Random walk on unipotent groups

Resut tugh
 SUNY Stony Brook

January 12, 2017

Outline

(1) Overview

(2) Upper triangular groups

(3) Abelian sandpiles

4. Cycle walks

Random walk on a group

Figure: Persi Diaconis

Set-up

- G a locally compact (finite) group
- $\mathscr{P}(G)$ the set of Borel probability measures on G
- For $\mu, \nu \in \mathscr{P}(G), f \in C_{c}(G)$,

$$
\langle f, \mu * \nu\rangle=\int_{G} \int_{G} f(x y) d \mu(x) d \nu(y)
$$

- Consider, for $\mu \in \mathscr{P}(G)$, the large N behavior of $\mu^{* N}$ as a weak-* limit in one of several function spaces, e.g. $L^{\infty}(G)$, Lipschitz functions, Sobolev spaces, etc., and also the growth of $\operatorname{supp}\left(\mu^{* N}\right)$
- We seek quantitative statements, e.g. a rate of convergence.

Example: riffle shuffling

Let $N>1$ and consider the following random walk on the symmetric group \mathfrak{S}_{N} (Gilbert-Shannon-Reeds)

- μ is the distribution on \mathfrak{S}_{N} given by
- Choose $1 \leq n \leq N$ according to the binomial distribution $\mathbf{P}(n)=\frac{\binom{N}{n^{N}}}{2^{N}}$
- Conditioned on the value of n, the measure is uniform over all permutations which preserve the relative order of the first n and last N - n cards
- Convergence to uniform is observed after $\frac{3}{2} \log _{2} N+O(1)$ steps in the total variation (L^{1}) metric [1], [2].

Example: groups of moderate growth

Let $m \geq 2$ and let $\mathbb{H}(\mathbb{Z} / m \mathbb{Z})=\left(\begin{array}{ccc}1 & \mathbb{Z} / m \mathbb{Z} & \mathbb{Z} / m \mathbb{Z} \\ 0 & 1 & \mathbb{Z} / m \mathbb{Z} \\ 0 & 0 & 1\end{array}\right)$. Let U be uniform
measure on $\mathbb{H}(\mathbb{Z} / m \mathbb{Z})$ and let μ be uniform measure on

$$
S=\left\{I_{3},\left(\begin{array}{ccc}
1 & \pm 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \pm 1 \\
0 & 0 & 1
\end{array}\right)\right\} .
$$

Theorem (Diaconis-Saloff-Coste, '94)
There are constants $a, b, a^{\prime}, b^{\prime}$ such that

$$
a^{\prime} e^{-b^{\prime} N / m^{2}} \leq\left\|\mu^{* N}-U\right\|_{\operatorname{TV}(\mathbb{Z} / m \mathbb{Z})} \leq a e^{-b N / m^{2}}
$$

Example: simple random walk on \mathbb{Z}

Let μ be the measure which assigns ± 1 equal probability $\frac{1}{2}$.

$$
\begin{aligned}
\mu^{* 2 N}(2 k) & =\frac{1}{2^{2 N}}\binom{2 N}{N+k} \\
& =2 \frac{\exp \left(-\frac{k^{2}}{N}\right)}{\sqrt{2 \pi(2 N)}}\left(1+O\left(N^{-\frac{1}{2}}\right)\right)+O_{A}\left(N^{-A}\right) .
\end{aligned}
$$

Outline

(1) Overview
(2) Upper triangular groups

(3) Abelian sandpiles

(4) Cycle walks

Upper triangular walks

Let $N_{n}(\mathbb{Z}), n \geq 3$ be the upper triangular group of $n \times n$ matrices

$$
N_{n}(\mathbb{Z})=\left(\begin{array}{ccccc}
1 & \mathbb{Z} & \mathbb{Z} & \cdots & \mathbb{Z} \\
0 & 1 & \mathbb{Z} & \cdots & \mathbb{Z} \\
\vdots & & \ddots & \ddots & \vdots \\
& & & 1 & \mathbb{Z} \\
0 & \cdots & 0 & 0 & 1
\end{array}\right)_{n \times n}
$$

- $Z_{1, n}$ denotes the upper right corner (central) coordinate.
- M_{j} is the matrix with 1 at j th position in the first super-diagonal, $M_{j}=I+e_{j} \otimes e_{j+1}$.
- Measure $\mu_{n} \in \mathscr{M}\left(N_{n}(\mathbb{Z})\right)$ is uniform on the set $\left\{I_{n}, M_{1}^{ \pm 1}, \ldots, M_{n-1}^{ \pm 1}\right\}$.

Central coordinate mixing

Theorem (Diaconis-H., 2015)
Let $n \geq 3$. There is $C=C(n)>0$ such that, as prime $p \rightarrow \infty$,

$$
\sum_{x \bmod p}\left|\mu_{n}^{* N}\left(Z_{1, n} \equiv x \bmod p\right)-\frac{1}{p}\right| \ll \exp \left(-C \frac{N}{p^{\frac{2}{n-1}}}\right)
$$

See work of Peres and Sly [11] for results in the case p is fixed and $n \rightarrow \infty$.

