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Abstract

In this thesis we study Markov chains and representation theory,
which lead us to the research of random walk on 15 puzzle problem.

In the first section, we study the basics of Markov chains. Several
probabilistic methods such as coupling, stationary time and distin-
guishing statistics are discussed.

In the second section, we study representation theory.

In the third section, we investigate Green’s function on 2-dimensional
lattice. This eventually provides a way to calculate return probability
on 2D lattice.

In the fourth section, we illustrate several examples and analyze
their mixing time by the methods we develop in previous sections.

In the fifth section, we develop comparison techniques, which can
give bounds of spectrum of unknown chains by comparing with known
chains on the same state space.

In the sixth section, we give an example of counting problem, which
is an application of Markov Chain mixing times.

In the seventh section, we discuss some results in our research of
random walk on the n? — 1 puzzle.

In the eighth section, two concentration inequalities are presented,
which are used in section 7.
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Chapter 1

Markov chains

Most of this chapter is based on [2]

1.1 Basics

Definition 1.1.1. A Markov chain is a process which moves among the
elements of a set X in the following manner: when at xr € X", the next posi-
tion is chosen according to a fixed probability distribution P(x,-) depending
only on x. More precisely, a sequence of random variables (Xo, X1,...) is
a Markov chain with state space 2 and transition matrix P if
forall x,y e X, allt = 1, and all events H;_1 = ﬂ;é {Xs = x4} satisfying
P(H, 1 n{X;=2x}) >0, we have

P{Xi1 = ylHi1 0 {Xy = 2}} = P{Xiy1 = y| Xy =2} = P(z,y) (L1
1.1 1s called Markov property

The z -th row of P is the distribution P(z,-). Thus P is stochastic, that
is, its entries are all non-negative and

ZP(:c,y) =1 forallze 2

yeX

The distribution at time ¢ can be found by matrix multiplication. Let
(Xo, X1,...) be a finite Markov chain with state space 2~ and transition
matrix P, and let the row vector u; be the distribution of X, :

p(x) =P{X; =2} forallze X



By conditioning on the possible predecessors of the (¢ + 1) -st state, we see
that

peea(y) = D P{X, = 2} P(a,y) = Y| m(x)P(x,y) forallye X

zeX zeX

Rewriting this in vector form gives
pes1 = P for t =0,

and hence
we = poPt fort = 0.

Since we will often consider Markov chains with the same transition ma-
trix but different starting distributions, we introduce the notation P, and
E,, for probabilities and expectations given that o = p.

Quite often, the initial distribution will be concentrated at a single def-
inite starting state = (start at x). We denote this distribution by ¢, (Dirac

measure):
1 ify=ua
5x(y)_{0 ify#ux

We write simply P, and E, for Ps, and E;,, respectively. These definitions
and together imply that

P, {X; =y} = (6.P") (y) = P'(x,y)

That is, the probability of moving in ¢ steps from x to y is given by the (x,y)
-th entry of P!. We call these entries the ¢ -step transition probabilities.

Definition 1.1.2. For a function (a column vector) f on the state space Z .
Consider multiplying f by P from the left and the x -th entry of the resulting
vector:

Pf(x) = S Ple,y)fy) = Y f@)P. {X1 = y} = B. (F (X1)).

Y Y

We say f is harmonic at v € Z if Pf(x) = f(x) (that is, f has stationary
expectation at x.) f is harmonic on A c 2 if Pf(x) = f(x) forallze A

Definition 1.1.3. Fori,j € 2, we say j is reachable from i if there is a
positive integer such that P'(i,j) > 0.

We say i and j communicate if i is reachable from j and j is reachable
from i



It’s easy to see that communicate is a equivalent relation on 2, so it has
corresponding equivalent classes, which we call communicating classes.

Definition 1.1.4. A chain P 1is called irreducible if for any two states
x,y € X there exists an integer t such that P'(x,y) > 0.

We see the above definition is equivalent to that 2" has only 1 commu-
nicating class.

Definition 1.1.5. Let T(x) := {t > 1: P'(z,z) > 0} be the set of times
when it is possible for the chain to return to starting position x. The pertod
of state x is defined to be the greatest common divisor of T (z)

Lemma 1.1.1. If P is irreducible, then ged T (z) = ged T (y) for allz,y € Z

Proof. Fix two states  and y. There exist non-negative integers r and ¢ such
that P"(z,y) > 0 and P'(y,z) > 0.
Then P™*(x,2) = P (x,y)P'(y,x) > 0. So r+1 is a multiple of ged T ().
Also, given m € T (y), we have

Pr+m+l(x’x> > pT(x7y)Pm(y,y)Pl(y,x) >0

. Then r + m + [ is a multiple of ged 7 (), and so is m.
Hence ged T (y) = ged T (x).
Exchange = and y we get ged T () = ged T (y).
Therefore ged T (y) = ged T ().
[

Definition 1.1.6. For an irreducible chain, the period of the chain is defined
to be the period which is common to all states. The chain will be called
aperiodic if all states have period 1. If a chain is not aperiodic, we call it
periodic.

Lemma 1.1.2. If P is aperiodic and irreducible, then there is an integer rg
such that P"(xz,y) > 0 for all x,y € X and r =g

Definition 1.1.7. A distribution m on X satisfying
T =P

can have another interesting property: wn that case, ™ was the long-term
limiting distribution of the chain. We call such probability © satisfying a
stationary distribution of the Markov chain.



Definition 1.1.8. Hitting and first return times. Assume that the
Markov chain (Xg, X1,...) under discussion has finite state space Z and
transition matriz P. For x € X, define the hitting time for x to be

T, :=min{t > 0: X; =z}

the first time at which the chain visits state x. For situations where only a
visit to x at a positive time will do, we also define

mi=min{t >1: X, =z}

When Xo = x, we call 7} the first return time.

Lemma 1.1.3. For any states x and y of an irreducible chain, E, (T;_) < 0.

Proof. The definition of irreducibility implies that there exist an integer r > 0
and a real ¢ > 0 with the following property: for any states z,w € 2", there
exists a j < 7 with P’(z,w) > . Thus for any value of X;, the probability
of hitting state y at a time between ¢ and ¢ + r is at least €. Hence for k > 0
we have

P, {7‘; > k:r} =Px,_,, {T; > T} P, {T; > (k — 1)7“}
<(1—eP. {7 > (k—1)r}
Repeated above yields

P, {r) > kr} < (1-¢)

Recall that when Y is a non-negative integer-valued random variable, we
have

E(Y) =) P{y >t}

t=0

Since P, {T; > t} is a decreasing function of ¢, it suffices to bound all
terms of the corresponding expression for E, (7'7;r ) :

E, () :ZPI{T;_ >t} < ZTPI{T;_ > kr} <r2(1—5)k <
t=0 k=0 k=0
O

Next, we study the existence of the stationary distribution of finite ape-
riod irreducible chains, where the distribution is given by

m(x) = : (1.2)



Let z be an arbitrary initial state. To construct the stationary distribution

7, we consider the expected time the chain reaching a given state y.
Thus we define

7(y) := E.( number of visits to y before returning to z)

Ter—l
=B. ), Ly
t=0

1

n

g

0
= Y Y PAX, = ylrf = n} Pt = n}
n=1

t

0

0 1
:Z Pz{Xt:y’T;_:n}

n=1 t=0

n—

[ee}
= PZ{Xt:y,T;>t},
=0

where the last equality is by changing order of summation (sum by
columns is equal to sum by rows, since

o0 0
wy) = Y PAX =y, >t} <) P >t} = B.rf < o,
t=0 t=0

Proposition 1.1.4. Let 7 be the measure on X defined above
(i) If P, {7t <o} =1, then T satisfies TP =7
(i) If E; (1.7) < o0, then m:= — (Z*) is a stationary distribution.

Proof. We have

o0 e}
wy) =D PAX, =y, >t} <D P >t} = B.rf < o,
t=0 t=0

To check 7 is stationary:

AP(y) = Y. #(@)P(x,y) = X Y PAXy =2, 7F >t} Px,y)  (1.3)

zeX zeX t=0
We know that {7 >t + 1} = {7, > t}. So

Pz{Xt:x7Xt+l :y,T; Zt—{_l} :PZ{Xt:xaT; >t+1}P($ay)

7



Change order of 1.3 and use above identity, we get

o0
D a@)P(r,y) = D PAXp =y, 7 >t + 1}
t=0

TeX
o0
- ZPZ (X, =y, 7 >t}
t=1

Thus,

0
DIPAX =y, >t}
t=1

o0
=7(y) —P.{Xo =y, 7} > O}+2PZ{Xt =y, 7 =1t}
t=1

=7(y) —P.{Xo =y} + P.{X + =y} (1.4)
=7(y).

The last equality follows by considering two cases:

y = z : since Xg = z and X+ = z, the last two terms of 1.4 are both 1,
and they cancel each other out.

y # z : Here the last two terms of 1.4 are both 0.
Therefore,m = 7P.

Normalize the measure by > 7(x) = E, (777), we get

m(x) = 7r(m)+ satisfies m = TP (1.6)

]

Next, we show that the stationary distribution of an irreducible Markov
chain is unique, which implies 1.2. To see why, by 1.6,

_ 7(2) _ 1
E.(rf) E.(7}) '

Since z is arbitrary and 7 is unique, we conclude 1.2 is true.

We need the following lemma to prove the stationary distribution is
unique:

Lemma 1.1.5. Suppose that P is irreducible. A function h which is har-
monic at every point of X is constant.



Proof. Since X is finite, there must be a state zo such that h (zo) = M is
maximal. If for some state z such that P (zg,z) > 0 we have h(z) < M, then

h(wo) = P (20, 2) h(2) + 3, P (z0,y) hy) < M, (1.7)
Yy#z
contradiction. So h(z) = M for all states z such that P(zg,z) > 0
For any y € X, irreducibility implies that there is a sequence
X0, T1,. .., Ty =y with P (z;,x;41) > 0. Repeating the argument above
tells us that h(y) = h(x,—1) = - = h(x9) = M. Thus h is constant. O

Theorem 1.1.6. For an irreducible Markov chain, there is an unique sta-
tionary distribution.

Proof. By 1.1.4, there is at least one stationary distribution. 1.1.5 implies
that the kernel of P — I has dimension 1 (vectors with the same value in each
coordinate). Thus the rank of P — [ is |X| — 1. Since the column rank is
equal to the row rank, the space of solutions of row vector equation v = v P

has dimension 1. The space contains only one vector whose entries sum to
1. O

Next, we discuss reversibility and time reversals of Markov chains. For
our interests here, the mixing time for a random walk on groups is the same
as the reversed one, which will be shown later.

Suppose a probability distribution 7 on X satisfies

2 W) Ply.x) = Y (@) Pla,y) = n(x) (1.8)

yeX yeX
1.8 is called detailed balance equation.

Proposition 1.1.7. Let P be the transition matriz of a Markov chain with
state space X. Any distribution 7 satisfying the detailed balance equations is
stationary for P

Proof.
D () P(y,x) = Y 7(x)P(w,y) = w(x)

yeX yeX



If 1.8 holds, then

7 (xg) P (xo,21) -+ P(xp_1,2,) = 7 (2n) P(xn, Tp_1) - P(x1,20) (1.9)

, which is same as

P.{Xo=20,....Xp=2,} =P, {Xo=2,, X1 =2,1,..., X, = 2o} .
(1.10)
In other words, if a chain (X;) satisfies (1.29) and has stationary initial
distribution, then the distribution of (X, Xi,...,X,) is the same as the
distribution of(X,, X,,_1, ..., Xo) . For this reason, a chain satisfying 1.8 is
called reversible.

The time reversal of an irreducible Markov chain with transition matrix
P and stationary distribution 7 is the chain with matrix

ﬁ(x,y) = %

Proposition 1.1.8. Let (X;) be an irreducible Markov chain with transition

matrix P and stationary distribution w. Write <)A(t> for the time-reversed

(1.11)

chain with transition matriz P. Then 7 is stationary for ]3, and for any
Zg,..., T € X we have

PN{X():LUOP..,Xt:l't}:PN{XOZZEt,...,Xt:CCO}

Proof. To check that 7 is stationary for 13, we simply compute

S () Bly.x) = 3wy "ELE) gy

yeX yeX ﬂ-(y)
To show the probabilities of the two trajectories are equal, note that

P.{Xo=1x0,...,X, =x,} =7 (x0) P(x0,21) P (21,22) - P (2p_1,%n)

=7 (z,) P (2, xpn_1) - P(x2,21) P (21, 20)
T A

since P (x;_1,x;) = m (x;) p (i, ;1) /7 (x;_1) for each i O

Now, we introduce random walks on groups as an example of Markov
chains.

10



Definition 1.1.9. Given a probability distribution p on a group (G, ), the
left random walk on G with increment distribution p is an Markov
chain with state space G, initial distribution p. The transition probability is
given by:

P(g,hg) = pu(h), (equivalently, P(g,h) = u(hg™")).

The right random walk is the Markov chain on the same state space and
wnitial distribution, with transition probability:

P(g, gh) = p(h), (equivalently, P(g, h) = u(g~'h)).

Definition 1.1.10. Convolution

Suppose P and () are probabilities on finite group G. We define convolu-
tion of P and Q) by

P+ Q(s):= ) P(st™Q(t)
t

For above definition, we see for a random walk on a group G with driven
distribution p, the distribution after 1 (step 2) move is p * pu = p*?. The
distribution after n moves is p*"+1

Due to the symmetry of groups, for any random walk on groups, the
uniform distribution is unique:

Proposition 1.1.9. Let P be the transition matriz of a random walk on a
finite group G and let U be the uniform probability distribution on G. Then
U is a stationary distribution for P

Proof.
1 1 B 1 B 1 B
éU(h)P(}%Q) o] éP(k: 9.9) = e ’;u(kf) =15 =V

O

We call a probability distribution x on a group G symmetric if p(g) =
u(g—1) for every g € G.

Proposition 1.1.10. The random walk on a finite group G with increment
distribution p is reversible if p is symmetric.

Proof. Let U be the uniform probability distribution on G. For any g,h e G
we have that

hg™! h1
Ulg)P(g.n) = ") ana wmyP(h,g) = 9D
|G| G
are equal if and only if u(hg™) = u ((hg—l)—1> 0

11



Now we discuss the mixing time, the central property of Markov chains
we are interested in this thesis.

1.2 Total variation distance and Mixing time

Firstly, we study total variation distance of two probability measures,
which is a metric of the difference between two probability measures on the
same state space.

Definition 1.2.1. The total variation distance between two probability dis-
tributions p and v on X is defined by

I = vy = max [u(A) — v(A)

Proposition 1.2.1. Let p and v be two probability distributions on X. Then

vy = 5 3 lu(e) — v(z) (112)

reX

Proof. Without loss of generality, assume
I = vy = max |u(4) — (A)] = pu(X) — v(X)

We claim that, except for a set where p and v agrees, X = {z € X :
u(x) — v(z) > 0}

Suppose dz € X, such that p(zx) — v(z) < 0. Then clearly pu(X\x) —
v(X\z) > u(X) — v(X), contradiction. Then by the definition of total vari-
ation distance, X is the largest such set.

