
Journal of Number Theory 167 (2016) 353–393
Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

The angle of large values of L-functions ✩,✩✩

Bob Hough 1

Department of Mathematics, Stanford University, 450 Serra Mall, Building 380, 
Stanford, CA, 94305, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 October 2015
Received in revised form 26 March 
2016
Accepted 29 March 2016
Available online 6 May 2016
Communicated by David Goss

MSC:
primary 11M06
secondary 11N60, 11K06, 11H06

Keywords:
Riemann zeta function
Dirichlet L-functions
Quantitative equidistribution

We prove three results on the argument of large central 
values of L-functions. The first establishes that there exists 
a sequence of quadratic Dirichlet characters χd and Dirichlet 
polynomials T (χd) truncating L( 1

2 , χd) at a length a power 
of d, such that the truncated sum is large and negative. On the 
generalized Riemann Hypothesis this distinguishes the central 
point 1

2 from fixed σ > 1
2 . A result of Kalpokas, Korolev 

and Steuding establishes large values of the Riemann zeta 
function among {ζ( 1

2 + it) : t ∈ [T, 2T ]} with prescribed 
argument modulo π, with a weaker result modulo 2π. Our 
second result removes the condition modulo π. Our third 
result proves an analogue in the family of central values of 
Dirichlet L-functions to fixed prime conductor.

Published by Elsevier Inc.

✩ Research supported by ERC Grant 279438: Approximate algebraic structure and applications.
✩✩ This material is based upon work supported by the National Science Foundation under agreement 
No. DMS-1128155. Any opinions, findings and conclusions or recommendations expressed in this material 
are those of the author and do not necessarily reflect the views of the National Science Foundation.

E-mail address: hough@math.ias.edu.
1 Current address: Institute of Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, United States.
http://dx.doi.org/10.1016/j.jnt.2016.03.008
0022-314X/Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.jnt.2016.03.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:hough@math.ias.edu
http://dx.doi.org/10.1016/j.jnt.2016.03.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2016.03.008&domain=pdf


354 B. Hough / Journal of Number Theory 167 (2016) 353–393
1. Introduction

The best known method for establishing extreme values of zeta, L-functions and sums 
of other arithmetic harmonics is the resonance method due to Soundararajan [10]. The 
resonance method is a first moment method which uses an auxiliary Dirichlet polynomial 
as an indicator for the large values of the sum of interest. For instance, [10] gives the 
omega result2

sup
t∈[T,2T ]

log
∣∣∣∣ζ (1

2 + it

)∣∣∣∣ �
√

log T
log log T , T → ∞ (1)

by optimizing

2T∫
T

ζ

(
1
2 + it

) ∣∣∣∣R(1
2 + it

)∣∣∣∣2 dt/
2T∫
T

∣∣∣∣R(1
2 + it

)∣∣∣∣2 dt (2)

over Dirichlet polynomials

R(s) =
∑

n≤T 1−ε

r(n)
ns

. (3)

We further develop the resonance method in three families of L-functions by using it to 
prove omega results of the type (1) with the condition that the angle of the object is 
constrained. Since the completion of this work, the result (1) has been improved in [2], 
with the same method, but taking a longer resonating Dirichlet polynomial. We are 
presenting our results in any case, as we expect that they may still be of interest.

Let d ≥ 0 be the fundamental discriminant associated to real quadratic field Q(
√
d), 

with associated real Dirichlet character χd. Initially defined for �(s) > 1, the Dirichlet 
L-function

L(s, χd) =
∑
n≥1

χd(n)
ns

(4)

extends holomorphically to C and satisfies the functional equation(
d

π

) s
2

Γ
(s

2

)
L(s, χd) = Λ(s, χd) = Λ(1 − s, χd). (5)

Within the critical strip 0 ≤ �(s) ≤ 1 the approximate functional equation of analytic 
number theory then permits the representation of L(s, χd) as the sum of two Dirichlet 
polynomials, the product of whose length is roughly d. As a special case

2 A � B means lim inf A
B ≥ 1.
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L

(
1
2 , χd

)
= 2

∑
n≥1

χd(n)
n

1
2

V

(√
π

d
n

)
(6)

where V (x) is an appropriate smooth function on R≥0 satisfying V (0) = 1, e.g.

V (x) = 1
2πi

∫
�s=1

x−sΓ
(s

2

) ds

s− 1
2
. (7)

The Generalized Riemann Hypothesis implies that L(σ, χd) ≥ 0 for σ ≥ 1
2 , so that 

on GRH (6) is non-negative. Were we to replace the ratio χd(n)√
n

with χd(n)
nσ for any fixed 

σ > 1
2 then again the GRH implies asymptotic positivity of shorter smoothed Dirichlet 

polynomials of length any power of d. Thus we expect a mild bias towards χd(n) = 1. 
Our first result proves a limitation to this effect.

Theorem 1. Fix φ : R+ → [0, 1] a smooth function satisfying φ ≡ 1 in a neighborhood of 
0 and φ is supported in [0, 1]. Let 0 < δ < 2

9 . Set

η = 0.36845 min
(
δ

2 ,
1
18 − δ

4

)
. (8)

For large D there exists fundamental discriminant d 	 D such that

∑
n

χd(n)√
n

φ
( n

Dδ

)
< − exp

(√
η logD

log logD

)
. (9)

Remark 1. Naively one might expect a result of this nature to hold for any fixed δ < 1
2 . 

Deciding the behavior for δ = 1
2 + o(1) is an interesting question even experimentally.

On GRH, Theorem 1 thus distinguishes between Dirichlet polynomial truncations to 
L(1

2 , χd) of length d
1
2 and of a smaller power of d, and again distinguishes the shorter 

Dirichlet polynomial truncations with those of the same length at points to the right 
of 1

2 .
Our proof uses a decomposition of the resonating Dirichlet polynomial as a convolution 

of multiplicative functions supported at small and large primes. See [5] for somewhat 
related argument which produces negative truncations to the Dirichlet series for L(1, χd)
of length on the scale of log d.

Our second result concerns the argument of large values of ζ(1
2 + it). Combining the 

resonance method with a contour method of averaging ζ(1
2 + it) over generalized Gram 

points where it has prescribed argument modulo π, Kalpokas, Korolev and Steuding [7]
show that for any θ ∈ R/Z, for large T there exists t 	 T with

1
π

arg
(
ζ

(
1
2 + it

))
≡ θ mod Z, � log ζ

(
1
2 + it

)
�
√

log T
log log T . (10)
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This method gives large values of ζ but with angle prescribed only modulo π. By a 
somewhat different argument they remove this defect, but obtain only values of size 
|ζ(1

2 + it)| � (log T ) 9
4 . Modifying their two methods we prove the following result.

Theorem 2. For all θ ∈ R/Z, for T sufficiently large there is t 	 T satisfying

1
2π arg

(
ζ

(
1
2 + it

))
≡ θ mod Z, � log ζ

(
1
2 + it

)
�
√

log T
log log T . (11)

In this case, the proof goes by comparing the signed and unsigned first moments of ζ
amplified by the resonator, averaged over generalized Gram points.

As in the case of ζ, twice the argument of a primitive Dirichlet L-function at the 
central point is well understood. Let q ≥ 3 be a prime and let χ mod q be a non-principal 
character, with associated L-function

L(s, χ) =
∑
n

χ(n)
ns

, �(s) > 1. (12)

The Gauss sum associated to χ is

τ(χ) =
∑

a mod q

χ(a)e
(
a

q

)
, (13)

and the root number of the L-function is

εχ = τ(χ)
ia
√
q
, a = 1 − χ(−1)

2 , (14)

which is a complex number of modulus 1. The completed L-function is

Λ(s, χ) =
( q
π

) s
2 Γ
(
s + a

2

)
L(s, χ), (15)

which satisfies the function equation

Λ(s, χ) = εχΛ(1 − s, χ). (16)

Define θχ ∈ R/Z by e(θχ)|L(1
2 , χ)| = L(1

2 , χ). Thus τ(χ)
ia

√
q = e(2θχ). Katz [8] proves 

that the angles { τ(χ)√
q }χ mod q are asymptotically equidistributed with respect to Haar 

measure on S1 = {z ∈ C : |z| = 1} in the limit as q → ∞. Our last theorem can be seen 
as an extension of Katz’ result.

Theorem 3. Let F (x) be a growth function, satisfying for all large x, F (x) = o 
(
(log x) 1

2

)
. 

For all primes q > q0(F ), for all θ ∈ R/Z, for all δ > 1 , there exists non-principal 
F (q)
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χ mod q such that,

∥∥∥∥ 1
2π

argL
(

1
2
, χ

)
− θ

∥∥∥∥
R/Z

≤ δ, � logL
(

1
2
, χ

)
�
√

log q
32 log log q

. (17)

In this case we use a one sided variant of Weyl’s criterion to prove the uniform distri-
bution.

Our proof of Theorem 3 uses an asymptotic for the twisted fourth moment of Dirichlet 
L-functions. This asymptotic, which extends the fourth moment with power saving error 
term given in [12], is a concurrent result of the author that will appear elsewhere.

Theorem 4 (Twisted fourth moment). Let 0 ≤ ϑ < 1
32 and let 1 ≤ 1, 2 ≤ qϑ be square-

free and satisfy (1, 2) = 1. Given α, β, γ, δ ∈ C, define for square-free  the generalized 
divisor function

τα,β,γ,δ() =
∏
p|	

(
1 + pγ−δζp(2 + α + β + γ + δ)

ζp(1 + α + γ)ζp(1 + β + γ)

)
(18)

where ζp(s) = (1 − p−s)−1. Denote

Xu =
( q
π

)−u Γ
( 1

2−u

2

)
Γ
( 1

2+u

2

) (19)

and, for S a set of parameters, XS =
∏

u∈S Xu. Write E+
χ mod q for expectation with 

respect to the even non-principal characters modulo q.
There exists η > 0 such that if α, β, γ, δ ∈

{
z ∈ C : |z| < η

log q

}
then, for any ε > 0,

M(α, β, γ, δ; 1, 2) := (20)

E+
χ mod q

[
χ(1)χ(2)L

(
1
2 + α, χ

)
L

(
1
2 + β, χ

)
L

(
1
2 + γ, χ

)
L

(
1
2 + δ, χ

)]
=

τα,β,γ,δ(1)τγ,δ,α,β(2)


1
2+γ
1 

1
2+α
2

ζ(1 + α + γ)ζ(1 + α + δ)ζ(1 + β + γ)ζ(1 + β + δ)
ζ(2 + α + β + γ + δ)

+ Xα,γ
τ−γ,β,−α,δ(1)τ−α,δ,−γ,β(2)


1
2−α
1 

1
2−γ
2

ζ(1 − α− γ)ζ(1 − γ + δ)ζ(1 − α + β)ζ(1 + β + δ)
ζ(2 − α + β − γ + δ)

+ Xβ,γ
τα,−γ,−β,δ(1)τ−β,δ,α,−γ(2)


1
2−β
1 

1
2+α
2

ζ(1 + α− β)ζ(1 + α + δ)ζ(1 − β − γ)ζ(1 − γ + δ)
ζ(2 + α− β − γ + δ)

+ Xα,δ
τ−δ,β,γ,−α(1)τγ,−α,−δ,β(2)

1
2+γ 1

2−δ

ζ(1 + γ − δ)ζ(1 − α− δ)ζ(1 + β + γ)ζ(1 − α + β)
ζ(2 − α + β + γ − δ)
1 2
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+ Xβ,δ
τα,−δ,γ,−β(1)τγ,−β,α,−δ(2)


1
2+γ
1 

1
2+α
2

ζ(1 + α + γ)ζ(1 + α− β)ζ(1 + γ − δ)ζ(1 − β − δ)
ζ(2 + α− β + γ − δ)

+ Xα,β,γ,δ

× τ−γ,−δ,−α,−β(1)τ−α,−β,−γ,−δ(2)


1
2−α
1 

1
2−γ
2

ζ(1 − α− γ)ζ(1 − β − γ)ζ(1 − α− δ)ζ(1 − β − δ)
ζ(2 − α− β − γ − δ)

+ Oε

(
max(1, 2)

1
2

q
1
32−ε min(1, 2)

1
2

)
.