The central coordinate

Let $M: \mathbb{Z}^{n-1} \rightarrow N_{n}(\mathbb{Z})$ be the map

$$
M: \mathbb{Z}^{n-1} \ni v=\left(\begin{array}{c}
v^{(1)} \\
v^{(2)} \\
\vdots \\
v^{(n-1)}
\end{array}\right) \mapsto\left(\begin{array}{ccccc}
1 & v^{(1)} & 0 & \cdots & 0 \\
0 & 1 & v^{(2)} & 0 & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
& 0 & 0 & 1 & v^{(n-1)} \\
0 & \cdots & & 0 & 1
\end{array}\right)
$$

Given sequence of vectors $\underline{v}=\left\{v_{i}\right\}_{i=1}^{N} \in\left(\mathbb{Z}^{n-1}\right)^{N}$ the central coordinate satisfies the product rule

$$
Z_{1, n}\left(\prod_{i=1}^{N} M\left(v_{i}\right)\right)=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{n-1} \leq N} v_{i_{1}}^{(1)} v_{i_{2}}^{(2)} \cdots v_{i_{n-1}}^{(n-1)}
$$

The central coordinate

Write

$$
Z_{n}^{N}=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{n-1} \leq N} e_{i_{1}}^{(1)} \otimes \cdots \otimes e_{i_{n-1}}^{(n-1)} .
$$

$Z_{n, \mu}^{N}$ is the distribution of Z_{n}^{N} evaluated on N vectors v_{i} drawn i.i.d. from μ, which is uniform on $\left\{0 ; \pm e_{j}: 1 \leq j \leq n-1\right\}$.

The central coordinate

- Since the central coordinate is a polynomial of degree $n-1$, it has a distribution at scale $N^{\frac{n-1}{2}}$, which suggests the mixing time of $p^{\frac{2}{n-1}}$ of the theorem.
- The challenge of the theorem is in demonstrating the uniformity of distribution at finer scales, as in a local limit theorem.
- We perform the decomposition on scales using Fourier analysis.

Cauchy-Schwarz

Cauchy-Schwarz and Plancherel give

$$
\sum_{x \bmod p}\left|Z_{n, \mu}^{N}(x)-\frac{1}{p}\right| \leq\left(\sum_{0 \neq \xi \bmod p}\left|\hat{Z}_{n, \mu}^{N}\left(\frac{\xi}{p}\right)\right|^{2}\right)^{\frac{1}{2}}
$$

where

$$
\hat{Z}_{n, \mu}^{N}(\alpha)=\sum_{m \in \mathbb{Z}} e^{2 \pi i \alpha m} Z_{n, \mu}^{N}(m)
$$

We show there exists constant $C(n)>0$ such that for all $N>0$ and all $0<|\xi| \leq \frac{1}{2}$

$$
\left|\hat{Z}_{n, \mu}^{N}(\xi)\right| \ll \exp \left(-C N|\xi|^{\frac{2}{n-1}}\right) .
$$

The group action

- $C_{2}=\mathbb{Z} / 2 \mathbb{Z} . C_{2}^{n-2}$ acts on blocks of vectors of length 2^{n-2} with the j th factor from $C_{2}^{n-2}, j \geq 1$ switching the relative order of the first 2^{j-1} and second 2^{j-1} indices.
- Thus, for instance, in case $n=5$, if $\underline{x}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}$,

$$
\begin{aligned}
\tau_{1} \underline{x} & =x_{2} x_{1} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} \\
\tau_{2} \underline{x} & =x_{3} x_{4} x_{1} x_{2} x_{5} x_{6} x_{7} x_{8} \\
\tau_{1} \tau_{3} \underline{x}=\tau_{3} \tau_{1} \underline{x} & =x_{5} x_{6} x_{7} x_{8} x_{2} x_{1} x_{3} x_{4} \\
\tau_{1} \tau_{2} \tau_{3} \underline{x} & =x_{5} x_{6} x_{7} x_{8} x_{3} x_{4} x_{2} x_{1}
\end{aligned}
$$

The group action

- Given $\frac{1}{p} \leq|\xi| \leq \frac{1}{2}$, let $k^{\frac{n-1}{2}} \asymp \frac{1}{|\xi|}$.
- Let $N^{\prime}=\left\lfloor\frac{N}{k 2^{n-2}}\right\rfloor$.
- $G_{k}=\left(C_{2}^{n-2}\right)^{N^{\prime}}$ acts on sequences of vectors $\underline{v} \in\left(\mathbb{Z}^{n-1}\right)^{N}$ with j th factor acting on the j th block of length $k 2^{n-2}$ as in the previous slide, moving blocks of length k together.
- Set

$$
\chi_{k}(\xi, \underline{v})=\mathbf{E}_{\underline{\tau} \in G_{k}}\left[e^{2 \pi i \xi Z_{n}^{N}(\underline{\tau} \cdot \underline{v})}\right] .
$$

