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Prehomogeneous vector spaces

A prehomogeneous vector space (V ,G , ρ) consists of

A rational representation of a complex algebraic Lie group G

A singular set S which is a proper algebraic subset of V , such that
V \ S is a single G orbit

We assume a real structure, such that VR \ S splits into finitely many
open GR orbits V1, ...,Vl

An invariant, the discriminant P is a homogeneous polynomial of
degree d such that S = {x ∈ VR : P(x) = 0}.
We assume the representation is rational, and are interested in
enumerating integral orbits ordered by discriminant.

The analytic study of the zeta functions enumerating these orbits was
begun by Sato and Shintani

Robert Hough (SUNY Stony Brook) Subconvexity July 2, 2021 3 / 46



Example spaces with arithmetic applications

The theory of prehomogeneous vector spaces has received significant
attention due to applications to arithmetic.

Delone-Fadeev and Gan-Gross-Savin showed that the
prehomogeneous vector space of binary cubic forms
{f (x , y) = ax3 + bx2y + cxy2 + dy3} acted on by GL2(R),

g · f (x , y) = f ((x ,y)g)
det g is in natural discriminant preserving bijection

with isomorphism classes of cubic rings.

Davenport and Heilbronn used this bijection to prove an asymptotic
count of cubic number fields ordered by discriminant.
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Bhargavaology

Manjul Bhargava proved a discriminant preserving bijection between
the space 2⊗ sym2(Z3) of pairs of integral ternary quadratic forms
acted on by GL2(Z)× SL3(Z) and the space of pairs (Q,C ) of
quartic rings and a cubic resolvent ring, and used this bijection to
count S4 quartic fields ordered by discriminant, with a similar result in
the quintic case.

Bhargava and Gross have outlined a program using geometric
invariant theory, and there have been many recent results counting
integral orbits in representation spaces ordered by invariants.
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The analytic theory

While the algebraic and geometric theory has seen impressive recent
advances there is a long history developing the analytic theory of zeta
functions of prehomogeneous vector spaces.

Sato and Kimura classified prehomogeneous vector spaces in the 60s

Sato and Shintani proved meromorphic continuation and functional
equations of the zeta functions

Datskovsky, Wright and Yukie developed the adelization of the zeta
functions in the 90s, making conjectures regarding number fields

Recent work of myself, Lee, Taniguchi and Thorne among others develops
the analytic properties by

Classifying orbits locally and their orbital exponential sums

Developing the spectral theory of the underlying homogeneous spaces

Proving subconvexity of the zeta functions in the critical strip
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The orbital zeta function

Let G+ be the connected component of the identity in GR and
Γ = G+ ∩ GZ.

Define a rational character χ of G by P(g · x) = χ(g)P(x)

Let L be a Γ invariant lattice, and let L′ = L \ (L ∩ S).

Define the orbital integrals, for Schwarz class f ,

Φi (f , s) =

∫
Vi

f (x)|P(x)|sdx .

The orbital zeta function is

Z (f , L, s) =

∫
G+/Γ

χ(g)s
∑
x∈L′

f (ρ(g)x)dg
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The Sato-Shintani zeta functions

By unfolding the orbital integral, obtain the Dirichlet series factorization:

Z (f , L, s) =

∫
G+/Γ

χ(g)s
∑
x∈L′

f (ρ(g)x)dg

=
l∑

i=1

ξi (s, L)Φi

(
f , s − n

d

)
where

ξi (s, L) =
∑

x∈Γ\L∩Vi

1

|Stab(x)||P(x)|s
.
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Functional equation and meromorphic continuation

Sato and Shintani prove the following general theorem proving a functional
equation and meromorphic continuation of the zeta function. Let L∗ be
the lattice dual to L.

