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Abstract

In this thesis we study Markov chains and representation theory,
which lead us to the research of random walk on 15 puzzle problem.

In the first section, we study the basics of Markov chains. Several
probabilistic methods such as coupling, stationary time and distin-
guishing statistics are discussed.

In the second section, we study representation theory.
In the third section, we investigate Green’s function on 2-dimensional

lattice. This eventually provides a way to calculate return probability
on 2D lattice.

In the fourth section, we illustrate several examples and analyze
their mixing time by the methods we develop in previous sections.

In the fifth section, we develop comparison techniques, which can
give bounds of spectrum of unknown chains by comparing with known
chains on the same state space.

In the sixth section, we give an example of counting problem, which
is an application of Markov Chain mixing times.

In the seventh section, we discuss some results in our research of
random walk on the n2 ´ 1 puzzle.

In the eighth section, two concentration inequalities are presented,
which are used in section 7.
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Chapter 1

Markov chains

Most of this chapter is based on [2]

1.1 Basics

Definition 1.1.1. A Markov chain is a process which moves among the
elements of a set X in the following manner: when at x P X , the next posi-
tion is chosen according to a fixed probability distribution P px, ¨q depending
only on x. More precisely, a sequence of random variables pX0, X1, . . .q is
a Markov chain with state space X and transition matrix P if
for all x, y P X , all t ě 1, and all events Ht´1 “

Şt´1
s“0 tXs “ xsu satisfying

P pHt´1 X tXt “ xuq ą 0, we have

P tXt`1 “ y|Ht´1 X tXt “ xuu “ P tXt`1 “ y|Xt “ xu “ P px, yq (1.1)

1.1 is called Markov property

The x -th row of P is the distribution P px, ¨q. Thus P is stochastic, that
is, its entries are all non-negative and

ÿ

yPX
P px, yq “ 1 for all x P X

The distribution at time t can be found by matrix multiplication. Let
pX0, X1, . . .q be a finite Markov chain with state space X and transition
matrix P, and let the row vector µt be the distribution of Xt :

µtpxq “ P tXt “ xu for all x P X
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By conditioning on the possible predecessors of the pt ` 1q -st state, we see
that

µt`1pyq “
ÿ

xPX
P tXt “ xuP px, yq “

ÿ

xPX
µtpxqP px, yq for all y P X

Rewriting this in vector form gives

µt`1 “ µtP for t ě 0,

and hence
µt “ µ0P

t for t ě 0.

Since we will often consider Markov chains with the same transition ma-
trix but different starting distributions, we introduce the notation Pµ and
Eµ for probabilities and expectations given that µ0 “ µ.

Quite often, the initial distribution will be concentrated at a single def-
inite starting state x (start at x). We denote this distribution by δx (Dirac
measure):

δxpyq “

"

1 if y “ x
0 if y ‰ x

We write simply Px and Ex for Pδx and Eδx , respectively. These definitions
and together imply that

Px tXt “ yu “
`

δxP
t
˘

pyq “ P t
px, yq

That is, the probability of moving in t steps from x to y is given by the px, yq
-th entry of P t. We call these entries the t -step transition probabilities.

Definition 1.1.2. For a function (a column vector) f on the state space X .
Consider multiplying f by P from the left and the x -th entry of the resulting
vector:

Pfpxq “
ÿ

y

P px, yqfpyq “
ÿ

y

fpyqPx tX1 “ yu “ Ex pf pX1qq .

We say f is harmonic at x P X if Pfpxq “ fpxq (that is, f has stationary
expectation at x.) f is harmonic on A Ă X if Pfpxq “ fpxq for all x P A

Definition 1.1.3. For i, j P X , we say j is reachable from i if there is a
positive integer such that P tpi, jq ą 0.

We say i and j communicate if i is reachable from j and j is reachable
from i
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It’s easy to see that communicate is a equivalent relation on X , so it has
corresponding equivalent classes, which we call communicating classes.

Definition 1.1.4. A chain P is called irreducible if for any two states
x, y P X there exists an integer t such that P tpx, yq ą 0.

We see the above definition is equivalent to that X has only 1 commu-
nicating class.

Definition 1.1.5. Let T pxq :“ tt ě 1 : P tpx, xq ą 0u be the set of times
when it is possible for the chain to return to starting position x. The period
of state x is defined to be the greatest common divisor of T pxq

Lemma 1.1.1. If P is irreducible, then gcd T pxq “ gcd T pyq for all x, y P X

Proof. Fix two states x and y. There exist non-negative integers r and ` such
that P rpx, yq ą 0 and P lpy, xq ą 0.

Then P r`lpx, xq ě P rpx, yqP lpy, xq ą 0. So r` l is a multiple of gcd T pxq.
Also, given m P T pyq, we have

P r`m`l
px, xq ě P r

px, yqPm
py, yqP l

py, xq ą 0

. Then r `m` l is a multiple of gcd T pxq, and so is m.
Hence gcd T pyq ě gcd T pxq.
Exchange x and y we get gcd T pxq ě gcd T pyq.
Therefore gcd T pyq “ gcd T pxq.

Definition 1.1.6. For an irreducible chain, the period of the chain is defined
to be the period which is common to all states. The chain will be called
aperiodic if all states have period 1. If a chain is not aperiodic, we call it
periodic.

Lemma 1.1.2. If P is aperiodic and irreducible, then there is an integer r0

such that P rpx, yq ą 0 for all x, y P X and r ě r0

Definition 1.1.7. A distribution π on X satisfying

π “ πP

can have another interesting property: in that case, π was the long-term
limiting distribution of the chain. We call such probability π satisfying a
stationary distribution of the Markov chain.
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Definition 1.1.8. Hitting and first return times. Assume that the
Markov chain pX0, X1, . . .q under discussion has finite state space X and
transition matrix P. For x P X , define the hitting time for x to be

τx :“ min tt ě 0 : Xt “ xu

the first time at which the chain visits state x. For situations where only a
visit to x at a positive time will do, we also define

τ`x :“ min tt ě 1 : Xt “ xu

When X0 “ x, we call τ`x the first return time.

Lemma 1.1.3. For any states x and y of an irreducible chain, Ex

`

τ`y
˘

ă 8.

Proof. The definition of irreducibility implies that there exist an integer r ą 0
and a real ε ą 0 with the following property: for any states z, w P X , there
exists a j ď r with P jpz, wq ą ε. Thus for any value of Xt, the probability
of hitting state y at a time between t and t` r is at least ε. Hence for k ą 0
we have

Px

 

τ`y ą kr
(

“ PXpk´1qr

 

τ`y ą r
(

Px

 

τ`y ą pk ´ 1qr
(

ď p1´ εqPx

 

τ`y ą pk ´ 1qr
(

Repeated above yields

Px

 

τ`y ą kr
(

ď p1´ εqk

Recall that when Y is a non-negative integer-valued random variable, we
have

EpY q “
ÿ

tě0

PtY ą tu.

Since Px

 

τ`y ą t
(

is a decreasing function of t, it suffices to bound all

terms of the corresponding expression for Ex

`

τ`y
˘

:

Ex

`

τ`y
˘

“
ÿ

tě0

Px

 

τ`y ą t
(

ď
ÿ

kě0

rPx

 

τ`y ą kr
(

ď r
ÿ

kě0

p1´ εqk ă 8

Next, we study the existence of the stationary distribution of finite ape-
riod irreducible chains, where the distribution is given by

πpxq “
1

Exrτ`x s
. (1.2)
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Let z be an arbitrary initial state. To construct the stationary distribution
π, we consider the expected time the chain reaching a given state y.

Thus we define

π̃pyq :“ Ezp number of visits to y before returning to zq

“ Ez

τ`z ´1
ÿ

t“0

1Xt“y

“

8
ÿ

n“1

n´1
ÿ

t“0

Pz

 

Xt “ y|τ`z “ n
(

Pztτ
`
z “ nu

“

8
ÿ

n“1

n´1
ÿ

t“0

Pz

 

Xt “ y, τ`z “ n
(

“

8
ÿ

t“0

Pz

 

Xt “ y, τ`z ą t
(

,

where the last equality is by changing order of summation (sum by
columns is equal to sum by rows, since

π̃pyq “
8
ÿ

t“0

Pz

 

Xt “ y, τ`z ą t
(

ď

8
ÿ

t“0

Pztτ
`
z ą tu “ Ezτ

`
z ă 8,

Proposition 1.1.4. Let π̃ be the measure on X defined above
(i) If Pz tτ

`
z ă 8u “ 1, then π̃ satisfies π̃P “ π̃

(ii) If Ez pτ
`
z q ă 8, then π :“ π̃

Ezpτ`z q
is a stationary distribution.

Proof. We have

π̃pyq “
8
ÿ

t“0

Pz

 

Xt “ y, τ`z ą t
(

ď

8
ÿ

t“0

Pztτ
`
z ą tu “ Ezτ

`
z ă 8,

To check π̃ is stationary:

π̃P pyq “
ÿ

xPX
π̃pxqP px, yq “

ÿ

xPX

8
ÿ

t“0

Pz

 

Xt “ x, τ`z ą t
(

P px, yq (1.3)

We know that tτ`z ě t` 1u “ tτ`z ą tu. So

Pz

 

Xt “ x,Xt`1 “ y, τ`z ě t` 1
(

“ Pz

 

Xt “ x, τ`z ě t` 1
(

P px, yq
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Change order of 1.3 and use above identity, we get

ÿ

xPX
π̃pxqP px, yq “

8
ÿ

t“0

Pz

 

Xt`1 “ y, τ`z ě t` 1
(

“

8
ÿ

t“1

Pz

 

Xt “ y, τ`z ě t
(

Thus,

8
ÿ

t“1

Pz

 

Xt “ y, τ`z ě t
(

“ π̃pyq ´Pz

 

X0 “ y, τ`z ą 0
(

`

8
ÿ

t“1

Pz

 

Xt “ y, τ`z “ t
(

“ π̃pyq ´Pz tX0 “ yu `Pz

 

Xτ`z
“ y

(

(1.4)

“ π̃pyq. (1.5)

The last equality follows by considering two cases:
y “ z : since X0 “ z and Xτ` “ z, the last two terms of 1.4 are both 1,

and they cancel each other out.
y ‰ z : Here the last two terms of 1.4 are both 0.
Therefore,π̃ “ π̃P .
Normalize the measure by

ř

x π̃pxq “ Ez pτ
`
z q, we get

πpxq “
π̃pxq

Ez pτ`z q
satisfies π “ πP (1.6)

Next, we show that the stationary distribution of an irreducible Markov
chain is unique, which implies 1.2. To see why, by 1.6,

πpzq “
π̃pzq

Ez pτ`z q
“

1

Ez pτ`z q
.

Since z is arbitrary and π is unique, we conclude 1.2 is true.
We need the following lemma to prove the stationary distribution is

unique:

Lemma 1.1.5. Suppose that P is irreducible. A function h which is har-
monic at every point of X is constant.
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Proof. Since X is finite, there must be a state x0 such that h px0q “ M is
maximal. If for some state z such that P px0, zq ą 0 we have hpzq ăM, then

h px0q “ P px0, zqhpzq `
ÿ

y‰z

P px0, yqhpyq ăM, (1.7)

contradiction. So hpzq “M for all states z such that P px0, zq ą 0
For any y P X , irreducibility implies that there is a sequence
x0, x1, . . . , xn “ y with P pxi, xi`1q ą 0. Repeating the argument above

tells us that hpyq “ h pxn´1q “ ¨ “ h px0q “M. Thus h is constant.