Gowers-Cauchy-Schwarz

Although G_{k} is a product group, for $n \geq 5, \chi_{k}(\xi, \underline{v})$ does not factor through the group product structure. To correct this we apply the Gowers-Cauchy-Schwarz inequality, writing $G_{k}=\left(C_{2}^{n-2}\right)^{N^{\prime}}=\left(C_{2}^{N^{\prime}}\right)^{n-2}$.

$$
\begin{aligned}
& \left|\chi_{k}(\xi, \underline{v})\right|^{2^{n-2}} \\
& \leq \mathbf{E}_{\underline{\tau}_{1}, \tau_{1}^{\prime} \in C_{2}^{N^{\prime}}} \cdots \mathbf{E}_{\underline{\tau}_{n-2}, \tau_{n-2}^{\prime} \in C_{2}^{N^{\prime}}}\left[e_{-\xi}\left(\sum_{S \subset[n-2]}(-1)^{n-2-|S|} Z_{n}^{N}(\underline{\tau} S \cdot \underline{v})\right)\right] \\
& =\mathbf{E}_{\tau, \tau^{\prime} \in G_{k}}\left[e_{-\xi}\left(\sum_{S \subset[n-2]}(-1)^{n-2-|S|} Z_{n}^{N}\left(\underline{\tau_{S}} \cdot \underline{v}\right)\right)\right]
\end{aligned}
$$

$$
=: F_{k}(\xi, \underline{v})
$$

where

$$
\underline{\tau}_{S}=\left(\underline{\tau}_{S, 1}, \ldots, \underline{\tau}_{S, n-2}\right), \quad \underline{\tau}_{S, i}= \begin{cases}\underline{\tau}_{i} & i \in S \\ \underline{\tau}_{i}^{\prime} & i \notin S\end{cases}
$$

Gowers-Cauchy-Schwarz

Lemma

$F_{k}(\xi, \underline{v})$ factors as the product

$$
F_{k}(\xi, \underline{v})=\prod_{j=1}^{N^{\prime}}\left(1-\frac{1}{2^{n-2}}+\frac{F_{k, j}(\xi, \underline{v})}{2^{n-2}}\right)
$$

where $F_{k, j}(\xi, \underline{v})$ is a function of only the j th block of length $k \cdot 2^{n-2}$ in \underline{v}.

Final steps

Averaging over \underline{v} and applying Hölder's inequality, then the independence,

$$
\begin{aligned}
\left|\hat{Z}_{n, \mu}^{N}(\xi)\right|^{2^{n-2}} & =\left|\mathbf{E}_{\underline{v}}\left[\chi_{k}(\xi, \underline{v})\right]\right|^{2^{n-2}} \\
& \leq \mathbf{E}_{\underline{v}}\left[\left|\chi_{k}(\xi, \underline{v})\right|^{2^{n-2}}\right] \\
& \leq \mathbf{E}_{\underline{v}}\left[\prod_{j=1}^{N^{\prime}}\left(1-\frac{1}{2^{n-2}}+\frac{F_{k, j}(\xi, \underline{v})}{2^{n-2}}\right)\right] \\
& =\prod_{j=1}^{N^{\prime}} \mathbf{E}_{\underline{v}}\left[\left(1-\frac{1}{2^{n-2}}+\frac{F_{k, j}(\xi, \underline{v})}{2^{n-2}}\right)\right] .
\end{aligned}
$$

The choice of $k=k(\xi), k^{\frac{n-1}{2}} \asymp \frac{1}{|\xi|}$ is such that $\mathbf{E}\left[F_{k, j}(\xi, \underline{v})\right]$ is bounded by a fixed constant less than 1 , uniformly in ξ, which suffices to complete the proof.

Related results

- We have obtained an optimal rate in Breuillard's local limit theorem on the real Heisenberg group

$$
\mathbb{H}(\mathbb{R})=\left(\begin{array}{ccc}
1 & \mathbb{R} & \mathbb{R} \\
0 & 1 & \mathbb{R} \\
0 & 0 & 1
\end{array}\right)
$$

- The argument combines the group action method with a Lindeberg-type replacement scheme, in which the steps in the walk are replaced with Gaussians of the same covariance matrix.

Outline

(1) Overview

(2) Upper triangular groups
(3) Abelian sandpiles
(4) Cycle walks

Sandpiles on the square lattice

(a) Daniel Jerison

(b) Lionel Levine

Sandpiles on the square lattice

- A sandpile on the square lattice \mathbb{Z}^{2} is a sand allocation

$$
\sigma: \mathbb{Z}^{2} \rightarrow \mathbb{Z}_{\geq 0}
$$

- If $\sigma(x) \geq 4$ the pile at x can topple, passing one grain of sand to each of its neighbors. This toppling procedure is known to be abelian.
- An allocation is stable if $\sigma \leq 3$, and unstable otherwise.

Sandpiles on the square lattice

- We consider parallel toppling dynamics in which time progresses in discrete steps, and at each time step, every site that can topple topples once.
- A configuration σ is said to be stabilizable if under parallel toppling, each vertex topples finitely many times. The stabilized sandpile is written σ^{∞}.