Theorem

The Dirichlet series ξi (s, L), ξ∗i (s, L∗) have meromorphic continuation to
C. Moreover, there is a product of Gamma factors γ(s), a constant b0 and
trigonometric polynomials uij(s) such that the functional equation holds

v(L∗)ξ∗i

(n
d
− s, L∗

)
= γ

(
s − n

d

)
(2π)−ds |b0|s exp

(
πids

2

)
×

l∑
j=1

uji (s)ξj(s, L).
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The case of binary cubic forms

In the cubic case of binary cubic forms, Shintani made a more detailed
study, determining γ(s), the trigonometric polynomials, and identifying the
poles and residues of the zeta functions at s = 1 and s = 5

6 . His analysis
was partly carried forward by Yukie in the quartic case, but the residues of
the poles are left undetermined.
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Analytic refinements

We discuss analytic refinements of Sato-Shintani’s method in three
directions.

1 Classify the orbits describing local conditions mod p and mod p2 and
calculate their finite Fourier transforms.

2 Expand G+/Γ spectrally in automorphic forms. This describes the
finer distribution of points in the underlying homogeneous space or
space of lattices.

3 Estimate the growth of the zeta functions in vertical strips.
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Strong form of the Davenport-Heilbronn Theorem

Taniguchi and Thorne proved the following strong form of the
Davenport-Heilbronn Theorem counting cubic fields ordered by
discriminant.

Theorem (Taniguchi-Thorne)

Let N±3 (X ) be the number of cubic fields K with 0 < ±Disc(K ) < X . Let
C− = 3,C+ = 1,K− =

√
3,K+ = 1. Then

N±3 (X ) = C±
1

12ζ(3)
X + K±

4ζ
(

1
3

)
5Γ
(

2
3

)3
ζ
(

5
3

)X 5
6 + O

(
X

7
9

+ε
)
.
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Local analysis in the cubic case

A key ingredient in Taniguchi-Thorne’s proof is the following local
estimate.

Let ĥ(m) be the class number of dual binary cubic forms of

discriminant m, with representatives {x̂i ,m}
ĥ(m)
i=1 .

Let Np be the indicator function that a form is non-maximal at p,
and Nq =

∏
p|q Np.

Uniformly in q and Y , for all ε > 0,

∑
0<|m|<Y

ĥ(m)∑
i=1

|N̂q(x̂i ,m)| �ε q
−7+εY .
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Taniguchi-Thorne’s classification of mod p quartic orbits

Throughout ` denotes a non-square modulo p and s(a, b, c, d) = (p − 1)apb(p + 1)c (p2 + p + 1)
d
2 .

Orbit Representative Orbit size Stabilizer size
O0 (0, 0) 1 s(5, 4, 2, 2)

O
D12 (0,w2) s(1, 0, 1, 2) s(4, 4, 1, 0)

OD11 (0, vw) s(1, 1, 2, 2)/2 2s(4, 3, 0, 0)

OD2 (0, v2 − `w2) s(2, 1, 1, 2)/2 2s(3, 3, 1, 0)

ODns (0, u2 − vw) s(2, 2, 1, 2) s(3, 2, 1, 0)

OCs (w2, vw) s(2, 1, 2, 2) s(3, 3, 0, 0)
OCns (vw, uw) s(2, 3, 1, 2) s(3, 1, 1, 0)

OB11 (w2, v2) s(2, 2, 2, 2)/2 2s(3, 2, 0, 0)

OB2 (vw, v2 + `w2) s(3, 2, 1, 2)/2 2s(2, 2, 1, 0)

O
14 (w2, uw + v2) s(3, 2, 2, 2) s(2, 2, 0, 0)

O
131

(vw, uw + v2) s(3, 3, 2, 2) s(2, 1, 0, 0)

O
1212 (w2, uv) s(2, 4, 2, 2)/2 2s(3, 0, 0, 0)

O
22 (w2, u2 − `v2) s(3, 4, 1, 2)/2 2s(2, 0, 1, 0)

O
1211

(v2 − w2, uw) s(3, 4, 2, 2)/2 2s(2, 0, 0, 0)

O
122

(v2 − `w2, uw) s(3, 4, 2, 2)/2 2s(2, 0, 0, 0)