Similarly, if

| = vy = max |u(A) —v(A)] = —(uY) = v(Y)),

Y ={yeX:pulx)—rv(r) <0}

We see that X uY = X, and X nY is the set where p and v agrees.

We know X, (@) = 1 and Yoy v(a) = L So —(u(Y) - () =
—(1—p(X) =1 =v(Y))) = w(X)—pY). Indeed, the two expression of
total variation distance agree.

So

53 nle) — ()] =

zeX

(1(A) = v(A) = (u(Y) = v(Y))) = | = v]rv

DN | —

12



Also, from the above proof we see
-viv = Y ) - v(a). (1.13)
z:p(x)>v(z)

By 1.12 and triangle inequality in R, we see that the total variation
distance satisfying the triangle inequality: for probability distributions u, v
and 7

Il = vy < |[p—nlov + [n—v|ov

The next theorem shows that for an irreducible aperiodic Markov chain,
the chain will eventually converges to uniform distribution.

Theorem 1.2.2. (Convergence Theorem). Suppose that P is irreducible and
aperiodic, with stationary distribution w. Then there exist constants o € (0, 1)
and C' > 0 such that

max | P'(z, ) = 7, < Co

The proof decomposes the chain into a mixture of repeated independent
sampling from the stationary distribution and another Markov chain.

Proof. Since P is irreducible and aperiodic, there exists an r such that P"
has strictly positive entries. Let IT be the matrix with |X| rows, each of
which is the row vector 7. For sufficiently small 6 > 0, we have

P'(z,y) = om(y)
for all z,y € X. Let 6 = 1 — §. The equation

P = (1—6)I+6Q (1.14)

defines a stochastic matrix @). It is a straightforward computation to check
that MTI = II for any stochastic matrix M and that IIM = II for any matrix
M such that M = 7 Next, we use induction to demonstrate that

P*=(1-6"1+06"Q" (1.15)

for kK > 1. If £ = 1, this holds by 1.14. Assuming that 1.15 holds for
k=n
Pr(n+1) — propr — [(1 _ en) I+ enQn] P

Distributing and expanding P in the second term (using 1.14) gives

PO = [1— "] IIP" + (1 - )0"Q"IL + "' Q"Q

13



Using that IIP" = II and Q™II = II shows that

Pr(n+1) _ [1 o 9n+1] I+ 9n+1Qn+1
Using that IIP" = II and Q™II = II shows that

Pr(n+1) _ [1 . 9n+1] I+ 9n+1Qn+1

This establishes 1.15 for k = n + 1 (assuming it holds for £ = n ), and hence
it holds for all k.
Multiplying by P’ and rearranging terms now yields

P 11 = 0% (Q"P7 — 1)

To complete the proof, sum the absolute values of the elements in row xg
on both sides and divide by 2. On the right, the second factor is at most
the largest possible total variation distance between distributions, which is
1. Hence for any xy we have

Hprkﬂ (wo,-) = 7THTV < 0",

Taking o = #"/" and C' = 1/6 finishes the proof.
O

Bounding the maximal distance (over o € X ) between P! (xg,-) and 7
is among our primary objectives. It is therefore convenient to define

. t
d(t) := max |PY(x, ) — 7THTV (1.16)
Later we will show it is often possible to bound |P*(z,-) — P'(y,")| v
uniformly over all pairs of states (z,y) by coupling. We therefore make the

definition

d(t) := max HPt(:p, ) — Py,
z,yeX

3] (1.17)
Lemma 1.2.3. Ifd(t) and d(t) are as defined in 1.16 and 1.17 respectively,
then B

d(t) < d(t) < 2d(t)

Proof. It is immediate from the triangle inequality for the total variation
distance that d(t) < 2d(t) To show that d(t) < d(t), note first that since 7
is stationary, we have m(A) = >, ., m(y)P'(y, A) for any set A. (This is the

14



definition of stationarity if A is a singleton {z}. To get this for arbitrary A,
just sum over the elements in A. ) Using this shows that

|P'(z, A) = w(A)] = | X 7(y) [P'(z, A) — P'(y, A)]
yeX
< ) [P, ) = Py, )|y < d(D)
yeX

by the triangle inequality and the definition of total variation. Maximizing

the left-hand side over z and A yields d(t) < d(t) O
Lemma 1.2.4. The function d is submultiplicative: d(s +t) < d(s)d(t)

Proof. Fix x,y € X, and let (Xj, Y;) be the optimal coupling of P*(x,-) and
P*(y,-) whose existence is guaranteed by 1.20 (which we shall prove later).
Hence

HPS(_Q;" ) - PS(Q? ')HTV =P {Xs # Y:s}
We have

P (z,w) = ZP (X, =2} P(z,w) = E (Pf (XS,’LU))

For a set A, summing over w € A shows that
Pz, A) = P (y, A) = E (P' (X, 4) - P'(Y;, A))
<E(d(t)1x.2vy) = P{X, # Y.} d(t)

By 1.20, the right-hand side is at most d(s)d(t)
[l

Lemma 1.2.5. J(t) 18 non-increasing in t. If ¢ and t are positive integers,
then

d(ct) < d(ct) < d(t)°
Definition 1.2.2. The mixing time is defined by

tmix(€) 1= min{t : d(t) < &}
and {
tmix = tmix ”
)
For random walk on groups, we set

1
tmix = 7fmix -
)

15



1.2.3 and 1.2.5 show that when /¢ is a positive integer,
d ((tmix(€)) < d (tmix(€))" < (22)"
In particular, taking € = 1/4 above yields
d (Pmiy) < 27°

and
tmix (€) < [logy €™ tmix
Other distances between distributions are useful. Given a distribution 7
on X and 1 < p < o0, the /(7) norm of a function f : X — R is defined as

Vi { [Zye/\’ !f(y)\”w(y)]l/p 1<p<w

maxyex |f(y)] p=o

The d, distance is a scaled version of the ¢2 norm,

I =vl3, =127 Y (nlx) = v(@)*, (1.18)
e
For 0 < € < 1, the @—ﬁw distance between p and v is
Z
e = vleee = 2 sup ) — vl (1.19)
€ zex

The distance and mixing times corresponding to these metric are defined
in similar way as for total variation distance.

Given any of these metrics, the mixing time of the chain {e}, PV} to uni-
formity v is the first steps N such that [e,PY —v| < 1. For symmetric
random walk on a group, the total variation mixing time and = — ¢* mixing

[e]
time are bounded up to constants by the dy mixing time.

1.3 Coupling

Next, we discuss coupling of Markov chains, which is a powerful proba-
bilistic method. We firstly introduce coupling of two distributions.

Definition 1.3.1. A coupling of two probability distributions u and v is a
pair of random variables (X,Y) defined on a single probability space such that
the marginal distribution of X is p and the marginal distribution of Y is v.
That is, a coupling (X,Y) satisfies P{X = x} = p(x) and P{Y =y} = v(y)

16



We first point out a relation between coupling and total variation distance.

Proposition 1.3.1. Let p and v be two probability distributions on X. Then

| —v|ry = inf{P{X #Y}: (X,Y) is a coupling of u and v}  (1.20)
The coupling (X,Y) attaches the infimum is called the optimal.
Proof. For any coupling (X,Y) and A <

u(A) — v(A) = P(X € A) — P(Y € A)
<P(X €AY ¢ A)
<P(X #£Y)

Similarly, v(A) — p(A) < P(X #Y) Therefore, |u— v|w < P(X #Y)
We construct a coupling for which P{X # Y} is exactly |y — v|rv.
We use the following procedure to generate X and Y. Let

p= @) A via).

xeX
Write
Moula) avla)y= Y pla)+ D, v
TeEX TEX, zEX,
p(z)<v(z) (@) >v(x)

Adding and subtracting ¥, )., #() to the right-hand side above shows
that

Diux) avie)=1— > [u@)—v(@)]=1=|p=v|r =p.
xeX zeX,
p(@)>v(z)
The coupling is constructed as following: Flip a coin with probability of heads
equal to p (i) If the coin comes up heads, then choose a value Z according
to the probability distribution

plx) A v(x)

yr(x) =
(x) P

andset X =Y =7
(ii) If the coin comes up tails, choose X according to the probability

distribution
w@)—v(z) -
(w) = 1 Tamvine T RE) > v(2)
0 otherwise

17



and independently choose Y according to the probability distribution

v(@)—p()
yu(x) =< Ip=viey if v(z) > p(r)
0 otherwise

Clearly,

pym+ (1 —=p)n=p

pym + (L —=p)ym=v
so that the distribution of X is p and the distribution of Y is v. Note that
in the case that the coin lands tails up, X # Y since 71 and 7y are positive
on disjoint subsets of X. Thus X = Y if and only if the coin toss is heads.
We conclude that

P{X #Y}=|p—v|rv

O

Definition 1.3.2. Given a Markov chain on X with transition matrix P,
a Markovian coupling of two P -chains is a Markov chain {(X,Y3)},5
with state space X x X which satisfies, for all x,y,x',y

P{X;,1 =2 |X;=2,Y, =y} =P (z,2)
P{Yi =y|Xi=2.Y, =y} = P(y.y)

Any Markovian coupling of Markov chains with transition matrix P can
be modified so that the two chains stay together at all times after their
first simultaneous visit to a single state more precisely, so that if X, = Y,
then X; =Y, for t > s To construct such a coupling, simply run the chains
according to the original coupling until they meet, then run them together.

NOTATION: If (X;) and (Y;) are coupled Markov chains with X, = «
and Y, = y, then we will often write P, , for the probability on the space
where (X;) and (Y;) are both defined.

The next theorem is a powerful tool to bound total variation distance.

Theorem 1.3.2. Let {(X;,Y})} be a coupling satisfying (5.2) for which Xy =
x and Yy = y. Let Teoupie be the coalescence time of the chains:

Teouple = min{t : Xy, =Y for all s >t} (1.21)

Then
”Pt(xa ) - Pt(ya .)HTV < P:E,y {Tcouple > t} (122)
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Proof. Notice that P'(z,z) = P,,{X; =z} and P'(y,z) = P,,{Y; = 2}
Consequently, (X;,Y;) is a coupling of P'(z,-) with P'(y,-), whence 1.20
implies that

|P'(z,) = P(y, )| py < Py {X0 # Y3}

By construction, P, , {X; # Yi} = Puy {Tcouple > t}, which establishes 1.22
]

Combine above theorems we get the following proposition.

Proposition 1.3.3. Suppose that for each pair of states x,y € X there is a
coupling (X, Y:) with Xo = x and Yy = y. For each such coupling, let Teoupie
be the coalescence time of the chains, as defined in 1.21. Then

d(t) < algzg% Py {Teoupte > 1}

and therefore tmi < 4maxy , By (Teouple ) -

The last inequality is by Markov inequality.

1.4 Stationary Times

This chapter we study stationary times of Markov chains, which gives a
method to bound mixing times.

Definition 1.4.1. A stopping time T for the filtration {F;} is a {0,1,2, ...} U
{oo} wvalued random wvariable satisfying {T = t} € F;. For the Markov chains
(X;), we consider the natural filtration generated by Xy, Xo, ..., X;.

An important property in this work is the strong Markov property

Prob, {(X;i1, Xrq2, o0, Xorv € AT =k A (X1, oo, Xi) = (21, .0y 1) }
(1.23)
= Prob,, {(X1, ..., Xy) € A}.
Definition 1.4.2. Let (X;) be a Markov chain with respect to the filtration
{F:}, with stationary distribution w. A strong stationary time for (X;) and

starting position x is an {F;} -stopping time T, such that for all times t and
all y

P, {r = t, X, = y} = Pofr = thn(y). (1.24)

In other words, X has distribution 7 and is independent of 7.
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Proposition 1.4.1. If 7 is a strong stationary time for starting state x, then

| Pz, ) — 7THTV <P.{r >t} (1.25)

To prove this proposition, we introduce the separation distance and it
suffices to prove two related lemmas.

Definition 1.4.3. The separation distance of a Markov chain is defined by

s:(1) = max [1 - P;((xy’)y)] . (1.26)

We also define

s(t) == max Sz(t)

Lemma 1.4.2. If 7 is a strong stationary time for starting state x, then

$:(t) < Py{r >t}

Proof.
Px{T < t7Xt = y} = ZZPI {T = SaXs = Z,Xt = y}
s<t 2z
=YY Pz, y)Po{r = s}(2)
s<t z

=P.{r <tin(y)
So for x € X. Observe that for every y € X,

1 — Pt('r?y) —1_ Px{Xt :y} <1_— P:Jc{Xt:vagt}
™(y) ™(y) ™(y)
<
L _mPulrsd oo
(y)
O]
Lemma 1.4.3. The separation distance s,(t) satisfies
[P, ) =y < s0(8),
and therefore d(t) < s(t).
Proof.
Pz, y)
HPt(% )= 7THTV = Z [W(y) - Pt($7y)] = Z m(y) [1 - W
Pi{ay)<n(y) Pi(zy)<n(y) Y
Pt
< max [1 - M] = 3s,(t)
v ™(y)
[

20



1.5 Eigenvalues

In this section, we present several important properties of the eigenvalues of
transition matrices, which turns out to be very important to understand the
asymptotic behavior of Markov chains.

Lemma 1.5.1. Let P be the transition matriz of a finite Markov chain.

(i) If X is an eigenvalue of P, then || < 1

(i) If P is irreducible, the vector space of eigenfunctions corresponding to
the eigenvalue 1 is the one-dimensional space generated by the column vector
1:=(1,1,..., )T

(iii) If P is irreducible and aperiodic, then -1 is not an eigenvalue of P

Proof. () Let | fl i= masxsey |f(z)]. We have [Pf(x)] = | 3 P(z,5)f ()] <
|32 P@,y)| 1] = | fllo for every @ € X. Therefore |Pf]y. < | f].c.

When f is an eigenfunction, we have |[Al|o; < | f|o. Therefore |A| <1

(b) is proved in 1.1.6.

(c) is guaranteed by the Convergence Theorem: convergence of P™ implies
convergence of P"f. But if f is an eigenfunction with eigenvalue —1. P"f =
(—1)"f, which is not convergent.

O

Denote by ¢+, -) the usual inner product on RY, given by {f, g) = >, _ f(2)g(x)
We will also need another inner product, denoted by (-, ), and defined by

@ i= ), fl@)gla)n(w) (1.27)

We write ¢2(rr) for the vector space RY equipped with the inner product
(12.1) Recall that the transition matrix P is reversible with respect to the
stationary distribution 7 if 7(z)P(z,y) = 7(y)P(y,z) for all x,y € X. The
reason for introducing the inner product 1.27 is given by the following lemma:
Lemma 1.5.2. Let P be reversible with respect to ™

(i) The inner product space (RY,{-,-)x) has an orthonormal basis of real-
valued eigenfunctions {fj}yi‘l corresponding to real eigenvalues {\;}

(i) The matriz P can be decomposed as
i

ij

(iii) The eigenfunction fy correspondmg to the eigenvalue 1 can be taken
to be the constant vector 1, in which case
|X|

Pt”ry _1+ij . (1.28)

Pt
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Proof. Define A(z,y) := m(z)?n(y)~"Y2P(x,y). Reversibility of P implies
that A is symmetric. The spectral theorem for symmetric matrices guar-
antees that the inner product space (RX L >) has an orthonormal basis

{©; }ljﬂ such that ¢; is an eigenfunction with real eigenvalue \;
We define ¢; = /7 be a function which takes values of the square root
of the stationary distribution. Then

Api(x) = Y A, 9)oy) = Y w(2) PP(z,y) = w(2)? = o1 (2).