Sandpiles on the square lattice

Theorem (H., Jerison, Levine, '17)

Let $\left(\sigma_{x}\right)_{x \in \mathbb{Z}^{2}}$, distributed i.i.d. on $\mathbb{Z}_{\geq 0}$, be a sandpile configuration. If $\left(\sigma_{x}\right)_{x \in \mathbb{Z}^{2}}$ is stabilizable almost surely then

$$
\begin{aligned}
\mathbf{E}\left[\sigma_{0}\right] & \leq 3-\epsilon \\
\epsilon & \gg \min \left(1, \iint\left|z_{1}-z_{2}\right|^{\frac{2}{3}} d \sigma_{0}\left(z_{1}\right) d \sigma_{0}\left(z_{2}\right)\right) .
\end{aligned}
$$

Graph Laplacian and Green's function

- Let Δ denote the graph Laplacian on \mathbb{Z}^{2},

$$
\Delta f(x)=4 f(x)-\sum_{y:\|y-x\|_{1}=1} f(y)
$$

- Denote $G(x)$ the Green's function, which satisfies $\Delta G=\delta_{0}$.

A function harmonic modulo 1

- Write $D_{1} f(x)=f(x+(1,0))-f(x)$.
- The argument uses that $\xi=D_{1}^{3} G$ satisfies
(1) $\xi \in L^{1}\left(\mathbb{Z}^{2}\right)$
(2) ξ is 'harmonic modulo 1 ', that is, $\Delta \xi \equiv 0 \bmod 1$
(3) For $A>1$,

$$
\sum_{x:\left|\xi_{x}\right|<\frac{1}{A}}\left|\xi_{x}\right|^{2} \asymp A^{-\frac{4}{3}} .
$$

Several lemmas

Lemma ([9])
Let $\left(\sigma_{x}\right)_{x \in \mathbb{Z}^{2}} \in \mathbb{Z}_{\geq 0}^{\mathbb{Z}^{2}}$ be an i.i.d. sandpile which stabilizes a.s.. Then

$$
\mathbf{E}\left[\sigma_{0}\right]=\mathbf{E}\left[\sigma_{0}^{\infty}\right] .
$$

Lemma

Let $\left(\sigma_{x}\right)_{x \in \mathbb{Z}^{2}} \in \mathbb{Z}_{\geq 0}^{\mathbb{Z}^{2}}$ be an i.i.d. sandpile which stabilizes a.s.. Then

$$
\langle\xi, \sigma\rangle \equiv\left\langle\xi, \sigma^{\infty}\right\rangle \bmod 1, \quad \text { a.s.. }
$$

Proof.

- Let $u^{n}(x)$ denote the number of times that site x topples in the first n rounds of toppling, and let $\sigma^{n}=\sigma-\Delta u^{n}$ be the sandpile after n topplings.
- We have $u^{n} \leq n$ and $\sigma^{n}(x) \leq \max \left(\sigma^{n-1}(x), 7\right)$.
- $\langle\xi, \sigma\rangle$ converges absolutely a.s. by the weak law of large numbers.
- For each n, a.s. $\langle\xi, \sigma\rangle-\left\langle\xi, \sigma^{n}\right\rangle=-\left\langle\xi, \Delta u^{n}\right\rangle=-\left\langle\Delta \xi, u^{n}\right\rangle \in \mathbb{Z}$.
- Thus a.s. $\langle\xi, \sigma\rangle-\left\langle\xi, \sigma^{\infty}\right\rangle \in \mathbb{Z}$, by dominated convergence.

Proof sketch of theorem

- The previous lemma implies that the equality

$$
\chi(\xi, \sigma)=\mathbf{E}\left[e^{-2 \pi i\langle\xi, \sigma\rangle}\right]=\mathbf{E}\left[e^{-2 \pi i\left\langle\xi, \sigma^{\infty}\right\rangle}\right]=\chi\left(\xi, \sigma^{\infty}\right)
$$

- By independence,

$$
|\mathrm{LHS}|=\prod_{x \in \mathbb{Z}^{2}}\left|\mathbf{E}\left[e^{-2 \pi i \xi_{x} \sigma_{0}}\right]\right|
$$

while $\sigma^{\infty} \leq 3$ implies

$$
|\mathrm{RHS}|=1-O\left(3-\mathbf{E}\left[\sigma_{0}\right]\right)
$$

- The theorem follows on comparing the LHS and RHS, we omit the details.

Torus sandpiles

Consider sandpile dynamics on the torus $\mathbb{T}_{m}=(\mathbb{Z} / m \mathbb{Z})^{2}$, given as follows.

- The point $(0,0)$ is designated 'sink' and is special, in that any grain of sand which falls on the sink is lost from the model.
- Each non-sink point on the torus has a sand allocation indicated by

$$
\sigma: \mathbb{T}_{m} \backslash\{(0,0)\} \rightarrow \mathbb{Z}_{\geq 0}
$$

- A move in the model consists of dropping a grain of sand on a uniformly chosen vertex v, then performing topplings until the configuration is stable.