O1111 (uw − vw, uv − vw) s(4, 4, 2, 2)/24 24s(1, 0, 0, 0)

O112 (vw, u2 − v2 − `w2) s(4, 4, 2, 2)/4 4s(1, 0, 0, 0)

O22 (vw, u2 − `v2 − `w2) s(4, 4, 2, 2)/8 8s(1, 0, 0, 0)

O13 (uw − v2, B3) s(4, 4, 2, 2)/3 3s(1, 0, 0, 0)

O4 (uw − v2, B4) s(4, 4, 2, 2)/4 4s(1, 0, 0, 0)

(1)

The items B3 and B4 indicate B3 = uv + a3v
2 + b3vw + c3w

2 and B4 = u2 + a4uv + b4v
2 + c4vw + d4w

2 where

X 3 + a3X
2 + b3X + c3 and X 4 + a4X

3 + b4X
2 + c4X + d4 are irreducible over Z/pZ.
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Local analysis in the quartic case

Let 1non-max be the indicator function of forms in V (Z/p2Z) which
correspond to quartic rings non-maximal at p.

Theorem (H., 2020)
For p > 3 the Fourier transform

̂1non-max(ξ) =
∑

x∈V (Z/p2Z)

1non-max(x)e
p2 ([x, ξ])

is supported on the mod p orbits O0, O
D12 , OD11 and O

D2 . It satisfies

∥∥∥ ̂1non-max

∥∥∥
1

= 2p29 + 2p28 + 4p27 − 8p26 − 19p25 − 2p24 + 20p23 + 24p22 − 5p21

− 17p20 − 5p19 + 3p18 + 2p17 − 2p16 + p15 + p14
,∥∥∥ ̂1non-max

∥∥∥2

2
= p46 + 2p45 + 2p44 − 3p43 − 4p42 − p41 + 3p40 + 3p39 − p38 − p37

,∣∣∣supp ̂1non-max

∣∣∣ = 2p15 + p14 − 2p13 − p12 + 2p10 − p8
.

An exact formula for the Fourier transform is given along with a
classification of mod p2 orbits.
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Definition of the automorphic twist

The automorphic twist of a Sato-Shintani zeta function is defined as
follows.
Let φ be an automorphic form for Γ\G 1.
For each open orbit Vi choose xi a base point, |Disc(xi )| = 1. The twisted
zeta function is

ξi (φ, s, L) =
∑

x∈Γ\L∩Vi

∑
g ·xi=x

φ(g)

|Stab(x)||Disc(x)|s
.
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The convolution equation

Let f ∈ C∞c (G 1) be bi-K -invariant.
For imaginary z = iγ, E (iγ, g) = E 1+γ2

4

(g t), which is left invariant under

Γ.
As a right convolution operator f acts on Er as multiplication by a scalar.
To check this, note that

Er ∗ f (g0) =

∫
gh=g0

Er (g)f (h)dh (2)

is left Γ invariant and right K invariant. Also, it is an eigenfunction of the
Laplacian and Hecke operators, with the same eigenvalues as Er . It follows
by multiplicity one that the convolution is a multiple of Er .
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The convolution equation

The following lemma determines the eigenvalue.

Lemma

We have

Er ∗ f =

(∫
G1

f (g)t(g)1+zdg

)
Er .
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Determination of eigenvalue

Proof.

Let ψ ∈ C∞c (Γ\G 1/K ) be a smooth test function and let ψ0 be the
constant term in its Fourier expansion in the parabolic direction. The
Petersson inner product of Er with ψ is a Mellin transform of ψ0,∫

Γ\G1

Er (g)ψ(g)dg =

∫
Γ\G1

∑
γ∈Γ∞\Γ

t(γg)1+zψ(γg)dg

=

∫
Γ∞\G1

t(g)1+zψ(g)dg

=

∫ ∞
0

ψ0(t)t−1+z dt

t
= ψ̃0(−1 + z).
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Determination of eigenvalue

Proof.

