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Abstract
We prove that every distinct covering system has a modulus divisible by either 2
or 3.

1. Introduction
A covering system of congruences is a collection

ai mod mi ; i D 1; 2; : : : ; k

such that every integer satisfies at least one of them. A covering system is distinct
if the moduli mi are distinct and greater than 1. Erdős [3] introduced the idea of a
distinct covering system of congruences in constructing an arithmetic progression of
odd numbers, none of whose members is the sum of a prime and a power of two,
answering a question of Romanoff [11]. Using similar ideas, Sierpinski [15] proved
that there are infinitely many odd integers k such that k2n C 1 is composite for all
natural numbers n; it is still open whether 78557 is the smallest such number. Some
other uses of covering systems include proofs of irreducibility of special classes of
polynomials and other positive density results.

In [3], Erdős asked whether the least modulus of a distinct covering system of
congruences can be arbitrarily large. The largest known minimum modulus is 42,
given by Tyler Owens [10], improving the record of 40 obtained previously by the
second author [9]. The first author [8] recently answered Erdős’s question in the neg-
ative, proving that the least modulus of a distinct covering system of congruences is
at most 1016. The proof relies on the Lovász local lemma (LLL); the paper [5] seems
to be the first to explicitly mention this probabilistic tool in the context of covering
systems. In the present paper we improve the techniques related to the LLL, which
may be of independent interest.

A second old problem of Erdős and Selfridge asks whether there exists a dis-
tinct covering system of congruences with all moduli odd. According to [4], Erdős

DUKE MATHEMATICAL JOURNAL
Advance publication—final volume, issue, and page numbers to be assigned.
© 2019 DOI 10.1215/00127094-2019-0058
Received 13 March 2017. Revision received 10 April 2019.
2010 Mathematics Subject Classification. Primary 11A07; Secondary 11B25, 11K99.

1

https://doi.org/10.1215/00127094-2019-0058


2 HOUGH and NIELSEN

has offered $25 for the proof that no odd distinct covering system of congruences
exists, while Selfridge has offered $2000 for a construction of an odd distinct cover-
ing system. Schinzel proved that a negative answer to the odd modulus problem has
applications to the irreducibility of families of polynomials. While the odd modulus
problem remains open, Simpson and Zeilberger [16] proved that a distinct cover-
ing system consisting of odd square-free numbers involves at least 18 primes, which
was improved to 22 primes by Guo and Sun [6]. This paper makes further negative
progress toward the odd modulus problem.

THEOREM 1
Every distinct covering system of congruences has a modulus divisible by either 2
or 3.

This answers a problem raised in [7]. We have stated Theorem 1 in a succinct
form, although further minor improvement is possible.

2. Setup
Suppose that we are given a finite set of moduli M, and, for each m 2M, we are
given a set of residues am modulo m. Let

QD LCM.m Wm 2M/

and

RD Z

/ [
m2M

.am mod m/;

which is a set defined modulo Q. One way to show that the congruences

.am mod m/; m 2M

do not cover the integers is to give a positive lower bound for the density of R. The
proof of Theorem 1 gives such a lower bound, although it estimates some related
quantities. (For results on uncovered sets in other contexts the reader is directed to
[5], which contains some strong general purpose bounds.)

If we let Z=QZ have the uniform probability measure, then the density of R
is equal to its probability. For m 2M, let Am be the event .am mod m/, which has
probability jamj

m
, and extend this to m jQ with m …M by setting Am D ; for these

m. Then

P.R/D P
�\
mjQ

Acm

�
: (1)
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To apply the Lovász local lemma, we think of these events as vertices in a graph.
The graph is valid (or, in other words, it meets the requirements of the lemma) if the
edges are chosen so that each vertex v is independent of the � -algebra generated by
the collection of vertices not in the immediate neighborhood of v.

The Chinese remainder theorem implies that Am is independent of any set of
congruences to moduli coprime to m. Thus, a valid dependency graph for the events
¹Am Wm jQº has edge .m;m0/ if and only if GCD.m;m0/ > 1.

A family of results connected to the Lovász local lemma gives worst-case lower
bounds for the probability of an intersection as in (1), taking as input only the events’
probabilities and their dependency graph. In principle, we could hope to prove Theo-
rem 1 by directly applying one of these results to claim that the uncovered set always
has a nonzero density, but, as we will see, such a lower bound cannot be given, and
further input is needed. Two methods of Lovász type do figure into our argument,
however, as we will describe.

Given the problem of estimating from below the probability of the intersection of
the complements of some events given only their probabilities and their dependency
graph, the best possible estimate has been given by Shearer [14]. The estimate is
best possible in the sense that the argument constructs a probability space and events
having the prescribed probabilities and dependency graph, and such that the lower
bound holds with equality. However, the condition with which Shearer’s result holds
can be difficult to verify, and so the following result is useful because it is easy to
check. Note that this is essentially due to [16] in this context.

THEOREM 2 (Shearer-type theorem)
Suppose that we have a probability space. Let Œn�D ¹1; 2; : : : ; nº, and assume that for
each 1� i � n there is a weight �i assigned, satisfying 1� �1 � �2 � � � � � �n � 0.
Let the sets ;¤ T � Œn� index events AT , each having probability

0� P.AT /�
Y
t2T

�t WD �T :

Assume that AT is independent of the � -algebra generated by ¹AS W S � Œn�; S\T D
;º, so that a valid dependency graph for the events ¹AT W ; ¤ T � Œn�º has an edge
between S ¤ T whenever S \ T ¤;.

Define �.;/D 1, and given ;¤ T � Œn�, set

�.T /D 1�
X

;¤S1�T

�S1 C
X

;¤S1;S2�T
S1<S2 disjoint

�S1�S2

�
X

;¤S1;S2;S3�T
S1<S2<S3 disjoint

�S1�S2�S3 C � � � :
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(Here, “<” is an arbitrary total ordering on 2Œn�, used to avoid overcounting terms.)
Suppose that �.Œ1�/� �.Œ2�/� � � � � �.Œn�/ > 0. Then for any ;¤ T � Œn�,

P
� \
;¤S�T

AcS

�
� �.T / > 0 (2)

and, for any T1 � T2 � Œn�,

P.
T
;¤S�T2

AcS /

P.
T
;¤S�T1

AcS /
�
�.T2/

�.T1/
: (3)

We prove a slightly more general version of this theorem in Appendix C.
To apply the Shearer-type theorem in the context of Theorem 1, order the primes

greater than 3 as p1 D 5, p2 D 7, p3 D 11; : : : . Suppose that we are given a distinct
congruence system with moduli formed with the primes p1; : : : ; pn. Identify S � Œn�
with the square-free number mS D

Q
i2S pi , and form the event AS which is the

union of all congruences having square-free part mS ,

AS D
[

mW sqf.m/DmS

.am mod m/;

where sqf.m/D
Q
pWpjmp. Then AS is an event with probability

P.AS / <
Y
i2S

1

pi � 1
:

In particular, we may appeal to Theorem 2 with �i D 1
pi�1

. Arguing in this way, we
may check that there is no covering composed of only the primes between 5 and 631,
but at this point the Shearer function becomes negative, and no further result can be
drawn from that estimate.