2. Notation and conventions

The analytic conductor of a family of L-functions refers to the quantity D for funda-
mental discriminants, T for ζ or q for Dirichlet L-functions, determining the family of 
harmonics. We consider parameters taken in the limit of growing conductor. Given two 
such positive parameters, A ∼ B means lim A

B = 1, while A � B (resp. A � B) means 
lim sup A

B ≤ 1 (resp. lim inf A
B ≥ 1). The Vinogradov notation A  B means A = O(B)

and A 	 B means A  B and B  A.
d(n) denotes the number of divisors of positive integer n. For z ∈ C, dz(n) is the 

generalized divisor function, defined as the coefficients in the Dirichlet series

∑
n

dz(n)
ns

= ζ(s)z, �(s) > 1. (21)

Thus d(n) = d2(n). μ = d−1 is the Möbius function, supported on square-free numbers 
and given for distinct primes p1, ..., pk by μ(p1...pk) = (−1)k. ω(n) denotes the number 
of distinct prime divisors of positive integer n.

We write S1 = {z ∈ C : |z| = 1} and T = R/Z. The distance ‖ · ‖R/Z on T is inherited 
from R. We write the usual character e : T → S1, e(θ) = e2πiθ. Also, c(θ) = cos(2πθ).

Contour integrals are abbreviated 
∮
Γ ·dz = 1

2πi
∫
Γ ·dz.

3. The resonance method

Consider a family of harmonics F with conductor C . Thus F = {n �→ χd(n) : d 	 D}
with conductor D in the case of real characters, F = {n �→ nit : t 	 T} with conductor 
T in the case of ζ, or F = {n �→ χ(n) : χ mod q non-principal} with conductor q
in the case of Dirichlet characters modulo q. The resonance method uses an auxiliary 
Dirichlet polynomial to isolate large values in the sum of the harmonic. Given X ∈ F , 
the resonator takes shape R(X ) =

∑
n≤N r(n)X (n) for some arithmetic function r. 

The resonance method is based upon the inequalities

min
X ∈F

f(X ) ≤ ER[f ] =
∫

f(X )|R(X )|2
/ ∫

|R(X )|2 ≤ max
X ∈F

f(X ). (22)

X ∈F X ∈F
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The denominator in the formula for the expectation is referred to as the normalizing 
weight.

Let N , a power of C , be a parameter and set L =
√

logN log logN . We take as a 
starting point the multiplicative function r(n) of [10], which is supported on square-free 
numbers and defined at primes by

r(p) =
{

L√
p log p L2 ≤ p ≤ exp((logL)2)

0 otherwise
. (23)

We also set r′(p) = r(p)
1+r(p)2 and extend r′ to N multiplicatively, with support on square-

free numbers. Note that given N is a fixed power of C , this function is essentially optimal 
for maximizing (22) in the case that f(X ) is a function of type f(X ) =

∑
n<C

X (n)√
n

[10]. 
We record several of the further properties of r.

Lemma 5. The function r(n) satisfies the following properties.

i. Concentration. Let Y < exp
(

L
(log L)5

)
and Z > exp

(
L(logL)5

)
. We have, for each 

fixed integer m > 0,

∑
Y≤n<Z

r′(n)dm(n)√
n

=
(

1 + Om

(
exp
(
− L

(logL)3

)))∏
p

(
1 + mr′(p)

√
p

)
(24)

= exp
(

(m + om(1)) L

2 logL

)
.

ii. Small tails. With Z as above, for any multiplicative f satisfying |f(p)| ≤ m, one has∣∣∣∣∣∣
∑
n≥Z

r(n)f(n)√
n

∣∣∣∣∣∣ ≤ exp
(
−(1 + om(1)) logZ

(logL)3

)
. (25)

Also, there is c > 0 such that, for multiplicative function g satisfying 0 ≤ g(p) ≤ 1
and for any integer  ≥ 1, and for any Z > N exp

(
− log N

(log log N)2

)
∑
n<Z

(n,	)=1

r(n)2g(n) =
(

1 + O

(
exp
(
− cL2

(logL)4

)))∏
p�	

(
1 + r(p)2g(p)

)
. (26)

iii. Mild roughness of support. If 1 <  < N satisfies r() > 0 then

∑
p|	

1
p

= O

(
1

(logL)2

)
. (27)
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Remark 2. A number is called ‘smooth’ if it is composed of many small prime factors, 
and ‘rough’ if it is composed of only larger primes. The fact that the resonating function 
r(n) is concentrated on primes somewhat larger than log C is a novel feature of the 
resonance method and it plays an important role especially in the proofs of Theorems 2
and 3.

Proof of Lemma 5. Recall our convention that limiting statements are taken with respect 
to growing conductor. Let F (s) =

∑
n

bn
ns be a Dirichlet series with positive coefficients. 

‘Rankin’s trick’ refers to the bounds,

∀ α > 0, Y, Z ≥ 1,
∑
n≤Y

bn ≤ Y αF (α),
∑
n≥Z

bn ≤ Z−αF (−α). (28)

For |α| ≤ 1
(log L)3 , say, we have, by partial summation against the prime number theorem,

log
∑
n

r′(n)dm(n)
n

1
2+α

− log
∑
n

r′(n)dm(n)
n

1
2

= log
∏
p

(
1 + mr′(p)

p
1
2+α

)
− log

∏
p

(
1 + mr′(p)

√
p

)
∼ −mαL log logL. (29)

log
∏
p

(
1 + mr′(p)

√
p

)
∼ m

L

2 logL.

(24) and (25) follow by choosing α = ± 1
(log L)3 and applying Rankin’s trick.

(26) follows by choosing α = 1
(log L)3 in the estimate

log
∏
p

(
1 + r(p)2g(p)pα

)
− log

∏
p

(
1 + r(p)2g(p)

)
(30)

≤ α

(
logN − (1 + o(1)) logN log log logN

log logN

)
,

which again is valid for |α| ≤ 1
(log L)3 .

To prove (27), note that n < N in the support of r has at most log N
2 log L � L2

4(log L)2
prime factors. Since each has size at least L2, the result follows. �
3.1. The fractional divisor function

Our proofs of Theorems 2 and 3 use a short Dirichlet polynomial formed from the 
fractional divisor function. This is defined as the coefficients in the Dirichlet series∑

n

dz(n)
ns

= ζ(s)z, z ∈ C, �(s) > 1. (31)

We use the case d 1 (n). This is a multiplicative function given at prime powers by

2
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d 1
2
(pk) = (−1)k

(
−1

2
k

)
= 1

2kk!

k∏
i=1

(2i− 1). (32)

In particular,

∀ k ≥ 1, 1
2d

1
2
(pk−1) ≤ d 1

2
(pk) ≤ d 1

2
(pk−1). (33)

For k, n ∈ Z≥1 and x ∈ R>1 we define the restricted divisor function

d 1
2 ,2k,x(n) =

∑
n1,...,n2k≤x
n1···n2k=n

d 1
2
(n1) · · · d 1

2
(n2k). (34)

We have d 1
2 ,2k,x(n) ≤ dk(n), with equality if n ≤ x. This follows from the Euler product 

definition of dz(n) and from positivity of d 1
2
.

We refer to ([11], p. 184) for asymptotics in sums of products of divisor functions, 
which are evaluated with use of the Hankel contour. Note that the shape of the asymp-
totic is determined by the behavior of the relevant Dirichlet series at prime values, with 
the larger prime powers contributing only to the leading constant.

The following lemma makes use of the roughness of support of the resonance function 
(see iii of Lemma 5).

Lemma 6. Let r be the multiplicative function described above, associated to parameter N , 
and let X < N . Let 1, 2 < X

1
2 , (1, 2) = 1, with r(1), r(2) > 0. We have the 

asymptotic evaluations

∑
n< X

�1

d 1
2
(1n)
n

	 d 1
2
(1)(logX) 1

2 (35)

and

∑
n< X

max(�1,�2)

d 1
2
(1n)d 1

2
(2n)

n
	 d 1

2
(1)d 1

2
(2)(logX) 1

4 , (36)

the lower bound ∑
n<X

d(1n)d(2n)
n

� d(1)d(2)(logX)4 (37)

and the upper bound

∑
n,m1

	2m1,	1m1n<X

d 1
2
(2m1)d 1

2
(1m1n)

m1n
 d 1

2
(1)d 1

2
(2)(logX) 3

4 . (38)



362 B. Hough / Journal of Number Theory 167 (2016) 353–393
Proof. All of the upper bounds proceed in the same manner, so we just describe the first 
one. Due to the support of r, 1 is square-free, and so, applying both inequalities in (33)
in turn,

∑
n< X

�1

d 1
2
(1n)
n

≤ d 1
2
(1)

∑
d|	1

2ω(d)
∑
n< X

�1
d|n

d 1
2
(n)
n

(39)

≤ d 1
2
(1)

∏
p|	1

(
1 + 2

p

) ∑
n< X

�1

d 1
2
(n)
n

 d 1
2
(1)(logX) 1

2
∏
p|	1

(
1 + 2

p

)
.

For the first line, write d = (, n) and  = ′d, and use the multiplicativity of d 1
2

together 
with (33). The product is 1 + o(1) by the roughness of the support of r.

For the lower bound in (35), restrict to (n, 1) = 1 to obtain the bound

(35) ≥ d 1
2
(1)

∑
n≤ X

�1
(n,	1)=1

d 1
2
(n)
n

(40)

≥ d 1
2
(1)

⎛⎜⎝∑
n≤ X

�1

d 1
2
(n)
n

−
∑
p|	1

∑
n≤ X

p�1

d 1
2
(pn)
pn

⎞⎟⎠

≥ d 1
2
(1)

⎛⎜⎝∑
n≤ X

�1

d 1
2
(n)
n

⎞⎟⎠
⎛⎝1 −

∑
p|	1

1
p

⎞⎠ .

