∣ 1

2k + 1

k∑
j=1

(
Rj −

1

Rj

)
sin(2πθj)

∣∣∣∣∣∣
=
f0(0)

n

∣∣∣∣∣∣
k∑
j=1

αj sin(2πθj)

∣∣∣∣∣∣
� ‖α‖2‖θ‖2

n
.

If Re(f0(θ)) > 0 then∣∣∣∣Re f0(θ)

f0(0)

∣∣∣∣ = 1− 1

f0(0)(2k + 1)

k∑
j=1

(
Rj +

1

Rj

)
(1− cos(2πθj))

≤ 1− c

k
‖θ‖22.

If, instead, Re(f0(θ)) < 0 then∣∣∣∣Re f0(θ)

f0(0)

∣∣∣∣ = 1− 1

(2k + 1)f0(0)
− 1

(2k + 1)f0(0)

k∑
j=1

(
Rj +

1

Rj

)
(1 + cos(2πθj))

≥ 1− c

k
− c

k

∥∥∥∥θ − (1

2

)
k

∥∥∥∥2

(R/Z)k
.

The bound for
∣∣∣ f0(θ)
f0(0)

∣∣∣ in the case Re(f0(θ)) > 0 follows from, for some c′ > 0,∣∣∣∣f0(θ)

f0(0)

∣∣∣∣2 ≤ 1− c′

k
‖θ‖22 +O

((
1 +

log n√
k

)
‖θ‖22
n

)
,

and the claim in the case Re(f(θ)) < 0 is similar.

We give our final estimate.

Proof of Lemma A.1. Let 0 < δ < 1
12 be a constant to be chosen.

ν∗nk (α) =

∫
(R/Z)k

f0(θ)n

Rα1
1 ...Rαkk

dθ

=
f0(0)n

Rα1
1 ...Rαkk

[∫
‖θ‖∞≤δ

eF (θ)−F (0)dθ +

∫
‖θ‖∞>δ

(
|f0(θ)|
f0(0)

)n
dθ

]
.

By Lemma A.4,

f0(0)n

Rα1
1 ...Rαkk

= eF (0) = e−
2k+1
4n ‖α‖

2
2

[
1 +O

(
k3

n3
‖α‖44

)]
∼ e−

2k+1
4n ‖α‖

2
2 (A.12)

since ‖α‖44 � n2

k

(
1 + logn√

k

)
.
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To treat the integral over ‖θ‖∞ < δ, write∫
‖θ‖∞≤δ

eF (θ)−F (0)dθ =

(
2k + 1

4πn

) k
2
∫
‖θ‖∞≤δ

ηk

(√
2k + 1

8π2n
, θ

)
exp (G(θ)) dθ.

Partition B∞(0, δ) by choosing for some parameters c2, c4,

B∞(0, δ) = B t E1 t E2

B = B∞(0, δ) ∩B2

(
0, c2

k√
n

)
∩B4

(
0, c4

k
2
3

n
1
2

)

E1 = B∞(0, δ) ∩B2

(
0, c2

k√
n

)
\B4

(
0, c4

k
2
3

n
1
2

)

E2 = B∞(0, δ) \B2

(
0, c2

k√
n

)
.

The parameters c2, c4 are considered fixed, but may be arbitrarily large.
On B, (A.9) gives G(θ) = o(1) and we find∫

θ∈B
ηk

(√
2k + 1

8π2n
, θ

)
exp (G(θ)) dθ = (1 + o(1))

∫
θ∈B

ηk

(√
2k + 1

8π2n
, θ

)
dθ

= 1 + ε(c2, c4),

where ε(c2, c4)→ 0 as min(c2, c4)→∞, as follows by Lemma 2.2 (c2 and c4 only need be
taken growing if k does not grow).

In treating E1 and E2, let C2, C4 be the constants of Lemma 2.2. To treat E1, note

that with respect to the Gaussian measure γ = ηk

(√
2k+1
8π2n , θ

)
, the event θ ∈ B∞(0, δ) ∩

B2

(
0, c2

k√
n

)
has probability � 1, and thus, even after conditioning on this event, the

probability of ‖θ‖4 > C4k
1
4

√
2k+1
8π2n + t is, for some C > 0, O

(
exp

(
−nk

t2

C

))
. The bound

‖θ‖4 ≤ δ
1
2 ‖θ‖

1
2
2 implies that on E1, ‖θ‖4 = o(1). Set t = ‖θ‖4 −C4k

1
4

√
2k+1
8π2n and assume c4

is larger than a sufficiently large multiple of C4, so that t� k
3
4√
n

. By (A.10) we find that
for θ ∈ E1,

G(θ) ≤ g(t)

g(t)� o(1) +
n

k
t4 +

(
1 +

log n√
k

)(√
n

k
t2 +

√
n

k
1
4

t3
)
.

Then ∫
E1

ηk

(√
2k + 1

8π2n
, θ

)
exp(G(θ))dθ

≤ −
∫
k

3
4√
n
�t=o(1)

exp (g(t)) dmeas

(
‖θ‖4 ≥ C4k

1
4

√
2k + 1

8π2n
+ t

)
.

Integrating by parts, we find that this integral is o(1) as c4 →∞.
To treat E2, set s = ‖θ‖2 and appeal to (A.11) to find

G(θ) ≤ h(s)

h(s)� o(1) + δ2n

k
s2 +

(
1 +

log n√
k

)(√
n

k
s+

√
n

k
1
4

s
3
2

)
.
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Also, for some C > 0,

meas

(
‖θ‖2 > C2k

1
2

√
2k + 1

8π2n
+ s

)
� exp

(
−n
k

s2

C

)
.

We conclude ∫
θ∈E2

ηk

(√
2k + 1

8π2n
, θ

)
exp(G(θ))dθ

≤ −
∫

k√
n
�s≤δ

√
k

exp(h(s))dmeas

(
‖θ‖2 >

√
2k + 1

8π2n
+ s

)
.

If δ is sufficiently small, this integral is in fact o(1) as c2 →∞, as may be checked again
by integration by parts.

It remains to bound the integral over ‖θ‖∞ > δ. Consider first the case Re(f(θ)) > 0.
Let S ⊂ [k] be the collection of θj with |θj | > δ. Write θS for the variables in S and θSc for
the variables in Sc. Appealing to Lemma A.6, we see that if |S| � log n then the integral
is negligible. Using 1 − x < e−x in the remaining range we obtain a bound, for some
fixed c > 0,

�
∑

1≤j�logn

∑
S⊂[k],|S|=j

exp

(
−cjn

k

)∫
‖θSc‖∞<δ

exp
(
−cn
k
‖θSc‖22

)

�
(

2k + 1

4πnc

) k
2 ∑

1≤j�logn

(
k

j

)(
4πnc

2k + 1

) j
2

exp

(
−cjn

k

)

= o

((
2k + 1

4πn

) k
2

)
.

The terms for which Re(f(θ)) < 0 are handled similarly.
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