What allows us to make further progress is that, within the range in which
Shearer’s theorem holds, estimate (3) of Theorem 2 gives substantial information
about the structure of the uncovered set. To see this, suppose that we have a con-
gruence system as above with uncovered set R, and that Theorem 2 applies. We can
estimate the proportion of the set R that lies in a given congruence class .b mod m/
for mjQ by

P..b mod m/\R/

P.R/
D

P..b mod m/\
T
m02M.am0 mod m0/c/

P.
T
m02M.am0 mod m0/c/

� P
�
.b mod m/

�P.
T
m02M;.m;m0/D1.am0 mod m0/c/

P.
T
m02M.am0 mod m0/c/

D
1

m

P.
T
m02M;.m;m0/D1.am0 mod m0/c/

P.
T
m02M.am0 mod m0/c/

:
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The ratio of probabilities on the right is bounded by the relative conclusion (3) of
Theorem 2, which gives a ratio of �.Œn�nSm/

�.Œn�/
, where Œn� again represents the full set of

primes dividing Q, and the Sm’s are those primes from Œn� which divide m. Thus,

P..b mod m/\R/

P.R/
�
1

m

�.Œn� n Sm/

�.Œn�/
:

If the Sm’s are such that �.Œn� n Sm/� �.Œn�/, then we deduce that R is almost uni-
formly distributed across residues modulo m.

We summarize the above discussion in the following theorem.

THEOREM 3
Let p1 < p2 < � � � < pn be a sequence of primes, and let the weights �1; : : : ; �n be
given by �i D

1
pi�1

. For a subset S � Œn� identify S with qS D
Q
p2S p, and write

�.qS /D �.S/ for the Shearer function associated to S with weights �i , as in Theo-
rem 2.

Suppose that �.p1/ � �.p1p2/ � � � � � �.p1p2 � � �pn/ > 0. Then any distinct
congruence system with moduli composed only of p1; : : : ; pn does not cover the inte-
gers. Moreover, if R is the uncovered set and if m is a modulus composed of primes
corresponding to a set S � Œn�, then

max
b mod m

jR\ .b mod m/j

jRj
�
1

m

�.qŒn�nS /

�.qŒn�/
: (4)

Although the sieving problem described in Theorem 1 concerns systems of con-
gruences in which each congruence set am has size 0 or 1, in the course of our argu-
ment we consider congruences with sets am of variable size. In this situation the
condition of Theorem 2 becomes unwieldy and we appeal instead to the following
theorem, which follows from an improved form of the Lovász local lemma due to [1]
(see also [13]).

THEOREM 4
Let N � N>1 be a finite collection of moduli whose prime factors are drawn from a
set of primes P . Let LCM.n W n 2N /DQ. Suppose that for each n 2N a collection
of residues an mod n is given. Write

RD Z
� [
n2N

.an mod n/:

Suppose that there exist weights ¹xpºp2P with xp � 0, which satisfy the constraints

8p 2P ; xp �
X

n2N Wpjn

jan mod nj
Q
p0jn.1C xp0/

n
:
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Then the density of R is at least

jR mod Qj

Q
� exp

�
�
X
n2N

jan mod nj
Q
pjn.1C xp/

n

�
> 0: (5)

Also, for any n 2N ,

max
b mod n

jR\ .b mod n/ mod Qj

jR mod Qj
�

exp.
P
pjn xp/

n
: (6)

Remark
Conclusion (5) corresponds to (2) of Theorem 2, and (6) corresponds to (4).

If we write x for ¹xpºp2P and G.x / for

Gp. x /D
X

n2N Wpjn

jan mod nj
Q
p0jn.1C xp0/

n
;

then the condition of Theorem 4 equivalently asks for a nonnegative (x � 0) fixed
point G.x /D x, which is relatively easy to determine. Thus, although Theorem 4 is
strictly weaker than Theorem 2, it is useful since it is more easily applied.

A proof and further discussion of Theorem 4 is given in Section 4.

3. Overview of the argument
We now give an overview of our argument. As the structure is similar to that of the
minimum modulus problem, we refer the proofs of some background statements to
[8].

We assume that we are given a congruence system with a finite set of moduli

M �
®
m> 1; .m;6/D 1

¯
;

together with a residue class am mod m for each m 2M. We let

QD LCM.m Wm 2M/;

and set

RD Z
� [
m2M

.am mod m/

for the set left uncovered by the congruence system. Theorem 1 follows by showing
that the density of R is positive.

To estimate the density ofR we appeal to the Lovász local lemma-type arguments
of the previous section. These arguments, however, only apply to estimate the density
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of sets left uncovered by congruence systems whose moduli are composed of a limited
number of primes, and so we break the estimate for the density of R into stages.

Let P0 D 4 < P1 < P2 < � � � be a sequence of real numbers (not equal to prime
integers). Let Q0 D 1, and, for i � 1, let

Qi D
Y

pj kQ;p<Pi

pj

be the part of Q composed of primes less than Pi . We let Mi D ¹m 2M Wm jQiº be
the Pi -smooth moduli in M, and we let the set of “new factors” be

Ni D
®
n > 1 W n jQi ; p j n) Pi�1 < p � Pi

¯
:

Notice that eachm 2MiC1 nMi has a unique factorization asmDm0n withm0 jQi

and n 2NiC1.
We consider the sequence of sets ZDR0 �R1 � � � � ,

8i � 1; Ri D Z
� [
m2Mi

.am mod m/:

Since Ri DR eventually, it will suffice to show that Ri is nonempty for each i .
The set Ri is defined modulo Qi . Viewing Z=QiC1Z as fibered over Z=QiZ we

note that

RiC1 DRi
� [
m2MiC1nMi

.am mod m/;

so that we may view RiC1 as cut out from the fibers .r mod Qi /, r 2Ri , by congru-
ences to moduli in MiC1 nMi . Given r 2Ri and m 2MiC1 nMi , factor mDm0n
with m0jQi and n 2NiC1. Then the congruence .am mod m/ meets .r mod Qi / if
and only if r 	 am0n mod m0, and when it does so, it intersects in a single residue
class modulo nQi . Thus, grouping together moduli according to a common new fac-
tor n 2NiC1 we find

RiC1 \ .r mod Qi /D .r mod Qi /
� [
n2NiC1

An;r ;

with

An;r D .r mod Qi /\
[
m0jQi

m0n2MiC1

.am0n mod m0n/:

After translating and dilating .r mod Qi / to coincide with the integers, the set An;r
is composed of some residue classes modulo n, a set which we call an;r . Thus, we
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can understand the problem of estimating the density of RiC1 within .r mod Qi / as
sieving the integers by multiple residue classes to moduli in NiC1, a set of moduli
whose prime factors are constrained to lie in .Pi ;PiC1�. This is the situation treated
by the Lovász-type result, Theorem 4 above, and so, if we are able to solve the relevant
fixed-point problem, then we obtain that the fiber is nonempty. Note that in the initial
stage, all of the sieving sets have size 0 or 1, so that in this stage we can appeal to the
optimal Shearer-type theorem, Theorem 2.

In practice we will not estimate the density ofRiC1 over all ofRi , but only within
certain “good” fibers above a subset R�i �Ri mod Qi . We will be deliberately vague
at this point about the requirements of a good fiber. Roughly speaking, they ensure
that the corresponding fixed-point problem has a favorable solution. Also, we require
that R�i �R

�
i�1 \Ri so that the good sets are nested. We let R�0 DR0 D Z.

For i � 1, we give weights to the set Z=QiZ according to the probability measure
�i supported on R�i�1 \Ri , chosen so as to guarantee that a large proportion of the
fibers are good. The measure �1 is uniform on the set R�0 \R1 DR1 � Z=Q1Z, and

8r 2R�0 \R1 mod Q1; �1.r/D
1

jR1 mod Q1j
:

Taking the measure �i as given, define, for i � 1,

�good.i/D
�i .R

�
i /

�i .R
�
i�1 \Ri /

to be the proportion of good fibers. For i � 1 and r 2R�i \RiC1 mod QiC1, we set

�iC1.r/D
�i .r mod Qi /

�good.i/jRiC1 \ .r mod Qi / mod QiC1j
:

Thus, for a fixed r 2 Ri , �iC1 is constant on RiC1 \ .r mod Qi /. That �i is a
sequence of probability measures follows from [8, Lemma 2], although, note that
the factor of 1

�good.i/
is not included in the definition of �i in [8], so that the mea-

sures there do not have mass 1. Throughout, when we write Er2R�
i�1
\Ri

we mean
expectation with respect to the measure �i .