This suffices, since the sum over n is � (logX) 1
2 , while the sum over p is o(1) by the 

roughness of support of r. The proof of the lower bound in (36) is similar. �
Combining the results of this section, we prove an estimate which will be of later use. 

Let δ > 0 be a small constant, and form the convolution

∀ n ≤ N1+δ, an =
∑

n1n2=n
n1≤N, n2≤Nδ

r(n1)
d 1

2
(n2)

√
n2

. (41)

Lemma 7. Recall that we define r′(p) = r(p)
1+r(p)2 . It holds

∑
n≤N1+δ

a2
n 	δ (logN) 1

4
∏
p

(
1 + r(p)2

)∏
p

(
1 + r′(p)

√
p

)
. (42)



B. Hough / Journal of Number Theory 167 (2016) 353–393 363
Proof. Expand 
∑

n≤N1+δ a2
n, writing g = GCD(1, 2) and replacing 1 := 	1

g and 2 :=
	2
g , to obtain

∑
g

r(g)2
∑

	1,	2≤N
g

(	1,	2)=(	1	2,g)=1

r(1)r(2)
∑

n1,n2≤Nδ

	1n1=	2n2

d 1
2
(n1)d 1

2
(n2)

√
n1n2

(43)

=
∑
g

r(g)2
∑

	1,	2≤N
g

(	1,	2)=(	1	2,g)=1

r(1)r(2)√
12

∑
n≤ Nδ

max(�1,�2)

d 1
2
(1n)d 1

2
(2n)

n
.

For max(1, 2) < Z := exp
(
(logN) 2

3

)
, (36) of Lemma 6 gives that the inner summation 

is 	δ d 1
2
(1)d 1

2
(2)(logN) 1

4 . The concentration properties of the resonator function given 
in Lemma 5 then give

(logN) 1
4
∑

	1,	2<Z
(	1,	2)=1

r(1)r(2)d 1
2
(1)d 1

2
(2)√

12

∑
g≤ N

max(�1,�2)
(g,	1	2)=1

r(g)2 (44)

∼ (logN) 1
4
∏
p

(
1 + r′(p)

√
p

)∏
p

(1 + r(p)2),

so that we obtain the main term. To verify this estimate, first replace the sum over g with 
an Euler product at primes co-prime to 12, bounding the error using (26) and (24). 
Replacing r with r′ accounts for the missing factors. Now extend the sum over 1, 2 by 
removing the condition on Z. In the tail where max(1, 2) > Z, bound the sum over n
trivially by  logN , and use the small tails property from Lemma 5 to show that this 
contribution is negligible. �
4. Negative truncation of L(1

2 , χd)

Our main result of this section, Theorem 1, shows that under GRH a fixed Dirichlet 
series thought of as a function of the character χd of length a small power of d is not 
sufficient to approximate L 

(1
2 , χd

)
pointwise. By way of comparison, assuming GRH we 

check that in the region 
(
σ − 1

2
)
log log d → ∞, a polynomial of length any power of d

suffices.

Proposition 8. Fix a smooth function φ : R+ → [0, 1] satisfying φ ≡ 1 in a neighborhood 
of 0 and φ is supported in [0, 1]. Let d > 0 be a large fundamental discriminant and 
assume the Riemann Hypothesis for L(s, χd). There are positive constants C1, C2 > 0, 
such that if (σ − 1

2 ) > C1
log log d and if x > exp

(
C2(log d)2−2σ + log log d

)
then

∑ χd(n)
nσ

φ
(n
x

)
∼ L(σ, χd) > 0. (45)
n
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Proof. Assuming the Riemann hypothesis, the bound, in σ > 1
2

|�(logL(σ + it, χd))| ≤ C
(log(d + |t|))2−2σ

log log(d + |t|) + log log(d + |t|) (46)

is classical. For the best known constants in this estimate for the case of the Riemann 
zeta function, see [3]. Write

φ̃(w) =
∞∫
0

φ(x)xw−1dx. (47)

This function has a simple pole at 0 of residue 1. Integrating by parts, it satisfies the 
estimate

∀|�(w)| ≤ 2, ∀A > 0, |φ̃(w)| A
1

|w|A . (48)

By Mellin inversion,

∑
n

χd(n)
nσ

φ
(n
x

)
=
∮

�w=1

xwL(σ + w,χd)φ̃(w)dw. (49)

Shift the contour to �(w) = − C′

log log D > 1
2 − σ, picking up a residue of L(σ, χd) from 

the pole at 0. For an appropriate combination of the C and C ′, the remaining integral 
is o(L(σ, χd)). �

We now prove Theorem 1.

4.1. The signed resonance function

Our resonating function in this section deviates slightly from those used in the latter 
two sections. Set x = D

2
9−δ, 0 < δ < 2

9 for the length of our truncated L-function,

T (χ8d) =
∑
n

χ8d(n)√
n

φ
(n
x

)
. (50)

Define resonance parameters N = min(D δ
2 , x

1
4 ) and L =

√
logN log logN . With Z =

xN2 introduce the resonating polynomial

R(χ8d) =
∑
n≤Z

r∗(n)χ8d(n). (51)
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We consider the probability measure on fundamental discriminants of form 8d, D2 ≤ d <
D given by

ER[f ] =
∑

D
2 ≤d<D

μ(2d)2f(χ8d)|R(χ8d)|2
/ ∑

D
2 ≤d<D

μ(2d)2|R(χ8d)|2. (52)

In order to achieve a negative expectation, choose a resonating multiplicative function 
r∗ which is the convolution r∗ = r− ∗ r+ of multiplicative functions supported on small 
and large primes. The idea is to choose r− so that its summatory function essentially 
vanishes, while convolution with r+ negatively correlates with a sequence of partial sums 
of r− which are oscillatory and large.

Let P be the set of primes and let the small primes be

P− = P ∩ [L2, exp((logL)2)]. (53)

The function r− is given by the multiplicative function r defined in Section 3 multiplied 
by a phase function. Write T = R/Z, c(θ) = cos(2πθ) and let χ : T → [−1, 1] be defined 
by

χ(θ) = sgn(c(θ))(2|c(θ)| − 1)1
{
|c(θ)| > 1

2

}
. (54)

We set

r−(p) =
{

r(p)χ
(

log p
4 log L

)
p ∈ P−

0 otherwise
. (55)

Note that r− is non-positive at the initial sequence of primes where it is non-zero. Since 
it is supported on small primes its summatory function at large argument behaves like 
an Euler product, which is small. The phase in log p is responsible for large partial sums 
at smaller argument, a feature which is detected via r+.

The definition of r+ is less explicit because it depends upon fluctuations in partial 
sums of the function r−(n). Let B, x1−ε < B < x be a parameter to be determined, let 
the large primes be P+ = P ∩ [B4 , B), and set

r+(p) =
{

εp√
p log x p ∈ P+

0 otherwise
, (56)

where for p ∈ P+, εp = ±1 is at our disposal. In particular, r∗ is given by

r∗(p) =

⎧⎪⎪⎨⎪⎪⎩
Lχ( log p

4 log L )
√
p log p p ∈ P−

εp√
p(log x) p ∈ P+

0 p /∈ P− ∪ P+

. (57)
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We note that ∑
p∈P+

r+(p)2 = o(1). (58)

This feature is used to guarantee that r+ does not contribute significantly to the mean 
square of R(χ8d) appearing in the denominator of (52). The proof of Theorem 1 demon-
strates this, and that expectation in the numerator is essentially linear and typically 
large as a function of the signs εp.

4.2. Determination of expectation

The characters χ8d satisfy the following orthogonality relation.

Lemma 9 (Orthogonality relation, [9] Lemma 3.1). Let n be square. We have for all 
ε > 0,

∑
D
2 <d≤D

μ2(2d)χ8d(n) = 3D
π2

∏
p|2n

(
p

p + 1

)
+ Oε

(
D

1
2+εnε

)
. (59)

If n is not square then

∑
d<D

μ2(2d)χ8d(n) = O
(
D

1
2n

1
4 log n

)
. (60)

Using this lemma we give the asymptotic evaluation of the normalizing weight and 
expectation of T (χ8d).

Lemma 10. We have the following asymptotic evaluation of the normalizing weight.

NW :=
∑

D
2 <d≤D

μ(2d)2|R(χ8d)|2 ∼ 2D
π2

∏
p∈P−

(
1 + p

p + 1r
−(p)2

)
. (61)

Proof. Expanding the square,

∑
D
2 <d≤D

μ(2d)2|R(χ8d)|2 =
∑

n1,n2≤Z

r∗(n1)r∗(n2)
∑

D
2 <d≤D

μ(2d)2χ8d(n1n2). (62)

Recall that r∗ is supported on odd square-free numbers. A diagonal term arises from 
n1 = n2, see (59). Define r̃(p) =

√
p

p+1r
∗(p) and extend r̃(n) multiplicatively, supported 

on odd square-free numbers. The diagonal term is
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2D
π2

∑
n≤Z

r̃(n)2 = 2D
π2

∑
n≤Z

(n,P+)=1

r̃(n)2 + O

⎛⎜⎝D
∑

p∈P+

r̃(p)2
∑
n≤Z

p

r̃(n)2

⎞⎟⎠ . (63)

The leading factor of 2 accommodates the prime 2. Note that Z ≤ x
3
2 so that for 

p ∈ P+, n ≤ Z
p is free of prime factors from P+. Thus, since 

∑
p∈P+ r̃(p)2 = o(1)

the error term is negligible compared to the main term. Since Z > N the main term is 
∼ 2

π2D
∏

p∈P−(1 + r̃(p)2) by (26) of Lemma 5.
The off-diagonal terms are bounded by

ε D
1
2+ε

∑
n1,n2<Z

|r∗(n1)r∗(n2)|(n1n2)
1
4 (64)

ε D
1
2+εZ

3
2
∑
n1,n2

|r∗(n1)||r∗(n2)|√
n1n2

.

Since Z ≤ xDδ and x = D
2
9−δ the off-diagonal is Oε

(
D

5
6+ε
)
, bounding the sum over 

n1, n2 using (24). �
Proposition 11. Define arithmetic function an by the Dirichlet series

F (s) =
∑
n

an
ns

(65)

=
∏

p∈P−

(
1 + 2r−(p)

p
1
2+s(p+1

p + r−(p)2)
p2s+1

p2s+1 − 1 + 1 + r−(p)2

(p2s+1 − 1)(p+1
p + r−(p)2)

)

× 1
22s+1 − 1

∏
p/∈P−, odd

(
1 + p

p + 1
1

p2s+1 − 1

)
.