Theorem 1.1.6. For an irreducible Markov chain, there is an unique sta-
tionary distribution.

Proof. By 1.1.4, there is at least one stationary distribution. 1.1.5 implies
that the kernel of P ´I has dimension 1 (vectors with the same value in each
coordinate). Thus the rank of P ´ I is |X | ´ 1. Since the column rank is
equal to the row rank, the space of solutions of row vector equation ν “ νP
has dimension 1. The space contains only one vector whose entries sum to
1.

Next, we discuss reversibility and time reversals of Markov chains. For
our interests here, the mixing time for a random walk on groups is the same
as the reversed one, which will be shown later.

Suppose a probability distribution π on X satisfies

ÿ

yPX
πpyqP py, xq “

ÿ

yPX
πpxqP px, yq “ πpxq (1.8)

1.8 is called detailed balance equation.

Proposition 1.1.7. Let P be the transition matrix of a Markov chain with
state space X . Any distribution π satisfying the detailed balance equations is
stationary for P

Proof.
ÿ

yPX
πpyqP py, xq “

ÿ

yPX
πpxqP px, yq “ πpxq
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If 1.8 holds, then

π px0qP px0, x1q ¨ ¨ ¨P pxn´1, xnq “ π pxnqP pxn, xn´1q ¨ ¨ ¨P px1, x0q (1.9)

, which is same as

Pπ tX0 “ x0, . . . , Xn “ xnu “ Pπ tX0 “ xn, X1 “ xn´1, . . . , Xn “ x0u .
(1.10)

In other words, if a chain pXtq satisfies (1.29) and has stationary initial
distribution, then the distribution of pX0, X1, . . . , Xnq is the same as the
distribution of‘pXn, Xn´1, . . . , X0q . For this reason, a chain satisfying 1.8 is
called reversible.

The time reversal of an irreducible Markov chain with transition matrix
P and stationary distribution π is the chain with matrix

pP px, yq :“
πpyqP py, xq

πpxq
(1.11)

Proposition 1.1.8. Let pXtq be an irreducible Markov chain with transition

matrix P and stationary distribution π. Write
´

pXt

¯

for the time-reversed

chain with transition matrix pP . Then π is stationary for pP , and for any
x0, . . . , xt P X we have

Pπ tX0 “ x0, . . . , Xt “ xtu “ Pπ

!

pX0 “ xt, . . . , pXt “ x0

)

Proof. To check that π is stationary for pP , we simply compute

ÿ

yPX
πpyq pP py, xq “

ÿ

yPX
πpyq

πpxqP px, yq

πpyq
“ πpxq

To show the probabilities of the two trajectories are equal, note that

Pπ tX0 “ x0, . . . , Xn “ xnu “ π px0qP px0, x1qP px1, x2q ¨ ¨ ¨P pxn´1, xnq

“ π pxnq pP pxn, xn´1q ¨ ¨ ¨ pP px2, x1q pP px1, x0q

“ Pπ

!

X̂0 “ xn, . . . , X̂n “ x0

)

,

since P pxi´1, xiq “ π pxiq pP pxi, xi´1q {π pxi´1q for each i

Now, we introduce random walks on groups as an example of Markov
chains.
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Definition 1.1.9. Given a probability distribution µ on a group pG, ¨q, the
left random walk on G with increment distribution µ is an Markov
chain with state space G, initial distribution µ. The transition probability is
given by:

P pg, hgq “ µphq, pequivalently, P pg, hq “ µphg´1
qq.

The right random walk is the Markov chain on the same state space and
initial distribution, with transition probability:

P pg, ghq “ µphq, pequivalently, P pg, hq “ µpg´1hqq.

Definition 1.1.10. Convolution
Suppose P and Q are probabilities on finite group G. We define convolu-

tion of P and Q by
P ˚Qpsq :“

ÿ

t

P pst´1
qQptq

For above definition, we see for a random walk on a group G with driven
distribution µ, the distribution after 1 (step 2) move is µ ˚ µ “ µ˚2. The
distribution after n moves is µ˚pn`1q

Due to the symmetry of groups, for any random walk on groups, the
uniform distribution is unique:

Proposition 1.1.9. Let P be the transition matrix of a random walk on a
finite group G and let U be the uniform probability distribution on G. Then
U is a stationary distribution for P

Proof.

ÿ

hPG

UphqP ph, gq “
1

|G|

ÿ

kPG

P
`

k´1g, g
˘

“
1

|G|

ÿ

kPG

µpkq “
1

|G|
“ Upgq

We call a probability distribution µ on a group G symmetric if µpgq “
µpg´1q for every g P G.

Proposition 1.1.10. The random walk on a finite group G with increment
distribution µ is reversible if µ is symmetric.

Proof. Let U be the uniform probability distribution on G. For any g, h P G
we have that

UpgqP pg, hq “
µ phg´1q

|G|
and UphqP ph, gq “

µ pgh´1q

|G|

are equal if and only if µ phg´1q “ µ
´

phg´1q
´1
¯
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Now we discuss the mixing time, the central property of Markov chains
we are interested in this thesis.

1.2 Total variation distance and Mixing time

Firstly, we study total variation distance of two probability measures,
which is a metric of the difference between two probability measures on the
same state space.

Definition 1.2.1. The total variation distance between two probability dis-
tributions µ and ν on X is defined by

}µ´ ν}TV “ max
AĂX

|µpAq ´ νpAq|

Proposition 1.2.1. Let µ and ν be two probability distributions on X . Then

}µ´ ν}TV “
1

2

ÿ

xPX
|µpxq ´ νpxq| (1.12)

Proof. Without loss of generality, assume

}µ´ ν}TV “ max
AĂX

|µpAq ´ νpAq| “ µpXq ´ νpXq

We claim that, except for a set where µ and ν agrees, X “ tx P X :
µpxq ´ νpxq ě 0u

Suppose Dx P X, such that µpxq ´ νpxq ă 0. Then clearly µpXzxq ´
νpXzxq ą µpXq ´ νpXq, contradiction. Then by the definition of total vari-
ation distance, X is the largest such set.

Similarly, if

}µ´ ν}TV “ max
AĂX

|µpAq ´ νpAq| “ ´pµpY q ´ νpY qq,

Y “ ty P X : µpxq ´ νpxq ď 0u.
We see that X Y Y “ X , and X X Y is the set where µ and ν agrees.
We know

ř

aPX µpaq “ 1 and
ř

aPX νpaq “ 1. So ´pµpY q ´ νpY qq “
´p1 ´ µpXq ´ p1 ´ νpY qqq “ µpXq ´ µpY q. Indeed, the two expression of
total variation distance agree.

So

1

2

ÿ

xPX
|µpxq ´ νpxq| “

1

2
pµpAq ´ νpAq ´ pµpY q ´ νpY qqq “ }µ´ ν}TV
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Also, from the above proof we see

}µ´ ν}TV “
ÿ

x:µpxqąνpxq

µpxq ´ νpxq. (1.13)

By 1.12 and triangle inequality in R, we see that the total variation
distance satisfying the triangle inequality: for probability distributions µ, ν
and η

}µ´ ν}TV ď }µ´ η}TV ` }η ´ ν}TV

The next theorem shows that for an irreducible aperiodic Markov chain,
the chain will eventually converges to uniform distribution.

Theorem 1.2.2. (Convergence Theorem). Suppose that P is irreducible and
aperiodic, with stationary distribution π. Then there exist constants α P p0, 1q
and C ą 0 such that

max
xPX

›

›P t
px, ¨q ´ π

›

›

TV
ď Cαt

The proof decomposes the chain into a mixture of repeated independent
sampling from the stationary distribution and another Markov chain.

Proof. Since P is irreducible and aperiodic, there exists an r such that P r

has strictly positive entries. Let Π be the matrix with |X | rows, each of
which is the row vector π. For sufficiently small δ ą 0, we have

P r
px, yq ě δπpyq

for all x, y P X . Let θ “ 1´ δ. The equation

P r
“ p1´ θqΠ` θQ (1.14)

defines a stochastic matrix Q. It is a straightforward computation to check
that MΠ “ Π for any stochastic matrix M and that ΠM “ Π for any matrix
M such that πM “ π Next, we use induction to demonstrate that

P rk
“
`

1´ θk
˘

Π` θkQk (1.15)

for k ě 1. If k “ 1, this holds by 1.14. Assuming that 1.15 holds for
k “ n

P rpn`1q
“ P rnP r

“ rp1´ θnqΠ` θnQn
sP r

Distributing and expanding P r in the second term (using 1.14q gives

P rpn`1q
“ r1´ θnsΠP r

` p1´ θqθnQnΠ` θn`1QnQ
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Using that ΠP r “ Π and QnΠ “ Π shows that

P rpn`1q
“
“

1´ θn`1
‰

Π` θn`1Qn`1

Using that ΠP r “ Π and QnΠ “ Π shows that

P rpn`1q
“
“

1´ θn`1
‰

Π` θn`1Qn`1

This establishes 1.15 for k “ n` 1 (assuming it holds for k “ n ), and hence
it holds for all k.

Multiplying by P j and rearranging terms now yields

P rk`j
´ Π “ θk

`

QkP j
´ Π

˘

To complete the proof, sum the absolute values of the elements in row x0

on both sides and divide by 2. On the right, the second factor is at most
the largest possible total variation distance between distributions, which is
1. Hence for any x0 we have

›

›P rk`j
px0, ¨q ´ π

›

›

TV
ď θk.

Taking α “ θ1{r and C “ 1{θ finishes the proof.

Bounding the maximal distance (over x0 P X ) between P t px0, ¨q and π
is among our primary objectives. It is therefore convenient to define

dptq :“ max
xPX

›

›P t
px, ¨q ´ π

›

›

TV
(1.16)

Later we will show it is often possible to bound }P tpx, ¨q ´ P tpy, ¨q}TV

uniformly over all pairs of states px, yq by coupling. We therefore make the
definition

d̄ptq :“ max
x,yPX

›

›P t
px, ¨q ´ P t

py, ¨q
›

›

TV
(1.17)

Lemma 1.2.3. If dptq and d̄ptq are as defined in 1.16 and 1.17 respectively,
then

dptq ď d̄ptq ď 2dptq

Proof. It is immediate from the triangle inequality for the total variation
distance that d̄ptq ď 2dptq To show that dptq ď d̄ptq, note first that since π
is stationary, we have πpAq “

ř

yPX πpyqP
tpy, Aq for any set A. (This is the
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definition of stationarity if A is a singleton txu. To get this for arbitrary A,
just sum over the elements in A. ) Using this shows that

ˇ

ˇP t
px,Aq ´ πpAq

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

yPX
πpyq

“

P t
px,Aq ´ P t

py, Aq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

yPX
πpyq

›

›P t
px, ¨q ´ P t

py, ¨q
›

›

TV
ď d̄ptq

by the triangle inequality and the definition of total variation. Maximizing
the left-hand side over x and A yields dptq ď d̄ptq

Lemma 1.2.4. The function d̄ is submultiplicative: d̄ps` tq ď d̄psqd̄ptq

Proof. Fix x, y P X , and let pXs, Ysq be the optimal coupling of P spx, ¨q and
P spy, ¨q whose existence is guaranteed by 1.20 (which we shall prove later).
Hence

}P s
px, ¨q ´ P s

py, ¨q}TV “ P tXs ‰ Ysu

We have

P s`t
px,wq “

ÿ

z

P tXs “ zuP t
pz, wq “ E

`

P t
pXs, wq

˘

For a set A, summing over w P A shows that

P s`t
px,Aq ´ P s`t

py, Aq “ E
`

P t
pXs, Aq ´ P

t
pYs, Aq

˘

ď E
`

d̄ptq1tXs‰Ysu
˘

“ P tXs ‰ Ysu d̄ptq

By 1.20, the right-hand side is at most d̄psqd̄ptq

Lemma 1.2.5. d̄ptq is non-increasing in t. If c and t are positive integers,
then

dpctq ď d̄pctq ď d̄ptqc

Definition 1.2.2. The mixing time is defined by

tmixpεq :“ mintt : dptq ď εu

and

tmix :“ tmixp
1

4
q

For random walk on groups, we set

tmix :“ tmixp
1

e
q

15



1.2.3 and 1.2.5 show that when ` is a positive integer,

d p`tmixpεqq ď d̄ ptmixpεqq
`
ď p2εq`

In particular, taking ε “ 1{4 above yields

d p`tmixq ď 2´`

and
tmixpεq ď rlog2 ε

´1
stmix

Other distances between distributions are useful. Given a distribution π
on X and 1 ď p ď 8, the `ppπq norm of a function f : X Ñ R is defined as

}f}p :“

#

”

ř

yPX |fpyq|
pπpyq

ı1{p

1 ď p ă 8

maxyPX |fpyq| p “ 8

The d2 distance is a scaled version of the `2 norm,

}µ´ ν}2d2 “ |X |
ÿ

xPX

pµpxq ´ νpxqq2. (1.18)

For 0 ă ε ă 1, the ε
|X |

-`8 distance between µ and ν is

}µ´ ν}ε,8 “
|X |

ε
sup
xPX

|µpxq ´ νpxq|. (1.19)

The distance and mixing times corresponding to these metric are defined
in similar way as for total variation distance.