Torus sandpiles

- Those states \mathscr{S}_{m} for which $\sigma \leq 3$ are stable, while those states \mathscr{R}_{m} which may be reached from the maximal state $\sigma \equiv 3$ are recurrent.
- The stationary distribution of the model is the uniform distribution on recurrent states.

Torus sandpiles

Theorem (H., Jerison, Levine, 2017)

There is a constant $c_{0}>0$ and $t_{m}^{\text {mix }}=c_{0} m^{2} \log m$ such that the following holds. For each fixed $\epsilon>0$,

$$
\begin{align*}
& \lim _{m \rightarrow \infty} \min _{\sigma \in \mathscr{S}_{m}}\left\|P^{\left\lceil(1-\epsilon) t^{\mathrm{mix}}\right.} \delta_{\sigma}-\mathbb{U}_{\mathscr{R}}\right\|_{\operatorname{TV}\left(\mathscr{S}_{m}\right)}=1, \tag{1}\\
& \lim _{m \rightarrow \infty} \max _{\sigma \in \mathscr{S}_{m}}\left\|P^{\left\lfloor(1+\epsilon) t^{\mathrm{mix}}\right\rfloor} \delta_{\sigma}-\mathbb{U}_{\mathscr{R}}\right\|_{\operatorname{TV}\left(\mathscr{S}_{m}\right)}=0 .
\end{align*}
$$

We say that sandpile dynamics on the torus exhibits a cut-off phenomenon with mixing time asymptotic to $c_{0} m^{2} \log m$.

Ideas in the argument

- A simple coupon collector type argument shows that, started from an arbitrary state, a recurrent state is reached in $O\left(m^{2} \sqrt{\log m}\right)$ steps with probability $1+o(1)$.
- We thus reduce to considering the dynamics started from a recurrent state. These have the structure of an abelian group, isomorphic to $\mathscr{G}=\mathbb{Z}^{\mathbb{T}_{m} \backslash\{(0,0)\}} / \bar{\Delta} \mathbb{Z}^{\mathbb{T}_{m} \backslash\{(0,0)\}}$, where $\bar{\Delta}$ is the reduced graph Laplacian, found by omitting the row and column corresponding to the sink.
- In this identification, the dynamics are given by convolution with the measure μ which is uniform on the standard basis vectors of $\mathbb{Z}^{\mathbb{T}_{m} \backslash\{(0,0\}}$ and 0.

Ideas in the argument

- Denote the dual group $\hat{\mathscr{G}}=\bar{\Delta}^{-1} \mathbb{Z}^{\mathbb{T}_{m} \backslash\{(0,0)\}} / \mathbb{Z}^{\mathbb{T}_{m} \backslash\{(0,0)\}}$
- The spectrum is given by the Fourier coefficients

$$
\hat{\mu}(\xi)=\mathbf{E}_{x \in \mathbb{T}_{m}}\left[e^{2 \pi i \xi_{x}}\right]: \quad \xi \in \hat{\mathscr{G}} .
$$

- Identify $\xi \in \hat{\mathscr{G}}$ with prevector $v=\bar{\Delta} \xi \in \mathscr{G}$. Choose representative v with $\|v\|_{\infty} \leq 3$.

Ideas in the argument

- The Fourier coefficients of high frequencies for which $\|v\|_{1}>m^{2-\theta}$ are bounded by using that $\bar{\Delta}$ is bounded $L^{2} \rightarrow L^{2}$.
- The remaining frequencies have v which are sparse. An agglomeration scheme is performed to decompose v into clustered components.
- The local nature of $\bar{\Delta}$ is used to show that cancellation in $\hat{\mu}(\xi)$ is essentially additive from separated clusters. This is the most technical part of the argument, since the inverse map, given by convolution with the Green's function, only satisfies a decay condition on derivatives.
- Strong additivity at small frequencies is used to demonstrate the cut-off phenomenon via second moment methods.

Torus sandpiles

We also evaluate the spectral gap as follows.
Theorem (H., Jerison, Levine, 2017)
Let $m \geq 1$. Restricted to recurrent states, the spectral gap of sandpile dynamics on \mathbb{T}_{m} is given by gap ${ }_{m}=\frac{\gamma+o(1)}{m^{2}}$ where

$$
\gamma=\inf \left\{\sum_{x \in \mathbb{Z}^{2}}\left(1-\cos \left(2 \pi \xi_{x}\right)\right): \xi \in \mathbb{R}^{\mathbb{Z}^{2}}, \xi \not \equiv 0 \bmod 1, \Delta \xi \equiv 0 \bmod 1 .\right\}
$$

Torus sandpiles

The value of γ (and also c_{0}) is determined as follows.