The normalized expectation of T (χ8d) satisfies ER[T (χ8d)] ∼ Σ1 + O(Σ2) + o(1), where

Σ1 = 2
log x

∑
p∈P+

εp
p

∑
n

anφ
(np
x

)
, Σ2 =

∑
n

anφ
(n
x

)
. (66)

Proof. Expand the square in the numerator and pass the sum over d inside to obtain

NW · ER[T (χ8d)] =
∑

	1,	2≤Z

r∗(1)r∗(2)
∑
n

φ
(
n
x

)
√
n

∑
D
2 <d≤D

μ2(2d)χ8d(12n). (67)

Recall that r∗ is supported on square-frees. Pull out the GCD g = (1, 2), writing 
′1 = 	1

g , ′2 = 	2
g . We obtain a diagonal term coming from n of form ′1

′
2m

2, see (59). 
This term is
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2D
π2

∑
	=	1	2

(	1,	2)=1

r∗()√


∑
g≤ Z

max(�1,�2)
(g,	)=1

r∗(g)2
∑
m

φ
(

	m2

x

)
m

∏
p|	mg
odd

p

p + 1 . (68)

The off-diagonal terms are bounded by

D
1
2+ε

∑
	1,	2≤Z

∑
n≤x

|r∗(1)||r∗(2)|(12)
1
4

n
1
4

(69)

ε D
1
2+εx

3
4Z

3
2
∑
	1,	2

|r∗(1)r∗(2)|√
12

ε D
1
2+ 3δ

2 +εx
9
4 = Oε

(
D1− 3δ

4 +ε
)
.

Before proceeding further, we comment that the diagonal sum (68) is bounded abso-
lutely by (see Lemma 5, (24) for the second upper bound)

 D logD
∏

p∈P+∪P−

((
1 + 2|r∗(p)|

√
p

)(
1 + p

p + 1r
∗(p)2

))
(70)

≤ NW exp
(
O

(√
logD

log logD

))
,

so that, even though the sum contains terms of differing sign, we may make relative 
errors on the order of

1 + O
(
exp
(
−
√

logD
))

(71)

within individual terms without altering the final asymptotic.
Bearing this in mind, we split the diagonal term (68) into two sums Σ0

1 +Σ0
2 according 

as  does or does not have a factor p ∈ P+ (the support of φ guarantees that it has at 
most one). In the former case, we have

Σ0
1 = 2D

π2

∑
p∈P+

2r+(p)
√
p

∑
	< 2x

p

r−()√


∑
m

φ
(

	pm2

x

)
m

∑
	1	2=	

∑
g≤ Z

p�1
(g,	)=1

r∗(g)2
∏

p′|	mg
odd

p′

p′ + 1 (72)

Notice that g < Z
p	1

implies g ≤ x
1
2+ε so that g has no factors from P+. Also

Z

p1
≥ Z

2x = N2

2 , (73)

so that (26) of Lemma 5 implies that to within admissible relative error,
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∑
g≤ Z

p�1
(g,	)=1

⎛⎜⎜⎜⎝r−(g)2
∏
p′|g
p′�m

p′

p′ + 1

⎞⎟⎟⎟⎠ ∼
∏

p′∈P−

p′�	m

(
1 + p′

p′ + 1r
∗(p′)2

) ∏
p′∈P−

p′|m,p′�	

(1 + r∗(p′)2). (74)

Substituting this evaluation into Σ0
1 and dividing by NW we obtain

Σ0
1

NW + o(1) = 2
log x

∑
p∈P+

εp
p

∑
	

d()r−()
√

∏

p′|	

(
p′+1
p′ + r−(p′)2

)∑
m

b(,m)
m

φ

(
pm2

x

)
,

(75)

where

b(,m) =
∏

p′∈P−

p′|m,p′�	

(
1 + r−(p′)2

p′+1
p′ + r−(p′)2

) ∏
p′|m

p′ /∈P−, odd

(
p′

p′ + 1

)
. (76)

Comparing this with the Dirichlet series F (s), we see that we obtain Σ1 from the propo-
sition.

It remains to treat the sum Σ0
2, and this we do by splitting the sum further as Σ0

2 =
Σ1

2 + Σ2
2, depending on whether or not g has a factor from P+. We first handle the case 

that g does not contain such a factor, which we call Σ1
2. We have

Σ1
2 = 2D

π2

∑
	<2x

(	,P+)=1

r−()d()√


∑
(g,	)=1

(g,P+)=1

r−(g)2
∑
m

φ
(

	m2

x

)
m

∏
p|	mg
odd

p

p + 1 . (77)

Instead of the divisor function d() we should have included a sum over 12 = , with the 
restriction on g that g < Z

max(	1,	2) , but this may be removed, again by (26) of Lemma 5. 
Writing the sum over g as a product and dividing by NW we arrive at Σ2.

It remains to treat Σ2
2. Here we have

Σ2
2 = 2D

π2

∑
p∈P+

r+(p)2
∑

	1	2=	<2x
(	,P+)=1

r−()√


∑
m

φ
(

	m2

x

)
m

∑
g≤ Z

p max(�1,�2)
(g,	)=1

r−(g)2
∏

p′|	mg
odd

p′

p′ + 1 .

(78)

We wish to again replace the sum over g with a product, but this is only valid if the sum 
is sufficiently long. Since  restricts the length of g, we first bound in absolute value the 
contribution of all terms with

 > min
(
D

δ
4 , x

1
8

)
=

√
N. (79)
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This is negligible:

 D(logD)−2
∏
p′

(1 + r∗(p′)2)
∑

	>
√
N

(	,P+)=1

|r−()|d()√


(80)

 NW exp
(
−c

logD
(log logD)3

)
(81)

by applying (25) of Lemma 5.
Restrict to terms with  <

√
N . The condition g ≤ Z

p max(	1,	2) implies g ≤ x
1
2+ε, so g

is free of prime factors from P+. Also,

Z

pmax(1, 2)
≥ Z

p
√
N

> N
3
2 , (82)

so that we may now replace the sum over g with a product by again applying (26) of 
Lemma 5.

Having done this, we may now reinsert those terms 
√
N <  < 2x that are composed 

solely of prime factors from P−, again with negligible error. With these adjustments, 
we now find that

Σ2
2/NW = Σ2 ×

∑
p∈P+

r+(p)2, (83)

and since 
∑

p∈P+ r+(p)2 = o(1), the proof is complete. �
Before proceeding further, we prove the following properties of the Dirichlet se-

ries F (s), whose definition we recall for convenience.

F (s) =
∏

p∈P−

(
1 + 2r−(p)

p
1
2+s(p+1

p + r−(p)2)
p2s+1

p2s+1 − 1 + 1 + r−(p)2

(p2s+1 − 1)(p+1
p + r−(p)2)

)
(84)

× 1
22s+1 − 1

∏
p/∈P−, odd

(
1 + p

p + 1
1

p2s+1 − 1

)
.

Lemma 12. The Dirichlet series F (s) factors as ζ(2s + 1)G(s)H(s) with

H(s) =
∏

p∈P−

⎛⎝1 + 2r−(p)
p

1
2+s
(

p+1
p + r−(p)2

)
⎞⎠ . (85)
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These functions satisfy the following properties.

i. G(s) is approximately constant. Define logG(s) by continuous variation from +∞. 
For �(s) ≥ σ0 > −1

2 , | logG(s)| is bounded by an absolute constant depending only 
upon σ0.

ii. H(s) approximately vanishes at 0. There is constant c1 > 0 such that, for |s| ≤
1

(log L)1+ε ,

� logH(s) ≤ −c1
L

logL. (86)

iii. H(s) is not too large. There is a constant c2 > 0 such that for �(s) ≥ −1
(log L)1+ε

� logH(s) ≤ c2
L

logL. (87)

iv. Approximate saddle point. There is c3 > 0.36845 such that for σ = 1
(log x)2 and all t

such that 
∣∣∣t− π

2 log L

∣∣∣ ≤ 1
(log L)1+ε ,

log |F (σ + it)|2∏
p∈P−

(
1 + 2|r−(p)|√

p

) ≥ (c3 + o(1)) L

2 logL. (88)

v. L1 control. For y ≥ 1 we have

∑
n≤y

|an|  log(1 + y) exp
(

L

2 logL

)
. (89)

Proof. i. Let the term at p ∈ P− of H(s) be Hp(s). We have

G(s) =
∏

p∈P−

(
1 − 1

p2s+2
1

p+1
p + r−(p)2

1
Hp(s)

) ∏
p/∈P−, odd

(
1 − 1

(p + 1)p2s+1

)
. (90)

For �(s) ≥ σ0 > −1
2 , Hp(s) = 1 + o(1). In particular, the product defining G(s) is 

absolutely convergent, and its logarithm is bounded by an absolute constant.
ii. When |s| < 1

(log L)1+ε , partial summation against the prime number theorem gives

logH(s) = L

exp((log L)2)∫
L2

χ
(

log x
4 log L

)
x(log x)2 dx + o

(
L

logL

)
. (91)

= L

2 logL

∞∫
1

χ
(
u
2
)
du

u2 + o

(
L

logL

)
.
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Recall that χ is given by

χ(θ) = sgn(c(θ))(2|c(θ)| − 1)1
{
|c(θ)| > 1

2

}
. (92)

In each interval [2n − 1, 2n + 1], n ≥ 1 the integral against u is negative, as follows by 
convexity.

iii. This follows as in ii. by partial integration against the prime number theorem.
iv. We have logF (s) = O(log log x) + logH(s). By the same partial summation argu-

ment as above,

2� logH(s) − log
∏

p∈P−

(
1 + 2|r−(p)|

√
p

)
(93)

= L

2 logL

∞∫
1

2c
(
u
2
)
χ
(
u
2
)
−
∣∣χ (u2 )∣∣

u2 du + o

(
L

logL

)

= L

2 logL

∞∫
1

(2
∣∣c (u2 )∣∣− 1)21{‖u‖R/Z ≤ 1

3}
u2 du + o

(
L

logL

)
.

The numerical value of the integral is greater than 0.36845.
v. Write H(s) =

∑
n

bn
ns and ζ(2s + 1)G(s) =

∑
n

cn
ns . Then

∑
n≤y

|an| ≤
∑
n

|bn|
∑
n≤y

|cn|  exp
(

L

2 logL

)∑
n≤y

|cn|. (94)

The last sum is  1 + log y, as can be checked by Perron summation. �
4.3. Negative values from the convolution

The remainder of the proof of Theorem 1 is concerned with the smooth sums

S(y) :=
∑
n

anφ

(
n

y

)
. (95)

Note that the two quantities from Proposition 11 are expressed as

Σ1 = 2
log x

∑
p∈P+

εp
p
S

(
x

p

)
, Σ2(x) = S(x). (96)

We also write S∗(y) =
∑

n≤y |an| for the sharp truncation.
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Proposition 13. Uniformly in y ≥ 2 there exist C1, C2 > 0 such that

S(y)  log y exp
(
−C1

√
logD

log logD

)
+ exp

(
− log y

(log logD)2 + C2

√
logD

log logD

)
. (97)

In particular, Σ2 = o(1). Furthermore, uniformly in y ≥ 0 there is C > 0 such that

∣∣∣∣y ∂

∂y
S(y)

∣∣∣∣φ S∗(y), S∗(y) ≤ log(1 + y) exp
(
C

√
logD

log logD

)
. (98)

Proof. The bound for the derivative of S(y) follows on differentiating under the summa-
tion and considering the support of φ. The bound for S∗(y) is given in Lemma 12.