Next we calculate the inner product with the convolution Er ∗ f ,

∫
Γ\G1

(Er ∗ f )(g)ψ(g)dg =

∫
Γ\G1

∫
G1

Er (h)f (h−1g)ψ(g)dhdg

=

∫
Γ\G1

∫
G1

∑
γ∈Γ∞\Γ

t(h)1+z f (h−1
γg)ψ(γg)dhdg

=

∫
Γ∞\G1

∫
G1

t(h)1+z f (h−1g)ψ(g)dhdg

=

∫ ∞
0

dt1

t3
1

∫ ∞
0

dt2

t3
2

∫ ∞
−∞

dut1+z
1 f

 t2
t1

u
t1t2

0
t1
t2

ψ0(t2).

After a change of coordinates we obtain

ψ̃0(−1 + z)

∫ ∞
0

dt

t
tz
∫ ∞
−∞

duf

((
1
t

u
0 t

))
= ψ̃0(−1 + z)

∫ ∞
0

dt

t
t1+z

∫ ∞
−∞

duf (nuat ) .
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The orbital zeta function with an automorphic twist

Let fG be defined on G 1 by fG (g) = exp (− tr g tg) and extend fG to G+

independent of the determinant.
Let fD(x) ∈ C∞c (R+). Define

f±(g · x±) = fG (g)fD(χ(g)). (3)

The twisted orbital integrals are given by

Z±(f±,Er , L; s) =

∫
G+/Γ

χ(g)sEr (g−1)
∑
x∈L

f±(g · x)dg . (4)

Lemma

In Re(s) > 1,

Z±(f±,Er , L; s) =

√
πK z

2
(2)

12
L ±(Er , s)f̃D(s). (5)
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The shape of a number field

A degree n number field K/Q has r1 real and r2 complex embeddings,
n = r1 + 2r2.

Let the real embeddings be σ1, ..., σr : K → R and the complex
embeddings be σr1+1, ..., σr1+r2 : K → C.

The canonical embedding is

σ(x) = (σ1(x), ..., σr1+r2(x)) ∈ Rr1 × Cr2 .
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The shape of a number field

Treat C as a two-dimensional vector space over R. The ring of
integers O ⊂ K is a n-dimensional lattice in Rn under the mapping

x 7→ (σ1(x), ..., σr1(x), ...,Reσr1+r2(x), Imσr1+r2(x)).

The covolume of this lattice is vol(σ(O)) = 2−r2 |D|
1
2 where D = DK

is the field discriminant.
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The shape of a number field

An old theorem of Hermite states that there are only finitely many
number fields of a given discriminant.

Note that, since σ(1) is always present in the ring of integers,
compared to the volume this is a short vector in the lattice.

Thus the lattice shape ΛK is understood to be the
(n − 1)-dimensional orthogonal projection in the space orthogonal to
σ(1), rescaled to have volume 1.
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Past work

Terr in the case n = 3 and Bhargava and Harron in the cases
n = 3, 4, 5 show that when Sn fields are ordered by discriminant, the
field shape ΛK becomes asymptotically equidistributed in the space

Sn−1 := GLn−1(Z)\GLn−1(R)/GOn−1(R).

This means that for f ∈ Cc(Sn−1),

lim
X→∞

∑
[K :Q]=n,Sn

|Disc(K)|≤X

f (ΛK )

/ ∑
[K :Q]=n,Sn

|Disc(K)|≤X

1 =

∫
Sn−1

f (x)dµn−1(x)

where dµn−1(x) is the induced probability Haar measure on Sn−1.

The arguments permit restricting to fields having a prescribed number
of complex embeddings.
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Automorphic forms

In the case n = 3, a natural basis of functions on the larger quotient

Λ2 = SL2(Z)\SL2(R)

consist of automorphic forms φ which transform under SO2(R) on the
right by a character, and which are joint eigenfunctions of the Casimir
operator and the Hecke operators.