Y

Thus ¢ is an eigenfunction of A with corresponding eigenvalue \; = 1.
If D, denotes the diagonal matrix with diagonal entries D, (z,x) = m(x),

11 1
then A = D PD;*. If f; := Dz, then f; is an eigenfunction of P with
eigenvalue \;

Pfj=PDz*p;j=Dr* (DEPDP) pj = Dx?Ap; = D Njp; = Aif;

Although the eigenfunctions {f;} are not necessarily orthonormal with re-
spect to the usual inner product, they are orthonormal with respect to the
inner product {-, ), defined in 1.27.

1 1
5y = (i) = (DR Fu DRS; ) = (fis i),
Considering (RX , >7r) with its orthonormal basis of eigenfunctions { f; }Li‘l ,

the function J, can be written via basis decomposition as

X i

0 = 2, v F)n fi = D5 Hiw)m) f;

J=1

(1.29)

since P'f; = AL f; and P*(x,y) = (P'0,) (2)
| X

Pl(z,y) = Z Fi)m ()AL f ()

Dividing by m(y) completes the proof of (ii), and (iii) follows from observa-
tions above.

[]
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Lemma 1.5.3. If ¢ is an eigenfunction of the transition matriz P with
eigenvalue A # 1, then E(p) =0

Proof. Multiplying the equation Py = Mg on the left by the stationary
distribution 7 shows that

Er(p) = mPp = NEx(p).

Then E,(¢) = 0 when A\ # 1. O

1.6 The Relaxation Time and Spectral Gap

Definition 1.6.1. A, := max{|\| : A is an eigenvalue of P\ # 1} The dif-
ference v, :=1— A, is called the absolute spectral gap. 1.5.1 implies
that iof P s aperiodic and irreducible, then v, > 0
For a reversible transition matriz P, we label the eigenvalues of P in
decreasing order:
L=M >N > > Ay = -1

The spectral gap of a reversible chain is defined by v :=1 — As.

Lemma 1.6.1. Let P, = (P + I)/2 be the transition matriz of the lazy
version of the chain with transition matriz P. Show that all the eigenvalues
of Pr, are nonnegative. Therefore, for %—lazy markov chains, v, = 7.

Proof. Prf = Af implies Pf = (2A —1)f.
Then from 1.5.1 we have —1 <2A—1<1. Thus0 < A < 1. O]

Similarly, for %—th lazy Markov chains we have

2
~1+ <A< (1.30)
n

Definition 1.6.2. The relazation time t.q of a reversible Markov chain with
absolute spectral gap v, is defined to be

trel =

*

We prove upper and lower bounds on the mixing time in terms of the
relaxation time and the stationary distribution of the chain.
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Theorem 1.6.2. Let P be the transition matrix of a reversible, irreducible
Markov chain with state space X, and let Ty, 1= mingey 7(z). Then

1 1 1 1
tmix < re 1 1 - < tre 1 1.31
(€> [ l <2 o8 (ﬂ—min) e (2‘5))} o8 <€7Tmin> ( )

1
to(€) < [trel log< ﬂ (1.32)
ETMmin

Proof. Using 1.28 and applying the Cauchy-Schwarz inequality yields

1/2

ad |X] |x|
’P ‘ Z | fi(x) F () AL < AL [Z ff(z) Z ff(y)] (1.33)

7=2

Using 1.5 and the orthonormality of {f;} shows that

|x| Y |X|
7(@) = Gera)e = 2 fi@)m(@) f5: 35 <x>w<x>fj> = (@)’ fi(@)*

Consequently, ZKE +(x)? < w(z)~'. This bound and 1.33 imply that

t t t _ t —at
’/T(y) 7T<£C>7T(y) Tmin Tmin Tmin

The bound on tmlx( ) follows from its definition and the above inequality.
O

Theorem 1.6.3. Suppose that X # 1 is an eigenvalue for the transition
matriz P of an irreducible and aperiodic Markov chain. Then

e (&) > (1—;IAI - 1) log <%> |

In particular, for reversible chains,

(€)= (o — 1) log (21) . (1.35)

Proof. We may assume that A # 0. Suppose that Pf = Af with A # 1. By
1.5.3 E-(f) = 0. It follows that

INf@)| = [P f()| = D] [P ) fy) — () f()]

yeX

< [ fllw2d(2)
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With this inequality, we can obtain a lower bound on the mixing time. Taking
z with [f(2)] = | flle yields

A< 2d(t) (1.36)

Therefore, |\|'mix(¢) < 2e, whence

i (€) (ﬁ - 1> > tuix(€) log (ﬁ) > log (%)

Minimizing the left-hand side over eigenvalues different from 1 and rearrang-
ing finishes the proof. ]

Lemma 1.6.4. For a reversible, irreducible, and aperiodic Markov chain,

lim d(t)"t = \,

t—00

Proof. The proof is directly from previous theorems. m

1.7 Distinguishing Statistics

One way to produce a lower bound on the mixing time ¢,,;, is to find a statistic
f(a real-valued function ) on X such that the distance between the distribu-
tion of f (X;) and the distribution of f under the stationary distribution 7
can be bounded from below.

We firstly provide a useful lemma. When p is a probability distribution
on X and f: X — A, The distribution of f is given by puf~!:

(B (A) == p (F71(A))

Lemma 1.7.1. Let p and v be probability distributions on X, and let f :
X — A be a function on X, where A is a finite set. Then

= virv = [pf ™ = v/ gy

Proof. |uf~(B) = vf(B)| = |u(f~1(B)) = v (f7(B))|. Since f7(B) =

X, we have

max |uf ~H(B) — v~ (B)| < max |u(A) — v(A)].
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Proposition 1.7.2. For f : X — R, define 02 := max {Var,(f), Var,(f)}.
If
’EV(f) - Eu(f)| = T0y.

Then,

8

I =vlrv =1 -3

In particular, if for a Markov chain (X;) with transition matriz P the func-

tion f satisfies
E. [f (X)] — Ex(f)] = ro.
Then,
8
|P'(z,) — 7THTV >1- 2
Proof. Suppose without loss of generality that E,,(f) < E,(f). It A = (E,(f) +r0./2,0),
then Chebyshev’s inequality yields that

4

PN A) = plf — Bu(f) > ro./2) < 5 and thus v H(4) > 1

Then the result follows by the previous lemma. O]
The following gives a better constant in the lower bound.

Proposition 1.7.3. Let p and v be two probability distributions on X, and
let f be a real-valued function on X. If

|Eu(f) = Eu()] = ro

where o = [Var,(f) + Var,(f)] /2, then

4
4 +1r?

I — vty =1

1.8 Wilson’s Method

A general method due to David Wilson [11] for obtaining a lower bound on
mixing time uses an eigenfunction ® to construct a distinguishing statistic.
For an example of Wilson’s Method, see 4.2.2.

Theorem 1.8.1. (Wilson’s method). Let (X;) be an irreducible aperiodic
Markov chain with state space X and transition matriz P. Let ® be an eigen-
function of P with real eigenvalue X satisfying 1/2 < A < 1. Fiz 0 <e < 1
and let R > 0 satisfy

E, (|® (X)) - ®@)") <R (1.37)
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for all x € X. Then for any x € X

e g Lo (S g (2]

Proof. Since

E(® (X)X = 2) = AP(2) (1.39)
for all £ > 0 and z € X', we have
E,® (X;) = N®(x) fort=0 (1.40)

by induction. Fix a value ¢, let z = X, and define D; = ® (X;,1) — ®(2). By
1.39 and 1.37 respectively, we have

E; (D] Xe = 2) = (A= 1)®(2) (1.41)
and
E, (D}|X;=2) <R (1.42)
Hence

E, (¢ (Xes1)’ | X; = 2) = B, ((9(2) + Dy)* | X, = 2) (1.43)

= ®(2)* + 2E, (D,;®(2)|X; = 2) + E, (D}|X; = 2)
(1.44)
<A -1)®(2)* + R (1.45)

Averaging over the possible values of z € X with weights P'(z,z) =
P, {X; = z} gives

E,® (X,1)? < 2\ —1E,® (X,)’ + R

Averaging over the possible values of z € X with weights P'(z, 2)
P, {X; = z} gives

E,® (X,11)? < 2\ —1E,® (X,)’ + R

At this point, we could apply this estimate inductively, then sum the resulting
geometric series. It is equivalent (and neater) to subtract R/(2(1 — \)) from
both sides, obtaining

E,® (X;1)" —

21— <(2A—1) (EI@(Xt)a_L>

21— \)
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Iterating the above inequality shows that

R

E,®(X,)" - 50—

<@ =1 ®(x)* - 2(1—%]

Leaving off the non-positive term —(2A—1)*R/[2(1—\)] on the right-hand
side above shows that

R

Ezq))(2< N — 1)P ()2 4+ ——
Combining 1.40 and 1.43 gives

R R
20— A 20—

Var, ® (X;) < [(2A — 1) = X*] @(2)* + (1.46)

Since 2\ — 1 < A% ensures the first term is negative. 1.5.3 implies that
E.(®) =0. Letting ¢t — oo in 1.46 the Convergence Theorem implies that

R
)<
Var, (P) SIEEY
Applying Proposition 1.7.3 with r? = w gives
2 1 — M)A\ (z)?
Pl — g > —— = 14
1P =7l 2 1505 = sp e (1 - e (1.47)
If ¢ satisfies .
(1 — )\ ®(x)? > : (2R) (1.48)
—€

then the right-hand side of 1.47 is strictly greater than £, whence, d(t) > ¢.

For any
<t e () g (5]

the inequality 1.48 holds, s0 tyix(€) > t. Thus ty,x(¢) is at least the right-hand
side of 1.49.
]

1.9 Heat Kernel

We first introduce continuous time Markov chains.
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Definition 1.9.1. Given a transition matriz P, (X¢),(o .0y i the continuous-
time chain with transition matriz P, if the occurrence of transitions is a
Poisson Process. More precisely, let Sy,Ss,... be the transition times that
change-of-state occurs. Then T; = S; — S;_1 is i.i.d. exponential random
variables with rate r. At these transition times moves are made according to
P.

Define N; := max {k : Sy <t} to be the number of transition times up to
and including time ¢, which is a Poisson Process. Observe that N; = k if and
only if S, <t < Sgy1. From the definition,

P, {X; =y|N, = k} =P, {®y = y} = P¥(z,y).
Definition 1.9.2. The time t heat kernel associated to P is the transition

probabilities from initial states at time 0 to states at time t, i.e.

Hy(x,y) == Po {X, = y} = D P {X; = y|N, = k} P, {N, = k}
k=0

i - Tt UL iy, )

The time ¢ heat kernel associated to P with rate 1 is

=\ thpk
Ht(P) = G_t Il

k=0

(1.50)

Write o (P) for the spectrum, including multiplicity, of P. If P = >\ py Av AUY
is a diagonalization of P in an orthonormal eigenbasis {vx}ies(p) then

Hy(P) = Z eP Dty ot (1.51)

Aeo(P)
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Chapter 2

Representation Theory and
Fourier Analysis

2.1 Basics of Representation Theory

Definition 2.1.1. Group representation
A representation p of a group G is a homomorphism from G to GL(V)
where V' is a vector space. The dimension of V is called the degree of p.

If W is a subspace of V' and W is stable under G (i.e., p(9)W < W
for Vg € G), then p restricted to W gives a subrepresentation. If the
representation p admits no non-trivial subrepresentation, then p is called
irreducible.

Definition 2.1.2. For a group G, a homomorphism f from a group repre-
sentation p on' V' to a group representation o on W is a function f :V — W
such that f(pgy - v) = o4f(v) for all g€ G.

f is an isomorphism if f is a bijection.

vV LV

i| |7

W 2 W

Definition 2.1.3. Given W < V is a subrepresentation, we define the quo-
tient representation

pviw : G — GL(V/U), with py(g)(v+U) = p(g)(v) + U
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Theorem 2.1.1. Isomorphism Theorem. For a homomorphism f :V —

w,
V/ker(f) = Im(f)

Definition 2.1.4. Fourier transform

Suppose P is a probability measure (or, generally any function from G —

C ) on finite group G. We define Fourier transform of P by

P(s) := Y P(s)p(t)

o —_

Lemma 2.1.2. For any representation p, P = Q(p)
Proof.

P(p)Q(p) = .Y P(s)Q(t)p(st)

Lemma 2.1.3. Schur’s Lemma

]

If f is a homomorphism : Vi — V5, such that Vi, Vy are irreducible repre-

sentations of a group G. Then f is either 0 or invertible.

Proof. If f is not invertible, there are 2 cases:

1. ker(f) # 0, then ker(f) = Vi since ker(f) is a subrepresentation and

Vj is irreducible. Thus f = 0.

2. Im(f) # Vi, then Im(f) = 0, since Im(f) is a subrepresentation of V5

and V5 is irreducible. Thus f = 0

]

Lemma 2.1.4. For an irreducible representation V over C and f :V — V

is a homomorphism, then f = X for A e C

31



Proof. Let A be an eigenvalue of f, then f — AI is not invertible. By the
previous lemma, f — A\ =0 O

Lemma 2.1.5. For uniform distribution U on G, we have U(p) = I for the
trivial representation p, U(p) = 0 for any nontrivial irreducible representa-
tion p.

~

Proof. Notice that U(p) is an homomorphism from V' to V:

Then by Schur’s lemma U (p) = .
When p is trivial, clearly A =1 .
When p is not trivial, clearly A = 0. [

Theorem 2.1.6. Let p: G — GL(V) be a linear representation of G in V.
and let W be a subspace of V' stable under GG. Then there exists a complement

W of W in V which is stable under G.

Proof. Let {, ) be a scalar inner product on V. Using the average trick, define
a new inner product by

Cuyvy = Ypls)u, p(s)o)s.

Then {, ) is invariant: {p(s)u, p(s)v) = {u,v). The orthogonal complement of
W in V serves as W+.
[

Theorem 2.1.7. FEwvery representation of a finite group G on a complex
vector space V' is completely reducible (a direct sum of irreducible represen-
tations).

Proof. This is a direct result by applying the above theorem inductively on
V.
O

Next, we present an alternative version of Schur’s Lemma.
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Lemma 2.1.8. Let h be any linear map of Vi into V;. Let
1 -1
0 2 1
= @ Z (/)t) hpy
t

Then

(1) If p* and p* are not equivalent, h® = 0

(2) If Vi = Vi and p' = p?, then h° is a constant times the identity, the
constant being tr h/d,.
Proof. For any s, p2_ h’pl = ‘GlEp —yhpyy = |G|Z(pfs)71 hpt, = hY. If pt
and p? are not isomorphic then h® = 0 by Schur’s lemma. If V; = Vs, p; =
p2 = p, then h° is an homomorphism from V; to Va.