Given any of these metrics, the mixing time of the chain tetxP
Nu to uni-

formity ν is the first steps N such that }etxP
N ´ ν} ă 1

e
. For symmetric

random walk on a group, the total variation mixing time and ε
|G|
´ `8 mixing

time are bounded up to constants by the d2 mixing time.

1.3 Coupling

Next, we discuss coupling of Markov chains, which is a powerful proba-
bilistic method. We firstly introduce coupling of two distributions.

Definition 1.3.1. A coupling of two probability distributions µ and ν is a
pair of random variables pX, Y q defined on a single probability space such that
the marginal distribution of X is µ and the marginal distribution of Y is ν.
That is, a coupling pX, Y q satisfies PtX “ xu “ µpxq and PtY “ yu “ νpyq

16



We first point out a relation between coupling and total variation distance.

Proposition 1.3.1. Let µ and ν be two probability distributions on X . Then

}µ´ ν}TY “ inftPtX ‰ Y u : pX, Y q is a coupling of µ and νu (1.20)

The coupling pX, Y q attaches the infimum is called the optimal.

Proof. For any coupling pX, Y q and A Ă Ω

µpAq ´ νpAq “ PpX P Aq ´ PpY P Aq
ď PpX P A, Y R Aq

ď PpX ‰ Y q

Similarly, νpAq ´ µpAq ď PpX ‰ Y q Therefore, }µ´ ν}tv ď PpX ‰ Y q
We construct a coupling for which PtX ‰ Y u is exactly }µ´ ν}TV.
We use the following procedure to generate X and Y . Let

p “
ÿ

xPX
µpxq ^ νpxq.

Write
ÿ

xPX
µpxq ^ νpxq “

ÿ

xPX ,
µpxqďνpxq

µpxq `
ÿ

xPX ,
µpxqąνpxq

νpxq

Adding and subtracting
ř

x:µpxqąνpxq µpxq to the right-hand side above shows
that

ÿ

xPX
µpxq ^ νpxq “ 1´

ÿ

xPX ,
µpxqąνpxq

rµpxq ´ νpxqs “ 1´ }µ´ ν}TV “ p.

The coupling is constructed as following: Flip a coin with probability of heads
equal to p (i) If the coin comes up heads, then choose a value Z according
to the probability distribution

γIIIpxq “
µpxq ^ νpxq

p

and set X “ Y “ Z
(ii) If the coin comes up tails, choose X according to the probability

distribution

γIpxq “

#

µpxq´νpxq
}µ´ν}TV

if µpxq ą νpxq

0 otherwise

17



and independently choose Y according to the probability distribution

γIIpxq “

#

νpxq´µpxq
}µ´ν}TV

if νpxq ą µpxq

0 otherwise

Clearly,
pγIII ` p1´ pqγI “ µ
pγIII ` p1´ pqγII “ ν

so that the distribution of X is µ and the distribution of Y is ν. Note that
in the case that the coin lands tails up, X ‰ Y since γI and γII are positive
on disjoint subsets of X . Thus X “ Y if and only if the coin toss is heads.
We conclude that

PtX ‰ Y u “ }µ´ ν}TV

Definition 1.3.2. Given a Markov chain on X with transition matrix P,
a Markovian coupling of two P -chains is a Markov chain tpXt, Ytqutě0

with state space X ˆ X which satisfies, for all x, y, x1, y1

P tXt`1 “ x1|Xt “ x, Yt “ yu “ P px, x1q

P tYt`1 “ y1|Xt “ x, Yt “ yu “ P py, y1q

Any Markovian coupling of Markov chains with transition matrix P can
be modified so that the two chains stay together at all times after their
first simultaneous visit to a single state more precisely, so that if Xs “ Ys,
then Xt “ Yt for t ě s To construct such a coupling, simply run the chains
according to the original coupling until they meet, then run them together.

NOTATION: If pXtq and pYtq are coupled Markov chains with X0 “ x
and Y0 “ y, then we will often write Px,y for the probability on the space
where pXtq and pYtq are both defined.

The next theorem is a powerful tool to bound total variation distance.

Theorem 1.3.2. Let tpXt, Ytqu be a coupling satisfying (5.2) for which X0 “

x and Y0 “ y. Let τcouple be the coalescence time of the chains:

τcouple :“ min tt : Xs “ Ys for all s ě tu (1.21)

Then
›

›P t
px, ¨q ´ P t

py, ¨q
›

›

TV
ď Px,y tτcouple ą tu (1.22)

18



Proof. Notice that P tpx, zq “ Px,y tXt “ zu and P tpy, zq “ Px,y tYt “ zu
Consequently, pXt, Ytq is a coupling of P tpx, ¨q with P tpy, ¨q, whence 1.20
implies that

›

›P t
px, ¨q ´ P t

py, ¨q
›

›

TV
ď Px,y tXt ‰ Ytu

By construction,Px,y tXt ‰ Ytu “ Px,y tτcouple ą tu , which establishes 1.22

Combine above theorems we get the following proposition.

Proposition 1.3.3. Suppose that for each pair of states x, y P X there is a
coupling pXt, Ytq with X0 “ x and Y0 “ y. For each such coupling, let τcouple
be the coalescence time of the chains, as defined in 1.21. Then

dptq ď max
x,yPX

Px,y tτcouple ą tu

and therefore tmix ď 4 maxx,y Ex,y pτcouple q .

The last inequality is by Markov inequality.

1.4 Stationary Times

This chapter we study stationary times of Markov chains, which gives a
method to bound mixing times.

Definition 1.4.1. A stopping time τ for the filtration tFtu is a t0, 1, 2, ...uY
t8u valued random variable satisfying tτ “ tu P Ft. For the Markov chains
pXtq, we consider the natural filtration generated by X1, X2, . . . , Xt.

An important property in this work is the strong Markov property

Probx0tpXτ`1, Xτ`2, ..., Xτ`` P A|τ “ k ^ pX1, ..., Xkq “ px1, ..., xkqu
(1.23)

“ ProbxktpX1, ..., X`q P Au.

Definition 1.4.2. Let pXtq be a Markov chain with respect to the filtration
tFtu , with stationary distribution π. A strong stationary time for pXtq and
starting position x is an tFtu -stopping time τ, such that for all times t and
all y

Px tτ “ t,Xτ “ yu “ Pxtτ “ tuπpyq. (1.24)

In other words, Xτ has distribution π and is independent of τ .
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Proposition 1.4.1. If τ is a strong stationary time for starting state x, then

›

›P t
px, ¨q ´ π

›

›

TV
ď Pxtτ ą tu (1.25)

To prove this proposition, we introduce the separation distance and it
suffices to prove two related lemmas.

Definition 1.4.3. The separation distance of a Markov chain is defined by

sxptq :“ max
yPX

„

1´
P tpx, yq

πpyq



. (1.26)

We also define
sptq :“ max

xPX
sxptq

Lemma 1.4.2. If τ is a strong stationary time for starting state x, then

sxptq ď Pxtτ ą tu

Proof.

Px tτ ď t,Xt “ yu “
ÿ

sďt

ÿ

z

Px tτ “ s,Xs “ z,Xt “ yu

“
ÿ

sďt

ÿ

z

P t´s
pz, yqPxtτ “ suπpzq

“ Pxtτ ď tuπpyq

So for x P X . Observe that for every y P X ,

1´
P tpx, yq

πpyq
“ 1´

Px tXt “ yu

πpyq
ď 1´

Px tXt “ y, τ ď tu

πpyq

“ 1´
πpyqPxtτ ď tu

πpyq
“ Pxtτ ą tu

Lemma 1.4.3. The separation distance sxptq satisfies
›

›P t
px, ¨q ´ π

›

›

TV
ď sxptq,

and therefore dptq ď sptq.

Proof.

›

›P t
px, ¨q ´ π

›

›

TV
“

ÿ

P tpx,yqăπpyq

“

πpyq ´ P t
px, yq

‰

“
ÿ

P tpx,yqăπpyq

πpyq

„

1´
P tpx, yq

πpyq



ď max
y

„

1´
P tpx, yq

πpyq



“ sxptq

20



1.5 Eigenvalues

In this section, we present several important properties of the eigenvalues of
transition matrices, which turns out to be very important to understand the
asymptotic behavior of Markov chains.

Lemma 1.5.1. Let P be the transition matrix of a finite Markov chain.
(i) If λ is an eigenvalue of P, then |λ| ď 1
(ii) If P is irreducible, the vector space of eigenfunctions corresponding to

the eigenvalue 1 is the one-dimensional space generated by the column vector
1 :“ p1, 1, . . . , 1qT

(iii) If P is irreducible and aperiodic, then -1 is not an eigenvalue of P

Proof. (a) Let }f}8 :“ maxxPX |fpxq|. We have }Pfpxq} “ }
ř

P px, yqfpyq} ď
}
ř

P px, yq}f}8} “ }f}8 for every x P X . Therefore }Pf}8 ď }f}8.
When f is an eigenfunction, we have }λ}8 ď }f}8. Therefore |λ| ď 1.
(b) is proved in 1.1.6.
(c) is guaranteed by the Convergence Theorem: convergence of P n implies

convergence of P nf . But if f is an eigenfunction with eigenvalue ´1. P nf “
p´1qnf , which is not convergent.