We now estimate S(y). The conditions on φ guarantee that its Mellin transform φ̃
has a single simple pole at 0 with residue 1, and that for s such that |�(s)| ≤ 1 and 
|�(s)| ≥ 1 it satisfies the decay property

∀A > 0,
∣∣φ̃(s)

∣∣A |s|−A. (99)

Therefore, by Mellin inversion,

S(y) =
∮

�(s)= 1
log x

ysφ̃(s)F (s)ds. (100)

Shift the contour to the line �(s) = −1
(log log D)2 , writing

S(y) =
∮

|s|= 1
log max(x,y)

ζ(2s + 1)G(s)H(s)ysφ̃(s)ds (101)

+
∮

�(s)= −1
(log log D)2

ζ(2s + 1)G(s)H(s)ysφ̃(s)ds

where the first term captures the residue at 0. Recall that | logG(s)| is uniformly bounded 
in �(s) > −1

4 . Using the rapid decay of φ̃ to bound the vertical contour and estimating ∣∣φ̃(s)
∣∣ , |ζ(1 + 2s)|  1

|s| on the circular contour, we find that

|S(y)|  (log max(x, y)) sup
|s|= 1

log max(x,y)

|H(s)| (102)

+ (log logD)2

exp
(

log y
(log log D)2

) sup
�(s)= −1

(log log D)2

|H(s)|.

By the estimates proven in Lemma 12 there are constants c1, c2 > 0 such that
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sup
|s|= 1

log max(x,y)

|H(s)| < exp
(
−c1

√
logD

log logD

)
, (103)

sup
�(s)= −1

(log log D)2

|H(s)| < exp
(
c2

√
logD

log logD

)
,

completing the estimate. �
For p ∈ P+ we choose εp = −sgn(S(xp )), so that

Σ1 = − 2
log x

∑
B
4 ≤p<B

1
p

∣∣∣∣S (x

p

)∣∣∣∣ (104)

By partial summation against the prime number theorem, we obtain

Σ1 = − 2
log x

B∫
B
4

∣∣∣S (x
t

)∣∣∣ dt

t log t + o(1). (105)

We make one further reduction. For technical reasons it is convenient to replace φ
with a function of compact support on R+, so set ψ(x) = φ(x) − φ 

(
x
2
)
, and define 

S̃(y) =
∑

n anψ
(

n
y

)
. Noting 

∣∣S̃(y)
∣∣ ≤ |S(y)| + |S (2y)| gives

Σ1 ≤ − 1
log x

B∫
B
2

∣∣∣S̃ (x
t

)∣∣∣ dt

t log t + o(1). (106)

Replacing xt =: y we complete the proof of Theorem 1 by choosing B = A in the following 
proposition.

Proposition 14. Let η = c3 min
(
δ
2 ,

1
18 − δ

4
)

where c3 > 0.36845 in the constant of 
Lemma 12. There exists 2 ≤ A ≤ U := exp(

√
log x(log log x)2), such that

A∫
A
2

∣∣S̃(y)
∣∣ dy
y

≥ exp
(√

η logD
log logD

)
(107)

For the proof, we appeal to the following modified version of Gallagher’s large sieve 
(see e.g. [1], p. 29).

Lemma 15. Let ψ(x) = φ(x) − φ(x2 ) as above. Define also ψσ(x) = xσψ(x). Let P (t) =∑
n ann

−it be a Dirichlet series for which 
∑

|an| < ∞. There exists a constant α =
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α(ψ) > 0 such that, uniformly in |σ| < 1
2 ,

α∫
−α

|P (t)|2dt ψ

∞∫
1
2

∣∣∣∣∣∑
n

anψσ

(
n

y

)∣∣∣∣∣
2
dy

y
. (108)

Proof. Note that ψ has compact support in R+ since φ has compact support on R and 
φ ≡ 1 on a neighborhood of zero.

The right hand side is equal to

∑
n1,n2

an1an2

∞∫
0

ψσ

(
n1

y

)
ψσ

(
n2

y

)
dy

y
. (109)

Set fσ(u) = ψσ(e−u) and set Hσ(x) =
∫∞
−∞ fσ(u)fσ(u + x)du. The Fourier transform of 

Hσ is given by Ĥσ(ξ) =
∣∣∣f̂σ(ξ)

∣∣∣2, from which it follows that (109) is given by

∑
n1,n2

an1an2Hσ

(
log n1

n2

)
=
∑
n1,n2

an1an2

∞∫
−∞

|f̂σ(ξ)|2
(
n1

n2

)2πiξ

dξ (110)

� inf
|ξ|<2πα,|σ|≤ 1

2

∣∣∣f̂σ(ξ)
∣∣∣2 × α∫

−α

|P (t)|2dt.

Let f have support in [−C, C]. Then choose α ≤ 1
10πC , say, to guarantee that 

∣∣∣f̂σ(ξ)
∣∣∣ is 

bounded below by a constant depending at most on ψ. �
Proof of Proposition 14. Write, as usual, F (s) =

∑
n

an

ns . Let σ = 1
(log x)2 . We apply 

Lemma 15 to the Dirichlet series

P (t) = F (σ + it) (111)

with function ψσ. This yields

α∫
−α

|F (σ + it)|2dt 
∞∫
1
2

∣∣S̃(y)
∣∣2 dy

y1+2σ . (112)

Bounding 
∣∣S̃(y)

∣∣ ≤ |S(y)| + |S(2y)|, and applying the bound

S(y)  log y exp
(
−C1

√
logD

log logD

)
+ exp

(
− log y

(log logD)2 + C2

√
logD

log logD

)
(113)

proven in Proposition 13, we have (recall U = exp(
√

log x(log log x)2))
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∞∫
1
2

∣∣S̃(y)
∣∣2 dy

y1+2σ 
U∫

1
2

∣∣S̃(y)
∣∣2 dy

y
+ o(1) (114)

By dyadic decomposition, we obtain that there is A, 2 ≤ A ≤ U such that

A∫
A
2

∣∣S̃(y)
∣∣ dy
y

� 1
logU supy<U

∣∣S̃(y)
∣∣

α∫
−α

|F (σ + it)|2dt−O(1). (115)

Since (see the proof of v. of Lemma 12)

∣∣S̃(y)
∣∣ log y

∑
(n,P+)=1

d(n) |r̃(n)|√
n

, (116)

the proof follows from the estimate, for all t such that 
∣∣∣t− π

2 log L

∣∣∣ ≤ 1
(log L)1+ε ,

log |F (σ + it)|2∏
p∈P−

(
1 + 2|r−(p)|√

p

) ≥ (c3 + o(1)) L

2 logL, (117)

given in item iv. of Lemma 12. �
5. The argument of large values of ζ

(1
2 + it

)
The method of Kalpokas, Korolev and Steuding [7] for treating ζ

( 1
2 + it

)
at points 

where it has a prescribed angle makes essential use of the fact that the argument of 
ζ
(1

2 + it
)2 is a simple function to describe. For θ ∈ [0, π), denote

Tθ =
{
t ∈ R : arg

(
ζ

(
1
2 + it

))
≡ θ mod π

}
(118)

Tθ,+ =
{
t ∈ R : arg

(
ζ

(
1
2 + it

))
= θ

}
Tθ,− =

{
t ∈ R : arg

(
ζ

(
1
2 + it

))
= θ + π

}
.

Let UT,θ be the uniform probability measure on Tθ ∩ [0, T ]. Up to boundedly many 
exceptions all contained within a compact neighborhood of 1

2 , Tθ is exactly the solution 
set of

Δ(s) =
ζ
( 1

2 + s
)

ζ
( 1

2 − s
) = πsΓ

( 1
4 − s

2
)

Γ
( 1

4 + s
2
) = e2iθ. (119)

Using this to express the discrete moments as a contour integral, [7] shows
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EUT,θ

[∣∣∣∣ζ (1
2 + it

)∣∣∣∣3
]
� (log T ) 9

4 , (120)

EUT,θ

[
ζ

(
1
2 + it

)3
]

= O((log T )2)

from which it follows

EUT,θ

[∣∣∣∣ζ (1
2 + it

)∣∣∣∣3 · 1{arg
(
ζ

(
1
2 + it

))
= θ

}]
(121)

= 1
2EUT,θ

[∣∣∣∣ζ (1
2 + it

)∣∣∣∣3 + e−3iθζ

(
1
2 + it

)3
]
� (log T ) 9

4 ,

and similarly for the expectation restricted to points at which arg
(
ζ
( 1

2 + it
))

= −θ.
Following [10] we augment this argument by weighting the expectations with a res-

onating Dirichlet polynomial. We also estimate the first moment rather than the third, 
which makes a technical simplification to the argument.

Set H = T/(log T )2. Introduce probability measure wT,θ(t) on Tθ given by

wT,θ(t) = |R (it)|2

cosh( t−T
H )

/ ∑
t′∈Tθ

|R(it′)|2

cosh( t′−T
H )

(122)

with R(s) a resonating polynomial. Let r be the multiplicative function of Section 3 with 
parameter N = T 1−2ξ and define

R∗(s) =
∑
n<N

r(n)
ns

, A 1
2
(s) =

∑
n<T ξ

d 1
2
(n)
ns

. (123)

Our resonating polynomial is

R(s) = R∗(s)A 1
2

(
1
2 + s

)
=:

∑
n<T 1−ξ

an
ns

. (124)

We show the following pair of estimates.

Proposition 16. We have

EwT,θ

[∣∣∣∣ζ (1
2 + it

)∣∣∣∣]�ξ (log T ) 3
4
∏
p

(
1 + r′(p)

√
p

)
(125)

and ∣∣∣∣EwT,θ

[
ζ

(
1
2 + it

)]∣∣∣∣ξ (log T ) 1
2
∏
p

(
1 + r′(p)

√
p

)
. (126)
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Since

∏
p

(
1 + r′(p)

√
p

)
= exp

(√
logN

log logN

)
(127)

letting first T → ∞ then ξ ↓ 0 we obtain Theorem 2.

5.1. Sums involving Gram points

Throughout the remainder of this argument we let ε > 0 be an arbitrarily small fixed 
constant. We write Γε for the contour �(s) = 1

2 +ε plus �(s) = −1
2−ε, oriented positively 

with respect to s = 0. To within a negligible error, the sums that we need over the set 
Tθ may be expressed as contour integrals over Γε against the kernel Δ′(s)

(Δ(s)−e2iθ)
ds

cos
(

iT−s
H

) . 
The following lemma allows us to evaluate integrals of this type.

Lemma 17. Let T be large, let 1 ≤ m, n and assume m < T 1−ξ. Let ε > 0 arbitrary. We 
have the following evaluation of integrals.