By Schur’s lemma h® = cI. Take the trace of both sides and solve for
c. O

Suppose p! and p? are given in matrix form

pz} = (Ti1j1 (t))7 p? = (Ti2j2 (t))
The linear maps h and h° are defined by matrices w;,;, and z¥ , . We have

1991 "
1
ajiOQ'h = ? Z Tigjo (til) szjlrﬁh(t)

| ‘ t,71,72

In case (1), h = 0 for all choices of h. This can only happen if the coefficients

. 0 . . . . .
of zj,;, are all zero (we view zj,; as a linear combination of x,;, ). This gives

|G| Z rzg]g le’Ll( ) = O fOI' aﬂ Z'la i27j17j2 (21)
teG
In case (2),
0 trh _ D Tiviy
211 dp dp

, SO

Z 0 di if i1 = iy and j; = jo (2.2)

T r i = ) .
|G | e 2” s 0  otherwise

Definition 2.1.5. Characters
Given a representation ¢ of a finite group G, the character x of ¢(g) is

Xo(9) = tr(p(g))

By recalling that tr(AB) = tr(BA), we see that x, (hgh™) = x, (gh™*h) =
Xo(9). Therefore, x is constant on conjugacy class. Hence, x is a class func-
tion.
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Let J be the space of complex-valued functions on group G. Then it has
inner product:

(f1, f2) = Z fi(a) fo(a)

aeG

Lemma 2.1.9. We have
(a).

Xvew = Xv + Xw

(b).If V1, Vs are irreducible non-isomorphic representations, then

(Xvi,Xvs) =0

(c).If V is irreducible,
(xv,xv) =1
Proof. (a) Notice that If we choose a basis of V; and a basis of V4, together

it forms a basis for V; @ V5. Then the matrix of a representation respect to
this basis is the block diagonal matrix. The result follows immediately.

(b)
(XVI?XVQ : |G| Z tI' 1)) =0

aeG
. The last equality is by 2.1.

(c)
(Xxv, xv) : Ztl" 227“” a)rjj(a”t) = 1.

aeG aeG 7,7

The last equality is by 2.2.

O
Lemma 2.1.10. For V =nV; ®@nVo @ ... ®ni Vi, We have
a.(xv, xvi) = (nixvi, xv,)-
b-(XWXV) = znf
c. There are only finitely many irreducible representations.
Proof. These are direct results by previous lemmas. O]

Let the irreducible characters be labelled ;. Suppose their degrees are
d; The regular representation is based on a vector space with basis {es},s €
G Define p,(e;) = eg. Observe that the underlying vector space can be
identified with the set of all functions on G
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Proposition 2.1.11. The character rg of the regular representation is given

by
ra(1) = |G|
ra(s) =0, s#1

Proof. py(es) = es so Trp; = |G|. For s # 1, pse; = eg # e; so all diagonal
entries of the matrix for p, are zero. i.e., group automorphism doesn’t have
any fixed points, except the identity map. O

Proposition 2.1.12. Every irreducible representation W; is contained in the
reqular representation with multiplicity equal to its degree.

Proof.

; (1) = d;.
(ralxi) ’G’;rG X5 (s) = x;(1)

Proposition 2.1.13. (a) The degrees d; satisfy >.d? = |G|
(b) If s € G is different from 1,3d;x:(s) =0

Proof. The result is immediate by the previous proposition. rg(s) = Xd;x;(s).
For (a) take s = 1, for (b) take any s # 1. O

Proposition 2.1.14. (a) Fourier Inversion Theorem. Let f be a function

on G, then
1 n
§() = 1 Lt (b () F(0)
(b) Plancherel Formula. Let f and h be functions on G, then
£f (™) h(s) = o Sdstr (7 (0 B (o)
|G|

Proof. (a). Both sides are linear in f so it is sufficient to check the formula
for f(s) = d¢(s). Then f (p;) = pi(t), and the right side equals

1 _

The result follows by 2.1.13.
(b)Both sides are linear in f; taking f(s) = 0,(s), the equation thus is

reduced to )
\G\Zd tr( hp,))

This was proved in part (a).
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Remark. For real valued functions , then the Plancherel formula is given by
1 £ 7 *
D) = 15 Xer (Flohio)) (2.3)
Definition 2.1.6. f : G — C s a class function on G if it is invariant
under conjugation. i.e. f(h=tgh) = f(g).

Proposition 2.1.15. Let f be a class function on G. Let p : G — GL(V) be
an irreducible representation of G. Then f(p) = A\ with

A= 3 D ron - 7 (1)

Proof.
psf(P)pst = D F)p(s)p(t)p (s7) = D f(t)p (sts™") = f(p).

So, by Schur’s lemma f (p) = AI. Take traces of both sides and solve for
A O

Proposition 2.1.16. The characters of the irreducible representations {x:}¥_,
(there are only finitely many) form an orthonormal basis for the class func-
tions.

Proof. We have shown that the characters of irreducible representations are
orthogonal. It remains to show they are enough.

Suppose (f|xF) = 0, for f a class function. Then 2.1.15 gives f(p) =0
for every irreducible p and the inversion theorem gives f = 0. O

Lemma 2.1.17. (Upper bound lemma.) Let () be a probability on the
finite group G. Then

@~ U < 5 D14, T (Q0)@0))

where the sum is over all non-trivial irreducible representations. Then,

@ - U < 3 21,7 (20 20)°)

where the sum Y.* is over all non-trivial irreducible representations.
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Proof.

o -Ul* = {Z |Q(s) - U(S)I} <G }1Q(s) = U(s)?

-2, (QUa))

The inequality is by Cauchy-Schwarz. The final equality is by 2.3, and Ulp) =
1 for p trivial, U(p) = 0 for p non-trivial by 2.1.5. O

2.2 Connections with Markov chains

As shown in [3] chapter 3E, we present the connection between representation
theory and random walk on groups as defined in 1.1.9, where the eigenvalues
of the transition matrix are precisely the eigenvalues of the Fourier transform
of the probability measure with respect to the regular representation, each
appearing with multiplicity d,,.

Let finite group G = {s1,...,sn}, N = |G| Given a probability measure
@ on a group G. Recall that the transition probability is given by Q(s,t) =
Q(ts™'). We denote Q(i, ) = Q (s;s; ).

Suppose irreducible representations are numbered as py, ..., px. Define
Q (o) 0
Mk = L )
0 Q (k)
a d2 x d2 block matrix with Q (p;) the Fourier transform of Q at pj.
M, 0
Let M be the N x N block diagonal matrix Choose
0 My

a basis such that each irreducible representation is given by a unitary matrix.
Define

di,

'l/}k(s) = N (pk(3)11> pk(s)Qla S >pk(3)dk1> pk’(s)l?’ cee 7pk’(8)dkdk)T

a column vector of length d2. Let ¢(s) = (¢1(s)T, ¥a(s)7, . .. ,¢K(3)T)T be a
column vector of length N obtained by concatenating the 1 (s) vectors.

Let ¢ be the N x N matrix (¢ (s1),...,¢(sy)) and ¢* its conjugate
transpose.
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Theorem 2.2.1. Then transition matriz Q(i,j) satisfies
Q=¢"M*o.

Remark. The Schur orthogonality relations show that ¢ is a unitary matriz.
It implies that each eigenvalue of Q(p) is an eigenvalue of Q(i, ) with multi-
plicity d,. Together these are all the eigenvalues of Q(i, 7). If M is diagonal,
then (5) is the spectral decomposition of Q) with respect to an orthonormal
basis of eigenvectors.

Also, tr QQ = tr ¢* M*¢p = tr M*po™ = tr M*.

Proof.

—%2 [ (pr) pk<8i)pk(8j_l)]_%idkTr[pk( )Q(PHPM )]

k=1

Expanding the trace, this equals

Dk ()" My (1) -
h=1
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Chapter 3

Green’s function on lattice
points and Harmonic
Extension.

This chapter combines the idea of harmonic extension, as illustrated in [2],
and harmonic functions discussed in [7].

The return time of a Markov chain at a vertex is the first positive time
after leaving the vertex at which the Markov chain again is at the vertex.
The hitting time of a Markov chain to a set B is the first non-negative time at
which the chain reaches the set. We require some estimates for return times
and hitting times of simple random walk on the torus (Z/nZ)?, as well as
the hitting probabilities regarding the likelihood of first reaching individual
vertices in sets.

The following proposition can be used to estimate return probabilities.

Proposition 3.0.1. Let (X;) be a Markov chain on a finite state space 2~
with irreducible transition matriz P, let B < %2, and let hg : B — R be a
function defined on B. The function h : 2 — R defined by

h(z) = Bohp(X,,) (3.1)

is the unique extension h : 2 — R of hg such that h(x) = hg(zx) for all
x € B and h is harmonic for P at all v € Z\B.

The function h is called the ‘harmonic extension’ of hg to 2"\ B.

The following lemma can be deduced from Proposition 3.0.1. Let X; be
L-lazy simple random walk on (Z/nZ)? started from (1,0), and let p,,,y €
{(1,0),(-1,0),(0,1),(0,—1)} be the probability that X; first reaches (0,0)
from y.
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Lemma 3.0.2. There are limiting probabilities p(1.0), P(~1,0); P0,1) = P(0,—1) >
0 such that py,, — p, as n — 0.

Proof. Since simple random walk on Z? is recurrent with probability 1, the
probability of the first return to 0 taking more than n steps tends to 0 as
n — o0. Those return paths which take fewer than n steps are the same on
(Z/nZ)? as on Z?, which proves the limit. O

Next we calculate the limiting return probabilities p,. Firstly we intro-
duce the Green’s functions on Z?, which could be used to represent harmonic
functions on Z2.

Definition 3.0.1. We define Green’s function on Z* as following: for x € 72,

Z (0,0)]

,wherev—1[501 +5(0 —-1) +510 +5( 10]

Gzz(x

NH

It’s easy to verify Gyz(x) is harmonic modulo 1 on Z2.
To calculate Gz2(z), consider the Fourier Transformation:

0(n) = f f(@)e(n - x)dz. (3.2)
Rd/zd
,where e(z) = 2™,
For v:
81, Co) = cos(2m(y) —; cos(2m(z)
So
1 < 13, 1
GW T4 Z_: "G ) = 4 Z_: o 4 —2cos(2m(y) — 2 cos(2m(y)

Then by Fourier inversion formula, we can compute Gz2(z) by calculating
the integral:

Gooo) = | el=¢- 2)Ga (0 (3.3)
R2/Z2
We give the return probability to the origin in the following lemmas.

Lemma 3.0.3. Started at (1,0), the return probability to the origin is given
by

(3.4)

N | —

1 1 1 2
Pao) =35 Po+1) = 5 7 Pi-10) = =~



Proof. We work first on (Z/nZ)?* and then take the limit as n — 0. Denote
G, the Green’s function on (Z/nZ)?* started at 0 and evaluated at = and
G, the Green’s function started at 0 and evaluated at x on Z2. We define
function hp on set B, where B = {(0,0), (—1,0)}, and extend hp on (Z/nZ)?
by Lemma 3.0.1.

By [7], any harmonic modulo 1 function on Z? is a sum of discrete deriva-
tives of the Green’s function.

Let h((0,0)) = —G(170)7n, h((—l, O)) = G(l,O),n» then
h(l’) = G.T,n - Gz—(—l,O),n (35)
By conditioning on the state which is first hit in B, we get

M) = pBooyn (€)1((0,0)) + p5_, g m(2)2((=1,0)), (3.6)

where pp, , »(7) is, starting at point  the probability of hitting the origin
when first hitting set B and pp _, , () is the probability of hitting (—1,0)
when first hitting set B. For convenience, let pp,  » and pp_, , » denote
pB(O,O)vn(17 0) and pB(_170)7TL(1’ O)'

Since we know pg, o n + PB_,0m = 1, Plug in (1,0) in (3.5) and we get

G2,0)n G(2 0),n
n=TA n=1-—=". 3.7
pB(0,0)7 ZG(I,O),n pB(,LO), 2G(170)’n ( )
Plug in (0,1) in (3.5), we get
G 1,1),n
pB(—l,O)’n((()? 1)) =1- ﬁ (3.8)

Due to symmetry, we have

Po,1)n = pB(,LO),n((Oy 1))29(1,0),n

i.e. start at (0,1), calculate p(_1,), by conditioning on the state of hitting
(—1,0) before hitting the origin.
Let p/(1,0),n= p’(071)7n, p’(o,_l)m denote the probability of returning to origin
through (1,0), (0, 1), (0, —1), without passing through point (—1,0). We have
PBooym = Plotyn + Po—1)m T Py = 2P(0.1)n + P1,0)m (3.9)
P(-1,00n = PB(_1,0),nP(1,0),n
o . p/(l,()),n
P1,0),n = P1,0),n T PB(_1,0),nP(~1,0)n = T2
pB(,l’O),TL

pl(o 1),n
, b b
PO.1)n = Ployn + PB g mPOt)n = T— .

0,1) (0.1), e T
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By solving the above linear system, we get the desired quantity of return
probabilities,

- 2G(1,0)n
P,0);n = 8G1,0)n — 2G11)m — Go)n
B 2G,00 — Gana
Po,+1),n = 8G 1,00 — 2G11)m — Go)n
 2Gaom — Geon
P(-1,0)n = 8G1.0m — 2G11m — Geoyn

(3.10)

Letting n — oo, G, — G,. The exact values were calculated in Mathemat-
ica.

]

Use similar ideas, we can get the return probability of any given start
point:

Lemma 3.0.4. Started at (a,b), where (a,b) # (£1,0) and (0,+1), the
return probability to the origin is given by

p-1.0)(a,b) = G(a,bilg(i()a+l,b) N %l _
p1,0)(a,b) = G(mbilé(i()a_l’b) n }1
Poy(a,b) = G(a’b)AIC_hi()a’bl) + %1

po,-1(a,b) = G(a’bil(_;(i()avbﬂ) N }1

Proof. Using the same set B and function h in lemma 3.0.3, plug in (a, b) we
get:

. G(a,b),n - G(aJrl,b),n i 1

= — A2

pB(O,O)zn(a’7 b) 2G(170)7n 2 (3 )
G a,b),n — G a+1,b),n 1
Pacapale,) = TGRS 4 g

By similar ideas in lemma 3.0.3, conditioning on the state hitting point
(—1,0), we get:

G(a,b),n - G(aJrl,b),n i

b
2G(1,0),n 2

P-1.0)m(a,0) = pB_, o n(@,0)P(1.0)n = P1,0)n(
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By symmetry (i.e. reflection by line x = 0 and y = z, rotation 90 degree
clockwise), we observe that

p(O,—l),n(a7 b) = P(—l,()),n(b, a)

p(l,O),n(a7 b) = p(—l,O),n<_a’7 b)
P(O,l),n(% b) = P(—l,O),n(—b, CL)

The right hand sides are immediate from the above identity we get.
Letting n — o0, G n — Ga, Do) — %, the desired quantity is shown in
the lemma.