Denote by x¨, ¨y the usual inner product on RX , given by xf, gy “
ř

xPX fpxqgpxq
We will also need another inner product, denoted by x¨, ¨yπ and defined by

xf, gyπ :“
ÿ

xPX
fpxqgpxqπpxq (1.27)

We write `2pπq for the vector space RX equipped with the inner product
(12.1) Recall that the transition matrix P is reversible with respect to the
stationary distribution π if πpxqP px, yq “ πpyqP py, xq for all x, y P X . The
reason for introducing the inner product 1.27 is given by the following lemma:

Lemma 1.5.2. Let P be reversible with respect to π
(i) The inner product space

`

RX , x¨, ¨yπ
˘

has an orthonormal basis of real-

valued eigenfunctions tfju
|X |
j“1 corresponding to real eigenvalues tλju

(ii) The matrix P can be decomposed as

P tpx, yq

πpyq
“

|X |
ÿ

j“1

fjpxqfjpyqλ
t
j

(iii) The eigenfunction f1 corresponding to the eigenvalue 1 can be taken
to be the constant vector 1, in which case

P tpx, yq

πpyq
“ 1`

|X |
ÿ

j“2

fjpxqfjpyqλ
t
j (1.28)
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Proof. Define Apx, yq :“ πpxq1{2πpyq´1{2P px, yq. Reversibility of P implies
that A is symmetric. The spectral theorem for symmetric matrices guar-
antees that the inner product space

`

RX , x¨, ¨y
˘

has an orthonormal basis

tϕju
|X |
j“1 such that ϕj is an eigenfunction with real eigenvalue λj

We define ϕ1 “
?
π be a function which takes values of the square root

of the stationary distribution. Then

Aϕ1pxq “
ÿ

y

Apx, yqφpyq “
ÿ

y

πpxq1{2P px, yq “ πpxq1{2 “ ϕ1pxq.

Thus ϕ1 is an eigenfunction of A with corresponding eigenvalue λ1 “ 1.
If Dπ denotes the diagonal matrix with diagonal entries Dπpx, xq “ πpxq,

then A “ D
1
2
πPD

´ 1
2

π . If fj :“ D
´ 1

2
π ϕj, then fj is an eigenfunction of P with

eigenvalue λj

Pfj “ PD
´ 1

2
π ϕj “ D

´ 1
2

π

´

D
1
2
πPD

´ 1
2

π

¯

ϕj “ D
´ 1

2
π Aϕj “ D

´ 1
2

π λjϕj “ λjfj

Although the eigenfunctions tfju are not necessarily orthonormal with re-
spect to the usual inner product, they are orthonormal with respect to the
inner product x¨, ¨yπ defined in 1.27.

δij “ xϕi, ϕjy “
A

D
1
2
π fi, D

1
2
π fj

E

“ xfi, fjyπ

Considering
`

RX , x¨, ¨yπ
˘

with its orthonormal basis of eigenfunctions tfju
|X |
j“1 ,

the function δy can be written via basis decomposition as

δy “

|X |
ÿ

j“1

xδy, fjyπ fj “

|X |
ÿ

j“1

fjpyqπpyqfj

(1.29)

since P tfj “ λtjfj and P tpx, yq “ pP tδyq pxq

P t
px, yq “

|X |
ÿ

j“1

fjpyqπpyqλ
t
jfjpxq

Dividing by πpyq completes the proof of (ii), and (iii) follows from observa-
tions above.
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Lemma 1.5.3. If ϕ is an eigenfunction of the transition matrix P with
eigenvalue λ ‰ 1, then Eπpϕq “ 0

Proof. Multiplying the equation Pϕ “ λϕ on the left by the stationary
distribution π shows that

Eπpϕq “ πPϕ “ λEπpϕq.

Then Eπpϕq “ 0 when λ ‰ 1.

1.6 The Relaxation Time and Spectral Gap

Definition 1.6.1. λ‹ :“ maxt|λ| : λ is an eigenvalue of P, λ ‰ 1u The dif-
ference γ‹ :“ 1 ´ λ‹ is called the absolute spectral gap. 1.5.1 implies
that if P is aperiodic and irreducible, then γ‹ ą 0

For a reversible transition matrix P, we label the eigenvalues of P in
decreasing order:

1 “ λ1 ą λ2 ě ¨ ¨ ¨ ě λ|X | ě ´1

The spectral gap of a reversible chain is defined by γ :“ 1´ λ2.

Lemma 1.6.1. Let PL “ pP ` Iq{2 be the transition matrix of the lazy
version of the chain with transition matrix P. Show that all the eigenvalues
of PL are nonnegative. Therefore, for 1

2
-lazy markov chains, γ‹ “ γ.

Proof. PLf “ λf implies Pf “ p2λ´ 1qf .
Then from 1.5.1 we have ´1 ď 2λ´ 1 ď 1. Thus 0 ď λ ď 1.

Similarly, for 1
n
-th lazy Markov chains we have

´1`
2

n
ď λ ď 1. (1.30)

Definition 1.6.2. The relaxation time trel of a reversible Markov chain with
absolute spectral gap γ‹ is defined to be

trel :“
1

γ‹

We prove upper and lower bounds on the mixing time in terms of the
relaxation time and the stationary distribution of the chain.
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Theorem 1.6.2. Let P be the transition matrix of a reversible, irreducible
Markov chain with state space X , and let πmin :“ minxPX πpxq. Then

tmixpεq ď

R

trel

ˆ

1

2
log

ˆ

1

πmin

˙

` log

ˆ

1

2ε

˙˙V

ď trel log

ˆ

1

επmin

˙

(1.31)

t
p8q

mixpεq ď

R

trel log

ˆ

1

επmin

˙V

(1.32)

Proof. Using 1.28 and applying the Cauchy-Schwarz inequality yields

ˇ

ˇ

ˇ

ˇ

P tpx, yq

πpyq
´ 1

ˇ

ˇ

ˇ

ˇ

ď

|X |
ÿ

j“2

|fjpxqfjpyq|λ
t
‹ ď λt‹

«

|X |
ÿ

j“2

f 2
j pxq

|X |
ÿ

j“2

f 2
j pyq

ff1{2

(1.33)

Using 1.5 and the orthonormality of tfju shows that

πpxq “ xδx, δxyπ “

C

|X |
ÿ

j“1

fjpxqπpxqfj,

|X |
ÿ

j“1

fjpxqπpxqfj

G

π

“ πpxq2
|X |
ÿ

j“1

fjpxq
2

Consequently,
ř|X |
j“2 fjpxq

2 ď πpxq´1. This bound and 1.33 imply that

ˇ

ˇ

ˇ

ˇ

P tpx, yq

πpyq
´ 1

ˇ

ˇ

ˇ

ˇ

ď
λt‹

a

πpxqπpyq
ď

λt‹
πmin

“
p1´ γ‹q

t

πmin

ď
e´γ‹t

πmin

(1.34)

The bound on t
p8q

mixpεq follows from its definition and the above inequality.

Theorem 1.6.3. Suppose that λ ‰ 1 is an eigenvalue for the transition
matrix P of an irreducible and aperiodic Markov chain. Then

tmixpεq ě

ˆ

1

1´ |λ|
´ 1

˙

log

ˆ

1

2ε

˙

.

In particular, for reversible chains,

tmixpεq ě ptrel ´ 1q log

ˆ

1

2ε

˙

. (1.35)

Proof. We may assume that λ ‰ 0. Suppose that Pf “ λf with λ ‰ 1. By
1.5.3 Eπpfq “ 0. It follows that

ˇ

ˇλtfpxq
ˇ

ˇ “
ˇ

ˇP tfpxq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

yPX

“

P t
px, yqfpyq ´ πpyqfpyq

‰

ˇ

ˇ

ˇ

ˇ

ˇ

ď }f}82dptq
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With this inequality, we can obtain a lower bound on the mixing time. Taking
x with |fpxq| “ }f}8 yields

|λ|t ď 2dptq (1.36)

Therefore, |λ|tmixpεq ď 2ε, whence

tmixpεq

ˆ

1

|λ|
´ 1

˙

ě tmixpεq log

ˆ

1

|λ|

˙

ě log

ˆ

1

2ε

˙

Minimizing the left-hand side over eigenvalues different from 1 and rearrang-
ing finishes the proof.

Lemma 1.6.4. For a reversible, irreducible, and aperiodic Markov chain,

lim
tÑ8

dptq1{t “ λ‹

Proof. The proof is directly from previous theorems.

1.7 Distinguishing Statistics

One way to produce a lower bound on the mixing time tmix is to find a statistic
fpa real-valued function q on X such that the distance between the distribu-
tion of f pXtq and the distribution of f under the stationary distribution π
can be bounded from below.

We firstly provide a useful lemma. When µ is a probability distribution
on X and f : X Ñ Λ, The distribution of f is given by µf´1:

`

µf´1
˘

pAq :“ µ
`

f´1
pAq

˘

Lemma 1.7.1. Let µ and ν be probability distributions on X , and let f :
X Ñ Λ be a function on X , where Λ is a finite set. Then

}µ´ ν}TV ě
›

›µf´1
´ νf´1

›

›

TV

Proof. |µf´1pBq ´ νf´1pBq| “ |µ pf´1pBqq ´ ν pf´1pBqq| . Since f´1pBq Ă
X , we have

max
BĂΛ

ˇ

ˇµf´1
pBq ´ νf´1

pBq
ˇ

ˇ ď max
AĂX

|µpAq ´ νpAq|.
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Proposition 1.7.2. For f : X Ñ R, define σ2
‹ :“ max tVarµpfq,Varνpfqu .

If
|Eνpfq ´ Eµpfq| ě rσ‹.

Then,

}µ´ ν}TV ě 1´
8

r2
.

In particular, if for a Markov chain pXtq with transition matrix P the func-
tion f satisfies

|Ex rf pXtqs ´ Eπpfq| ě rσ‹

Then,
›

›P t
px, ¨q ´ π

›

›

TV
ě 1´

8

r2
.

Proof. Suppose without loss of generality that Eµpfq ďEνpfq. IfA “ pEµpfq ` rσ‹{2,8q ,
then Chebyshev’s inequality yields that

µf´1
pAq “ µtf ´ Eµpfq ą rσ‹{2u ď

4

r2
and thus νf´1

pAq ě 1´
4

r2

Then the result follows by the previous lemma.

The following gives a better constant in the lower bound.

Proposition 1.7.3. Let µ and ν be two probability distributions on X , and
let f be a real-valued function on X . If

|Eµpfq ´ Eνpfq| ě rσ

where σ2 “ rVarµpfq ` Varνpfqs {2, then

}µ´ ν}TV ě 1´
4

4` r2

1.8 Wilson’s Method

A general method due to David Wilson [11] for obtaining a lower bound on
mixing time uses an eigenfunction Φ to construct a distinguishing statistic.

For an example of Wilson’s Method, see 4.2.2.