Along with the measure �i we track some bias statistics of R�i�1\Ri . Let `k.m/
be the multiplicative function given at prime powers by

`k.p
j /D .j C 1/k � j k :

For i � 1, the kth bias statistic of R�i�1 \Ri is defined to be

ˇkk .i/D
X
mjQi

`k.m/ max
b mod m

�i
�
.b mod m/

�
:



COVERING SYSTEMS WITH RESTRICTED DIVISIBILITY 9

The importance of the bias statistics is that they control moments of (mixtures of) the
sizes of the sets an;r as r varies in R�i�1 \Ri .

LEMMA 5
Let i � 1. Let ¹wn W n 2 NiC1º be any collection of nonnegative weights, not all of
which are zero. For each k � 1, we have

Er2R�
i�1
\Ri

� X
n2NiC1

wnjan;r mod nj
�k
�
� X
n2NiC1

wn

�k
ˇkk .i/:

Proof
See Lemmas 4 and 5 of [8].

In addition to the bias statistics, it will be useful for us to track maximum biases
among the various good fibers. Let i � 0, and let n 2NiC1. We define the maximum
bias at n to be

bn D max
r2R�

i

max
b mod n

njRiC1 \ .r mod Qi /\ .b mod n/ mod QiC1j

jRiC1 \ .r mod Qi / mod QiC1j
:

Note that these appeared only implicitly in [8], but to get a better quantitative bound
it will be useful for us to track them more carefully here.

The iterative growth of the bias statistics ˇk.i/ to ˇk.i C 1/ is controlled by the
proportion of good fibers �good.i/ and the maximal biases at n 2NiC1.

LEMMA 6
Let i � 1. For each k � 1, we have the bound

ˇkk .i C 1/�
ˇk
k
.i/

�good.i/

�
1C

X
n2NiC1

`k.n/bn

n

�
:

Proof
This follows by tracing the proof of Proposition 3 of [8].

We now turn to giving a detailed account of Theorem 4.

4. The local lemma and good fibers
Our Theorem 4, which is used to estimate the density of good fibers, is derived from
the following improved version of the Lovász local lemma due to [1] (see also [13]).

THEOREM 7 (Clique Lovász local lemma)
Suppose that G D .V;E/ is a dependency graph for a family of events ¹Avºv2V , each



10 HOUGH and NIELSEN

with probability P.Av/ � �v . Let Nv be the neighborhood of v 2 V . Suppose that
there exists a sequence �D ¹�vºv2V of reals in Œ0;1/ such that, for each v 2 V ,

�v � �v�v.�/; (7)

where

�v.�/D
X

R�¹vº[Nv
R indep. inG

Y
v02R

�v0 :

Then

P
�\
v2V

Acv

�
� exp

�
�
X
v2V

�v

�
(8)

and, for all U � V ,

P.
T
v2V A

c
v/

P.
T
u2U A

c
u/
� exp

�
�

X
v2V nU

�v

�
: (9)

Remark
In the definition of �v , RD; is to be included, with associated product equal to 1.

Proof
This theorem with conclusion

P
�\
v2V

Acv

�
�
Y
v2V

.1� �v/
�v.�/��v (10)

is proved in [1], and the corresponding relative conclusion

P.
T
v2V A

c
v/

P.
T
u2U A

c
u/
�

Y
v2V nU

.1� �v/
�v.�/��v (11)

follows directly from the argument there. To deduce (8) and (9), observe that

�v.�/��v � .1� �v/�v.�/;

so that

.1� �v/
�v.�/��v � exp

�
�v.�/.1� �v/ log.1� �v/

�
� exp

�
��v.�/�v

�
� exp.��v/:
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Recall that Theorem 4 applies in the context of a congruence system to moduli in
a set N , whose prime factors lie in a set P . Each modulus n 2N has a set of residues
an, considered to be a probabilistic event with probability janj

n
. We require a system

of nonnegative weights ¹xpºp2P satisfying

xp �
X

n2N Wpjn

jan mod nj
Q
p0jn.1C xp0/

n
;

and the conclusion is that the uncovered set R has density at least

P.R/� exp
�
�
X
n2N

jan mod nj
Q
pjn.1C xp/

n

�

and that, for any n 2N , for any b mod n,

P.R\ .b mod n//

P.R/
�

exp.
P
pjn xp/

n
:

Deduction of Theorem 4
To deduce Theorem 4 from Theorem 7, we take V to be the set of nontrivial square-
free products of primes in P ,

V D ¹v > 1; square-free; p j v) p 2P º:

The event associated to v 2 V is the union of congruences .an mod n/ for which
sqf.n/D v, and this event has probability

�v �
X

nWsqf.n/Dv

janj
n
:

The dependency graph connects v1 and v2 if and only if GCD.v1; v2/ > 1.
Define �v D �v

Q
pjv.1 C xp/. This has the effect of reducing (7) at v to the

constraint Y
pjv

.1C xp/� �v.�/: (12)

Notice that

�v.�/D
X

R�¹vº[Nv
independent

Y
v02R

�v0 �
Y
pjv

�
1C

X
v0Wpjv0

�v0
�
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since each term in the sum on the left appears in the expansion of the product on the
right. Thus, if we make the condition that for each p jQ,

xp �
X
v0Wpjv0

�v0 ;

which is the condition (12) in the case vD p, then (12) holds automatically for all v.
In this way we have reduced to guaranteeing the system of prime constraints

8pjQ; xp �
X
v0Wpjv0

�v0
Y

p0Wp0jv0

.1C xp0/; (13)

which is the constraint of Theorem 4.
The first conclusion, (8) of Theorem 7 now gives that

P
�\
n2N

.an mod n/c
�
� exp

�
�
X
v2V

�v
Y
pjv

.1C xp/
�

D exp
�
�
X
n2N

jan mod nj
Q
pjn.1C xp/

n

�
;

which is the first conclusion of Theorem 4. To get the second conclusion, use

P.R\ .b mod n//

P.R/
�

P..b mod n/\
T
n02N ;.n;n0/D1.an0 mod n0/c/

P.
T
n02N .an0 mod n0/c/

D
1

n

P.
T
n02N ;.n;n0/D1.an0 mod n0/c/

P.
T
n02N .an0 mod n0/c/

�
1

n
exp

� X
n02N W.n0;n/>1

jan0 mod n0j
Q
pjn0.1C xp/

n0

�
:

The last term is bounded by

1

n
exp

�X
pjn

X
n0Wpjn0

jan0 mod n0j
Q
p0jn0.1C xp0/

n0

�
�
1

n
exp

�X
pjn

xp

�
:

We now give a sufficient criterion to guarantee a good solution to the fixed-point
equation governing existence of weights in Theorem 4. Recall that we define

Gp. x /D
X

n2N Wpjn

jan mod nj
Q
p0jn.1C xp0/

n
:
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A trivial lower bound for a fixed point G.xfix/D xfix is

x0; x0p D
Gp. 0 /

1�Gp. 0 /
;

and we wish to say that a fixed point lies near x0. The nth derivative DnG.0 / is a
multilinear map

Nn
`2.P /! `2.P /. Give it the usual operator norm,��DnG.0 /
��

op D sup
kv1k`2D���Dkvnk`2D1

��DnG.0/.v1; : : : ; vn/
��
`2
:

The following theorem guarantees that there exists such a fixed point xfix close to x0

when there is good control of the operator norms of the derivatives of Dn.G /. 0 / of
G at 0. The theorem was motivated by the series of approximations made in “New-
ton’s method.”