]

Lemma 3.0.5. Given point P = (a,b), started at a neighbor of P, the prob-
ability of hitting the origin without passing through P is given by:

PBoy. (@ —1,b) = _G<a—172bgn(a;)f<1,o>,n . % 8.13)
DBy . (a+1,0) = _G(aﬂ’zb)c’;ia;)fa’o)’” ) %
DBy (@b +1) = _G(“vb;lg(a;)f(l,oxn n %

Proof. Let B = {(0,0), (a,b)} and hp(0,0) = —G(ap)n, ha(a,b) = Gap)n-
Use the harmonic extension and the calculation is similar as we did in lemma
3.0.3 and 3.0.4. O
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Chapter 4

Examples

In this chapter, we give several examples of Markov chains and random walk
on groups. Also, we analyze their mixing time based on methods we have
developed so far. To guarantee convergence of chains, we always want to
make sure the chain is irreducible and aperiodic.

This chapter is mostly based on [2] chapter 6 and 8, and [ 1].

The first example is a classic Markov chain which shall be used later.

4.1 Coupon collecting

Question: A company issues n different types of coupons. A collector desires
a complete set. We suppose each coupon he acquires is equally likely to be
each of the n types. How many coupons must he obtain so that his collection
contains all n types?

Let X; denote the number of different types represented among the col-
lector’s first ¢t coupons. Clearly Xy = 0. When the collector has coupons of
k different types, there are nk types missing. Of the n possibilities for his
next coupon, only nk will expand his collection. Hence

n—k

and "

P {Xt+1 - ]{7|Xt - k} - E
Thus we see this is indeed a Markov chain. Once the chain arrives at state
n (corresponding to a complete collection), it is absorbed there. We are
interested in the number of steps required to reach the absorbing state.
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Proposition 4.1.1. Consider a collector attempting to collect a complete set
of coupons. Assume that each new coupon is chosen uniformly and indepen-
dently from the set of n possible types, and let T be the (random) number of
coupons collected when the set first contains every type. Then

E(7) znzé

Proof. The expectation E(7) can be computed by writing 7 as a sum of geo-
metric random variables. Let 7, be the total number of coupons accumulated
when the collection first contains k£ distinct coupons. Then

T=Tp=n1+(e—71)+ 4+ (Th — Ta-1)

Furthermore, 7, —7;_1 is a geometric random variable with success probability
(n—k+1)/n : after collecting 7,1 coupons, there are n —k + 1 types missing
from the collection. Each subsequent coupon drawn has the same probability
(n—k+1)/n of being a type not already collected, until a new type is finally
drawn. Thus E (7, — 7x1) = n/(n —k + 1) and

D S

k=1

]

Proposition 4.1.2. Let 7 be a coupon collector random variable, as defined
above. For any c > 0

P{r > [nlogn + cn|} <e°

Proof. Let A; be the event that the i-th type does not appear among the
first [nlogn + cn| coupons drawn. Observe first that

P{r > [nlogn + cn]} = (UA) <iP(A

since each trial has probability 1 —n~! of not drawing coupon i and the trials
are independent, the right-hand side above is equal to

n 1 [nlog n+cn] nlogn+cn .
Z 1—— < nexp ) =¢"

The first inequality is by 1 + z < e”. ]
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Proposition 4.1.3. Consider the coupon collecting problem with n distinct
coupon types, and let 1;(t) be the indicator of the event that the j -th coupon
has not been collected by time t. Let R; = Z?Zl I;(t) be the number of coupon
types not collected by time t. The random variables 1;(t) are negatively cor-

related, and letting p = (1 — %)t, we have fort =0

E (Rt) =np
Var (R;) < np(1 —p) <

-3

Proof. Since I;(t) = 1 if and only if the first ¢ coupons are not of type j, it
follows that

whence

The next two examples emphasize the method of coupling.

4.2 Random walk on the hypercube

The n-dimensional hypercube is a graph whose vertices are the binary n
tuples {0, 1}". Two vertices are connected by an edge when they differ in ex-
actly one coordinate. The simple random walk on the hypercube moves from
a vertex (z',22,...,2") by choosing a coordinate j € {1,2,...,n} uniformly
at random and setting the new state equal to (z',... 2771 1 — 29 27T ... 2").
That is, the bit at the walk’s chosen coordinate is flipped.

It’s easy to see that the simple random walk on the hypercube is periodic.
To avoid the periodicity, we consider the lazy random walk, which does
not have this problem. It remains at its current position with probability
1/2 and moves as above with probability 1/2.

A convenient way to generate the lazy walk is as follows: pick one of the
n coordinates uniformly at random, and refresh the bit at this coordinate

with a random fair bit (one which equals 0 or 1 each with probability 1/2).
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This leads to the following coupling of two walks with possibly different
starting positions: first, pick among the n coordinates uniformly at random;
suppose that coordinate i is selected. In both walks, replace the bit at
coordinate ¢ with the same random fair bit.

If 7 is the first time when all of the coordinates have been selected at least
once, then the two walkers agree with each other from time 7 onwards. (If
the initial states agree in some coordinates, the first time the walkers agree
could be strictly before 7. ) The distribution of 7 is exactly the same as the
coupon collector random variable as discussed in the previous example.

Thus by 1.3.3 and 4.1.2,

d(nlogn + cn) < P{r > nlogn + cn} <e°
It is immediate from the above that
tmix(€) < nlogn + log(1/e)n.

To prove the mixing time lower bound, we use the method of distinguished
statistics.

Proposition 4.2.1 ([2] Proposition 7.14). For the lazy random walk on the
n-dimensional hypercube

1
d <§nlogn — an) > 1 — 8272

Proof. Let 1 denote the vector of ones (1,1,...,1), and let W(z) = Y |
be the Hamming weight of = (x!',...,2") € {0,1}". We will apply 1.7.2
with f = W. The position of the walker at time ¢, started at 1 is denoted by
X, = (X},...,XD)

As 7 is uniform on {0, 1}", the distribution of the random variable W
under 7 is binomial with parameters n and p = 1/2. In particular

B, (W) = g Var, (W) =

-3

Let R; be the number of coordinates not updated by time . When starting
from 1, the conditional distribution of W (X) given R; = r is the same as
that of r + B, where B is a binomial random variable with parameters n —r
and 1/2 Consequently,

(n - Rt) 1

EI(W(Xt)|Rt):Rt+T:a(Rt"i_n)
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By 4.1.3,

Using the identity
Var, (W (X;)) = Var, (E (W (X;) |R,)) + E; (Var, (W (X)) |R,)),

Var; (W (X)) = i\/arl (R:) + i [n—E;1 (Ry)]

By 4.1.3, R, is the sum of negatively correlated indicators, and conse-
quently Vary (R;) < Eq (R;). We conclude that

Vary (W (X)) < 5
Setting
7 = /amax (Var, () Var, (W (X)) = "
we have
E(W) — B, (W (X,))| = g (1 B %)t e (1 ) %)t
Setting

1 1
ty = E(n— 1logn — (v —1)n > Enlogn—om

and using that (1 —1/n)"! > e 1 > (1 - 1/n)", gives
|E.(W) —E; (W (X)) >e* o

and applying 1.7.2 yields
1 tn 2—2a
d <§nlogn — an) > HP (1,-) — 7T”TV >1-—38e

]

In addition, we give a proof based on Wilson’s Method discussed in chap-
ter 1.

Proposition 4.2.2. For the random walk on the n-dimensional hypercube,
we have

1
tmix(€) = inlogn + O(n)
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Proof. To use Wilson’s method, we need to find an eigenfunction on the
hypercube. To find the eigenfunction easily, we denote the n-dimensional
hypercube as {—1,1}". Notice that, forn = 1, f(z) = z(f(-1) = —1, f(1) =
1) is the only eigenfunction for the non-lazy walk. For the lazy walk, we

define, for J < {1,...,n},
fi(z) = ij.
jed

Pfy(x) = > Pla,y)f1(y) = Y, Plx,y) [ [w (4.1)

Y Y jeJ
P(z,y) > 0 only when y is a neighbor of x or y = z. Uniformly choose a
coordinate from 1 to n, then update the coordinate. We see that the two
outcomes x and y, both have probability % Notice that if we choose a
coordinate that is in J, then f(z) = —f(y). Thus, such z,y contributes 0 to

the sum.
If the coordinate is not in J, we have f(z) = f(y) = [[.., z;. Therefore

jedJ I
we have 5 1]
n_

Therefore, these are all eigenfunctions on {—1,1}" (since the number is 2",
same as the cardinality of the state space). Each eigenfunction has associated
eigenvalue

n—|J|

n

A=
This gives us all the eigenfunctions and hence

~* = — and hence t,¢ = n.

n

Let W(z) be the Hamming weight of the vector x, i.e. the number of 1’s
in z. Define ®(x) = W(z) — 2.

2

We see that
Pa(a) = Y Plr.g)o(w) = L[] + " o) 1]+ Do) 4 1)
- (w)—g—l—%—@: (1—%)@(@.

Therefore, we see @ is an eigenfunction with eigenvalue 1 — %
We apply @ to the Wilson’s Method:
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E. (¢ (X;) — q)(x))2) = 4 for all  since ® changes by exactly 1 whenever
the chain moves (i.e., with probability 1/2 ).
Hence if we take R = % and the initial state to be the all 1 s vector, by

1.8.1:

toin(€) = ! ) [log {n_l (5)2} +log{(1 — 5)/5}] (4.2)

—2log (1 —n-!

in_l [108 % +1og{(1 - <)<}

= glogn + g[log{(l —¢)/e} —logd].

\%

4.3 Random walk on the torus

The d -dimensional torus is the graph whose vertex set is the Cartesian
product
78 =Zp x - x Ly
—_—
d times

Vertices ¢ = (z',...,2%) and y = (y',4?,...,y") are neighbors in Z¢ if for

some j € {1,2,...,d}, we have x' = g for all ¢ # j and 2/ = ¢/ + 1 mod n.

When n is even, the graph Z¢ is bipartite and the associated random
walk is periodic. Again we consider the lazy random walk on Z¢ to avoid
this complication.

Theorem 4.3.1. [[2] Theorem 5.6] For the lazy random walk on the d-
dimension torus Z2, if ¢ < % then

tmix(e) < d°n*[log,(d/e)]

Proof. We use coupling to prove this theorem. To couple together a random
walk (X;) started at & with a random walk (Y;) started at y, first pick
one of the d coordinates at random. If the positions of the two walks agree
in the chosen coordinate, we move both of the walks by +1,-1 or 0 in that
coordinate, with probabilities 1/4,1/4 and 1/2, respectively. If the positions
of the two walks differ in the chosen coordinate, we randomly choose one of
the chains to move, leaving the other fixed. We then move the selected walk
by 41 or -1 in the chosen coordinate, with the sign determined by a fair coin
toss.
Let X, = (th, e ,Xf/) and Y; = (Y;l, e ,Y;d) , and let

T = min{t)O:Xtisz}
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be the time required for the chains to agree in coordinate i. The clockwise
difference between X! and Y}, viewed at the times when coordinate i is se-
lected, behaves just as the coupling of the lazy walk on the cycle Z,, discussed
above. Thus, the expected number of moves in coordinate i needed to make
the two chains agree on that coordinate is not more than n?/4 since coor-
dinate ¢ is selected with probability 1/d at each move, there is a geometric
waiting time between moves with expectation d. It follows that

The coupling time we are interested in is Teouple = Maxi<i<q 7, and we can
bound the maximum by a sum to get
d?*n?

4 )

Em,y (Tcouple ) <

which is true for any x,y. Then by Markov’s inequality,

Ew,y (Tcouple ) < 1 d2n2
t Tt o4

Pw,y {Tcouple > t} <

Taking to = d*n? shows that d (t) < 1/4, and 80 i < d*n?. O

4.4 Top-to-Random Shuffle

Consider the following (slow) method of shuffling a deck of n cards: take the
top card and insert it uniformly at random in the deck. This process will
eventually mix up the deck—the successive arrangements of the deck are a
random walk on the group S,, of n! possible permutations of the cards.

Let Tyop be the time one move after the first occasion when the original
bottom card has moved to the top of the deck. We show now that the
arrangement of cards at time 7., is distributed uniformly on the set S, of
all permutations of {1,...,n} and moreover this random element of S, is
independent of the time 7,

Proposition 4.4.1. Let (X;) be the random walk on S,, corresponding to the
top-to-random shuffle on n cards. Given at time that there are k cards under
the original bottom card, each of the k! possible orderings of these cards are
equally likely. Therefore, if Ti,, is one shuffle after the first time that the
original bottom card moves to the top of the deck, then the distribution of
Xr,, s uniform over S, and the time T, 1is independent of Thus
Trop 1S @ strong stationary time for (X)

Ttop *
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Proof. When t = 0, there are no cards under the original bottom card, and
the claim is trivially valid. Now suppose that the claim holds at time t.
There are two possibilities at time ¢ + 1 : either a card is placed under the
original bottom card, or not. In the second case, the cards under the original
bottom card remain in random order. In the first case, given that the card
is placed under the original bottom card, each of the k + 1 possible locations
for the card is equally likely, and so each of the (k + 1)! orderings are equal
likely. O]

Proposition 4.4.2. Let (X}) be the random walk on S,, corresponding to the
top-to-random shuffle on n cards. The corresponding mizing time satisfies

tmix(€) < nlogn + log (5_1) n.

Proof. Consider the motion of the original bottom card. When there are &k
cards beneath it, the chance that it rises one card remains (k 4+ 1)/n until a
shuffle puts the top card underneath it. Thus, the distribution of 7., is the
same as the coupon collector’s time. Then by 4.1.2 and 1.4.1,

—Q

d(nlogn+ an) <e for all n.

Therefore,
tmix(€) < nlogn + log (&?71) n.
]

Proposition 4.4.3 ([2] Proposition 7.15). Let (X;) be the top-to-random
chain on n cards. For any € > 0, there exists a constant «(e) such that
a > «afe) implies that for all sufficiently large n

d,(nlogn —an) >1—¢

That is
tmix(1 — &) = nlogn —an

Proof. The bound is based on the following events:

A; = { the original bottom j cards are in their original relative order }
(4.3)
Let 7; be the time required for the card initially j -th from the bottom to
reach the top. Then
n—1
T = Z Tii
i=j
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where 7; ; is the time it takes the card initially j -th from the bottom to ascend
from position i (from the bottom) to position i+ 1. The variables {7;;} _J are
independent and 7;; has a geometric distribution with parameter p = i/n,
whence E (7;;) = n/i and Var (7;,;) < n?/i*>. We obtain the bounds.

—n dx )
E () = Z 7 = n(logn — log j). (4.4)

and
n2

e}
Var (7;) < Z =1 (4.5)

Using the bounds 4.4 and 4.5 together with Chebyshev’s inequality, yields

j—l

P{r; <nlogn—an} <P{r; —E(7r;) < —n(a —logj)}
1
Jg—1

provided that o > logj + 1. Define t,,(a) = nlogn — an. If 7; > t,(«), then
the original j bottom cards remain in their original relative order at time

tn(), so X
P (id, A}) = P{r; = t,(a)} = 1—]_—1

for « = log 7 + 1. On the other hand, for the uniform stationary distribution

T(4) =1/ <@G-D7"

whence, for a > logj + 1

d, (ta(a)) = [P (id, ) > P (id, A) — 7 (A) > 1 — ——

_7THTV

a—1

Taking j = [e*" 1], provided n > e*~!, we have

2

 (1(0) > 9(0) = 1= oy

Therefore
liminf d, (t,(a)) = g(«)

n—00

where g(a) — 1 as o — 0.
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4.5 Random Transpositions

The Random transposition shuffle is a random walk on the symmetric group
Sy, where the driven probability is given at transpositions. We give several
different models and analysis, based on methods of coupling, stationary time
as described in [2].