Theorem 1.8.1. (Wilson’s method). Let pXtq be an irreducible aperiodic
Markov chain with state space X and transition matrix P. Let Φ be an eigen-
function of P with real eigenvalue λ satisfying 1{2 ă λ ă 1. Fix 0 ă ε ă 1
and let R ą 0 satisfy

Ex

`

|Φ pX1q ´ Φpxq|2
˘

ď R (1.37)
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for all x P X . Then for any x P X

tmixpεq ě
1

2 logp1{λq

„

log

ˆ

p1´ λqΦpxq2

2R

˙

` log

ˆ

1´ ε

ε

˙

(1.38)

Proof. Since
E pΦ pXt`1q |Xt “ zq “ λΦpzq (1.39)

for all t ě 0 and z P X , we have

ExΦ pXtq “ λtΦpxq for t ě 0 (1.40)

by induction. Fix a value t, let z “ Xt, and define Dt “ Φ pXt`1q´Φpzq. By
1.39 and 1.37 respectively, we have

Ex pDt|Xt “ zq “ pλ´ 1qΦpzq (1.41)

and
Ex

`

D2
t |Xt “ z

˘

ď R (1.42)

Hence

Ex

`

Φ pXt`1q
2
|Xt “ z

˘

“ Ex

`

pΦpzq `Dtq
2
|Xt “ z

˘

(1.43)

“ Φpzq2 ` 2Ex pDtΦpzq|Xt “ zq ` Ex

`

D2
t |Xt “ z

˘

(1.44)

ď p2λ´ 1qΦpzq2 `R (1.45)

Averaging over the possible values of z P X with weights P tpx, zq “
Px tXt “ zu gives

ExΦ pXt`1q
2
ď p2λ´ 1qExΦ pXtq

2
`R

Averaging over the possible values of z P X with weights P tpx, zq “
Px tXt “ zu gives

ExΦ pXt`1q
2
ď p2λ´ 1qExΦ pXtq

2
`R

At this point, we could apply this estimate inductively, then sum the resulting
geometric series. It is equivalent (and neater) to subtract R{p2p1´ λqq from
both sides, obtaining

ExΦ pXt`1q
2
´

R

2p1´ λq
ď p2λ´ 1q

ˆ

ExΦ pXtq
2
´

R

2p1´ λq

˙
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Iterating the above inequality shows that

ExΦ pXtq
2
´

R

2p1´ λq
ď p2λ´ 1qt

„

Φpxq2 ´
R

2p1´ λq



Leaving off the non-positive term ´p2λ´1qtR{r2p1´λqs on the right-hand
side above shows that

ExΦ pXtq
2
ď p2λ´ 1qtΦpxq2 `

R

2p1´ λq

Combining 1.40 and 1.43 gives

Varx Φ pXtq ď
“

p2λ´ 1qt ´ λ2t
‰

Φpxq2 `
R

2p1´ λq
ă

R

2p1´ λq
. (1.46)

Since 2λ ´ 1 ă λ2 ensures the first term is negative. 1.5.3 implies that
EπpΦq “ 0. Letting tÑ 8 in 1.46 the Convergence Theorem implies that

VarπpΦq ď
R

2p1´ λq

Applying Proposition 1.7.3 with r2 “
2p1´λqλ2tΦpxq2

R
gives

›

›P t
px, ¨q ´ π

›

›

TV
ě

r2

4` r2
“

p1´ λqλ2tΦpxq2

2R ` p1´ λqλ2tΦpxq2
(1.47)

If t satisfies
p1´ λqλ2tΦpxq2 ą

ε

1´ ε
p2Rq (1.48)

then the right-hand side of 1.47 is strictly greater than ε, whence, dptq ą ε.
For any

t ă
1

2 logp1{λq

„

log

ˆ

p1´ λqΦpxq2

2R

˙

` log

ˆ

1´ ε

ε

˙

(1.49)

the inequality 1.48 holds, so tmixpεq ą t. Thus tmixpεq is at least the right-hand
side of 1.49.

1.9 Heat Kernel

We first introduce continuous time Markov chains.
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Definition 1.9.1. Given a transition matrix P, pXtqtPr0,8q is the continuous-
time chain with transition matrix P, if the occurrence of transitions is a
Poisson Process. More precisely, let S1, S2, . . . be the transition times that
change-of-state occurs. Then Ti “ Si ´ Si´1 is i.i.d. exponential random
variables with rate r. At these transition times moves are made according to
P.

Define Nt :“ max tk : Sk ď tu to be the number of transition times up to
and including time t, which is a Poisson Process. Observe that Nt “ k if and
only if Sk ď t ă Sk`1. From the definition,

Px tXt “ y|Nt “ ku “ Px tΦk “ yu “ P k
px, yq.

Definition 1.9.2. The time t heat kernel associated to P is the transition
probabilities from initial states at time 0 to states at time t, i.e.

Htpx, yq :“ Px tXt “ yu “
8
ÿ

k“0

Px tXt “ y|Nt “ kuPx tNt “ ku

“

8
ÿ

k“0

e´rtprtqk

k!
P k
px, yq

The time t heat kernel associated to P with rate 1 is

HtpP q “ e´t
8
ÿ

k“0

tkP k

k!
. (1.50)

Write σpP q for the spectrum, including multiplicity, of P . If P “
ř

λPσpP q λvλv
t
λ

is a diagonalization of P in an orthonormal eigenbasis tvλuλPσpP q then

HtpP q “
ÿ

λPσpP q

epλ´1qtvλv
t
λ. (1.51)
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Chapter 2

Representation Theory and
Fourier Analysis

2.1 Basics of Representation Theory

Definition 2.1.1. Group representation
A representation ρ of a group G is a homomorphism from G to GLpV q

where V is a vector space. The dimension of V is called the degree of ρ.

If W is a subspace of V and W is stable under G (i.e., ρpgqW Ă W
for @g P G), then ρ restricted to W gives a subrepresentation. If the
representation ρ admits no non-trivial subrepresentation, then ρ is called
irreducible.

Definition 2.1.2. For a group G, a homomorphism f from a group repre-
sentation ρ on V to a group representation σ on W is a function f : V Ñ W
such that fpρg ¨ vq “ σgfpvq for all g P G.

f is an isomorphism if f is a bijection.

V V

W W

ρ

f f

σ

Definition 2.1.3. Given W Ă V is a subrepresentation, we define the quo-
tient representation

ρV {U : GÑ GLpV {Uq, with ρUpgqpv ` Uq “ ρpgqpvq ` U
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Theorem 2.1.1. Isomorphism Theorem. For a homomorphism f : V Ñ
W ,

V {kerpfq – Impfq

Definition 2.1.4. Fourier transform
Suppose P is a probability measure (or, generally any function from GÑ

C ) on finite group G. We define Fourier transform of P by

P̂ psq :“
ÿ

s

P psqρptq

Lemma 2.1.2. For any representation ρ, {P ˚Qpρq “ P̂ pρqQ̂pρq

Proof.
P̂ pρqQ̂pρq “

ÿ

s

ÿ

t

P psqQptqρpstq

“
ÿ

t

Qptqp
ÿ

s

P psqρpstqq

“
ÿ

t

Qptqp
ÿ

s

P pst´1
qρpsqq

“
ÿ

t

p
ÿ

s

P pst´1
qQptqρpsqq

“
ÿ

s

P ˚Qpsqρpsq

“{P ˚Qpρq

Lemma 2.1.3. Schur’s Lemma
If f is a homomorphism : V1 Ñ V2, such that V1, V2 are irreducible repre-

sentations of a group G. Then f is either 0 or invertible.

Proof. If f is not invertible, there are 2 cases:
1. kerpfq ‰ 0, then kerpfq “ V1 since kerpfq is a subrepresentation and

V1 is irreducible. Thus f “ 0.
2. Impfq ‰ V2, then Impfq “ 0, since Impfq is a subrepresentation of V2

and V2 is irreducible. Thus f “ 0

Lemma 2.1.4. For an irreducible representation V over C and f : V Ñ V
is a homomorphism, then f “ λI for λ P C
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Proof. Let λ be an eigenvalue of f , then f ´ λI is not invertible. By the
previous lemma, f ´ λI “ 0

Lemma 2.1.5. For uniform distribution U on G, we have Ûpρq “ I for the
trivial representation ρ, Ûpρq “ 0 for any nontrivial irreducible representa-
tion ρ.

Proof. Notice that ˆUpρq is an homomorphism from V to V :

Ûpρqρpsq “
1

|G|

ÿ

t

Uptqρptsq “ Ûpρq

ρpsqÛpρq “
1

|G|

ÿ

t

Uptqρpstq “ Ûpρq

Then by Schur’s lemma Ûpρq “ λI.
When ρ is trivial, clearly λ “ 1 .
When ρ is not trivial, clearly λ “ 0.

Theorem 2.1.6. Let ρ : G Ñ GLpV q be a linear representation of G in V
and let W be a subspace of V stable under G. Then there exists a complement
WK of W in V which is stable under G.

Proof. Let x, y1 be a scalar inner product on V. Using the average trick, define
a new inner product by

xu, vy “
ÿ

s

xρpsqu, ρpsqvy1.

Then x, y is invariant: xρpsqu, ρpsqvy “ xu, vy. The orthogonal complement of
W in V serves as WK.

Theorem 2.1.7. Every representation of a finite group G on a complex
vector space V is completely reducible (a direct sum of irreducible represen-
tations).

Proof. This is a direct result by applying the above theorem inductively on
V .

Next, we present an alternative version of Schur’s Lemma.
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Lemma 2.1.8. Let h be any linear map of V1 into V2. Let

h0
“

1

|G|

ÿ

t

`

ρ2
t

˘´1
hρ1

t

Then
(1) If ρ1 and ρ2 are not equivalent, h0 “ 0
(2) If V1 “ V2 and ρ1 “ ρ2, then h0 is a constant times the identity, the

constant being trh{dρ.

Proof. For any s, ρ2
s´1h0ρ1

s “
1
|G|

Σρ2
s´1t´1hρ1

ts “
1
|G|

Σ pρ2
tsq
´1
hρ1

ts “ h0. If ρ1

and ρ2 are not isomorphic then h0 “ 0 by Schur’s lemma. If V1 “ V2, ρ1 “

ρ2 “ ρ, then h0 is an homomorphism from V1 to V2.
By Schur’s lemma h0 “ cI. Take the trace of both sides and solve for

c.

Suppose ρ1 and ρ2 are given in matrix form

ρ1
t “ pri1j1ptqq , ρ2

t “ pri2j2ptqq

The linear maps h and h0 are defined by matrices xi2i1 and x0
i2i1
. We have

x0
i2i1
“

1

|G|

ÿ

t,j1,j2

ri2j2
`

t´1
˘

xj2j1rj1i1ptq

In case p1q, h0 ” 0 for all choices of h. This can only happen if the coefficients
of xj2j1 are all zero (we view x0

j2j1
as a linear combination of xj2j1). This gives

1

|G|

ÿ

tPG

ri2j2
`

t´1
˘

rj1i1ptq “ 0 for all i1, i2, j1, j2 (2.1)

In case (2),

x0
i2i1
“

trh

dρ
“

ř

i1
xi1i1
dρ

, so
1

|G|

ÿ

tPG

ri2j2
`

t´1
˘

rj1i1ptq “

" 1
dρ

if i1 “ i2 and j1 “ j2
0 otherwise

(2.2)

Definition 2.1.5. Characters
Given a representation ϕ of a finite group G, the character χ of ϕpgq is

χϕpgq “ trpϕpgqq

By recalling that trpABq “ trpBAq, we see that χϕ phgh
´1q “ χϕ pgh

´1hq “
χϕpgq. Therefore, χ is constant on conjugacy class. Hence, χ is a class func-
tion.
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Let J be the space of complex-valued functions on group G. Then it has
inner product:

pf1, f2q :“
1

|G|

ÿ

aPG

f1paqf2paq

Lemma 2.1.9. We have
(a).

χV‘W “ χV ` χW

(b).If V1, V2 are irreducible non-isomorphic representations, then

pχV1 , χV2q “ 0

(c).If V is irreducible,
pχV , χV q “ 1

Proof. (a) Notice that If we choose a basis of V1 and a basis of V2, together
it forms a basis for V1 ‘ V2. Then the matrix of a representation respect to
this basis is the block diagonal matrix. The result follows immediately.

(b)

pχV1 , χV2q :“
1

|G|

ÿ

aPG

trpρpaqq trpσpa´1
qq “ 0

. The last equality is by 2.1.
(c)

pχV , χV q :“
1

|G|

ÿ

aPG

trpρpaqq trpρpa´1
qq “

1

|G|

ÿ

aPG

ÿ

i,j

riipaqrjjpa
´1
q “ 1.

The last equality is by 2.2.