THEOREM 8
With the notation as above, let M > 0 be a parameter. Assume that

B1 D
��G.0 /��

`1
< 1;

and set B2;0 D kx0k`2 and

Bop.M/D
��DG.0 /� diag

�
DG.0 /

���
opC

1X
nD2

M n�1

.n� 1/Š

��DnG.0/
��

op <1:

Suppose that � D Bop

1�B1
< 1 and that B2;0

1��
�M . Then there exists xfix D x0 C 	 ,

	 � 0 solving the fixed-point equation G.xfix/D xfix, such that

k	k`2 �
B2;0�

1� �
:

Proof
Let F.x /D G.x / � x, so that we seek to solve F.xfix/D 0. This we can attempt
via “Newton’s method.”

Let

D D diag
�
DG.0 /

�
D diag

�
Gp. 0 /

�
; OD DDG.0 /� diag

�
DG.0/

�
:

Starting from the initial guess x0 as above, set xiC1 D xi C .I �D/�1F.xi /. We
may also set x�1 D 0, which is consistent with this definition. A moment’s thought
shows that the sequence xi is increasing, so that if it is bounded it converges to the
desired fixed point, and 	 D

P1
iD0. x

iC1 � xi /. Plainly k.I �D/�1kop D
1

1�B1
, so
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that

kxiC1 � xik`2 �
1

1�B1

��F.xi /��
`2
:

Note that F is a polynomial. Thus,

F.xi /D

1X
kD0

DkF.0/.xi ; : : : ; xi /

kŠ
:

In this sum, write DF.0 / D .D � I / C OD , and recall that xi D xi�1 C .I �
D/�1F.xi�1/, so that

DF.0 /xi DODxi C .D � I /xi�1 �F.xi�1/:

On Taylor expanding F.xi�1/, we find

F.xi /D OD.xi � xi�1/

C

1X
kD2

1

kŠ

�
DkF.0 /.xi ; : : : ; xi /�DkF.0 /.xi�1; : : : ; xi�1/

�
: (14)

Now we impose the constraint kxj k`2 �M , which holds for j D 0 due to the condi-
tion on B2;0, and which we will verify for all j by induction. With this assumption,
by the usual trick with the triangle inequality in which we change one coordinate at a
time, ��DkF.0 /.xi ; : : : ; xi /�DkF.0/.xi�1; : : : ; xi�1/

��
`2

� kM k�1
��DkF.0 /

��
opkx

i � xi�1k`2 ;

so that kF.xi /k`2 �Bopkx
i � xi�1k and

kxiC1 � xik`2 �
Bop

1�B1
kxi � xi�1k`2 D �kx

i � xi�1k`2 :

Since

kx0 � x�1k`2 D kx
0k`2 DB2;0;

we have kxik � B2;0
1��
�M for all i , which verifies the condition above. It follows that

k	k`2 �
B2;0�

1��
.
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4.1. Random Lovász weights
For each i D 1; 2; : : : on (a subset of good) fibers above R�i�1 \Ri , we apply Theo-
rem 4 with moduli N DNiC1 and residues an D an;r . Thus, we think of the quanti-
ties from Theorems 4 and 8 as depending upon the random variable r , for example,
G.0/D G.0; r/, B1 D B1;r , x0 D x0.r/. We wish to understand properties of the
distribution of xfix.r/, but will instead define good fibers in terms of `p control of
G.0; r/, and control of Bop.M; r/, the other quantities of interest being controlled in
terms of these. We now work to control Bop.

We directly verify that the partial derivatives of DkG are given by

Dp1 � � �DpkGp D

8̂̂
<̂
ˆ̂̂:

P
n2N

p;p1���pk jn

jan mod nj
n

Q
p0jn

p0…¹p1;:::;pkº

.1C xp0/

if p1; : : : ; pk distinct;

0 otherwise:

A simple bound for the operator norm of DkG.0/ is

��DkG.0 /
��

op �
��DkG.0/

��
`2
D
� X
p1;:::;pk

distinct

��Dp1 � � �DpkG.0/��2`2�
1
2

;

which, in view of the evaluation of DkG, is given by, for k � 2,��DkG.0 /
��2

op � Sk ;

Sk WD
X

p1;:::;pk distinct

�
k
� X

n2N
p1���pk jn

jan mod nj

n

�2

C
X

p…¹p1;:::;pkº

� X
n2N

pp1���pk jn

jan mod nj

n

�2�
:

In OD DDG.0/ � diag.DG.0 // the diagonal terms p D p1 are missing, so
that we recover the bound

kODk2op �
X
p¤p1

� X
n2N
pp1jn

jan mod nj

n

�2
DW S1:

By Cauchy–Schwarz, for positive weights W1;W2;W3; : : : ,

Bop.M/2 �
� 1X
kD1

WkM
k�1

.k � 1/Š

�� 1X
kD1

M k�1

.k � 1/Š

Sk

Wk

�
:
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Let min.P /� P C 1. We choose

W 2
1 D

1

.P logP /2
; 8k � 2; W 2

k D
k

.P logP /k
;

from which it follows that

Bop.M/2 �
� 1

P logP
C

1X
kD2

k
1
2M k�1

.k � 1/Š.P logP /
k
2

�



�
.P logP /S1C

1X
kD2

M k�1.P logP /
k
2

k
1
2 .k � 1/Š

Sk

�

DW C 
 S : (15)

We record bounds for kG.0 /k`2 and S1; S2; : : : averaged over r 2R�i�1 \Ri .

LEMMA 9
Let i � 1. For r 2R�i�1\Ri , consider N DNiC1 and an D an;r as in the discussion
above. We have the bounds

Er2R�
i�1
\Ri

��G.0; r/��2
`2
� ˇ22.i/

Y
Pi�p<PiC1

�
1C

1

p � 1

�2 X
Pi�p<PiC1

1

.p � 1/2
;

Er2R�
i�1
\Ri

��G.0; r/��3
`3
� ˇ33.i/

Y
Pi�p<PiC1

�
1C

1

p � 1

�3 X
Pi�p<PiC1

1

.p � 1/3
;

Er2R�
i�1
\Ri

S1.r/ � ˇ
2
2.i/

Y
Pi�p<PiC1

�
1C

1

p � 1

�2



� X
Pi�p<PiC1

1

.p � 1/2

�2
;

and, for k � 2,

Er2R�
i�1
\Ri

Sk.r/

� ˇ22.i/
Y

Pi�p<PiC1

�
1C

1

p � 1

�2



h
k
� X
Pi�p<PiC1

1

.p � 1/2

�k�
1C

1

k

X
Pi�p<PiC1

1

.p � 1/2

�i
:
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Proof
We use the bound, for distinct Pi � p1; : : : ; pk <PiC1,X

n2NiC1
p1���pk jn

1

n
<

1

.p1 � 1/ � � � .pk � 1/

X
n2NiC1[¹1º

1

n

<
1

.p1 � 1/ � � � .pk � 1/

Y
Pi�p<PiC1

�
1C

1

p � 1

�
:

Since ��G.0 /��2
`2
D

X
Pi�p<PiC1

� X
n2NiC1Wpjn

jan mod nj

n

�2
; (16)

by the convexity lemma, Lemma 5,

Er2R�
i�1
\Ri

��G.0; r/��2
`2
� ˇ22.i/

X
Pi�p<PiC1

� X
n2NiC1Wpjn

1

n

�2

� ˇ22.i/
Y

Pi�p<PiC1

�
1C

1

p � 1

�2 X
Pi�p<PiC1

1

.p � 1/2
:

The proof for kG.0 /k3
`3

is similar.
Since

S1 D
X

Pi�p¤p1�PiC1

� X
n2NiC1
pp1jn

jan mod nj

n

�2
; (17)

the convexity lemma implies that

Er2R�
i�1
\Ri

S1.r/� ˇ
2
2.i/

X
Pi�p¤p1<PiC1

� X
n2NiC1;pp1jn

1

n

�2

� ˇ22.i/
Y

Pi�p<PiC1

�
1C

1

p � 1

�2� X
Pi�p<PiC1

1

.p � 1/2

�2
:

Since, for k � 2,

Sk D
X

Pi�p1;:::;pk<PiC1
distinct

�
k
� X
n2NiC1
p1���pk jn

jan mod nj

n

�2

C
X

p…¹p1;:::;pkº

� X
n2NiC1
pp1���pk jn

jan mod nj

n

�2�
; (18)
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the convexity lemma implies that

Er2R�
i�1
\Ri

Sk.r/

� ˇ22.i/
X

Pi�p1;:::;pk<PiC1
distinct

�
k
� X
n2NiC1
p1���pk jn

1

n

�2
C

X
p…¹p1;:::;pkº

� X
n2NiC1
pp1���pk jn

1

n

�2�

� ˇ22.i/
Y

Pi�p<PiC1

�
1C

1

p � 1

�2



h
k
� X
Pi�p<PiC1

1

.p � 1/2

�k�
1C

1

k

X
Pi�p<PiC1

1

.p � 1/2

�i
:

Inserting (15) in the last lemma, we conclude the following bound.

LEMMA 10
Let Bop be the constant from Theorem 8. Averaged overR�i�1\Ri , we have the bound

Er2R�
i�1
\Ri

Bop.M/2

� Ciˇ
2
2.i/

Y
Pi�p<PiC1

�
1C

1

p � 1

�2



�
Pi logPi

� X
Pi�p<PiC1

1

.p � 1/2

�2

C
�
1C

1

Pi

� 1X
nD2

n
1
2M n�1.Pi logPi /

n
2

.n� 1/Š

� X
Pi�p<PiC1

1

.p � 1/2

�n�

with Ci given as above by

Ci D
� 1

Pi logPi
C

1X
nD2

n
1
2M n�1

.n� 1/Š.Pi logPi /
n
2

�
:

We conclude this section with a brief discussion of how we apply Theorem 4.
Beyond demonstrating that fibers above a good set R�i are nonempty, the information
that we wish to obtain from Theorem 4 is a bound for the bias statistics ˇk.i C 1/ in
the next stage of iteration. Lemma 6 reduces this problem to bounding the individual
biases bn of R�i \ RiC1 at n 2 NiC1, and Theorem 4 demonstrates that this bias is
bounded by

bn � max
r2R�

i

exp
�X
pjn

xfix
p .r/

�
: (19)
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We bound this quantity in terms of the number of prime factors ! D !.n/ of n. Think-
ing of 	D 	.r/ as a small error, we haveX

pjn

xfix
p .r/� kx

fixk1;! � kx
0k1;! C

p
!k	k`2 ;

where k � k1;k denotes the norm

kxk1;! D max
i1<i2<���<i!

�
jxi1 j C � � � C jxi! j

�
:

LEMMA 11
Let q D 2 or 3. Given the optimization problem

given: 0 < Bq < 1; 1� !;

maximize: kx0k1;! ; (20)

subject to:
��G.0 /��

`q
�Bq;

when q D 2, the optimizing solution G.0 / has coordinates that take at most three
values, 0 D c1 < c2 �

1
3
� c3 � B2, subject to c2.1 � c2/2 D c3.1 � c3/2. When

there are two nonzero values, c2 is constrained by c2.1� c2/2 �B2.1�B2/2, which
is only possible for a bounded number of nonzero entries. When there is only one
nonzero value, the optimum is

p
!B2

1�
B2p
!

.

When q D 3, the optimizing solution satisfies G.0/ has at most two nonzero val-
ues, and they necessarily satisfy c2 D 1� c3.

Proof
Without loss of generality, y DG.0/ has at most ! nonzero entries, and all of these
may be assumed to be nonnegative, since replacing a negative entry y with its absolute
value increases j y

1�y
j, without changing the norm.

Applying Lagrange multipliers in the case q D 2 with constraint kyk2
`2
�B22 and

objective
P
i
yi
1�yi

obtains that those nonzero coordinates yi satisfy 1
.1�yi /

2 D 
yi or

yi .1� yi /
2 D c with c D 1

�
. Notice that the constraint implies that yi �B2 < 1, and

on Œ0; 1�, d
dy
.y.1�y/2/D .3y�1/.y�1/ so that y.1�y/2 is increasing on Œ0; 1

3
/ and

decreasing on .1
3
; 1�. Hence, there are at most two nonzero solutions to y.1�y/2 D c,

and if there are 2, then c � B2.1 � B2/2. When there is only one nonzero value, by
Lagrange multipliers each of the ! variables appearing in the objective function takes
the value B2p

!
, which is as large as possible, since the objective function is increasing

in each variable.
When q D 3, applying Lagrange multipliers with constraint kyk3

`3
� B33 , yi � 0

and objective function
P
i
yi
1�yi

implies that those positive coordinates satisfy
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1
.1�yi /

2 D 
y
2
i or y2i .1 � yi /

2 D c. Since 0 � yi ; 1 � yi � 1, this has two solu-
tions, c2 and 1� c2.

5. Explicit calculation in initial stages
In the initial stage, we appeal to the Shearer-type theorem, Theorem 3, with the primes
in the range P0 D 4 < p < P1 D 222, and we verify numerically that the condition of
the theorem holds. We also calculate the bound for bias statistics

ˇ2.1/� 12:25; ˇ3.1/� 25:

The method of performing these explicit computations is described in Appendix A.
Empirically, the barrier to ruling out an odd covering using the current method is that
the optimal application in the initial stage can only accommodate a few primes, so
that the resulting bounds for moments do not permit the process to continue.

Let P2 D 4000. In order to choose the good set R�1 �R1.DR
�
0 \R1/, we appeal

to Lemmas 9 and 10 to calculate, for any C2;Cop > 0, and for M D 1:769746269,

Er2R1
�
C2
��G.0; r/��2

`2
CCopBop.1:769746269; r/

2
�

� C2ˇ
2
2.1/

Y
222�p<4000

�
1C

1

p � 1

�2 X
222�p<4000

1

.p � 1/2

CCopC1ˇ
2
2.1/

Y
222�p<4000

�
1C

1

p � 1

�2



h
.222 log222/

X
222�p<4000

1

.p � 1/2

C
223

222

1X
nD2

n
1
2 1:769746269n�1.2 � 2222 log222/

n
2

.n� 1/Š

� X
222�p<4000

1

.p � 1/2

�ni

and

C1 D
1

222.log222/
C

1X
nD2

n
1
2 1:769746269n�1

.n� 1/Š.222 log222/
n
2

:

We calculate numerically that

Er2R1
�
C2
��G.0; r/��2

`2
CCopBop.M; r/

2
�
<C2 � 0:246514091CCop � 0:002220166:

We choose C2 D 0:9
0:246514091

and Cop D
0:1

0:002220166
, so that the above inequality

reads

Er2R1
�
C2
��G.0; r/��2

`2
CCopBop.1:769746269; r/

2
�
< 1:
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We say that r 2R1 is good if

��C2G.0; r/��2`2 CCopBop.1:769746269; r/
2 �

1

1� 0:3
:

By Markov’s inequality, �good.1/� 0:3.
Evidently, for all r ,

��G.0; r/��2
`2
�

1

C2.1� 0:3/
< 0:391292208:

We save a little extra ground by conditioning on the actual size of kG.0; r/k`2 . Let
K D 100 be a parameter. For 1� j �K , we say that r 2R�1 is in bin Bj if

��G.0; r/��2
`2
2
�j � 1
K

;
j

K

i
�

1

C2.1� 0:3/
:

For r 2Bj , we have

Bop.1:769746269; r/
2 �

K � j C 1

K
�

1

Cop.1� 0:3/
:

Abusing notation, for r 2 Bj we write quantities depending upon r as depending
upon j instead, so we use G.0; j /, B2.j /, Bop.j /, and so forth.