- Let $\xi \in\left(-1 / 2,1 / 2 \mathbb{Z}^{\mathbb{Z}^{2}}\right.$ and write $\Delta \xi=v \in \mathbb{Z}^{\mathbb{Z}^{2}}$.
- Given a subset $S \subset \mathbb{Z}^{2}$, define $N(S)=\left\{x \in \mathbb{Z}^{2}: d(x, S) \leq 1\right\}$ it's distance-1 enlargement.
- Define $P(S ; v)$ to be the program:

$$
\begin{aligned}
\operatorname{minimize} & \sum_{n \in N}\left(1-\cos \left(2 \pi x_{n}\right)\right) \\
\text { subject to: } & \left(x_{n}\right)_{n \in N} \subset\left[0, \frac{1}{2}\right)^{N}, \\
& \forall s \in S, 4 x_{s}+\sum_{t:\|t-s\|_{1}=1} x_{t} \geq\left|v_{s}\right|
\end{aligned}
$$

Thus $\sum_{x \in \mathbb{Z}^{2}} 1-\cos \left(2 \pi \xi_{x}\right) \geq P(S ; v)$.
In practice this search is of a reasonable size.

Outline

(1) Overview

(2) Upper triangular groups

(3) Abelian sandpiles

(4) Cycle walks

Cycle walks

- The total variation distance between two probability measures μ, ν on $\mathbb{Z} / p \mathbb{Z}$ is

$$
\|\mu-\nu\|_{\mathrm{TV}(\mathbb{Z} / p \mathbb{Z})}=\sup _{B \subset \mathbb{Z} / p \mathbb{Z}}|\mu(B)-\nu(B)|
$$

- The total variation mixing time for random walk driven by probability measure μ is

$$
t_{1}^{\mathrm{mix}}=\inf \left\{N:\left\|\mu^{* N}-\mathbb{U}_{\mathbb{Z} / p \mathbb{Z}}\right\|_{\mathrm{TV}(\mathbb{Z} / p \mathbb{Z})}<\frac{1}{e}\right\}
$$

- Given set $A \subset \mathbb{Z} / p \mathbb{Z}$, write μ_{A} for its uniform measure.

Cayley graphs

- Given symmetric generating set $A \subset \mathbb{Z} / p \mathbb{Z}$ denote $\mathscr{C}(A, p)$ the Cayley graph with vertices $V=\mathbb{Z} / p \mathbb{Z}$ and edge set

$$
E=\left\{\left(n_{1}, n_{2}\right) \in(\mathbb{Z} / p \mathbb{Z})^{2}: n_{1}-n_{2} \in A\right\}
$$

- Write $\operatorname{diam}(\mathscr{C}(A, p))$ for the graph-theoretic diameter of $\mathscr{C}(A, p)$.
- Since $\mathbb{Z} / p \mathbb{Z}$ is abelian there is a more geometric notion of diameter

$$
\begin{aligned}
& \operatorname{diam}_{\operatorname{geom}}(\mathscr{C}(A, p)) \\
& =\max _{x \in \mathbb{Z} / p \mathbb{Z}} \min \left(\|\underline{n}\|_{2}: \underline{n} \in \mathbb{Z}^{k}, \exists \underline{a} \in A^{k}, \underline{n} \cdot \underline{a} \equiv x \bmod p\right) .
\end{aligned}
$$

Note $\operatorname{diam}_{\text {geom }}(\mathscr{C}(A, p)) \leq \operatorname{diam}(\mathscr{C}(A, p))$.

Geometric mixing bound

Theorem (H., 2015)

Let p be an odd prime, let $1 \leq k \leq \frac{\log p}{\log \log p}$ and let $A,|A|=2 k+1$ be a symmetric generating set. The mixing time $t_{1}^{\text {mix }}$ of random walk driven by μ_{A} satisfies

$$
t_{1}^{\operatorname{mix}} \ll k \cdot \operatorname{diam}_{\text {geom }}(\mathscr{C}(A, p))^{2}
$$

This extends to growing generating sets a previous result of Diaconis and Saloff-Coste [8].

Geometric mixing bound

Figure: Yuval Peres

Steps in the proof

- Let $A=\left\{0, \pm a_{1}, \ldots, \pm a_{k}\right\}, \underline{a}=\left(a_{1}, \ldots, a_{k}\right)$ and let $\Lambda<\mathbb{Z}^{k}$ defined by

$$
\Lambda=\left\{\lambda \in \mathbb{Z}^{k}: \lambda \cdot \underline{a} \equiv 0 \bmod p\right\} .
$$

This is an index p lattice of \mathbb{Z}^{k}.

- Let $\nu_{k}=\frac{1}{2 k+1}\left(\delta_{0}+\sum_{j=1}^{k}\left(\delta_{\mathbf{e}_{j}}+\delta_{-\mathbf{e}_{j}}\right)\right)$.
- For each $n \geq 1, \mu_{A}^{* n}$ on $\mathbb{Z} / p \mathbb{Z}$ and $\nu_{k}^{* n}$ on \mathbb{Z}^{k} / Λ are equal in law.