Lemma 2.1.10. For V “ n1V1 ‘ n2V2 ‘ ...‘ nkVk, We have
a.pχV , χViq “ pniχVi , χViq.
b.pχV , χV q “

ř

i n
2
i .

c. There are only finitely many irreducible representations.

Proof. These are direct results by previous lemmas.

Let the irreducible characters be labelled χi. Suppose their degrees are
di The regular representation is based on a vector space with basis tesu , s P
G Define ρs petq “ est. Observe that the underlying vector space can be
identified with the set of all functions on G
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Proposition 2.1.11. The character rG of the regular representation is given
by

rGp1q “ |G|
rGpsq “ 0, s ‰ 1

Proof. ρ1 pesq “ es so Tr ρ1 “ |G|. For s ‰ 1, ρset “ est ‰ et so all diagonal
entries of the matrix for ρs are zero. i.e., group automorphism doesn’t have
any fixed points, except the identity map.

Proposition 2.1.12. Every irreducible representation Wi is contained in the
regular representation with multiplicity equal to its degree.

Proof.

prG|χiq “
1

|G|

ÿ

sPG

rGpsqχ
˚
i psq “ χ˚i p1q “ di.

Proposition 2.1.13. (a) The degrees di satisfy
ř

d2
i “ |G|

(b) If s P G is different from 1,Σdiχipsq “ 0

Proof. The result is immediate by the previous proposition. rGpsq “ Σdiχipsq.
For paq take s “ 1, for pbq take any s ‰ 1.

Proposition 2.1.14. (a) Fourier Inversion Theorem. Let f be a function
on G, then

fpsq “
1

|G|

ÿ

di tr
´

ρi

`

s´1
˘

f̂ pρiq
¯

(b) Plancherel Formula. Let f and h be functions on G, then

Σf
`

s´1
˘

hpsq “
1

|G|
Σdi tr

´

f̂ pρiq ĥ pρiq
¯

Proof. (a). Both sides are linear in f so it is sufficient to check the formula
for fpsq “ δtpsq. Then f̂ pρiq “ ρiptq, and the right side equals

1

|G|

ÿ

diχi
`

s´1t
˘

.

The result follows by 2.1.13.
(b)Both sides are linear in f ; taking fpsq “ δtpsq, the equation thus is

reduced to

h
`

t´1
˘

“
1

|G|

ÿ

di tr
´

ρiptqĥ pρiq
¯

This was proved in part (a).
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Remark. For real valued functions , then the Plancherel formula is given by

ÿ

fpsqhpsq “
1

|G|

ÿ

i

tr
´

f̂pρiqĥpρiq
˚
¯

. (2.3)

Definition 2.1.6. f : G Ñ C is a class function on G if it is invariant
under conjugation. i.e. fph´1ghq “ fpgq.

Proposition 2.1.15. Let f be a class function on G. Let ρ : GÑ GLpV q be
an irreducible representation of G. Then f̂pρq “ λI with

λ “
1

dρ

ÿ

fptqχρptq “
|G|

dρ

`

f |χ˚ρ
˘

Proof.

ρsf̂pρqρ
´1
s “

ÿ

fptqρpsqρptqρ
`

s´1
˘

“
ÿ

fptqρ
`

sts´1
˘

“ f̂pρq.

So, by Schur’s lemma f̂pρq “ λI. Take traces of both sides and solve for
λ

Proposition 2.1.16. The characters of the irreducible representations tχiu
k
i“1

(there are only finitely many) form an orthonormal basis for the class func-
tions.

Proof. We have shown that the characters of irreducible representations are
orthogonal. It remains to show they are enough.

Suppose pf |χ˚i q “ 0, for f a class function. Then 2.1.15 gives f̂pρq “ 0
for every irreducible ρ and the inversion theorem gives f “ 0.

Lemma 2.1.17. (Upper bound lemma.) Let Q be a probability on the
finite group G. Then

}Q´ U}2 ď
1

4

ÿ̊

dρ Tr
´

Q̂pρqQpρq˚
¯

where the sum is over all non-trivial irreducible representations. Then,

}Q´ U}2 ď
1

4

ÿ̊

dρ Tr
´

Q̂pρqQ̂pρq˚
¯

where the sum
ř˚ is over all non-trivial irreducible representations.
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Proof.

4}Q´ U}2 “

#

ÿ

s

|Qpsq ´ Upsq|

+2

ď |G|
ÿ

s

|Qpsq ´ Upsq|2

“
ÿ̊

dρ Tr
´

Q̂pρqQ̂pρq˚
¯

The inequality is by Cauchy-Schwarz. The final equality is by 2.3, and Ûpρq “
1 for ρ trivial, Ûpρq “ 0 for ρ non-trivial by 2.1.5.

2.2 Connections with Markov chains

As shown in [3] chapter 3E, we present the connection between representation
theory and random walk on groups as defined in 1.1.9, where the eigenvalues
of the transition matrix are precisely the eigenvalues of the Fourier transform
of the probability measure with respect to the regular representation, each
appearing with multiplicity dρ.

Let finite group G “ ts1, . . . , sNu , N “ |G| Given a probability measure
Q on a group G. Recall that the transition probability is given by Qps, tq “
Qpts´1q. We denote Qpi, jq “ Q

`

sjs
´1
i

˘

.
Suppose irreducible representations are numbered as ρ1, . . . , ρK . Define

Mk “

¨

˚

˝

Q̂ pρkq 0
. . .

0 Q̂ pρkq

˛

‹

‚

,

a d2
k ˆ d

2
k block matrix with Q̂ pρkq the Fourier transform of Q at ρk.

Let M be the N ˆ N block diagonal matrix

¨

˚

˝

M1 0
. . .

0 MK

˛

‹

‚

Choose

a basis such that each irreducible representation is given by a unitary matrix.
Define

ψkpsq “

c

dk
N
pρkpsq11, ρkpsq21, . . . , ρkpsqdk1, ρkpsq12, . . . , ρkpsqdkdkq

T

a column vector of length d2
k. Let φpsq “

`

ψ1psq
T , ψ2psq

T , . . . , ψKpsq
T
˘T

be a
column vector of length N obtained by concatenating the ψkpsq vectors.

Let φ be the N ˆ N matrix pφ ps1q , . . . , φ psNqq and φ˚ its conjugate
transpose.
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Theorem 2.2.1. Then transition matrix Qpi, jq satisfies

Q “ φ˚M˚φ.

Remark. The Schur orthogonality relations show that φ is a unitary matrix.
It implies that each eigenvalue of Q̂pρq is an eigenvalue of Qpi, jq with multi-
plicity dρ. Together these are all the eigenvalues of Qpi, jq. If M is diagonal,
then (5) is the spectral decomposition of Q with respect to an orthonormal
basis of eigenvectors.

Also, trQ “ trφ˚M˚φ “ trM˚φφ˚ “ trM˚.

Proof.

Qpi, jq “
1

N

K
ÿ

k“1

dk Tr
”

Q̂ pρkq ρk psiq ρk
`

s´1
j

˘

ı

“
1

N

K
ÿ

k“1

dk Tr
”

ρk
`

s´1
j

˘

Q̂ pρkq ρk psiq
ı

Expanding the trace, this equals

K
ÿ

k“1

ψk psjq
˚Mkψk psiq .
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Chapter 3

Green’s function on lattice
points and Harmonic
Extension.

This chapter combines the idea of harmonic extension, as illustrated in [2],
and harmonic functions discussed in [7].

The return time of a Markov chain at a vertex is the first positive time
after leaving the vertex at which the Markov chain again is at the vertex.
The hitting time of a Markov chain to a set B is the first non-negative time at
which the chain reaches the set. We require some estimates for return times
and hitting times of simple random walk on the torus pZ{nZq2, as well as
the hitting probabilities regarding the likelihood of first reaching individual
vertices in sets.

The following proposition can be used to estimate return probabilities.

Proposition 3.0.1. Let pXtq be a Markov chain on a finite state space X
with irreducible transition matrix P , let B Ă X , and let hB : B Ñ R be a
function defined on B. The function h : X Ñ R defined by

hpxq :“ ExhBpXτBq (3.1)

is the unique extension h : X Ñ R of hB such that hpxq “ hBpxq for all
x P B and h is harmonic for P at all x P X zB.

The function h is called the ‘harmonic extension’ of hB to X zB.
The following lemma can be deduced from Proposition 3.0.1. Let Xt be

1
5
-lazy simple random walk on pZ{nZq2 started from p1, 0q, and let py,n, y P
tp1, 0q, p´1, 0q, p0, 1q, p0,´1qu be the probability that Xt first reaches p0, 0q
from y.
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Lemma 3.0.2. There are limiting probabilities pp1,0q, pp´1,0q, pp0,1q “ pp0,´1q ą

0 such that py,n Ñ py as nÑ 8.

Proof. Since simple random walk on Z2 is recurrent with probability 1, the
probability of the first return to 0 taking more than n steps tends to 0 as
n Ñ 8. Those return paths which take fewer than n steps are the same on
pZ{nZq2 as on Z2, which proves the limit.

Next we calculate the limiting return probabilities px. Firstly we intro-
duce the Green’s functions on Z2, which could be used to represent harmonic
functions on Z2.

Definition 3.0.1. We define Green’s function on Z2 as following: for x P Z2,

GZ2pxq “
1

4

8
ÿ

n“0

rv˚npxq ´ v˚np0, 0qs

, where v “ 1
4
rδp0,1q ` δp0,´1q ` δp1,0q ` δp´1,0qs.

It’s easy to verify GZ2pxq is harmonic modulo 1 on Z2.
To calculate GZ2pxq, consider the Fourier Transformation:

v̂pnq “

ż

Rd{Zd
fpxqepn ¨ xqdx. (3.2)

,where epxq “ e2πix.
For v:

v̂pζ1, ζ2q “
cosp2πζ1q ` cosp2πζ2q

2
So

yGZ2pζq “
1

4

8
ÿ

n“0

xv˚npζ1, ζ2q “
1

4

8
ÿ

n“0

v̂n “
1

4´ 2 cosp2πζ1q ´ 2 cosp2πζ2q

Then by Fourier inversion formula, we can compute GZ2pxq by calculating
the integral:

GZ2pxq “

ż

R2{Z2

ep´ζ ¨ xqyGZ2pζqdζ (3.3)

We give the return probability to the origin in the following lemmas.

Lemma 3.0.3. Started at p1, 0q, the return probability to the origin is given
by

pp1,0q “
1

2
, pp0,˘1q “

1

2
´

1

π
, pp´1,0q “

2

π
´

1

2
. (3.4)
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Proof. We work first on pZ{nZq2 and then take the limit as nÑ 8. Denote
Gx,n the Green’s function on pZ{nZq2 started at 0 and evaluated at x and
Gx the Green’s function started at 0 and evaluated at x on Z2. We define
function hB on set B, where B “ tp0, 0q, p´1, 0qu, and extend hB on pZ{nZq2
by Lemma 3.0.1.

By [7], any harmonic modulo 1 function on Z2 is a sum of discrete deriva-
tives of the Green’s function.

Let hpp0, 0qq “ ´Gp1,0q,n, hpp´1, 0qq “ Gp1,0q,n, then

hpxq “ Gx,n ´Gx´p´1,0q,n (3.5)

By conditioning on the state which is first hit in B, we get

hpxq “ pBp0,0q,npxqhpp0, 0qq ` pBp´1,0q,npxqhpp´1, 0qq, (3.6)

where pBp0,0q,npxq is, starting at point x the probability of hitting the origin
when first hitting set B and pBp´1,0q,npxq is the probability of hitting p´1, 0q
when first hitting set B. For convenience, let pBp0,0q,n and pBp´1,0q,n denote
pBp0,0q,np1, 0q and pBp´1,0q,np1, 0q.