For any ω ∈ S1 = {z ∈ C : |z| = 1} and for any A > 0,∮
�(s)= 1

2+ε

(m
n

)s Δ′

Δ (s) Δ(s)
1 − ωΔ(s)

ds

cos
(
iT−s
H

) = Oξ,A

(
T−A

)
. (128)

Also, ∮
�(s)= 1

2+ε

(m
n

)s Δ′

Δ (s) ds

cos
(
iT±s
H

) (129)

= δm=n

⎧⎨⎩−
∫

t≥20

log t
2π + O(1

t )
cosh

(
t−T
H

) dt

⎫⎬⎭+ Oξ,A

(
T−A

)
.

Proof. We use the following consequences of Stirling’s formula, which are valid for |t| > 1

∀ σ > 0, Δ (σ + it) = Oσ

(
|t|−σ

)
, (130)

Δ′

Δ (it) = − log |t|
2π + O

(
1
|t|

)
∀ j ≥ 1, dj

dtj
Δ′

Δ (it) = Oj(|t|−j).

For (128), push the integral rightward to the line �(s) = A+1
ξ + δ with 0 < δ < 1

chosen so that the contour has distance bounded away from any pole of the integrand. 
On this line, the integral may be bounded in absolute value, and has appropriate size. In 
shifting the contour, we pass poles from Δ on the real axis and boundedly many poles 
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of 1
1−ωΔ(s) all lying within a bounded distance of the real axis, but each of these are 

smaller than any negative power of T due to the factor of cosine in the denominator.
For (129), shift to �(s) = 0 and apply the approximation to Δ′

Δ (s). When m �= n

write

(m
n

)s
= eit log m

n (131)

and integrate by parts in t several times. �
As a first example, we calculate the normalizing weight in the probability measure 

wT,θ. In this calculation we use symmetries Δ(s) = 1
Δ(−s) , 

Δ′

Δ (s) = Δ′

Δ (−s).

Lemma 18. Recall the definition r′(p) = r(p)
1+r(p)2 . We have

∑
t∈Tθ

|R(it)|2
cosh(T−t

H )
	ξ (log T ) 1

4
∏
p

(1 + r(p)2)
∏
p

(
1 + r′(p)

√
p

) ∫
t>20

log( t
2π )dt

cosh
(
T−t
H

) . (132)

Proof. To within negligible error, the left hand side is

∼
∮
Γε

R(s)R(−s) Δ′(s)
Δ(s) − e2iθ

ds

cos
(
iT−s
H

) , (133)

since the boundedly many poles that do not fall on the half-line get exponentially small 
weight. The integral on the �(s) = 1

2 + ε is negligible as can be seen by using (128) with

(∑
n

an

)2

≤ T 1−2ξ
∑

a2
n. (134)

Substituting s �→ −s in the integral on the �(s) = −1
2 − ε line, it becomes

∮
�(s)= 1

2+ε

R(s)R(−s)
(
−Δ′(s)

Δ(s)

)
1

1 − e2iθΔ(s)
ds

cos
(
iT+s
H

) . (135)

When 1/(1 − Δ(s)e2iθ) is expanded in geometric series, only the constant term con-
tributes. Applying (129) we pick up diagonal terms with negligible error. These give the 
stated integral times 

∑
n<T 1−2ξ a2

n, which was evaluated asymptotically in Lemma 7. �
We abbreviate this normalizing weight NW.
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5.2. Main estimates

For the remainder of the argument we employ a simple truncation to approximate 
ζ(1

2 + s) by a Dirichlet polynomial. Fix a smooth function φ : R → [0, 1], supported in 
[−1, 1], satisfying φ ≡ 1 in a neighborhood of 0. By Mellin inversion, one obtains that, 
uniformly in 

{
s = σ + it : T

2 ≤ t ≤ 2T, 0 ≤ σ ≤ 2
}
,

∀ ε > 0, ∀ A > 0, ζ

(
1
2 + s

)
=
∑
n

1
n

1
2+s

φ
( n

T 1+ε

)
+ OA,ε(T−A). (136)

In the integrals below we use this approximation also for t /∈
[
T
2 , 2T

]
. The error in doing 

so is negligible due to the rapid decay of the factor from cosine, which in this range is 
smaller than any fixed negative power of T .

5.2.1. The lower bound of Proposition 16
We bound

EwT,θ

[∣∣∣∣ζ (1
2 + it

)∣∣∣∣] ≥
∣∣∣∣∣∣∣EwT,θ

⎡⎢⎣ζ (1
2 − it

)
A 1

2

( 1
2 + it

)2∣∣∣A 1
2

( 1
2 + it

)∣∣∣2
⎤⎥⎦
∣∣∣∣∣∣∣ . (137)

We may write

EwT,θ

⎡⎢⎣ζ (1
2 − it

)
A 1

2

( 1
2 + it

)2∣∣∣A 1
2

( 1
2 + it

)∣∣∣2
⎤⎥⎦ · NW (138)

∼
∮
Γε

ζ

(
1
2 − s

)
A 1

2

(
1
2 + s

)2

R∗(s)R∗(−s) Δ′(s)
Δ(s) − e2iθ

ds

cos
(
iT−s
H

) .
On the line �(s) = 1

2 + ε, write ζ(1
2 − s) = ζ( 1

2+s)
Δ(s) and expand Δ′(s)

Δ(s)−e2iθ
in geometric 

series. Appealing to (128) of Lemma 17, one easily checks that all but the first term in 
the geometric series expansion give negligible contribution. The first term is

1
e2iθ

∮
�(s)= 1

2+ε

ζ

(
1
2 + s

)
A 1

2

(
1
2 + s

)2

R∗(s)R∗(−s)
(
−Δ′

Δ (s)
)

ds

cos
(
iT−s
H

) . (139)

Approximate ζ with its Dirichlet series (136) with negligible error, and apply (129)
of Lemma 17 to obtain diagonal terms plus an error which is negligible. Associating 
variables n to ζ, m1, m2 to the two powers of A 1

2
and 1, 2 to R∗(s) and R∗(−s), the 

diagonal condition is nm1m21 = 2, and thus the diagonal term is given by (replace 
2 := 	2 and note that φ does not enter due to the range of summation)
	1
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−1
e2iθ

∑
	1

r(1)2
∑

	2≤ N
�1

(	2,	1)=1

r(2)√
2

∑
nm1m2=	2
m1,m2<T ξ

d 1
2
(m1)d 1

2
(m2) ×

∫
t≥20

(log t
2π + O(1

t ))dt
cosh

(
t−T
H

) .

(140)

The inner sum is bounded by d(2), and so, after dividing by the normalizing weight, we 
find that this term contributes a quantity which is

 (log T )
−1
4
∏
p

(
1 + r′(p)

√
p

)
, (141)

which is an error term.
On the line �(s) = −1

2 − ε, exchange s �→ −s to write the integral as

∮
�(s)= 1

2+ε

ζ

(
1
2 + s

)
A 1

2

(
1
2 − s

)2

R∗(s)R∗(−s)
(
−Δ′

Δ (s)
)

1
1 − e2iθΔ(s)

ds

cos
(
iT+s
H

) .
(142)

Expanding 1
1−e2iθΔ(s) in geometric series, only the constant term contributes. In this 

term, replace ζ with its approximating Dirichlet polynomial and take only the diagonal 
terms from the resulting integral. With the same variable conventions as before, and 
pulling out g = (1, 2), this yields

∑
g

r(g)2
∑

	1,	2≤N
g

(	1,	2)=(	1	2,g)=1

r(1)r(2)
∑

m1,m2≤T ξ

	1n=	2m1m2

d 1
2
(m1)d 1

2
(m2)

√
nm1m2

×
∫

t≥20

(log t
2π + O(1

t ))dt
cosh

(
t−T
H

) .

(143)

Since we seek only a lower bound, truncate to 1, 2 < Z = exp
(
(log T ) 2

3

)
. Also, write 

11 = (1, m1), 12 = (1, m2) and replace m1 := m1
	11

, m2 := m2
	12

. Omitting the integral, 
the sum becomes∑

	1,	2<Z
(	1,	2)=1

r(1)r(2)√
12

∑
	11	12=	1

∑
g≤ N

max(�1,�2)
(g,	1	2)=1

r(g)2
∑

	11m1,	12m2≤T ξ

d 1
2
(11m1)d 1

2
(12m2)

m1m2

�ξ log T
∏
p

(
1 + 2r′(p)

√
p

)∏
p

(1 + r(p)2), (144)

where we use (35) of Lemma 6 to evaluate the sums over m1, m2, and use the concentra-
tion properties of r to evaluate the resulting sums over 1, 2 and g. Inserting the integral 
over t and dividing by the normalizing weight, we arrive at the claimed main term.
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5.2.2. The upper bound of Proposition 16
The signed expectation is given by∣∣∣∣EwT,θ

ζ

(
1
2 + it

)∣∣∣∣ · NW (145)

=

∣∣∣∣∣∣
∮
Γε

ζ

(
1
2 − s

)
A 1

2

(
1
2 + s

)
A 1

2

(
1
2 − s

)
R(s)R(−s) Δ′(s)

Δ(s) − e2iθ
ds

cos
(
iT−s
H

)
∣∣∣∣∣∣ .

The argument for estimating these integrals is exactly as in the lower bound, so we only 
describe the evaluation of the diagonal terms. Furthermore, up to a constant of absolute 
value 1, each diagonal term is given by

∑
g

r(g)2
∑

	1,	2≤N
g

(	1,	2)=(	1	2,g)=1

r(1)r(2)
∑

m1,m2≤T ξ

	1m1n=	2m2

d 1
2
(m1)d 1

2
(m2)

√
nm1m2

×
∫

t≥20

(log t
2π + O(1

t ))dt
cosh

(
t−T
H

)
(146)

Write 21 = (2, m1), 22 = (2, n), replace m1 := m1
	21

, n := n
	22

and appeal (38) of 
Lemma 6 to estimate

∑
g

r(g)2
∑

	1,	2≤N
g

(	1,	2)=(	1	2,g)=1

r(1)r(2)√
12

∑
	21	22=	2

∑
	21m1,	1m1n<T ξ

d 1
2
(21m1)d 1

2
(1m1n)

m1n
(147)

 (log T ) 3
4
∑
g

r(g)2
∑

	1,	2≤N
g

(	1,	2)=(	1	2,g)=1

r(1)r(2)d 1
2
(1)d 3

2
(2)√

12

 (log T ) 3
4
∏
p

(
1 + 2r′(p)

√
p

)∏
p

(1 + r(p)2).

Reinserting the integral and dividing by the normalizing weight, we arrive at the claimed 
upper bound.