In each bin we update

B1.j /D
��G.0; j /��

`1
�B2.j /

and thus

B2;0.j /D kx
0k`2 �

B2.j /

1�B2.j /
;

and �.j /� Bop.j /

1�B2.j /
. We check numerically, bin-by-bin, that for all bins,

B2;0.j /

1� �.j /
< 1:769746269DM;

so that the condition of Theorem 8 is met. In particular, each good fiber is nonempty.
Again, we apply Theorem 8 bin-by-bin so that, in each bin, we obtain a bound of

��	.j /��
`2
�
B2;0.j /�.j /

1� �.j /
:

Beginning from the informationB22 .j /�
j
K
0:625533539, we solve the optimiza-

tion problem (20) for ! D 1; 2; 3; : : : . As we have already commented, for each ! the
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Table 1.

! kxfixk1;!

1 1.769746269
2 1.900670975
3 2.033321919
4 2.184489901
5 2.363269323
6 2.530235874
7 2.686345986
8 2.833661687
9 2.973253326
10 3.106051540
! > 10 ! 0:625533539p

!�0:625533539
C 0:292129153

p
!

optimal solution has no more than two nonzero values among the xp’s. When it has
the two values c1, c2 these satisfy for some positive integers a � b, aC b � !,

ac21 C bc
2
2 �

j

K
0:391292208; c1.1� c1/

2 D c2.1� c2/
2:

It transpires that this possibility occurs only for ! � 4 and when a D 1. For ! � 5,
the optimum in each bin is given by��x0.j /��

1;!
� !

B2.j /
p
! �B2.j /

;
��xfix.j /

��� ! B2.j /
p
! �B2.j /

C
p
!
��	.j /��

`2
:

Obviously B2.j /�B2.K/� 0:391292208
1
2 D 0:625533539, and we find

sup
j

��	.j /��
`2
� 0:292129153:

Resulting bounds for supj kx
fixk1;! are recorded in Table 1.

We can thus update the bound for bias statistics ˇk.2/ according to Lemma 6.
Write, for k D 1; 2; 3; : : : ,

�k.p/D

1X
iD1

.i C 1/k � ik

pi
;

for the local factor at p that occurs at the kth bias statistic. Then the new bound
becomes

ˇkk .2/�
ˇk
k
.1/

�good.1/

�
1C

1X
jD1

exp
�
kxfixk1;j

�
ej
�
�k.p/ W P1 � p < P2

��
;

where ej indicates the j th elementary symmetric function. For large j , we use the

bound ej .�/�
e1.	/

j

j Š
. In this way we calculate that

ˇ2.2/ < 94:66051416; ˇ3.2/ < 199:2834489:
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6. Asymptotic estimates
Recall that P2 D 4000. For all i � 2, we let PiC1 D P 1:5i . In this section we use the
following explicit estimates for sums and products over primes, which hold for i � 2:Y

Pi�p<PiC1

� p

p � 1

�
< .1:004212/.1:5/

D 1:506318;

X
Pi�p<PiC1

1

.p � 1/2
<
1:002631

Pi logPi
;

X
Pi�p<PiC1

1

.p � 1/3
<
1:004382

2P 2i logPi
:

These are verified in Appendix B.
For the remainder of the argument our inductive assumption is, for i � 2,

ˇ2.i/� 0:5197033883 � .Pi logPi /
1
2 ;

(21)

ˇ3.i/� 0:3100980448 � .2P
2
i logPi /

1
3 :

Note that both of these hold at i D 2.
Setting M D 2:949873427 in Theorem 8, we estimate

Er2R�
i�1
\Ri

�
C3
��G.0; r/��3

`3
CC2

��G.0; r/��2
`2
CCopBop.2:949873427; r/

2
�
:

Appealing to Lemma 10, we bound the sums in C and ES , implicitly defined in (15),
by

Ci � C2 D
� 1

4000 log4000
C

1X
nD2

n
1
2M n�1

.n� 1/Š.4000 log4000/
n
2

�

� 0:0001571422884;

ESi � .1:506318/
2ˇ22.i/



� .1:002631/2
Pi logPi

C
�
1C

1

Pi

� 1X
nD2

n
1
2M n�1.1:002631/n

.n� 1/Š.Pi logPi /
n
2

�

� .1:506318/2.0:5197033883/2



�
.1:002631/2C

4001

4000

1X
nD2

n
1
2M n�1.1:002631/n

.n� 1/Š.4000 log4000/
n
2�1

�

� 3:212501212:
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Combined with the asymptotics of EkG.0/kp
`p

from Lemma 9,

Er2R�
i�1
\Ri

��G.0/��3
`3
�

Y
Pi�p<PiC1

� p

p � 1

�3
ˇ33.i/

X
Pi�p<PiC1

1

.p � 1/3

< .1:506318/3.1:004382/.0:3100980448/3

< 0:1023637064;

Er2R�
i�1
\Ri

��G.0/��2
`2
�

Y
Pi�p<PiC1

� p

p � 1

�2
ˇ22.i/

X
Pi�p<PiC1

1

.p � 1/2

< .1:506318/2.1:002631/.0:5197033883/2

< 0:6144485964;

we deduce

Er2R�
i�1
\Ri

�
C3
��G.0/��3

`3
CC2

��G.0/��2
`2
CCopBop.2:949873427; r/

2
�

� 0:1023637064C3C 0:6144485964C2C 0:0005048197920Cop:

Choose C3 D 0:7
0:1023637064

, C2 D 0:2
0:6144485964

, Cop D
0:1

0:0005048197920
so that the

expectation is bounded by 1. As before, declare r 2R�i�1 \Ri to be good if

C3
��G.0; r/��3

`3
CC2

��G.0; r/��2
`2
CCopBop.2:949873427; r/

2 �
1

1� 0:3
:

Evidently �good.i/� 0:3, and for good r ,

��G.0; r/��3
`1
�
��G.0; r/��3

`3
�

1

C3.1� 0:3/
< 0:2089055233;

��G.0; r/��2
`2
�

1

C2.1� 0:3/
< 4:388918546;

but, again, we bin to get a stronger result.
For K D 100 and integers 0 < i; j , i C j �KC 1, let the bin Bi;j be those r for

which ��G.0; r/��3
`3
2
� i � 1
K

;
i

K

i 1

C3.1� 0:3/
;

��G.0; r/��2
`2
2
�j � 1
K

;
j

K

i 1

C2.1� 0:3/
:

For r 2Bi;j , we have

B2op.r/�
K � i � j C 1

K

1

Cop.1� 0:3/
:
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We proceed much as before (again replacing r with i , j in each argument) updat-
ing bin-by-bin

B2;0.i; j /�
kG.0; i; j /k`2

1� kG.0; i; j /k`3
;

and

�.i; j /�
Bop.2:949873427; i; j /

1� kG.0; i; j /k`3
:

We check bin-by-bin that

B2;0.i; j /

1� �.i; j /
< 2:949873427DM

so that our choice of M D 2:949873427 in Theorem 8 is valid.
In each bin we solve the optimization problem (20) with p D 3, and we find that

for all ! � 1 and for all bins the optimum is

��x0.i; j /��
1;!
� !

2
3

i
K
0:5933577790

1�
i
K 0:5933577790

!
1
3

;

so that we guarantee

��xfix.i; j /
��
1;!
�

i
K
0:5933577790!