Since we know pBp0,0q,n ` pBp´1,0q,n “ 1, plug in p1, 0q in (3.5) and we get

pBp0,0q,n “
Gp2,0q,n
2Gp1,0q,n

, pBp´1,0q,n “ 1´
Gp2,0q,n
2Gp1,0q,n

. (3.7)

Plug in p0, 1q in (3.5), we get

pBp´1,0q,npp0, 1qq “ 1´
Gp1,1q,n
2Gp1,0q,n

. (3.8)

Due to symmetry, we have

pp0,1q,n “ pBp´1,0q,npp0, 1qqpp1,0q,n

i.e. start at p0, 1q, calculate pp´1,0q,n by conditioning on the state of hitting
p´1, 0q before hitting the origin.

Let p1
p1,0q,n, p1

p0,1q,n, p1
p0,´1q,n denote the probability of returning to origin

through p1, 0q, p0, 1q, p0,´1q, without passing through point p´1, 0q. We have

pBp0,0q,n “ p1p0,1q,n ` p
1
p0,´1q,n ` p

1
p1,0q,n “ 2p1p0,1q,n ` p

1
p1,0q,n (3.9)

pp´1,0q,n “ pBp´1,0q,npp1,0q,n

pp1,0q,n “ p1p1,0q,n ` pBp´1,0q,npp´1,0q,n “
p1
p1,0q,n

1´ p2
Bp´1,0q,n

pp0,1q,n “ p1p0,1q,n ` pBp´1,0q,npp0,1q,n “
p1
p0,1q,n

1´ pBp´1,0q,n

.
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By solving the above linear system, we get the desired quantity of return
probabilities,

pp1,0q,n “
2Gp1,0q,n

8Gp1,0q,n ´ 2Gp1,1q,n ´Gp2,0q,n
(3.10)

pp0,˘1q,n “
2Gp1,0q,n ´Gp1,1q,n

8Gp1,0q,n ´ 2Gp1,1q,n ´Gp2,0q,n

pp´1,0q,n “
2Gp1,0q,n ´Gp2,0q,n

8Gp1,0q,n ´ 2Gp1,1q,n ´Gp2,0q,n
.

Letting nÑ 8, Gx,n Ñ Gx. The exact values were calculated in Mathemat-
ica.

Use similar ideas, we can get the return probability of any given start
point:

Lemma 3.0.4. Started at pa, bq, where pa, bq ‰ p˘1, 0q and p0,˘1q, the
return probability to the origin is given by

pp´1,0qpa, bq “
Gpa,bq ´Gpa`1,bq

4Gp1,0q
`

1

4
(3.11)

pp1,0qpa, bq “
Gpa,bq ´Gpa´1,bq

4Gp1,0q
`

1

4

pp0,1qpa, bq “
Gpa,bq ´Gpa,b´1q

4Gp1,0q
`

1

4

pp0,´1qpa, bq “
Gpa,bq ´Gpa,b`1q

4Gp1,0q
`

1

4
.

Proof. Using the same set B and function h in lemma 3.0.3, plug in pa, bq we
get:

pBp0,0q,npa, bq “ ´
Gpa,bq,n ´Gpa`1,bq,n

2Gp1,0q,n
`

1

2
(3.12)

pBp´1,0q,npa, bq “
Gpa,bq,n ´Gpa`1,bq,n

2Gp1,0q,n
`

1

2
.

By similar ideas in lemma 3.0.3, conditioning on the state hitting point
p´1, 0q, we get:

pp´1,0q,npa, bq “ pBp´1,0q,npa, bqpp1,0q,n “ pp1,0q,np
Gpa,bq,n ´Gpa`1,bq,n

2Gp1,0q,n
`

1

2
q

42



By symmetry (i.e. reflection by line x “ 0 and y “ x, rotation 90 degree
clockwise), we observe that

pp0,´1q,npa, bq “ pp´1,0q,npb, aq

pp1,0q,npa, bq “ pp´1,0q,np´a, bq

pp0,1q,npa, bq “ pp´1,0q,np´b, aq

The right hand sides are immediate from the above identity we get.
Letting nÑ 8, Gx,n Ñ Gx, pp1,0q,n Ñ

1
2
, the desired quantity is shown in

the lemma.

Lemma 3.0.5. Given point P “ pa, bq, started at a neighbor of P , the prob-
ability of hitting the origin without passing through P is given by:

pBp0,0q,npa´ 1, bq “ ´
Gpa´1,bq,n ´Gp1,0q,n

2Gpa,bq,n
`

1

2
(3.13)

pBp0,0q,npa` 1, bq “ ´
Gpa`1,bq,n ´Gp1,0q,n

2Gpa,bq,n
`

1

2

pBp0,0q,npa, b´ 1q “ ´
Gpa,b´1q,n ´Gp1,0q,n

2Gpa,bq,n
`

1

2

pBp0,0q,npa, b` 1q “ ´
Gpa,b`1q,n ´Gp1,0q,n

2Gpa,bq,n
`

1

2
.

Proof. Let B “ tp0, 0q, pa, bqu and hBp0, 0q “ ´Gpa,bq,n, hBpa, bq “ Gpa,bq,n.
Use the harmonic extension and the calculation is similar as we did in lemma
3.0.3 and 3.0.4.
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Chapter 4

Examples

In this chapter, we give several examples of Markov chains and random walk
on groups. Also, we analyze their mixing time based on methods we have
developed so far. To guarantee convergence of chains, we always want to
make sure the chain is irreducible and aperiodic.

This chapter is mostly based on [2] chapter 6 and 8, and [11].
The first example is a classic Markov chain which shall be used later.

4.1 Coupon collecting

Question: A company issues n different types of coupons. A collector desires
a complete set. We suppose each coupon he acquires is equally likely to be
each of the n types. How many coupons must he obtain so that his collection
contains all n types?

Let Xt denote the number of different types represented among the col-
lector’s first t coupons. Clearly X0 “ 0. When the collector has coupons of
k different types, there are nk types missing. Of the n possibilities for his
next coupon, only nk will expand his collection. Hence

P tXt`1 “ k ` 1|Xt “ ku “
n´ k

n

and

P tXt`1 “ k|Xt “ ku “
k

n
.

Thus we see this is indeed a Markov chain. Once the chain arrives at state
n (corresponding to a complete collection), it is absorbed there. We are
interested in the number of steps required to reach the absorbing state.
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Proposition 4.1.1. Consider a collector attempting to collect a complete set
of coupons. Assume that each new coupon is chosen uniformly and indepen-
dently from the set of n possible types, and let τ be the (random) number of
coupons collected when the set first contains every type. Then

Epτq “ n
n
ÿ

k“1

1

k

Proof. The expectation Epτq can be computed by writing τ as a sum of geo-
metric random variables. Let τk be the total number of coupons accumulated
when the collection first contains k distinct coupons. Then

τ “ τn “ τ1 ` pτ2 ´ τ1q ` ¨ ¨ ¨ ` pτn ´ τn´1q

Furthermore, τk´τk´1 is a geometric random variable with success probability
pn´k`1q{n : after collecting τk´1 coupons, there are n´k`1 types missing
from the collection. Each subsequent coupon drawn has the same probability
pn´k`1q{n of being a type not already collected, until a new type is finally
drawn. Thus E pτk ´ τk´1q “ n{pn´ k ` 1q and

Epτq “
n
ÿ

k“1

E pτk ´ τk´1q “ n
n
ÿ

k“1

1

n´ k ` 1
“ n

n
ÿ

k“1

1

k

Proposition 4.1.2. Let τ be a coupon collector random variable, as defined
above. For any c ą 0

Ptτ ą rn log n` cnsu ď e´c

Proof. Let Ai be the event that the i-th type does not appear among the
first rn log n` cns coupons drawn. Observe first that

Ptτ ą rn log n` cnsu “ P

˜

n
ď

i“1

Ai

¸

ď

n
ÿ

i“1

P pAiq

since each trial has probability 1´n´1 of not drawing coupon i and the trials
are independent, the right-hand side above is equal to

n
ÿ

i“1

ˆ

1´
1

n

˙rn logn`cns

ď n exp

ˆ

´
n log n` cn

n

˙

“ e´c.

The first inequality is by 1` x ă ex.
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Proposition 4.1.3. Consider the coupon collecting problem with n distinct
coupon types, and let Ijptq be the indicator of the event that the j -th coupon
has not been collected by time t. Let Rt “

řn
j“1 Ijptq be the number of coupon

types not collected by time t. The random variables Ijptq are negatively cor-

related, and letting p “
`

1´ 1
n

˘t
, we have for t ě 0

E pRtq “ np

Var pRtq ď npp1´ pq ď
n

4

Proof. Since Ijptq “ 1 if and only if the first t coupons are not of type j, it
follows that

E pIjptqq “

ˆ

1´
1

n

˙t

“ p and Var pIjptqq “ pp1´ pq

Similarly, for j ‰ k

E pIjptqIkptqq “

ˆ

1´
2

n

˙t

whence

Cov pIjptq, Ikptqq “

ˆ

1´
2

n

˙t

´

ˆ

1´
1

n

˙2t

ď 0

The next two examples emphasize the method of coupling.

4.2 Random walk on the hypercube

The n-dimensional hypercube is a graph whose vertices are the binary n
tuples t0, 1un. Two vertices are connected by an edge when they differ in ex-
actly one coordinate. The simple random walk on the hypercube moves from
a vertex px1, x2, . . . , xnq by choosing a coordinate j P t1, 2, . . . , nu uniformly
at random and setting the new state equal to px1, . . . , xj´1, 1´ xj, xj`1, . . . , xnq .
That is, the bit at the walk’s chosen coordinate is flipped.

It’s easy to see that the simple random walk on the hypercube is periodic.
To avoid the periodicity, we consider the lazy random walk, which does
not have this problem. It remains at its current position with probability
1{2 and moves as above with probability 1{2.

A convenient way to generate the lazy walk is as follows: pick one of the
n coordinates uniformly at random, and refresh the bit at this coordinate
with a random fair bit (one which equals 0 or 1 each with probability 1/2).
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This leads to the following coupling of two walks with possibly different
starting positions: first, pick among the n coordinates uniformly at random;
suppose that coordinate i is selected. In both walks, replace the bit at
coordinate i with the same random fair bit.

If τ is the first time when all of the coordinates have been selected at least
once, then the two walkers agree with each other from time τ onwards. (If
the initial states agree in some coordinates, the first time the walkers agree
could be strictly before τ. ) The distribution of τ is exactly the same as the
coupon collector random variable as discussed in the previous example.

Thus by 1.3.3 and 4.1.2,

dpn log n` cnq ď Ptτ ą n log n` cnu ď e´c

It is immediate from the above that

tmixpεq ď n log n` logp1{εqn.

To prove the mixing time lower bound, we use the method of distinguished
statistics.