6. The argument of large central values of Dirichlet L-functions

In what follows we restrict consideration to the L-functions associated to even 
(χ(−1) = 1) primitive characters modulo large prime q. In particular, these satisfy a 
common functional equation

Λ(s, χ) = Γ
(s

2

)( q
π

) s
2
L(s, χ) = τ(χ)

√
q

Λ(1 − s, χ). (148)

We indicate uniform expectation over primitive even characters by E+
χ mod q.
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Let N = qη, 0 < η < 1
32 , set L =

√
logN log logN and define resonating polynomial

R(χ) =
∑
n≤N

r(n)χ(n). (149)

As in the case of ζ, we supplement our resonator with a short Dirichlet polynomial. For 
a small ξ, 0 < ξ < 1

16 − η
2 , let

A 1
2
(χ) =

∑
n≤qξ

d 1
2
(n)χ(n)
√
n

. (150)

This, in a distributional sense, behaves somewhat like L 
( 1

2 , χ
) 1

2 .
Define, for f : Ẑ/qZ → C

ER[f ] =
E+

χ mod q

[
|R(χ)|2f(χ)

]
E+

χ mod q [|R(χ)|2]
. (151)

The key estimates used in proving Theorem 3 are as follows.

Theorem 19 (Estimates of Weyl type). Let L = log q
∏

p

(
1 + r(p)√

p(1+r(p)2)

)
. We have the 

following estimates for moments of L(1
2 , χ) (all implicit constants depend upon ξ and η).

a. The central moments satisfy

ER

[∣∣∣∣L(1
2 , χ
)∣∣∣∣2 ∣∣∣A 1

2
(χ)
∣∣∣4]� L 4, (152)

ER

[∣∣∣A 1
2
(χ)
∣∣∣8] , ER

[∣∣∣∣L(1
2 , χ
)∣∣∣∣4
]
 L 4.

b. The signed moments satisfy

ER

[
L

(
1
2 , χ
) ∣∣∣A 1

2
(χ)
∣∣∣6] (log q)

−1
4 L 4 (153)

ER

[
L

(
1
2 , χ
)2 ∣∣∣A 1

2
(χ)
∣∣∣4] (log q)−1L 4.

c. Twisting by higher phases, there is B > 0 such that

∀m ≥ 1, ER

[
e(2mθχ)L

(
1
2 , χ
) ∣∣∣A 1

2
(χ)
∣∣∣6] , ER

[
e(2mθχ)L

(
1
2 , χ
)2 ∣∣∣A 1

2
(χ)
∣∣∣4]

ε,B (m + 5)Bq− 1
8+η+2ξ+εL 4. (154)
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Domination by the unsigned moments of the same moments twisted by phases 
e(mθχ), 0 < |m| < M suggests angular equidistribution of R-typical values of L(1

2 , χ) at 
a scale of 	 1

M , e.g. as in Weyl’s criterion for equidistribution. We make this intuition 
precise by appealing to the following quantitative equidistribution result, which we use 
to prove Theorem 3.

Let T = R/Z be the usual torus, with distance ‖ · ‖ = ‖ · ‖R/Z.

Theorem 20 (Minorant theorem). Let A1, A2 > 0 be constants, and let δ ∈
(
0, 1

4
)
, θ ∈

R/Z be parameters. There exist even and odd trigonometric polynomials F e
δ (t), F o

δ (t)
and constants c0 =

∫
T
F e
δ (t)dt, c1, c2, c3, c4 > 0 depending at most upon A1, A2 and δ and 

satisfying the following properties. Below ∗ represents either e or o.

(1) ‖F ∗
δ ‖L∞ , 

∥∥∥F̂ ∗
δ

∥∥∥
	1

 1 and 
∥∥∥F̂ ∗

δ

∥∥∥
	∞

 δ

(2) degF ∗
δ  1

δ(− log δ)3

(3) c1 	 δ, c2 	 δ−
1
2 , c3 	 δ

(4) c0 −A1c1 −A2c3 � δ.

Furthermore, the function in polar coordinates Mδ,θ : R≥0 × T → R,

Mδ,θ(r, t) = F e
δ (t− θ)r2 − c1 + c2rF

o
δ (t− θ) − c3r

4 (155)

satisfies

1 ((r, t) : Mδ,θ(r, t) ≥ 0) ≤ 1
(
r > c4δ

3
2

)
· 1(‖t− θ‖T < δ). (156)

Proof. Let

σ(x) = e
− 1

1−x2 1(|x| < 1) (157)

be the standard bump function with support in [−1, 1]. The Fourier transform of σ,

σ̂(ξ) =
1∫

−1

σ(x)e2πixξdx, ξ ∈ R (158)

satisfies the decay property

|σ̂(ξ)|  1
|ξ| 34

e−
√

2π|ξ| (159)
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as |ξ| → ∞. Write σδ(x) = σ
(
x
δ

)
and note that σ̂δ(ξ) = δσ̂(δξ). Treat σδ as a function 

on T and define the even and odd parts of σδ by

σe
δ(x) =

σδ(x) + σδ

(
x + 1

2
)

2 , σo
δ (x) =

σδ(x) − σδ

(
x + 1

2
)

2 . (160)

Let ε = σ̂(0)
2 . For a sufficiently large constant C > 0 let N = C

δ(− log δ)3 . Let TN

be the operator on L2(T) which truncates the Fourier series at degree N . We define 
F e
δ = −εδ + TN (σe

δ), and F o
δ = TN (σo

δ ). Evidently

c0 =
∫
T

F e
δ (t)dt = δ

2 σ̂(0). (161)

We choose

c1 = c0
3 max(A1, 1) , c2 =

√
1

2c3
, c3 = c0

3 max(A2, 1) , (162)

which guarantees

c0 −A1c1 −A2c3 ≥ c0
3 � δ. (163)

We have ∥∥∥F̂ ∗
δ

∥∥∥
	∞

≤ ‖σδ‖L1(T)  δ (164)

while from the decay properties of σ̂ one readily checks by bounding the Fourier series 
in absolute value that (the inequality fixes C, the claimed bound is not tight as δ ↓ 0)

∥∥∥F̂ ∗
δ

∥∥∥
	1

 1, ‖εδ + F e
δ − σe

δ‖L∞(T), ‖F o
δ − σo

δ‖L∞(T) ≤ min
(
εδ

2 ,
c1
2c22

)
. (165)

To check the minorant property of Mδ,θ we may assume θ = 0. For min
(
‖t‖T,∥∥t− 1

2
∥∥
T

)
> δ, (r, t) is outside the support of both σe

δ and σo
δ , so that

r2F e
δ (t) + c2rF

o
δ (t) ≤ −εδr2 + min

(
εδ

2 ,
c1
2c22

)
(c2r + r2) ≤ c1 + c3r

4, (166)

as may be checked separately for r ≤ c2 and r > c2. Thus, for this range of t the minorant 
property holds.
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Next consider t = s + 1
2 with ‖s‖T ≤ δ. Here, again,

r2F e
δ (t) + c2rF

o
δ (t) ≤ r2 − c2r

2 σδ(s) − εδr2 + min
(
εδ

2 ,
c1
2c22

)
(c2r + r2) (167)

≤ c1 + c3r
4

by checking separately for r ≤ c2 and r > c2.
To confirm the final minorant property, note that for ‖t‖T < δ and r < 1 we have

r2F e
δ (t) + c2rF

o
δ (t) ≤ r2 + c2r

2 σδ(s) − εδr2 + min
(
εδ

2 ,
c1
2c22

)
(c2r + r2)  c2r (168)

so that r2F e
δ (t) + c2rF

o
δ (t) ≤ c1 once r  c1

c2
 δ

3
2 . �

Combining Theorems 19 and 20 we prove Theorem 3.

Proof of Theorem 3. Apply Theorem 20 with

A1 =
ER

[∣∣∣A 1
2
(χ)
∣∣∣8]

ER

[∣∣∣A 1
2
(χ)
∣∣∣4 ∣∣L ( 1

2 , χ
)∣∣2] , A2 =

ER

[∣∣L (1
2 , χ
)∣∣4]

ER

[∣∣∣A 1
2
(χ)
∣∣∣4 ∣∣L (1

2 , χ
)∣∣2] (169)

to obtain minorant Mδ,θ. Theorem 20 guarantees that there exists constant C(δ)  δ−6

such that

Fδ,θ(r, t) = C(δ)r41(‖t− θ‖T ≤ δ) ≥ Mδ,θ(r, t). (170)

Thus

C(δ)ER

[∣∣∣∣L(1
2 , χ
)∣∣∣∣4 1 (‖θχ − θ‖T ≤ δ)

]
≥ ER

⎡⎢⎣∣∣∣A 1
2
(χ)
∣∣∣8 Mδ,θ

⎛⎜⎝∣∣L (1
2 , χ
)∣∣∣∣∣A 1

2
(χ)
∣∣∣2 , θχ

⎞⎟⎠
⎤⎥⎦ .
(171)

Write σδ(t) =
∑

n bne(nt) in Fourier series. We expand

∣∣∣A 1
2
(χ)
∣∣∣8Mδ,θ

⎛⎜⎝∣∣L (1
2 , χ
)∣∣∣∣∣A 1

2
(χ)
∣∣∣2 , θχ

⎞⎟⎠ = c0

∣∣∣A 1
2
(χ)
∣∣∣4 ∣∣∣∣L(1

2 , χ
)∣∣∣∣2

+ 2�
∑

N−2

b2n+2e((2n + 2)θ − 2nθχ))
∣∣∣A 1

2
(χ)
∣∣∣4 L(1

2 , χ
)2
0≤n≤ 2
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+ 2c2�
∑

0≤n≤N−1
2

b2n+1e((2n + 1)θ − 2nθχ))
∣∣∣A 1

2
(χ)
∣∣∣6 L(1

2
, χ

)

− c1

∣∣∣A 1
2
(χ)
∣∣∣8 − c3

∣∣∣∣L(1
2 , χ
)∣∣∣∣4 . (172)

By the estimates for unsigned moments in Theorem 19, the first and last two terms 
combined have expectation � δL 4, while, by the estimates for signed moments, the 
n = 0 terms in the two Fourier expansions have size

 δc2(log q)− 1
4 L 4. (173)

Since c2  δ−
1
2 = o 

(
(log q) 1

4

)
these make negligible contribution. By the estimates for 

twisted moments, the remaining terms of the Fourier expansion are  q−ϑ for some 
ϑ > 0, and thus are also negligible. Since

log L �
√

η log q
log log q (174)

with the condition η < 1
32 , we obtain the result. �

6.1. Estimations of Weyl type

For convenience we restrict attention to the central values of the q−3
2 even primitive 

characters. Note that the orthogonality relation for these characters is given by

∀n1, n2 �≡ 0 mod q, E+
χ mod q[χ(n1)χ(n2)] =

{
1 n1 ≡ ±n2 mod q
−2
q−3 otherwise . (175)

The negative off-diagonal term results from removing the principal character.
Our proofs use various formulas expressing the central values L(1

2 , χ) and their powers 
as truncated Dirichlet series. Fix a smooth function φ : R≥0 → [0, 1] with support in 
[0, 1] and such that φ ≡ 1 on a neighborhood of 0. Mellin inversion gives, for all ε > 0
and all A > 0,

L

(
1
2 , χ
)

=
∑
n

χ(n)√
n

φ

(
n

q1+ε

)
+ OA,ε

(
q−A

)
. (176)

The approximate functional equation gives representations of the central values as 
shorter sums ([6], p. 98). One has

L

(
1
2 , χ
)2

=
∑ χ(n)d(n)√

n
V1

(
πn

q

)
+ τ(χ)2

q

∑ χ(n)d(n)√
n

V ∗
1

(
πn

q

)
, (177)
n n
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and

∣∣∣∣L(1
2 , χ
)∣∣∣∣2 = 2

∑
n

dχ(n)√
n

V2

(
πn

q

)
, dχ(n) =

∑
n1n2=n

χ(n1)χ(n2). (178)

Here Vi, V ∗
i are some Schwartz-class functions on R satisfying Vi(0) = V ∗

i (0) = 1. It will 
be convenient to assume, as we may, that Vi and V ∗

i are non-negative.
Recall the definition of the expectation

ER[f ] =
E+

χ mod q

[
|R(χ)|2f(χ)

]
E+

χ mod q [|R(χ)|2]
. (179)

We write NW for the normalizing weight in the denominator.