This decomposes Λ2 spectrally into the constant function, cusp forms
(discrete spectrum) and Eisenstein series (continuous spectrum).
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Estimate of Weyl sums

Theorem (H., 2019)

Let φ be a Hecke-eigen-cusp form on SL2(Z)\SL2(R) of K -type 2k . Let
F ∈ C∞c (R+) be a smooth test function. For any ε > 0, as X →∞,

N3,±(φ,F ,X ) :=
∑

[K :Q]=3

φ(ΛK )F

(
±Disc(K )

X

)
�φ X

2
3

+ε.

The bound should be compared to the number of cubic fields of
discriminant of size at most X , which is order X .
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Residues of the Eisenstein twist

Associated to real analytic Eisenstein series Er , r = 1+z2

4 are

L ±(Er , s) =
∞∑

m=1

1

ms

h(±m)∑
i=1

Er (gi ,±m)

| Stab(xi ,±m)|
, Re(s) >

5

4
.

Theorem (H.-Lee, 2021)

The functions L ±(Er , s) have meromorphic continuation to C, with poles
at 5±z

4 and 11±z
12 with residues listed in the following table.

Pole 11+z
12

5+z
4

L − ζ( 1−z
3 )2

z−1
6 π

2z+1
6

3 cos
(
π(1−z)

6

)
Γ( 1−z

3 )Γ( 4−z
6 )

Γ( 7−z
6 )

ζ(3 + z)2
−5−z

2

L + ζ( 1−z
3 )2

z−1
6 π

2z+1
6

3
7−z

4
cos
(
π(1−z)

6

)
Γ( 1−z

3 )Γ( 4−z
6 )

Γ( 7−z
6 )

ζ(3 + z)2
−5−z

2 3
1+z

4

The poles at 11−z
12 and 5−z

4 are found by replacing z with −z and

multiplying by ξ(z)
ξ(1+z) .
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Reducible forms

Shintani shows that all reducible binary cubic forms are SL2(Z)
equivalent to a form bx2y + cxy2 + dy3.

He identifies this space with the space of binary quadratic forms acted

on by the Borel subgroup B =

(
∗ 0
∗ ∗

)
.

Modifying Shintani’s method, we show that when summation in the
Eisenstein series twisted Shintani zeta function is restricted to
irreducible forms, the function has meromorphic continuation to
Re(s) > 3

4 , with poles at 11±z
12 , with the residues in the table.
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Subconvexity of Shintani’s zeta function

Let VZ = {f (x , y) = ax3 + bx2y + cxy2 + dy3 : a, b, c , d ∈ Z} be the
space of integral binary cubic forms. Shintani introduced zeta functions

ξ±(s) :=
∑

f ∈SL2(Z)\VZ
±Disc(f )>0

1

|Stab(f )|
1

|Disc(f )|s
, Re(s) > 1. (6)

Given a Maass cusp form φ for SL2(Z)\SL2(R), the twisted version is

L ±(φ, s) :=
∑

f ∈SL2(Z)\VZ
±Disc(f )>0

φ(f )

| Stab(f )|
1

|Disc(f )|s
, Re(s) > 1. (7)
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Subconvexity of Shintani’s zeta function

Define the diagonalization

ξadd(s) = 3
1
2 ξ+(s) + ξ−(s), ξsub(s) = 3

1
2 ξ+(s)− ξ−(s) (8)

and completed zeta functions

Λadd(s) =

(
432

π4

) s
2

Γ
( s

2

)
Γ

(
s + 1

2

)
Γ

(
s + 1

6

2

)
Γ

(
s − 1

6

2

)
ξadd(s),

(9)

Λsub(s) =

(
432

π4

) s
2

Γ
( s

2

)
Γ

(
s + 1

2

)
Γ

(
s + 5

6

2

)
Γ

(
s + 7

6

2

)
ξsub(s),

Self-dual functional equations Λ(s) = Λ(1− s).

Degree 4, with analytic conductor C( 1
2 + iτ) = τ4 as τ →∞.