Steps in the proof

Denote $\eta_{k}(\sigma, \underline{x})$ the spherically symmetric Gaussian on \mathbb{R}^{k},

$$
\eta_{k}(\sigma, \underline{x})=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{\frac{k}{2}} \exp \left(-\frac{\|x\|_{2}^{2}}{2 \sigma^{2}}\right) .
$$

Lemma

Let $n, k(n)$ be parameters satisfying $k^{2}=o(n)$ for large n. As $n \rightarrow \infty$,

$$
\left\|\nu_{k}^{* n} * 1_{\left(-\frac{1}{2}, \frac{1}{2}\right]^{k}}-\eta_{k}\left(\sqrt{\frac{2 n}{2 k+1}}, \cdot\right)\right\|_{\mathrm{TV}\left(\mathbb{R}^{k}\right)}=o(1) .
$$

This permits working with a Gaussian diffusion on \mathbb{R}^{k} / Λ.

Steps in the proof

- At step t the Gaussian diffusion has density on \mathbb{R}^{k} / Λ given by

$$
\Theta(\underline{x} ; t)=\sum_{\lambda \in \Lambda} \eta_{k}\left(\sqrt{\frac{2 t}{2 k+1}}, \underline{x}-\lambda\right)
$$

- Let \mathscr{F} be a norm-minimal fundamental domain (Voronoi cell) for \mathbb{R}^{k} / Λ. Since $\bar{\Theta}(\underline{x} ; t)=\mathbf{E}_{\underline{y} \in \mathscr{F}}[\Theta(\underline{x} ; t)]=\mathbb{U}_{\mathbb{R}^{k} / \Lambda}$, the goal is to approximate $\Theta(\underline{x} ; t) \approx \bar{\Theta}(\underline{x} ; t)$.

Steps in the proof

- Estimate

$$
\begin{aligned}
& \left|\eta_{k}\left(\sqrt{\frac{2 t}{2 k+1}}, \underline{x}\right)-\mathbf{E}_{\underline{y} \in \mathscr{F}}\left[\eta_{k}\left(\sqrt{\frac{2 t}{2 k+1}}, \underline{x}-\underline{y}\right)\right]\right| \\
& \leq \eta_{k}\left(\sqrt{\frac{2 t}{2 k+1}}, \underline{x}\right) \mathbf{E}_{\underline{y} \in \mathscr{F}}\left[\exp \left(\frac{2 k+1}{4 t}\left(\|\underline{y}\|_{2}^{2}+2|\langle\underline{x}, \underline{y}\rangle|\right)\right)-1\right] .
\end{aligned}
$$

- The proof is completed by combining the integral over \mathbb{R}^{k} / Λ with the sum over Λ, to average over $\underline{x} \in \mathbb{R}^{k}$. Note that \mathscr{F} is contained in the ball of radius the geometric diameter.

The cut-off phenomenon

- Let $2<p_{1}<p_{2}<\ldots$ be a sequence of primes. For each $n \geq 1$, let $A_{n} \subset \mathbb{Z} / p_{n} \mathbb{Z}$ be a symmetric subset. The sequence of random walks $\left(\mathbb{Z} / p_{n} \mathbb{Z}, \mu_{A_{n}}\right)$ exhibits the 'cut-off phenomenon' if, for each $0<\epsilon<1$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|\mu_{A_{n}}^{*\left[(1+\epsilon) t_{1, n}^{\text {mix }}\right]}-\mathbb{U}_{\mathbb{Z} / p_{n} \mathbb{Z}}\right\|_{\operatorname{TV}\left(\mathbb{Z} / p_{n} \mathbb{Z}\right)}=0 \\
& \lim _{n \rightarrow \infty}\left\|\mu_{A_{n}}^{*\left\lfloor(1-\epsilon) t_{1, n}^{\text {mix }}\right\rfloor}-\mathbb{U}_{\mathbb{Z} / p_{n} \mathbb{Z}}\right\|_{\operatorname{TV}\left(\mathbb{Z} / p_{n} \mathbb{Z}\right)}=1 .
\end{aligned}
$$

- A choice of $\epsilon=\epsilon_{n}$ tending to zero with n for which this holds is a 'cut-off profile'.

The cut-off phenomenon

- The cut-off phenomenon is a widely studied feature of Markov chains, although it typically is difficult to prove.
- Examples of sequences of Markov chains which have cut-off include nearest neighbor walk on the hypercube, the Gilbert-Shannon-Reeds model of riffle shuffling, and random walk on Ramanujan graphs of bounded degree.
- A necessary condition for cut-off is

$$
\lim _{n \rightarrow \infty} \frac{t_{1, n}^{\mathrm{mix}}}{t_{n}^{\text {rel }}}=\infty
$$

Random theorem

Theorem (H., 2015)

Let $k: \mathscr{P} \rightarrow \mathbb{Z}_{>0}$ tend to ∞ with p in such a way that $k(p) \leq \frac{\log p}{\log \log p}$. Choose $\left\{A_{p} \bmod p\right\}_{p \in \mathscr{P}}$ independently with A_{p} uniform from symmetric sets of size $2 k+1$. The following hold with probability 1 .