2
3

1�
i
K 0:5933577790

!
1
3

C
��	.i; j /��

`2
!
1
2 :

We calculate

max
i;j

��	.i; j /��
`2
� 0:190000303:

Thus, we find the bounds in Table 2.
In Appendix B we verify that, for i � 2,

e1
�
�2.p/

�
� 3 log1:5C 0:00334 < 1:21974;

e1
�
�3.p/

�
� 7 log1:5C 0:00779 < 2:84605:

Hence,

ej
�
�2.p/ W Pi � p < PiC1

�
�
e1.�2.p//

j

j Š
<
.1:21974/j

j Š
;

ej
�
�3.p/

�
<
.2:84605/j

j Š
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Table 2.

! kxfixk1;!

1 1.459164221
2 1.780349459
3 2.096937862
4 2.387653719
5 2.656941273
6 2.909180305
7 3.147611526
8 3.374605257
9 3.591932780
10 3.800951606
! > 10 0:5933577790!

!
1
3 �0:5933577790

C 0:190000303
p
!

and we find

ˇ22.i C 1/

ˇ22.i/
�

1

0:3

�
1C

1X
!D1

exp
�
max
i;j

��xfix.i; j /
��
1;!

� .1:21974/!
!Š

�
< 48:515

and

ˇ33.i C 1/

ˇ33.i/
�

1

0:3

�
1C

1X
!D1

exp
�
max
i;j

��xfix.i; j /
��
1;!

� .2:84605/!
!Š

�
< 487:17:

On the other hand,

PiC1 logPiC1
Pi logPi

� 1:5 �P
1
2

i � 1:5 � 4000
1
2 > 94

and

P 2iC1 logPiC1
P 2i logPi

� 1:5 �Pi � 6000;

so that (21) is preserved, which completes the proof by induction.

Appendices

A. Symmetric functions
We briefly describe how we performed the calculations in the initial stage of the argu-
ment (see Section 5). There we appealed to Theorem 3, which is Theorem 2 with set
Œn� identified with ¹p W 4 < p < 222º D p1 < p2 < � � � < pn and weights �p D 1

p�1
.

We identify square-free number m with the set of its prime factors. The Shearer func-
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tions

�.p1/ > �.p1p2/ > � � �> �.p1 � � �pn/

are easily computed via

�.p1 � � �pj /D

jX
iD0

X.i/ei .�p1 ; : : : ; �pj /;

with the ei elementary symmetric functions (take e0 D 1) (see [16]).
The bias statistics are also not difficult to bound. Recall that QD LCM.m Wm 2

M/ and that Q1 is the part of Q composed of primes less than P1 D 222. The kth
bias statistic is

ˇkk .1/D
X
mjQ1

`k.m/ max
b mod m

jR1 \ .b mod m/ mod Q1j

jR1 mod Q1j
:

Let sqf.m/D
Q
p2S pDWmS . Appealing to (4) of Theorem 3 we have

jR1 \ .b mod m/ mod Q1j

jR1 mod Q1j
�
1

m

�.Œn� n S/

�.Œn�/
;

so that

ˇkk .1/�
1

�.Œn�/

X
S�Œn�

�
�
Œn� n S

� X
mWsqf.m/DmS

`k.m/

m

�
1

�.Œn�/

X
S�Œn�

�
�
Œn� n S

�Y
s2S

� 1X
jD1

`k.p
j
s /

p
j
s

�
: (A.1)

Recall that we define

�k;i D �k.pi /D

1X
jD1

`k.p
j
i /

p
j
i

D

1X
jD1

.j C 1/k � j k

pki

D
h� 1
x
� 1

��
x
@

@x

�k 1

1� x
� 1

i
xD 1

pi

:

Define for i C j � n the mixed symmetric functions fi;j .�; � k/ by

fi;j .�; � k/D
i Šj Š.n� i � j /Š

nŠ

X

2Sym.Œn�/

� 
.1/ � � �� 
.i/� k;
.iC1/ � � � � k;
.iCj /
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or, equivalently, by

X
0�iCj�n

fi;j .�; � k/x
iyj D

nY
iD1

.1C x�i C y�k;i /:

The sum of (A.1) is a linear combination of the mixed symmetric functions
fi;j .�; � k/ X

S�Œn�

�
�
Œn� n S

�Y
s2S

�k;s D
X

0�iCj�n

X.i/fi;j .�; � k/;

and so is rapidly computable.

B. Explicit prime number estimates
In this appendix we sketch proofs for explicit bounds on well-known prime sums and
products. Recall that P2 D 4000 and, for i � 2, PiC1 D P 1:5i . In particular, no Pi is
prime. Let � denote the Euler–Mascheroni constant. Dusart [2, Theorem 5.9] proves
the following estimate.

THEOREM B.1
For x > 2278382, we have

e� .logx/
�
1�

0:2

.logx/3

�
<
Y
p�x

p

p � 1

and Y
p�x

p

p � 1
< e� .logx/

�
1C

0:2

.logx/3

�
:

As a consequence, we obtain the following.

COROLLARY B.2
For i � 2, we have Y

Pi�p<PiC1

� p

p � 1

�
< .1:5/.1:004212/:

For the sums of reciprocals of squares of primes, we have the following estimate.

PROPOSITION B.3
For i � 2, X

Pi�p<PiC1

1

.p � 1/2
<
1:002631

Pi logPi
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and

X
Pi�p<PiC1

1

.p � 1/3
<
1:004382

2P 2i logPi
:

Proof
We prove only the first inequality, as the second is similar. One easily checks that

X
P2�p<P3

1

.p � 1/2
<

1

P2 logP2
;

X
P3�p<P4

1

.p � 1/2
<

1

P3 logP3
:

For i � 4, use 0:99999997
.p�1/2

< 1
p2

so that, for x � P4,

0:99999997
X
p�x

1

.p � 1/2
<
X
p�x

1

p2
D�

�.x/

x2 logx
C

Z 1
x

�.y/

y3
1C 2 logy

.logy/2
dy:

By [2], we have the inequality j�.x/�xj< 0:2 x
.logx/2

for x � 3594641. In particular,
0:99913x < �.x/ < 1:00088x in this range. Also, Lemma 9 of [12] yieldsZ 1

x

1C 2 logy

y2.logy/2
dy <

2

x logx
:

Combined, these estimates give the claim.

Recall that we define �k.x/D
P1
iD1

.iC1/k�ik

xi
. We have

�2.x/D
3x � 1

.x � 1/2
; �3.x/D

7x2 � 2xC 1

.x � 1/3
:

PROPOSITION B.4
For i � 2, X

Pi�p<PiC1

�2.p/ < 3 log1:5C 0:00334

and X
Pi�p<PiC1

�3.p/ < 7 log1:5C 0:00779:

Proof
For i D 2; 3, this is verified directly. For x � P4, this is a consequence of the following
estimate of [2, Theorem 5.6].
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THEOREM B.5
There is a constant B , such that, for any x � 2278383,ˇ̌̌X

p�x

1

p
� log logx �B

ˇ̌̌
�

0:2

.logx/3
:

C. Theorems of Lovász and Shearer-type
The Lovász local lemma considers the following scenario. In a probability space X

there are events ¹Avºv2V with dependency graph G D .V;E/, that is, Av is inde-
pendent of the � -algebra �.Aw W .v;w/ … E/. One seeks a positive lower bound for
P.
T
v2V Av/. The local lemma guarantees that if there exist weights 1 > xv � P.Av/

satisfying

8v 2 V; xv
Y

wW.v;w/2E

.1� xw/� P.Av/;

then

P
�\
v2V

Av

�
�
Y
v2V

.1� xv/:

Shearer [14] gives an optimal bound of the above type via the independent set poly-
nomial

„.zv W v 2 V /D 1C

1X
nD1

1

nŠ

X
.v1;:::;vn/2V

n

8i¤j; vi�vj

zv1 � � �zvn ;

where .vi � vj / means vi ¤ vj and .vi ; vj / …E .