No Riemann Hypothesis, but it may be conjectured that Lindelöf
Hypothesis holds, ξadd

(
1
2 + iτ

)
, ξsub

(
1
2 + iτ

)
�ε Cε.
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Subconvexity of Shintani’s zeta function

Theorem (H.-Lee, 2021)

The Shintani zeta functions satisfy the sub-convex bound, for any ε > 0,

ξadd

(
1

2
+ iτ

)
, ξsub

(
1

2
+ iτ

)
�ε τ

98
99

+ε (10)

as τ →∞.
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Subconvexity of Shintani’s zeta function

Although there is not a known functional equation for the twisted versions,
we in fact still prove a subconvex bound.

Theorem (H.-Lee, 2021)

The twisted Shintani zeta functions satisfy the subconvex bound, for any
ε > 0,

L ±
(

1

2
+ iτ, φ

)
�ε,φ τ

26
27

+ε (11)

as τ →∞.
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The approximate functional equation

Theorem

Let G (u) be any function which is holomorphic and bounded in
|Re(u)| < 4, even, with G (0) = 1. For 0 < Re(s) < 1,

ξ
add(s) =

∑
n

aadd(n)

ns
V add
s

(
n
√

432

)
+ ε

add(s)
∑
n

aadd(n)

n1−s
V add

1−s

(
n
√

432

)
+ Radd(s) (12)

ξ
sub(s) =

∑
n

asub(n)

ns
V sub
s

(
n
√

432

)
+ ε

sub(s)
∑
n

asub(n)

n1−s
V sub

1−s

(
n
√

432

)
+ Rsub(s)

where ε∗(s) = 432
1
2
−s γ∗(1−s)

γ∗(s)
,

V∗s (y) =
1

2πi

∫
Re u=3

y−uG(u)(432)
u
2
γ∗(s + u)

γ∗(s)

du

u
(13)

Radd(s) =

(
Resu=1−s + Res

u= 5
6
−s

+ Res
u= 1

6
−s

+ Resu=−s

)
Λadd(s + u)

432
s
2 γadd(s)

G(u)

u
(14)

Rsub(s) =
(

Resu=1−s + Resu=−s
) Λsub(s + u)

432
s
2 γsub(s)

G(u)

u
.
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Homogeneous coordinates

The following lemma estimates the dependence in switching between
rectangular and homogeneous coordinates.

Lemma

When u, t, θ vary in a Siegel set and λ ≥ 1, and v ∈ B the change of
coordinates (a, b, c , d) = nuatkθdλ · v satisfies

∂(a, b, c, d)

∂(u, t, θ, λ)
=


0 O(λt−3) O(λt−1) O(λt)

O(λt−4) O(λt−2) O(λ) O(λt2)

O(λt−3) O(λt−1) O(λt) O(λt3)

O(t−3) O(t−1) O(t) O(t3)

 (15)

∂(u, t, θ, λ)

∂(a, b, c, d)
=


O(λ−1t5) O(λ−1t4) O(λ−1t3) O(t3)

O(λ−1t3) O(λ−1t2) O(λ−1t) O(t)

O(λ−1t) O(λ−1) O(λ−1t−1) O(t−1)

O(λ−1t−1) O(λ−1t−2) O(λ−1t−3) O(t−3)

 .
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Averaging in cartesian boxes

After applying the approximate functional equation and adjusting the
smooth weight, reduce to estimating sums of type

Σ′′1(Y ) =
1

n±M±

∑
f

′
σ

(
|Disc(f )|

Y

) V 1
2

+iτ

(
|Disc(f )|√

432

)
W (f )

|Disc(f )|
1
2

× Ey∈BR(Y )

[
|Disc(f + y)|−iτ

]
.

Here W (f ) restricts the form f to lie in a fundamental domain for
Γ\G+ · v , as in Bhargava’s methods of counting forms.
The expectation in y is estimated by Taylor expanding the phase, and
applying van der Corput’s inequality twice.
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Thank you

Thanks for listening!
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