Lemma 21. The normalizing weight NW satisfies

NW ∼
∏
p

(1 + r(p)2). (180)

Proof. By orthogonality,

NW =
∑
n≤qη

r(n)2 − 2
q − 3

∑
n1,n2≤qη

n1 �=n2

r(n1)r(n2) (181)

=
(
1 + O

(
qη−1)) ∑

n≤qη

r(n)2

by applying Cauchy–Schwarz. The sum is asymptotic to the product by using the tail 
bound in Lemma 5. �
6.1.1. Estimation of central moments

We prove part a of Theorem 19.
To estimate the second central moment from part a, in

NWM2 = E+
χ mod q

[
|R(χ)|2

∣∣∣A 1
2
(χ)
∣∣∣4 ∣∣∣∣L(1

2 , χ
)∣∣∣∣2
]

(182)

expand 
∣∣L ( 1

2 , χ
)∣∣2 via the approximate functional equation (178), and use orthogonality 

to obtain a diagonal term
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2
∑
g

r(g)2
∑

	1,	2≤N
g

(	1,	2)=(	1	2,g)=1

r(1)r(2)

×
∑

n1,n2<q2ξ

d 1
2 ,2,qξ(n1)d 1

2 ,2,qξ(n2)
√
n1n2

∑
m1,m2

	1n1m1=	2n2m2

V2

(
πm1m2

q

)
√
m1m2

(183)

plus an error term which is, for any ε > 0,

 q−1
∑

	1,	2≤N

r(1)r(2)
∑

n1,n2<q2ξ

1√
n1n2

∑
m1,m2

V2

(
πm1m2

q

)
√
m1m2

ε NWqη+2ξ− 1
2+ε = o(NW). (184)

Discarding the error, and restricting to m1n1, m2n2 < qξ in the main term, thus removing 
the restricted divisor functions, we obtain the lower bound

M2 + o(1) � 1
NW

∑
g

r(g)2
∑

	1,	2≤N
g

(	1,	2)=(	1	2,g)=1

r(1)r(2)√
12

∑
m≤qξ

d(1m)d(2m)
m

. (185)

Restricting to 1, 2 < Z = exp
(
(log q) 2

3

)
and applying (37) of Lemma 6, the inner sum 

is � d(1)d(2)(log q)4, so that we obtain the lower bound (we appeal to concentration 
properties of r as before)

M2 + o(1) � (log q)4

NW
∑
g

r(g)2
∑

	1,	2≤min
(
Z,Ng

)
(	1,	2)=(	1	2,g)=1

r(1)r(2)d(1)d(2)√
12

� L 4. (186)

Now we prove the upper bounds. Treating the off-diagonal terms as above, we bound 
(use d(n) ≤ d()d(n))

E+
χ mod q

[
|R(χ)|2

∣∣∣A 1
2
(χ)
∣∣∣8]∑

g

r(g)2
∑

	1,	2≤N
g

(	1,	2)=(	1	2,g)=1

r(1)r(2)
∑

n1,n2≤q4ξ

	1n1=	2n2

d(n1)d(n2)√
n1n2

 (log q)4
∑
g

r(g)2
∑

	1,	2≤N
g

(	1,	2)=(	1	2,g)=1

r(1)r(2)d(1)d(2)√
12

 NWL 4. (187)

To bound the unsigned fourth moment, we insert the following consequence of Theo-
rem 4.
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Corollary 22. Let q be a large prime, let η < 1
32 and let 1, 2 < qη be square-free, 

satisfying (1, 2) = 1. We have the upper bound

E+
χ mod q

[
χ(1)χ(2)

∣∣∣∣L(1
2 + α, χ

)∣∣∣∣4
]
 d(1)d(2)√

12
(log q)4. (188)

Proof. This follows from Theorem 4 on noting that if Dk = P
(

∂
∂α ,

∂
∂β ,

∂
∂γ ,

∂
∂γ

)
is an 

order k differential operator, then

Dk log τα,β,γ,δ()
∣∣∣
α=β=γ=δ=0

P (log )k. � (189)

We obtain immediately

E+
χ mod q

[
|R(χ)|2

∣∣∣∣L(1
2 , χ
)∣∣∣∣4
]
 (log q)4

∑
g

r(g)2
∑

	1,	2≤N
g

(	1,	2)=(g,	1	2)=1

r(1)r(2)d(1)d(2)√
12

 NWL 4. (190)

6.1.2. Estimation of signed moments twisted by phases
Throughout this section we describe only the second moment. The first can be han-

dled similarly, the essential difference being that we replace the approximate functional 
equation for the second moment with the longer approximation (176) for the first.

Write, for m ∈ Z, e (2mθχ) =
(

τ(χ)√
q

)m
. Open the resonator and approximate func-

tional equation as

∀m ≥ 0, M2,m = ER

[
e(2mθχ)

∣∣∣A 1
2
(χ)
∣∣∣4 L(1

2 , χ
)2
]

= 1
NW

∑
	1,	2<qη

r(1)r(2)
∑

n1,n2≤q2ξ

d 1
2 ,2,qξ(n1)d 1

2 ,2,qξ(n2)
√
n1n2

(191)

× E+
χ mod q

[
χ(1n1)χ(2n2)

(
τ(χ)
√
q

)m

×
(∑

n

χ(n)d(n)√
n

V1

(
πn

q

)
+ τ(χ)2

q

∑
n

χ(n)d(n)√
n

V ∗
1

(
πn

q

))]
.

Introduce for (n, q) = 1 and m ≥ 1 the hyper-Kloosterman sum



B. Hough / Journal of Number Theory 167 (2016) 353–393 391
Klm(n, q) =
∑

n1,...,nm mod q
n1...nm≡n mod q

e

(
n1 + ... + nm

q

)
. (192)

We set Kl0(n, q) = 1{n ≡ 1 mod q}.

Lemma 23. Let a, b �≡ 0 mod q. For each m ≥ 0 we have

E+
χ mod q [χ(a)χ(b)τ(χ)m] =

(
1 + 2

q − 3

)
(Klm(ab, q) + Klm(−ab, q)) + (−1)m+1 2

q − 3 .

(193)

Proof. This follows directly on expanding the Gauss sum and applying the orthogonality 
relation. The term (−1)m+1 2

q−3 results from removing the principal character. �
Applying this lemma in the first of the two sums resulting from the approximate 

functional equation gives

M 1
2,m = 1

NW
∑

	1,	2<qη

r(1)r(2)
∑

n1,n2<q2ξ

d 1
2 ,2,qξ(n1)d 1

2 ,2,qξ(n2)
√
n1n2

× (194)

×
(
q − 1
q − 3

∑
ε=±1

∑
(n,q)=1

Klm(εn1n12n2, q)d(n)
q

m
2
√
n

V1

(
πn

q

)

+ (−1)m+12
(q − 3)qm

2

∑
(n,q)=1

d(n)V1

(
πn
q

)
√
n

)
.

while the second term gives

M 2
2,m = 1

NW
∑

	1,	2<qη

r(1)r(2)
∑

n1,n2<q2ξ

d 1
2 ,2,qξ(n1)d 1

2 ,2,qξ(n2)
√
n1n2

× (195)

×
(
q − 1
q − 3

∑
ε=±1

∑
(n,q)=1

Klm+2(εn1n12n2, q)d(n)
q

m+2
2

√
n

V ∗
1

(
πn

q

)

+ (−1)m+32
(q − 3)qm+2

2

∑
(n,q)=1

d(n)V ∗
1

(
πn
q

)
√
n

)
.

The terms not involving hyper-Kloosterman sums are negligible.
The first sum in the case m = 0 must be handled separately because it has no 

oscillatory term. As the sum consists of positive terms, we bound d 1
2 ,2,qξ(ni) ≤ 1 to 

obtain (cancel the factor of 1 from m2)
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M 1
2,0  1

NW
∑
g

r(g)2
∑

	1,	2≤N
g

(	1,	2)=(	1	2,g)=1

r(1)r(2)
∑

m1,m2<q2ξ,n≥1
	1m1n=	2m2

d(n)V1

(
πn
q

)
√
m1m2n

(196)

 1
NW

∑
g

r(g)2
∑

	1,	2≤N
g

(	1,	2)=(	1	2,g)=1

r(1)r(2)√
12

∑
m≤q2ξ

d3(2m)
m

 1
log qL 4.

The second term in case m = 0 and both terms for m ≥ 1 contain non-trivial hyper-
Kloosterman sums. These sums are trace functions of the type studied first by Katz [8]
and further developed by Fouvry–Kowalski–Michel [4]. In particular, when the Kloost-
erman sum is non-trivial,

n �→ Klm(±n12, q)
q

m−1
2

, n �→ Klm+2(±n12, q)
q

m+1
2

(197)

have conductors m + 3 and m + 5 respectively. By making a dyadic partition of unity, it 
follows from [4] Theorem 1.15 that for any ϑ < 1

8 , and for sufficiently large B

∑
(n,q)=1

Klm(±n12, q)d(n)√
nq

m
2

V1

(
πn

q

)
ϑ (m + 3)Bq−ϑ (198)

∑
(n,q)=1

Klm+2(±n12, q)d(n)
√
nq

m+2
2

V ∗
1

(
πn

q

)
ϑ (m + 5)Bq−ϑ.

Inserting these bounds together with r(1)r(2)
d 1

2 ,2,qξ (n1)d 1
2 ,2,qξ (n2)

√
n1n2

< qη+2ξ r(	1)r(	2)√
	1	2n1n2

above gives for sufficiently large B [recall r′(p) = r(p)
1+r(p)2 ]

M 2
2,0, M2,m ϑ

(m + 5)Bq−ϑ+η+2ξ

NW
∑

	1,	2<N

r(1)r(2)√
12

∑
m1,m2<qξ

1
m1m2

, m ≥ 1

ϑ (m + 5)Bq−ϑ+η+2ξ(log q)2
∏
p

(
1 + r(p)

√
p

)
. (199)

and after dividing by the normalizing weight, this gives the bound claimed in part c. of 
Theorem 19.
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