1. Worst case behavior:

$$
\liminf \frac{t_{1}^{\mathrm{mix}}(p)}{t^{\mathrm{rel}}(p)} \ll 1
$$

In particular, the cut-off phenomenon does not occur for $\left(\mathbb{Z} / p \mathbb{Z}, \mu_{A_{p}}, \mathbb{U}_{\mathbb{Z} / p \mathbb{Z}}\right)_{p \in \mathscr{P}}$. Also

$$
\lim \sup \frac{t_{1}^{\text {mix }}(p)}{p^{\frac{4}{k(p)}}} \gg 1, \quad \lim \sup \frac{t_{1}^{\text {mix }}(p)}{p^{\frac{4}{k(p)}}(\log p)^{\frac{2}{k(p)}}} \ll 1
$$

Random theorem, cont'd

Theorem (H., 2015)

2. Typical behavior: For any sequence $\{\epsilon(p)\}_{p \in \mathscr{P}} \subset \mathbb{R}_{>0}$ satisfying $\epsilon(p) \sqrt{k(p)} \rightarrow \infty$ there is a density 1 subset $\mathscr{P}_{0} \subset \mathscr{P}$ such that in the family $\left(\mathbb{Z} / p \mathbb{Z}, \mu_{A_{p}}, \mathbb{U}_{\mathbb{Z} / p \mathbb{Z}}\right)_{p \in \mathscr{P}_{0}}$ we have

$$
t_{1}^{\operatorname{mix}}(p) \sim \frac{k(p)}{2 \pi e} p^{\frac{2}{k(p)}}
$$

and as $p \rightarrow \infty$ running through \mathscr{P}_{0}

$$
\lim \left\|\mu_{A_{p}}^{(1 \pm \epsilon) t_{1}^{\operatorname{mix}}(p)}-\mathbb{U}_{\mathbb{Z} / p \mathbb{Z}}\right\|_{\mathrm{TV}(\mathbb{Z} / p \mathbb{Z})}=\left\{\begin{array}{ll}
0 & + \\
1 & -
\end{array} .\right.
$$

Random theorem

- The theorem shows that random-random walk on the cycle with small generating sets has a generic behavior with a very sharp mixing cut-off. When $k \sim \frac{\log p}{\log \log p}$, the mixing time is of order

$$
k p^{\frac{2}{k}} \asymp \frac{(\log p)^{3}}{\log \log p}
$$

while the window is shown to be smaller by a factor of essentially \sqrt{k}, which is a power of the mixing time.

- This is a much sharper window than in well-studied examples of random walk on abelian groups such as random walk on the hypercube, where the window is smaller than the mixing time by a factor of log.
- Rare walks exhibit a bounded-dimensional behavior, and have a transition to uniformity on the scale of the mixing time.

Remarks about the arguments

- The more refined estimates regarding cut-off use concentration properties of the high dimensional Gaussian to partition the theta function into a concentrated piece plus a small L^{1} error. Removing the L^{1} error permits the problem to be studied on L^{2}.
- The geometry of the fundamental domain for \mathbb{R}^{k} / Λ is studied. A random fundamental domain behaves like the Euclidean 2-ball in a statistical sense. Combined with the spherical symmetry of the Gaussian, this explains the sharp transition window.
- The unfolding method of analytic number theory is used to study the theta function.

Bibliography

[1] Aldous, D.
"Random walks on finite groups and rapidly mixing Markov chains."
In Seminar on probability, XVII, volume 986 of Lecture Notes in
Math. Springer, Berlin (1983): 243-297.
[2] Aldous, D. and P. Diaconis.
"Strong uniform times and finite random walks."
Adv. in Appl. Math., 8(1), (1987):69-97.
[3] G. K. Alexopoulos
"Centered densities on Lie groups of polynomial volume growth."
Probab. Theory Related Fields 124 (2002), no. 1, 112-150.
[4] G. K. Alexopoulos
"Random walks on discrete groups of polynomial volume growth." Ann. Probab. 30 (2002), no. 2, 723-801.

Bibliography

[5] Bak, P., C. Tang, and K. Wiesenfeld. "Self-organized criticality."
Physical Review A 38.1 (1988): 364.
[6] Breuillard, Emmanuel.
"Local limit theorems and equidistribution of random walks on the Heisenberg group." Geometric and functional analysis GAFA 15.1 (2005):35-82.
[7] Dhar, Deepak.
"Self-organized critical state of sandpile automaton models."
Physical Review Letters 64.14 (1990): 1613.
[8] P. Diaconis and L. Saloff-Coste.
"Moderate growth and random walk on finite groups."
Geom. Funct. Anal. 4 (1994), no. 1, 1-36.

Bibliography

[9] Fey, Anne, Ronald Meester, and Frank Redig.
"Stabilizability and percolation in the infinite volume sandpile model."
The Annals of Probability (2009): 654-675.
[10] Jerison, Daniel C., Lionel Levine, and John Pike.
"Mixing time and eigenvalues of the abelian sandpile Markov chain."
arXiv preprint arXiv:1511.00666 (2015).
[11] Y. Peres and A. Sly.
"Mixing of the upper triangular matrix walk."
Probab. Theory Related Fields 156 (2013), no. 3-4, 581-591.