The first model is constructed as follows: Choose card X; and an in-
dependent position Y; uniformly. Exchange X; with o; (Y;) (the card at Y;

).

Coupling of o4, 0; 7 Choose card X; and independent position Y; uni-
formly. ”Use X; and Y; to update both o; and o; Let M; = number of cards
at the same position in o and o’

Case 1: X; in same position, M1 = M,.

Case 2: X, in different positions. o (Y;) = o’ (V}). My = M,

Case 3: X; in different positions. o (Y;) # o’ (V) My > M,

Proposition 4.5.1. Let 7* be the first time M, = n, for any x,y:
2
Ew,y (T*> < En27 tmm =0 (nQ) (46)
Proof. Let 1; = steps to increase M; from ¢ — 1 to i so

=T+ T+ +T,

As the case analysis discussed above, only when X; in different positions and
o (Y;) # o' (Y;), M, shall increase. Both probabilities are *—. So

(i) = E (1ia| M, = 1) = (ni 0)?

P(Mt+1 > Mt’Mt - Z) -

Therefore, for any x,y

E., (%) < nznzl ! < W—an
m?y = -
= (n—i? 6

]

Another different model is the following:

At time ¢, choose two cards, labelled L; and R;, independently and uni-
formly at random. If L; and R; are different, transpose them. Otherwise, do
nothing. The resulting distribution pu satisfies

I/n ifo=id
wlo) =4 2 it o = (1))
0 otherwise
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Proposition 4.5.2 ([2] Proposition 8.6). In the random transposition shuf-
fle, let Ry and Ly be the cards chosen by the right and left hands, respectively,
at time t. Assume that when t = 0, no cards have been marked. At time t,
mark card Ry if both of the following are true:

R; is unmarked.

—FEitherL; is a marked card or Ly = R;.

Let 7 be the time when every card has been marked. Then T is a strong
stationary time for this chain.

Remark. One way to generate a uniform random permutation is to build a
stack of cards, one at a time, inserting each card into a uniformly random
position relative to the cards already in the stack. For the stopping time
described above, the marked cards are carrying out such a process.

Lemma 4.5.3. The stopping time 7 defined above satisfies
E(7) = 2n(logn + O(1))

and

Var(r) = O (n?)

Proof. The proof is based on decompose the coupon collector time 7 =
Z?:_()l 7;- Then calculate for each 7;. O

Lemma 4.5.4 ([2]Corollay 8.10). For the random transposition chain on an
n -card deck.
tmix < (2+0(1))nlogn

Proof. Let T be the stopping time defined above and let tqg = E(7)+24/Var(7).
By Chebyshev’s inequality,

1
P {T > to} < -
4
Then the result follows by 1.4.1 and the above lemma. O

We present a lower bound as following:

Proposition 4.5.5 ([2] Proposition 8.4). Let 0 < ¢ < 1. For the random
transposition chain on an n— card deck

0> 25 (1550)

95



Proof. Let F(o) denote the number of fixed points of the permutation o. If
o is obtained from the identity by applying ¢ random transpositions, then
F(o) is at least as large as the number of cards that were touched by none
of the transpositions - no such card has moved, and some moved cards may
have returned to their original positions.

Our shuffle chain determines transpositions by choosing pairs of cards
independently and uniformly at random. Hence, after ¢ shuffles, the number
of untouched cards has the same distribution as the number Ry; of uncollected
coupon types after 2t steps of the coupon collector chain. By 4.1.3

jim B (Ry) = n (1 _ 1>2t

n
and Var (Ry) < pu. Let A = {o: F(0) = u/2}. We will compare the proba-
bilities of A under the uniform distribution 7 and P*( id, -). First

2
m(A) < —
o

by Markov’s inequality. By Chebyshev’s inequality;,
. " 4
P'(id A% S P{Ry < pt/2} < — 5 = —
t (n/2)? n
Then we have, by definition of total variation distance,

>1-8

1
We want to find how small ¢ must be so that 1 — 6/u > ¢, or equivalently

1\* 6
n(l—) =pu >
n 1—¢

The above holds if and only if

mg("“g' )>ﬂhbg< n ) (4.7)
=

L ) , so the inequality

HPt(id’ )

- 7THTV

Using the inequality log(14+x) < x, we have log
4.7 holds provided that

n(l—e 2t
10g< <6 ))271—1

That is, if ¢ < %1 log <M> then d(t) > 1—6/u > e.
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Chapter 5

Dirichlet form, minimax
characterization and
Comparison Techniques

In this chapter, we consider all Markov Chains to be reversible. We develop
methods for getting upper and lower bounds of eigenvalues (3; of the transition
kernel by comparison with a second reversible chain on the same state space.:

Let x be a finite set. Let P(z,y) be an irreducible Markov kernel on 2
with stationary probability 7(x). Recall that P, 7 is reversible:

m(x)P(z,y) = m(y) P(y, )

By symmetry, P has eigenvalues Let [2(2") have scalar product as we

showed in 1.27
gy =, f@)g(a)m(z).

reX

Because of reversibility, the operator f — Pf, with Pf(z) = f(y)P(z,y),
is self-adjoint on * with eigenvalues 1 = 3y > 81 = --- = f197-1 = —1. These
eigenvalues can be characterized by the Dirichlet form:

Definition 5.0.1. We define the Dirichlet Form on f by
G f) = L= P)f. D = 5 3 (@) — F(w) () Pla,y)

Recall the minimax characterization of the eigenvalues:
For a subspace W of R", define

m(W) = min{(Pf, f)/{f, )+ f € W\{0}}
MW) = max{(Pf, f)/{f, [): [ € W\{0}}
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The minimax characterization of eigenvalues gives
A = max {m(W) : dim (W) =i} = min{M (W) : dim(W) =i + 1}
Given a subspace W of L*(X), set

My(W) = max {&(f, f); | fl2 =1, f e W},
mg(W) = min{&(f, f); [ fla =1, f e W}.

We have
1 — B; = min {M,(W);dim W =i + 1} = max {my(W); dim W+ = i}

If P(z,y), 7 is a second reversible Markov chain on X, the minimax char-
acterization yields, for 1 <i < |X|—1

ﬁi<1—%<1—ﬁ}>, it & < A& % > an

In the applications, P, is the chain of interest and P, 7 is a chain with
known eigenvalues. Both m and 7 are assumed to be supported on X. For each
pair x # y with P(x,y) > 0, fix a sequence of steps g = x,x1,22,..., 2, =y
with P (z;,7;41) > 0. This sequence of steps will be called a path 7., of
length |v,y| = k. Set E = {(v,y); P(z,y) > 0} E = {(z,y); P(v,y) > 0} and
E(e) = {(;U,y) € Fiee 'yxy}, where e € E. In other words, F is the set of

"edges” for P and E(e) is the set of paths that contain e. For convention, in
this section all graphs are undirected graphs. However, we describe such a
graph as a set of vertices X and a symmetric set of directed edges £ < X x X

Theorem 5.0.1. Let P, 7 and P, be reversible Markov chains on a finite
set X. The Dirichlet forms & < A&
, with

1

AT mé;)wwylﬂ(x)lj(x,y) : (5.1)

Proof. We may assume that none of the paths ~,, contains loops. For an
edge e = (z,w) € E, let f(e) = f(z) — f(w). Then

§ =3 3 (F@) — Fw)P7()Pla,y)
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=-z{zf } \Ple.y

€EVay
1
<§Z [Vay| 7 () P(x,y) Z|f
zyeX €Yy
L 2 m(2)P(z,w) L
< = m(z) (% w) ) |
26—(zw)| (€)| W(Z)P(z,w e; |7 y|7T(l‘)P($ y)
< AE(f, ),

where the first inequality is by Cauchy-Schwarz.
O

In the case that the Markov chains are symmetric random walks on a
group, we have the following simplified estimate as shown in [1]. Let E be a
symmetric set of generators of a finite group G. For y € G, let y = 2129 - - - 2
with z; € E. Denote the least such k, |y|. Let N(z,y) denote the number of
times which z appears in the chosen representation of .

Theorem 5.0.2. Let p and p be symmetric probabilities on a finite group
G. Let E be a symmetric set of generators. Suppose that the support of p
contains E. Then the Dirichlet forms satisfy ( 48)

& < A&
with
A= I?eaEXp_yGZG|y|N 2,Y)p (5.2)
Proof. The proof is similar as we did in the previous Theorem. O
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Chapter 6

Counting Problem: an
application of mixing time.

In theoretical computer science, there are several counting problems which
are hard to solve in polynomial time. For example, counting the number of
perfect matches in a graph is P-complete, as illustrated in [12]. However,
there is an approximate counting based on random sampling. We can repre-
sent the desired number as a expected value of a random variable. We get
the approximate counting by calculating the expectation with enough many
samples. The complexity of such algorithm, depends on how long we can
generate a random sample, i.e. the mixing time of the Markov chain since
we use Markov Chains Monte Carlo to generate random samples.

Definition 6.0.1. Given an undirected graph G = (V, E), a matching M <
E is a set of vertex disjoint edges. A matching is perfect if |M| = n/2 where
n = number of vertices (and m = number of edges).

Let e be an arbitrary edge. Use sampling to determine the fraction of
matchings that do not use e. And we define the indicator random variable
X on matches of G.

If the match contains e, X = 1. Otherwise X = 0.

We see that ) )
_ # matchings without e

ElX
X # matchings
We have 1/2 < E[X] < 1, since for any match containing e we can drop

e to get a new match.
Let X; = X Gy =G, G = G\e, we see also

E[X] = # matchings in G

~ # matchings in Gy’
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Define inductively for X5 on G, we observe that

ﬁ EBXi] !

T - # matchings in G
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Chapter 7

The 15 puzzle problem

7.1 Description of the problem

A ‘15 puzzle’ consists of a 4 x 4 board with 15 numbered unit tiles and one
empty square. A move in the puzzle consists of sliding a numbered tile into
the empty square. The 15 puzzle gained notoriety in the United States in the
1870’s when an article in the American Journal of Math [9] asked whether
the board with positions 14 and 15 exchanged and an empty tile in the lower
right corner could be shifted into sorted order, again with the empty tile in its
initial position, see Figure 7.1 (it cannot, the group of permutations generated
is Aj5). In general, an n? — 1 puzzle consists of an n x n board with n? — 1
numbered tiles and one empty square. In the book [3], Diaconis considers the
problem of randomizing an n? — 1 puzzle given periodic boundary conditions
by, at each step, shifting a uniform random neighbor of the open square into
its place. He conjectures that the total variation mixing time to randomize
the position of a single numbered piece is order n3, and that the mixing time
to stationarity for the whole puzzle is order n®logn. The main results in [1]
solve Diaconis’ ‘15 puzzle’ problem in corrected form.

Theorem 7.1.1. The n?> — 1 puzzle Markov Chain can be identified with
random walk on the group G, = S,2_1 x (Z/nZ)* driven with the measure
n= %(6id+5R+5L+5U+5D);
i (n,n—1,--- 1)
(2n,2n—1,--- ;n+1)
where R = : x (1,0),
(n*>—n,n*—n—1,---,n*>—=2n+1)
(n>—=1,n*—=2,--- . n>—n+1)
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9 | 10 | 11 | 12

13 | 15 | 14

Figure 7.1: A 15 puzzle. A move in the puzzle slides a numbered tile into
the empty space.

(I,n+1,--- ,n*—n+1)
(2,n+2,---,n*—n+2)
U= : x (0,1) and L =R, D=U"1.
(n—1,2n—1,---,n?—1)
| (n,2n,---,n?>—n) |

Proof. While moving up, we consider the empty piece is still on the right
down corner by wrapping around the broad into a torus. Thus it’s a product
of n-cycles. O]

In [1], including the above one, several different random walks are dis-
cussed. Here we introduce the random walk where we only track the location
of the empty square and one piece of labeled square, and we forget the loca-
tions of all other pieces.

7.2 Mixing of a single piece
One of the main theorems proved in [1] is as following:

Theorem 7.2.1 ([1], Theorem 1). Let dg,(t) be the total variation distance
to uniformity at time t > 0 of standard Brownian motion started from (0,0)
on (R/Z)*. Let cpy, = 2(m —1). As n — o0, the total variation distance to
uniformity of a single piece in the n® — 1 puzzle at time cpun*t converges to

dp:(t) uniformly for t in compact subsets of (0,00).

The proof is by tracking one or several marked pieces on the board as they
move. The pieces move at the times of a renewal process when the empty
square moves next to one of them and then the piece is shifted into it. A local
limit theorem is proved which demonstrates the approximate independence
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of the piece’s location and the number of moves of the empty square after
the marked piece has moved approximately n? times. To prove this, we prove
several estimates of the characteristic functions.

Since the expected time of a renewal is of order n2, this takes time order
n?. The lower order fluctuations from the sum of the renewal process times
are then absorbed as an error term.

We track the location of a single numbered piece &2, along with the empty
piece Z,.

Consider stopping times {¢;}{: every time &, swapping positions with
P alternatively from vertical and horizontal directions. Here tj is time of
the first vertical swap. Then ¢; is time of the first horizontal swap after ¢y,
and so on.

Let Hy be the number of positions (left is negative, right is positive) that
& moves prior to t; and Vj the number of positions (up is positive, down is
negative) that & moves prior to ¢;.

For i > 1, let H; be the number of horizontal moves (right is positive and
left is negative) of & in [ty;_1,to;) and let V; be the number of vertical moves
(up is positive and down is negative) of & in [ta;, t9;i11).

Lemma 7.2.2. The collection of random variables {H;, V;}.” | are i.i.d. sym-
metric, mean 0, and have exponentially decaying tails. They are independent
of Hy, Vi, and these variables have exponentially decaying tails.

Proof. By symmetry and strong Markov property, each inter-arrival time
r;, ; is independent identically distributed. The collection of random vari-
ables

{H;,V;},2, are i.i.d. symmetric, mean 0. Also, {H;, V;},-, have exponen-
tially decaying tails.

To see this, recall that by 3.0.2, 3.0.3, we have the return probability
Pan — Dz > 0 asn — o for x = (1,0),(—1,0),(0,—1),(0,1). Then the H; is
a sum of geometric random variables with parameter less than 1. O]

For i > 1, define r; = to; — to;_1, S; = to;y1 — to;.

The collection {(H;,r;), (V;, s:)};-, are also i.i.d. and are independent of
{Ho, %, to, tl} . Set,

Set s2 = E[H?], i = E[ri],v2 = Var[r].

Let m; be the number of times &2 moves either left or right between to;_;
and t9; and n; the number of times & moves either up or down between to;
and to;,1. Call a type I return of &2, a sequence of moves in which &, begins
adjacent to &, ends at the next time &2, swaps position with & from the
same direction (horizontal or vertical), and does not swap positions with &2,
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from the opposite direction in between. Call a type II return a sequence of
moves of &2, in which it begins adjacent to &2, ends adjacent to &, from the
opposite direction, and does not swap position with &2, in between, but will
swap positions with &2, from the opposite direction on the next move. Thus
r; is the sum of the length of m; independent type I returns and one type II
return, and s; is the sum of the lengths of n; independent type I returns and
one type II return.
We have

Proposition 7.2.3.

lim 331 =52, lim ,u_g =, with
n—ao0 n—aoo M,
&2 1 1-=pao + P10 . 5 ( 1 ) ‘
2p0,+1) 1 + P10y — P(-1,0) 4\ 2p(o,+1)

Also, v, = O (n*logn).