THEOREM (Shearer’s theorem; [14, Theorem 1])
Given S � V , let „S .zv W v 2 V / denote „ with arguments zv W v 2 S replaced by 0.
Subject to

8S � V; „S
�
�P.Av/ W v 2 V

�
� 0;

it holds that

P
�\
v2V

Av

�
�„

�
�P.Av/ W v 2 V

�
:

Although Shearer’s theorem is tight, evaluating the independent set polynomial
is difficult and so there remains interest in finding statements of a similar type to the
local lemma, which is more easily applied.

One way to reduce the complexity of Shearer’s theorem is to organize the events
into collection of cliques. We consider the scenario in which graph G D .V;E/ is
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covered by a collection of cliques K , that is, E D
S
K2K EK . For v 2 V , let

p.v/D ¹K W v 2Kº: (C.1)

We make the assumption that p.v/ uniquely determines v and we assume that all
vertices have self-loops. Moreover, we take V D P .K/ n ¹;º to be the collection
of all nonempty subsets of K , and, for S1; S2 2 V , set .S1; S2/ 2 E if and only if
S1 \ S2 ¤ ;. Consider vertex variables .zv/v2V and clique variables .�K/K2K . For
v 2 V , set also �v D

Q
KWv2K �K . The clique partition function is defined to be

„.v;�/D 1C
X
n�1

1

nŠ

X
v1;:::;vn

indep. inG

zv1 � � �zvn�v1 � � ��vn :

Evidently,„.v;�/ specializes to„.v/ at � D 1. Using this, we prove a clique version
of Shearer’s theorem.

THEOREM C.1 (Clique Shearer theorem)
Let events ¹Av W v 2 V º in probability space X have dependency graph G D .V;E/
covered by cliques K as above. For S �K , define event BS D

S
vWp.v/�S Av . Sub-

ject to the condition

8S �K; „
�
�P.Av/; 1S

�
> 0;

we have for all ; � S � T �K ,

P.BT jBS /�
„.�P.Av/; 1T /
„.�P.Av/; 1S /

:

Remark
As compared to Shearer’s theorem, the clique Shearer theorem has the advantage that
the number of conditions which must be checked is exponential in the number of
cliques, rather than in the number of vertices.

Proof
The proof is by induction. Let S �K , and suppose that the conclusion holds for
subsets T � S . Let K 2K n S . Then

P.BS[¹Kº/

P.BS /
� 1�

X
wWK2p.w/
p.w/�S[¹Kº

P.Aw \BS /

P.BS /

� 1�
X

wWK2p.w/
p.w/�S[¹Kº

P.Aw/P.BSnp.w//

P.BS /
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� 1�
X

wWK2p.w/
p.w/�S[¹Kº

P.Aw/
„.�P.Av/; 1Snp.w//
„.�P.Av/; 1S /

D
„.�P.Av/; 1S[¹Kº/
„.�P.Av/; 1S /

:

As a consequence, we obtain a proof of a generalization of Theorem 3.

THEOREM (Shearer-type theorem)
Suppose that we have a probability space and a parameter � � 1. Let Œn� D
¹1; 2; : : : ; nº, and assume that for each 1 � i � n there is a weight �i assigned,
satisfying 1

�
� �1 � �2 � � � � � �n � 0. Let the sets ; ¤ T � Œn� index events AT

each having probability

0� P.AT /� �
Y
t2T

�t WD �T :

Assume that AT is independent of �.¹AS W S � Œn�; S \ T D ;º/, so that a valid
dependency graph for the events ¹AT W ; ¤ T � Œn�º has an edge between S ¤ T
whenever S \ T ¤;.

Define �� .;/D 1, and given ;¤ T � Œn�, set

�� .T /D 1�
X

;¤S1�T

�S1 C
X

;¤S1;S2�T
S1<S2 disjoint

�S1�S2

�
X

;¤S1;S2;S3�T
S1<S2<S3 disjoint

�S1�S2�S3 C � � � :

Suppose that �� .Œ1�/� �� .Œ2�/� � � � � �� .Œn�/ > 0. Then for any ;¤ T � Œn�,

P
� \
;¤S�T

AcS

�
� �� .T / > 0

and, for any T1 � T2 � Œn�,

P.
T
;¤S�T2

AcS /

P.
T
;¤S�T1

AcS /
�
�� .T2/

�� .T1/
:

Proof
It is observed in [16] that �� .T / may be expressed as a linear combination of elemen-
tary symmetric functions in ¹�t W t 2 T º. Indeed, if B.m;j / denotes the generalized
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Bell number, that is, the number of ways of partitioning a set of size m into j parts,
then setting jT j DM and making the convention e0.�/D 1,

�� .T /D 1C

MX
mD1

� mX
jD1

.��/jB.m;j /
�
em.�/ WD

MX
iD0

X� .i/ei .�/;

where X� satisfies the recurrence

X� .0/D 1; 8i � 1; X� .i/D��

i�1X
jD0

 
i � 1

j

!
X� .j /:

In particular, as exploited in [13], �.T / is affine linear in each variable �t . We
check that under the given conditions, �� .T / > 0 for any T � Œn�, which reduces this
theorem to the clique Shearer theorem.

Given vectors x;y 2 Rm, say that x � y if xi � yi for each i . By induction, we
show that for any 1�m� n and for 0� x � � , �� . x /� �� .�/ > 0, from which the
case for T follows since the �i ’s are decreasing.

When m D 1, �� .�1/ D 1 � ��1 � 1 � �x1 D �� .x1/. Given m > 1, assume
inductively the statement for all m0 <m.

Note that, by hypothesis, we have �� .�1; : : : ; �m�1/ � �� .�1; : : : ; �m/ > 0. We
show by an inner induction that for 1� j �m,

�� .x1; : : : ; xj ; �jC1; : : : ; �m/� �� .�1; : : : ; �m/:

When j D 1 this holds, since .�2; : : : ; �m/� .�1; : : : ; �m�1/ so that, by the inductive
assumption

�� .�2; : : : ; �m/� �� .�1; : : : ; �m�1/� �� .�1; : : : ; �m/;

from which

�� .x1; �2; : : : ; �m/� �� .�1; : : : ; �m/

follows by affine linearity.
Having shown

�� .x1; : : : ; xj�1; �j ; : : : ; �m/� �� .�1; : : : ; �m/;

the case

�� .x1; : : : ; xj ; �jC1; : : : ; �m/� �� .�1; : : : ; �m/



34 HOUGH and NIELSEN

again follows by affine linearity from

�� .x1; : : : ; xj�1; 0;�jC1; : : : ; �m/� �� .�1; : : : ; �j�1; 0;�jC1; : : : ; �m/

� �� .�1; : : : ; �m�1; 0/

� �� .�1; : : : ; �m/:

Acknowledgments. We thank the anonymous referees for comments which improved
the paper.

The authors were partially sponsored by National Security Agency grant
H98230-16-1-0048 and by National Science Foundation grants DMS-1712682 and
DMS-1802336.

References

[1] R. BISSACOT, R. FERNÁNDEZ, A. PROCACCI, and B. SCOPPOLA, An improvement of the
Lovász local lemma via cluster expansion, Combin. Probab. Comput. 20 (2011),
no. 5, 709–719. MR 2825585. DOI 10.1017/S0963548311000253. (5, 9, 10)

[2] P. DUSART, Explicit estimates of some functions over primes, Ramanujan J. 45 (2018),
no. 1, 227–251. MR 3745073. DOI 10.1007/s11139-016-9839-4. (28, 29)
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