Proof. Consider the process in H2. Due to symmetry, without loss of gen-
erality we assume the initial move in H; is —1, so that afterwards, &2, is at
position & 4 (1,0). Then it makes k > 0 right or left returns followed by an
up or down return.

Condition on k£ and let Z; be the conditional displacement of the moves
following the first one. Thus Z; = 0 and, for & > 1

1— 2,1 prob. —2do.n
2, - {

1;2P(0,i1>,n
~1+ Z,_, prob. —-Lon

1=2p,+1),n
The recurrent relation is based on conditioning the first move: notice that
initially £, is on the right of &2. If the first move is +1, afterwards &, is on
the left of &2, which is the opposite from initial thus Z; = 1 — Z,_;. While if
the first move is —1, afterward &2, is on the right of &, thus Z; = -1+ Z;_;.
Hence
E[Z] = p<11,o>,n2 PEIOn gz, 1)) (7.1)
— 2P(0,£1),n

Solving the recurrence, it follows that

(_1)1-,1 (p(l,O),n - P(—l,o),n> . (7.2)

1 —=2po,+1)n

M?v

E[Z;] =

=1

Similarly,
le = (1 - Zk_l)Q =1—-2Z,_1+ Zl?—l'
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E[Z}] =1-E[2Z,1] + E[Z} ] (7.3)
from which it follows that

k=1 j _ i
B[z} =k-2) (-1 (p won ZP (“”’") (7.4)

k—1 i
i ~ ( Pa,0)n — P(-1,0),n
=k—2§-4 1k—z< ).
i:1( ) ( ) L= 2p(0,i1)7n

The second equality is because the sum by columns is equal to the sum by
rOWS.
Conditioning on the number £ of type I returns,

I
s

E[H7] E[(—1 + Z)*12p0.<1)n(1 — 2p0,+1)0)" (7.5)

Bl
Il
o

0¢]
2p(0,i1),n(1 - 2p(0,il),n)k -2 Z E[Zk]Qp(O,il),n(]- - 2p(0,i1),n)k
k=1

E[Z712p(0.+1)n (1 — 2p0,<1).0)".

[
RE

=
I
[=}

_l’_
8

T
L

We have .
Z P41 (1 = 2p0,41)0)" = 1 (7.6)

and

oe]

E[Z:]2p0,+1y.n(1 — 2p(0.+1).n)" (7.7)
=1

o k
P(0,£1), Z Z(_l)z_l(P(l,o),n - p(fl,O),n)%l - 2p(0,i1),n)k_z

(D .
Z Pa,0),n ]9(—1,0),71)Z

_ p(1,o),n P(-1,0),n
I+ P00 — P(=1,0),n
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Also,

o0
Z [Z212p0,21)m (1 = 2P0, 41),0)" (7.8)
k=1
= 2DP(0,+1)n 2 k(1= 2po,11),0)"
k=1
S k_l Pa,0),n — P(-1,0) ‘
—4po,+1) L= 2po,+1)m )( — ’n>
kz_:l ; 1 219(0711),71
0
= 2P (0,+1).n Z k(1 — 2po,41)m)"
k=1
0 k-1 ki ) .
- 429 0,+1) Z 2 1 - 2]7 (0,41), ) (—1)1_1“{5 - 2) (p(l,()),n - p(—1,0),n)
k=1 1i=1

0]
2290+1) Zk 1—2p(0+1) )k

00]

(=) (Paoyn — P-100)" Z KL= 2p0n)"

- 429(0,4;1),”

B 1 — 2p(
2p(0,i1

1 =2po+1),m  P1,0)n — P(=1,00n
2p0,41)n 1+ D000 — P(=1,0)n

-2

*\ngqg

Combining the above obtains

E[Hf] _ 1 I —paon + P(—l,o),n‘ (7.9)
2po,+1),n L+ P(1,0),0 — P(=1,0),n

The number of times that the piece moves between to; and to; 1 is 1 +m;.
We have, by the law of large numbers,

o0
1
—E ,—>E E 2 1—2 n’“z——l. 7.10
m m1 ~ P(0,+1), P0,+1), ) 2p(0,i1),n ( )

i=1

Also, + SN 7 — E[r1]. Similarly, the averages converge for n; and s;, which

have the same distribution. Since, on average, the piece moves once every

2(n* — 1) steps of the walk, 1+E[[ 1] = 2(n* - 1), or

Evﬂzgm%-n(zzl—). (7.11)

0,+1),n

[]
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The primary step in establishing the mixing of the piece & is establishing
the asymptotic independence of the coordinates of the sum

which is demonstrated by considering the characteristic function:

X (6,6) = B |emihemsn | g e 2L, & e R/L

Firstly, we develop several methods to get estimates of hitting times of
random walk on (Z/nZ)* Let P be the transition kernel of -lazy simple
random walk on (Z/nZ)?, and let P’ be P with row and column corresponding
to (0,0) deleted. Let

R(z)= (I —2zP) =1+ 2P + (2P)* + ... (7.12)

be the resolvent. L.e., the coefficients in 2™ in each entry is the n-th transition
probability.

Lemma 7.2.4. The characteristic function of the hitting time from (1,0) to
(0,0) under %—lazy simple random walk at z = €™ is

z

X(2) = zetuo R(2) (eqo) + €10 + €0 + e0,1) - (7.13)

The expected hitting time is

1
1+ gﬁ’éLmR/(l) (6(1’0) + €(-1,0) + €(0,1) + 6(0’_1)) (714)

which is of order n?.

Proof. (P')" enumerates the transition probabilities that result from length n
paths which do not visit (0,0). To obtain the characteristic function formula,
condition on the number of steps taken under P’, and then use that the
probability of transitioning from one of the neighbors of (0,0) to (0,0) is 7.

We have x(1) = 1, since the walk hits (0,0) in finite time with probability
1.

The formula for the expected hitting time holds since the expectation is
X' (1). [
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Since P’ is symmetric, it can be diagonalized using an orthonormal set
of eigenvectors. Let the corresponding eigenvalues be \y = Ay = --- = A\ 23
with eigenvectors vy, vs, ...,v,2_1. We have v; is non-negative and 1 > \;.

Write

n?—1

R(z)= Y v (7.15)

o1 1— Z/\z

Let ¢;p = (v;, €.

Lemma 7.2.5. The largest eigenvalue \i satisfies # < 1—=XM\ K #

gn
Also,
n?-1 .2
) Ci,(1,0)
- < ~—— <5 7.16
e e e
and
n?-1 2
o>
1,(1,0) 2
> = (7.17)
i=1 (1—=X)?
Furthermore, there is a constant ¢ > 0 such that
c? 1
,(1,0)
Z » : (7.18)
v (1—/\) logn
Proof. Let v; be in the top eigen—space, 1'v; = 1 so that v; is a proba-

bility vector. Since (P)™v; = Avy, 1*(P)™v; = A" is the probability of
not reaching (0,0) in m steps, started from a distribution proportional to
vy. Since the expected hitting time to (0,0) is O(n?logn) uniformly in the
starting point, it follows that for some ¢ > 0, A\ <1 — m.

The bound A\; > 1—-5 will follow after establishing (7.17), since }, C?,(I,O) =
1 by orthogonality. To prove (7.16) note that x(1) = 1 may be written

1"G €i,,0)(Ci1,0) + Ciy=1,0) + Ci0,1) + Ci0,-1))
- Z . (7.19)

11—\

2
Furthermore, by symmetry, >, =5 is independent of x € {(£1,0), (0, +1)},
so that

n2—-1 .2 n2—1
1> . . . . .
L(10) Ci (1,0) (Cz,(l,O) + Ci(~1,00 T Ci,0,1) T Cz,(0,71)) 790
111—&*2{ 11—\ (7.20)
n?2—1 C2( |
3,(1,0
<4 ; .
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Similarly, the expected hitting time formula may be written

,(1,0) Cz 1,0) T Ci(-1,0) T Cij(0,1) T Cz’,(O,fl)))\i 9
=n”. 7.21
Z (1= A)? ! (721)
Those terms with = bounded contribute O(1) to this sum, so that the
negative terms may be dropped and hence
" ( + + + )
C; C; Ci(— C; Ci(0.—
Z (1,0 (Ci,(1,0) (1 1,0))\ i ,(0,1) 0-1) _ o (7.22)
i=1 (1=X)
Again by symmetry, and Cauchy-Schwarz,
n?-1 .2
-
i,(1,0) 2
> e =, (7.23)
i=1 (1—=X)?

To prove (7.18), note that if ¢ > 0 is sufficiently small, since ), 037(170) =1,

c?
2 117(—1’;\))2 > n2. (724)
i1(1=Ag)>< (1=A)
The claim now follows from ﬁ « n?logn. O

The following bounds are useful in bounding the characteristic function
of the hitting time.

Lemma 7.2.6. Let ¥ be mazimal such that

2 = (1 : )ni oo (7.25)
s\ > - (1,
_ . = 3 - .
Then for 9 <& < 3,
1 1 1
2
Z Cz',(w)( N, = \e2mi ) > 3 (7.26)
Q1N <€ L=X 1= e (logn)
For 0 <¢ <9,
1 1
2 2. 4
PO =) EX N (5
i:(1=X;) >0 L=X 1= Aie?m]
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Proof. By the previous lemma, ¥ « % We have

1

1 1 1
_ < — - N . (7.28)
1= X2 (1= X)) +iNsin(2r8)| 1= A | o i imf\%&)‘
and, thus,
1 1 1 1
— — > l— — 7.29
].—)\7; |1—>\i€2m§| ]_—/\1 1+ £ 5 ( )
(1=X)
1 £2
1
> X mm( ,(1_)\2)2)
We now conclude, when 9 < £ < %,
3 1 1 D ¢ (10 1
Ci(1,0) < |1 — )\e2mi€ ) > . 3
(1) <€ L= [=derm] ) = S 1— A (logn)
(7.30)
For 0 < £ < 9, note that
c? 1 2 4
i,(1,0) 2 1,(1,0) n
Z « < (7.31)
)3 2 Y
i:(1=N)<® (1=A) (1—M) (1=A)<® 1=Ai  logn
while, by Holder,
& (10
27 k) 4
—=—— >»n". (7.32)
i=1 (1T =X)?
Hence,
Z & 10) ( L L ) » &2 Z —C?’(I’O) > &2nt
4,(1,0 2\ _ \.e2mi —)\.)3 :
1= >0 L=Ai 1= A it1—X; >0 (1—=A)
(7.33)
O

Now we are ready to prove bounds of (&, &).

Lemma 7.2.7. There is a constant ¢ > 0 such that, uniformly in n and
uniformly in & € ( s "], and & € ( ! 1],

T2 2 T 202

==, &5
n2

€l <1 - cmax (.6). (73
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Proof. Consider paths of either fixed, bounded length, or fixed displacement
of & but bounded varying length. All of these have positive probability,
which is not dependent on n for all n sufficiently large. The variation in
their phase is of the given magnitude. ]

We use generating function to get a matrix formula for x(&;,&). Recall
that we let P be the transition matrix of %—lazy simple random walk on
(Z/nZ)?, and that P’ is the minor excluding the row and column of (0,0),
R(z) = (I—2P")~! Let M(z1, 29) be the transition matrix on (Z/nZ)*\{(0,0)}
with $212o in the transition from (1,0) to (—1,0) and %i—f in the transition
from (—1,0) to (1,0), and zeros elsewhere. Let w(zy, z2) be the vector with
entries 52 at (—1,0) and 72 at (1,0), with zeros elsewhere, and let v be the

2
vector with value % at (0, +1) and zeros elsewhere.

2mify

Lemma 7.2.8. Let & € Z/nZ, & € R/Z, and set 21 = e n 29 = 22,
Then
x(&1, &) = w(zy, 22)' (1 — R(ZQ)M(zl,zQ))’lR(ZQ)U. (7.35)

Proof. The sequence of moves described in phase space by x(&1,&:) are as
follows. An initial move, which involves one move of the empty square and
one update, right or left of &2 occurs. This is recorded by w(z1, 22)" in which
if the empty square swaps places from the right, it now has the position to
the left (—1,0) of & and makes one move, hence contributes 2122 to the
phase. If instead the empty square swaps places from the left then it now
occupies (1,0) relative to &2 and contributes 2 to the phase.

Now there are 0 or more excursions of the empty square followed by a
right or left move of 2. A right or left move of & entails moving the empty
square from the position on the right of & to the position on the left, or
vice versa. This is captured by M (zq, z5). Finally there is a final excursion,
captured by R, which is finished by moving onto & from above or below,
captured by v. O

The previous lemma implies the following bound.

Lemma 7.2.9. Uniformly inn, & € (—2,%] and & € (—3, 3],

1 —[x(&1, &) » efl,o)R(l)e(l,O) - ’efl,o)R(e%@)@(l,O)‘ : (7.36)

Proof. In the term (I — R(22)M (21,22))7" = Y17 (R(22) M (21, 22))¥, there
is a probability, bounded uniformly away from 0 that the £ = 1 term is
taken, and a probability bounded uniformly from 0 that the return is of
type e(1,0) to e(1,0). With no cancellation, the sum of path probabilities mak-
ing up the return is e’éLO)R(l)e(LO), while with the phase, the sum has size

cho B e s
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Lemma 7.2.10. There is a constant ¢ > 0 such that, for all & € Z/nZ and
_1 < 52 <
2 2

, 1
[X(&1, &) < 1—cmin <W,€22n4) : (7.37)
Proof. By the previous lemma,
- " 1,0
1— o 7.38
|X §1a§2 | > ; 1 — )\7;627”{2 ( )

. 1 1
2
= ZZ; Ci,(1,0) (1 —N 11— )\i€27ri§2|> :

By Lemma 7.2.6, it follows that

§n4> : (7.39)
O

1~ [x(&1,6)| » min ( (1og1n)3’

At small frequencies, the characteristic function may be estimated by
Taylor expansion. Recall E[H?] = s2, E[r1] = u, and Var[r] = v2.

Lemma 7.2.11. For & € Z/nZ, |&1| < 2 and for complez &, |&| « (;

2 n?(logn)?’

2
X(&1,&2) = exp (27Ti€2,un 27; & s2 — 21 &v ) (7.40)

X (1+O<51 + &(nlogn) ))

Proof. To obtain this estimate, write

V(6,&) = e | (S rein=m) || (7.41)
Now Taylor expand e*™® = 1 + 2riz — 27222 + O(23) and use the moments
E[f,]=0, E[H]=s,  E[H[]=0(1) (7.42)
and

E[r; — pn] =0, (7.43)

E[(ry ) I=wn

E[Hl(ﬁ fin)] = 0,

E[lr1 — m/*] = O((n® logn)®).

0
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Combine above we get a local limit theorem:

Theorem 7.2.12 ([1] Theorem 29). Letn > 2, (logn)® < N <n?, |t —2Np,| <
V' Nu, logn for any A > 0,
_ 2
Prob (Sy = (i, 4,t)) = O (%%") exp (—%)) + 04 (n™4)

exp(—%) &) 2| €132
4Nwv7, 1 —2m ] 2 ”E‘anN
* VAr Ny, nZ Z ¢ez/nz)2 € exp <_T .

Hf”Q«ﬁ logn

Proof. The characteristic function of Sy at frequencies %1, %2, &3 is given by

X (&1, &)V x (&2, &)Y . Hence, by Fourier inversion,

Prob(Sy = (i,4,1)) (7.44)

= % Z L o 672“(w+§3t)>((§1)§3>NX(§2,§3)NCZ§3.
)2 53¢

§=(61,62)e(Z/nZ)?

Using the bound |x(&1,&3)] < 1 — c¢max (2—%2, g), truncate the torus vari-

ables to [¢[2 « & logn with error, for any A > 0, Oa(n=). Next using
the bound |x(&1,&3)] < 1 — ¢min (m,fgn‘l), truncate the & integral to

&3] « (:;g;g with the same error. Inserting the Taylor expansion for x (&1, &3)

and (&2, &3) at low frequencies,

1 RARSY)
Prob(Sy = (i,j,1) = — >, ¢ (%) (7.45)
J€ll2< 2k log n

y J 2w (1=2Npn) oy (—N <27r (&2 + &2)s?2 + An?e ))
el U2 "

n2VN

<1 +0 <”5”2 + &3]3 (n2 log n) ))2N d&s + Oa(n™).

In the integral over &3 substitute £ = 20N %’(}nég to obtain

1 - 2mi( 82

Prob (Sy = (i, ],1)) = (7.46)

1

3 2

2 n
2N =0 e, - togn

) f oxp (B 2VI) o (2776 + )5
g4« 2aliogm? Nz2v, n?

H€H3 s (2ogn\*\) i
1o (B vigp (TEEL) ) dg o

74




i(t — 2N )
2N %vn
then shifting the §~3 integral to be on the real axis obtains a horizontal integral

bounded by O4(n~*) together with a shifted integral

exp <_ -(t_421</'vv%n)2 >

1
2rNz2v,n?

€ =&+ (7.47)

Prob (Sy = (i, j,t)) = Mo ) (1.48)

n

||§H2<<ﬁ logn

. 2062 | ¢2).2
X J exp <—§§ —N (27T (& 42'52)571))
\&KM n
2N
Hsz z gt —=2Np,? (nzlogn)?’ -
1 + O —+ 3 d
( ( T ARV “

+ Oy (n*A).
The main term is obtained by dropping the big O terms and extending the
&3 integral to R with acceptable error.

To bound the error, note that in the region of integration, using n? «
v, € n?logn,

H€H2 It — 2N, )*\ (n2logn\’) (1
< (\€3|3 Vs ) (Unm) ) 0 <N) (7.49)

so that the exponential may be bounded linearly. Bound integration over &;
by a constant. This obtains an error of

exp () —anN|E[3s:
& i exp | ——==2 7.50
QWN%UTLTF Z P ( n? ) ( )

]2« logn

3
oo (1 (1 o2 (g
N2U3 UV IN
Use v, » n?, and use |t — 2Npu,| « Nzu, logn, and approximate the sum
over ¢ with an integral over R? to estimate the error by

o () N (o
« ’ —92m?Ns? 22 3 081 ) g
o0 JRQ eXp( T Ns;x ) <HQ}H2 e 0
(7.51)
This obtains the claimed error bound.
O
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Due to symmetry of the walk, the distribution of the marked piece &
is determined after NV steps of the renewal process by the above local limit
theorem.

We can now prove Theorem 7.2.1.

Proof of Theorem 7.2.1. Recall that the time ¢ Brownian motion B(t) on
(R/Z)? has a distribution which is a 6 function ;(x). The convergence in
Theorem 7.2.1 consists of a lower bound and an upper bound approximating
the distance to uniformity of the single piece with

1
16— Uzl = 5 f( ) 1l (7.52)

—f 1(0,(z) > 1)(0,(x) — 1)d.
(R/Z)?

Let p: R — [0, 1] be a smooth approximation identity (cut-off function)
which satisfies p(z) = 0 if < —1 and p(z) = 1 if x > 1. Let, for € > 0,
pe(z) = p (%) and define ¢.(z,t) = p.(6;(x) — 1). For fixed € and for t € K
with K < R* compact, 9.(z,t) is uniformly C! since 6;(z) is uniformly CY
for every j. Also,

<e, (7.53)

16,(2) — gz — f ol 1) (0,() — 1)da

(R/Z)?

since |0;(x) — 1| < e whereever Y. (x,t) and 1(6(z,t) > 1) differ.

Define cpy, = 2 = 3(m — 1). Let (ir,jr) be the displacement from its

initial position of the piece & after T' = |cpun*t] steps of the Markov chain
P. We show that for each fixed € > 0, uniformly for ¢t € K,

: v g
grolo EU(Z/nZ)2 [wa ((Ea E) at)] = J(R/Z)Q Ve (ma t)dx (7'54)

and

. ir Jr
ggrolo Epr lz/)g ((Z’ g) ,t)] = f(R/ZP Ve (x,t)0; (z) dx, (7.55)

which proves that the total variation distance of the single piece process is
bounded below in the limit by that of Brownian motion. Note that (7.54)
holds since the expectation is a Riemann sum for the integral, so that the
convergence holds by uniform convergence.

The distribution of & is determined after N steps of the renewal pro-
cess in Theorem 7.2.12, so we now remove the stopping time implicit in the
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renewal process and include the moves Hy, Vi prior to the renewal process

beginning.
Let, for e > 0,
T 1+e
N=|——-n : (7.56)
20y,
Since pu, is of order n? by Lemma 7.2.3, N is of order n?. Let
T-S5
M = {—N?’ - n%+2ﬁ| . (7.57)
20,
Then outside a set Spaq
(ir, jr) = (Ho, Vo) + (Sn1, Sn2) + (Sar; Su2) + (Ev, Ey) (7.58)

where Ey, F5 are the set of moves of the piece after time ¢, +Sy 3+ Sy 3. The
condition for membership in Sp,q is that either |Sy s — 2N pu,| = vV Nuv,logn
or [Sys —2Mu,| = > +/Muv,logn. Since :Z and - have exponentially de-
caying tails, by the variant of Chernoft’s mequahty, Lemma 8.0.2, Sp.q has
probability, for any A > 0, O4(n~%), so can be ignored.

Outside Spaq, M is of order n'*¢, so that S, S < n3+e with probabil-
ity 1—-04(n~*) by Lemma 8.0.2 this time applied to H; and V;, which have ex-
ponentially decaying tails. Similarly, by excluding Spaq, T'—Sn3—Sm3—1t1 =
O(n2+2). It then follows by Chernoff’s inequality for the sum of r; and s;,
that 2 moves O(nz*3) times in (E;, B5). Since Hy and V; are bounded
« logn w.o.p., it follows that (iz, j7) = (Sn.1, Sn.2)+O(n2*3). Since ¥ (z,t)
is uniformly C*, it suffices to prove (7.55) for (ir, jr) replaced by (Sy.1,Sn2).

For any fixed 7,7, the error term in applying Theorem 7.2.12 to Sy
summed in ¢ is O(n™3%¢), and hence may be ignored. Also, the sum over
¢ may be extended to all of Z? with negligible error. This gives a main term

of
) 2m2|€|I2s2 N 1 i
2 Z (_ n? B nQQS%N n'n) (7.59)

cez? n?

It follows that uniformly in ¢, as n — oo,

ir Jr 1 i
o [1/}6 ((%’ g) 7t>] ) E (w)e(Zl/nZ) ¢E <_7 _) 57%72 <ﬁ7 ﬁ) ' (7'60)

Since 0,y — 0, uniformly as n — oo, the claim now follows by uniform
n2
convergence. This completes the proof of the lower bound.
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To prove the upper bound, note that, conditioned on Sy 3, Sn1 and S
are independent of (Ho, Vo), (Sa1, Sw2) and (Ey, Es). As in the lower bound,
drop the error terms from the limit in Theorem 7.2.12, since these contribute
measure o(1). Denote by Sy the main term. Also, we may restrict attention
to S n.3 such that \5’ N3 —2Np,| < Av, for a constant A, since the remaining
part has measure o(1) as A — 0. Since convolution with the remaining
distributions can only decrease the total variation distance, as can removing
the conditioning, it suffices to prove that, conditioned on any S ~N,3 which
differs from its mean by a bounded multiple of its variance, the distribution
of (5' N,1,§ n2) has distance from uniform bounded by the total variation
distance of 6;(z) to uniform. This in fact follows from the convergence of the
Fourier series in Theorem 7.2.12.

O

7.3 The upper bound

We show an upper bound of the mixing time of this random walk, by using the
comparison techniques on the walk generated by 3-cycle, which is analysed
in [10].

We firstly introduce the lemma from [10].

Lemma 7.3.1. The spectral gap in the regular representation of Alt(n) for

the measure supported uniformly on 3-cycles is ==, and the < — (* mizing

n—1’ |G|
time 1s of order nlogn.
Proof. See [10], Appendix A. O

The proof of the upper bound is motivated by the observation that A, is
generated by elementary 3-cycle (i,i+ 1,74 2). We can move the empty piece
to a desired position by a path (which is O(n))on the board, then doa ULDR
and return back to the right-down corner by the same path. This generates
any 3-cycle. and thus gives the constant of the comparison theorem.

Let G, = Sp2_1 % (Z/nZ)*(n odd ) or G, = A,2_; x (Z/nZ)* even ) be
the n? — 1 group. Consider the symmetric set
S ={Rc, Lc,Uc, De,c: ¢ = (e3,id) , c3 a 3 -cycle }

and let pg be its uniform probability measure.

Lemma 7.3.2. The measure jis has dy mizing time on Gy, of order O (n*logn).
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Proof. Since this is a symmetric random walk on a group, by Plancherel,

gy = Ue, Mz, = >, AV, (7.61)
1#)\60'(1:’5)

where Pg is the transition kernel of the random walk.

Let p = p1 ® p2 be an irreducible representation of G,,, so that p; is an
irreducible representation of S,, or A, and p, is a character of (Z/nZ)?. Thus
dim p; ® ps = dim p;. We have

fis(p1 ® p2) = Eaetr,Lu,p,ia} [P1 @ p2()] By 3 cyete [01(c3)] (7.62)

_ Xm (c)
d

Eucr rupidlp1 ® pa(7)].

p1

where x,, (c) is the character of p; at a 3-cycle, and d,, is the dimension.
When p; ® ps is one dimensional, but not trivial, p; is the identity on

3-cycles, so that in this case, |s(p1®p2)| < 1—-5. When p, is not the trivial

representation, this follows by bounding the spectrum of simple random walk

on the torus, while when p, is trivial, since p; is not, use that p;(id) = 1

while p;(R) = —1. Since there are O(n?) one dimensional representations,
this part of the spectrum is mixed in O(n?logn) steps.
When p; has dimension d,, > 1, X’;T(C) is the eigenvalue, with multiplicity
1

d,, of the 3-cycle walk in A,2_; in this representation. There are now n?
representations having the same p; factor corresponding to the choices for po,

each having their spectrum bounded in size by le_(c)’
P1

Since the spectral gap

of the 3-cycle walk is of order n%, an arbitrary factor of n? in the multiplicity
can be saved by increasing the constant in the mixing time of order n%logn
for the 3-cycle walk.

O

Theorem 7.3.3 ([1], Theorem 4). The mixing time upper bound: The

total variation and ﬁ,ﬁoo mizing time of an n* — 1 puzzle is O (n*logn).
Proof. By Cauchy-Schwarz, the total variation distance is bounded by half
the dy distance. Also, since the n? — 1 puzzle is a symmetric random walk
on a group, the ‘—é' — {*° mixing time is bounded by a constant times the dy
mixing time. Thus we only estimate the dy mixing time.

By Plancherel, we have

Heitdpégfl - [UGn H?lz = 2 A2N' (763)

1#)\60’(})”271)
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Let 1 = Xop2-1 > Aip2-1 = --- be the eigenvalues of P,2_q, and let 1 =
Ao,s > A1g = -+ be the eigenvalues of the transition kernel associated to the
symmetric generating set pg above.

Note that the commutator URDL is a 3-cycle which leaves the empty
space fixed. Any other 3-cycle may be obtained by finding a word w of
length O(n) which shifts any 3 pieces i, j, k into the positions cycled by
URDL and performing w—'URD Lw, which again leaves the empty square
fixed, and cycles 17, 7, k. It follows that each element of S can be obtained as
a word in O(n) letters on generators, so A in the comparison theorem may
be taken O(n?). In particular, 1 — \; 21 » #(1 —Ais)-

As P is %—lazy, by 1.30 the negative eigenvalues are bounded below
by —2, and since the purported mixing time O(n*logn) is large compared
to log|G,| = O(n*logn), the negative eigenvalues may be ignored when
bounding the dy mixing time. Thus by comparison, the ds mixing time is
bounded by a constant times A times the dy mixing time for S, and hence is
O(n*logn), as wanted. O
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Chapter 8

Concentration Inequality

The following inequalities are used to prove mixing of a single piece .

Lemma 8.0.1 (Chernoft’s inequality). Let X, Xs, ..., X,, be i.i.d. random
variables satisfying | X; — E[X;]| < 1 for alli. Set X := X, + -+ X,, and

let 0 := «/Var(X). For any A > 0,

2 —Ao
Prob (X — E[X] > Ao) < max (eJT,e 2 ) . (8.1)

The following variant handles random variables which have exponentially
decaying tails.

Lemma 8.0.2. Let X1, Xs, ..., X, be i.i.d. non-negative random variables of
variance o*, o > 0, satisfying the tail bound, for some ¢ > 0 and for all
Z >0,Prob(X; > Z)«e . Let X = X, + Xo+ -+ X,,. Then for any

A>1, forc = \/2707

N

2 1
Prob (|X — E[X]| = Aov/n) « e 16 + e T (8.2)

Proof. Let Z be a parameter, Z » ni. Let X! be X; conditioned on X; < Z.
Let ¢/ = E[X]]. Let X! = X;-1(X; < Z)+ 4 - 1(X; > Z) and X" =

X!+ XS+ -+ X],. We have

E[X, 1(X; > 2)] = - foo zdProb(X; > z) (8.3)

= ZProb(X; > 7Z) + f Prob(X; > z)dx

—cZ * —cx 1 —cZ
L Je + e “dx Z+— e .
Z

N

VAN
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Var(X;) = E[(X; — E[X;])’] (8.4)
> E[(X; — E[Xi])°1(X; < Z)]
> E[(X; - M/>21(Xz < 7))
= Var(X/)

Since |X!| < Z, for all n sufficiently large, applying Chernoff’s inequality,

Prob(|X — E[X]| > Aov/n) < iProb(X{’ # X;) (8.5)

i=1

| Prob (yx” _BX] > ga\/ﬁ)

_ 7& _don
& ne cz+2max(e 16, e 42 )

To optimize the exponents, choose Z? = %ﬁ to obtain the claim. O
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