Proposition 4.2.1 ([2] Proposition 7.14). For the lazy random walk on the
n-dimensional hypercube

d

ˆ

1

2
n log n´ αn

˙

ě 1´ 8e2´2α

Proof. Let 1 denote the vector of ones p1, 1, . . . , 1q, and let W pxq “
řn
i“1 x

i

be the Hamming weight of x “ px1, . . . , xnq P t0, 1un. We will apply 1.7.2
with f “ W. The position of the walker at time t, started at 1 is denoted by
X t “ pX

1
t , . . . , X

n
t q

As π is uniform on t0, 1un, the distribution of the random variable W
under π is binomial with parameters n and p “ 1{2. In particular

EπpW q “
n

2
, VarπpW q “

n

4

Let Rt be the number of coordinates not updated by time t. When starting
from 1, the conditional distribution of W pX tq given Rt “ r is the same as
that of r`B, where B is a binomial random variable with parameters n´ r
and 1{2 Consequently,

E1 pW pX tq |Rtq “ Rt `
pn´Rtq

2
“

1

2
pRt ` nq .
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By 4.1.3,

E1 pW pX tqq “
n

2

«

1`

ˆ

1´
1

n

˙t
ff

Using the identity

Var1 pW pXtqq “ Var1 pE pW pXtq |Rtqq ` E1 pVar1 pW pXtq |Rtqq ,

Var1 pW pX tqq “
1

4
Var1 pRtq `

1

4
rn´ E1 pRtqs

By 4.1.3, Rt is the sum of negatively correlated indicators, and conse-
quently Var1 pRtq ď E1 pRtq . We conclude that

Var1 pW pX tqq ď
n

4

Setting

σ “
a

max tVarπpW q,Var1 pW pX tqqu “

?
n

2
we have

|EπpW q ´ E1 pW pX tqq| “
n

2

ˆ

1´
1

n

˙t

“ σ
?
n

ˆ

1´
1

n

˙t

Setting

tn :“
1

2
pn´ 1q log n´ pα ´ 1qn ą

1

2
n log n´ αn

and using that p1´ 1{nqn´1 ą e´1 ą p1´ 1{nqn, gives

|EπpW q ´ E1 pW pX tnqq| ą eα´1σ

and applying 1.7.2 yields

d

ˆ

1

2
n log n´ αn

˙

ě
›

›P tnp1, ¨q ´ π
›

›

TV
ě 1´ 8e2´2α

In addition, we give a proof based on Wilson’s Method discussed in chap-
ter 1.

Proposition 4.2.2. For the random walk on the n-dimensional hypercube,
we have

tmixpεq “
1

2
n log n`Opnq
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Proof. To use Wilson’s method, we need to find an eigenfunction on the
hypercube. To find the eigenfunction easily, we denote the n-dimensional
hypercube as t´1, 1un. Notice that, for n “ 1, fpxq “ xpfp´1q “ ´1, fp1q “
1q is the only eigenfunction for the non-lazy walk. For the lazy walk, we
define, for J Ă t1, . . . , nu,

fJpxq “
ź

jPJ

xj.

PfJpxq “
ÿ

y

P px, yqfJpyq “
ÿ

y

P px, yq
ź

jPJ

yj (4.1)

P px, yq ą 0 only when y is a neighbor of x or y “ x. Uniformly choose a
coordinate from 1 to n, then update the coordinate. We see that the two
outcomes x and y, both have probability 1

2n
. Notice that if we choose a

coordinate that is in J , then fpxq “ ´fpyq. Thus, such x, y contributes 0 to
the sum.

If the coordinate is not in J , we have fpxq “ fpyq “
ś

jPJ xj. Therefore
we have

4.1 “
2n´ 2|J |

2n

ź

jPJ

xj.

Therefore, these are all eigenfunctions on t´1, 1un (since the number is 2n,
same as the cardinality of the state space). Each eigenfunction has associated
eigenvalue

λJ “
n´ |J |

n
.

This gives us all the eigenfunctions and hence

γ˚ “
1

n
and hence trel “ n.

Let W pxq be the Hamming weight of the vector x, i.e. the number of 1’s
in x. Define Φpxq “ W pxq ´ n

2
.

We see that

PΦpxq “
ÿ

y

P px, yqΦpyq “
1

2
rΦpxqs`

W pxq

2n
rΦpxq´1s`

n´W pxq

2n
rΦpxq`1s

“ W pxq ´
n

2
`

1

2
´
W pxq

n
“

ˆ

1´
1

n

˙

Φpxq.

Therefore, we see Φ is an eigenfunction with eigenvalue 1´ 1
n
.

We apply Φ to the Wilson’s Method:
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Ex
`

pΦ pX1q ´ Φpxqq2
˘

“ 1
2

for all x since Φ changes by exactly 1 whenever
the chain moves (i.e., with probability 1{2 ).

Hence if we take R “ 1
2

and the initial state to be the all 1 ’s vector, by
1.8.1:

tmixpεq ě
1

´2 log p1´ n´1q

„

log

"

n´1
´n

2

¯2
*

` logtp1´ εq{εu



(4.2)

ě
1

2n´1

”

log
n

4
` logtp1´ εq{εu

ı

“
n

2
log n`

n

2
rlogtp1´ εq{εu ´ log 4s.

4.3 Random walk on the torus

The d -dimensional torus is the graph whose vertex set is the Cartesian
product

Zdn “ Zn ˆ ¨ ¨ ¨ ˆ Zn
looooooomooooooon

d times

Vertices x “
`

x1, . . . , xd
˘

and y “
`

y1, y2, . . . , yd
˘

are neighbors in Zdn if for
some j P t1, 2, . . . , du, we have xi “ yi for all i ‰ j and xj ” yj ˘ 1 mod n.

When n is even, the graph Zdn is bipartite and the associated random
walk is periodic. Again we consider the lazy random walk on Zdn to avoid
this complication.

Theorem 4.3.1. [[2] Theorem 5.6] For the lazy random walk on the d-
dimension torus Zdn, if ε ă 1

2
then

tmixpεq ď d2n2 rlog4pd{εqs

Proof. We use coupling to prove this theorem. To couple together a random
walk pX tq started at x with a random walk pY tq started at y, first pick
one of the d coordinates at random. If the positions of the two walks agree
in the chosen coordinate, we move both of the walks by +1,-1 or 0 in that
coordinate, with probabilities 1{4, 1{4 and 1{2, respectively. If the positions
of the two walks differ in the chosen coordinate, we randomly choose one of
the chains to move, leaving the other fixed. We then move the selected walk
by +1 or -1 in the chosen coordinate, with the sign determined by a fair coin
toss.

Let X t “
`

X1
t , . . . , X

d
t

˘

and Y t “
`

Y 1
t , . . . , Y

d
t

˘

, and let

τi :“ min
 

t ě 0 : X i
t “ Y i

t

(
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be the time required for the chains to agree in coordinate i. The clockwise
difference between X i

t and Y i
t , viewed at the times when coordinate i is se-

lected, behaves just as the coupling of the lazy walk on the cycle Zn discussed
above. Thus, the expected number of moves in coordinate i needed to make
the two chains agree on that coordinate is not more than n2{4 since coor-
dinate i is selected with probability 1{d at each move, there is a geometric
waiting time between moves with expectation d. It follows that

Ex,y pτiq ď
dn2

4

The coupling time we are interested in is τcouple “ max1ďiďd τi, and we can
bound the maximum by a sum to get

Ex,y pτcouple q ď
d2n2

4
,

which is true for any x, y. Then by Markov’s inequality,

Px,y tτcouple ą tu ď
Ex,y pτcouple q

t
ď

1

t

d2n2

4

Taking t0 “ d2n2 shows that d pt0q ď 1{4, and so tmix ď d2n2.

4.4 Top-to-Random Shuffle

Consider the following (slow) method of shuffling a deck of n cards: take the
top card and insert it uniformly at random in the deck. This process will
eventually mix up the deck—the successive arrangements of the deck are a
random walk on the group Sn of n! possible permutations of the cards.

Let τtop be the time one move after the first occasion when the original
bottom card has moved to the top of the deck. We show now that the
arrangement of cards at time τtop is distributed uniformly on the set Sn of
all permutations of t1, . . . , nu and moreover this random element of Sn is
independent of the time τtop.

Proposition 4.4.1. Let pXtq be the random walk on Sn corresponding to the
top-to-random shuffle on n cards. Given at time that there are k cards under
the original bottom card, each of the k! possible orderings of these cards are
equally likely. Therefore, if τtop is one shuffle after the first time that the
original bottom card moves to the top of the deck, then the distribution of
Xτtop is uniform over Sn and the time τtop is independent of Xτtop . Thus
τtop is a strong stationary time for pXtq
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Proof. When t “ 0, there are no cards under the original bottom card, and
the claim is trivially valid. Now suppose that the claim holds at time t.
There are two possibilities at time t ` 1 : either a card is placed under the
original bottom card, or not. In the second case, the cards under the original
bottom card remain in random order. In the first case, given that the card
is placed under the original bottom card, each of the k` 1 possible locations
for the card is equally likely, and so each of the pk ` 1q! orderings are equal
likely.

Proposition 4.4.2. Let pXtq be the random walk on Sn corresponding to the
top-to-random shuffle on n cards. The corresponding mixing time satisfies

tmixpεq ď n log n` log
`

ε´1
˘

n.

Proof. Consider the motion of the original bottom card. When there are k
cards beneath it, the chance that it rises one card remains pk ` 1q{n until a
shuffle puts the top card underneath it. Thus, the distribution of τtop is the
same as the coupon collector’s time. Then by 4.1.2 and 1.4.1,

dpn log n` αnq ď e´α for all n.

Therefore,
tmixpεq ď n log n` log

`

ε´1
˘

n.

Proposition 4.4.3 ([2] Proposition 7.15). Let pXtq be the top-to-random
chain on n cards. For any ε ą 0, there exists a constant αpεq such that
α ą αpεq implies that for all sufficiently large n

dnpn log n´ αnq ě 1´ ε

That is
tmixp1´ εq ě n log n´ αn

Proof. The bound is based on the following events:

Aj “ t the original bottom j cards are in their original relative order u
(4.3)

Let τj be the time required for the card initially j -th from the bottom to
reach the top. Then

τj “
n´1
ÿ

i“j

τj,i
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where τj,i is the time it takes the card initially j -th from the bottom to ascend
from position i (from the bottom) to position i`1. The variables tτj,iu

n´1
i“j are

independent and τj,i has a geometric distribution with parameter p “ i{n,
whence E pτj,iq “ n{i and Var pτj,iq ă n2{i2. We obtain the bounds.

E pτjq “
n´1
ÿ

i“j

n

i
ě n

ż n

j

dx

x
“ nplog n´ log jq. (4.4)

and

Var pτjq ď n2
8
ÿ

i“j

1

ipi´ 1q
ď

n2

j ´ 1
. (4.5)

Using the bounds 4.4 and 4.5 together with Chebyshev’s inequality, yields

P tτj ă n log n´ αnu ď P tτj ´ E pτjq ă ´npα ´ log jqu

ď
1

j ´ 1

provided that α ě log j ` 1. Define tnpαq “ n log n´ αn. If τj ě tnpαq, then
the original j bottom cards remain in their original relative order at time
tnpαq, so

P tnpαq pid, Ajq ě P tτj ě tnpαqu ě 1´
1

j ´ 1

for α ě log j ` 1. On the other hand, for the uniform stationary distribution

π pAjq “ 1{pj!q ď pj ´ 1q´1

whence, for α ě log j ` 1

dn ptnpαqq ě
›

›P tnpαqpid, ¨q ´ π
›

›

TV
ě P tnpαq pid, Ajq ´ π pAjq ą 1´

2

j ´ 1

Taking j “ reα´1s , provided n ě eα´1, we have

dn ptnpαqq ą gpαq :“ 1´
2

reα´1s´ 1

Therefore
lim inf
nÑ8

dn ptnpαqq ě gpαq

where gpαq Ñ 1 as αÑ 8.
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4.5 Random Transpositions

The Random transposition shuffle is a random walk on the symmetric group
Sn, where the driven probability is given at transpositions. We give several
different models and analysis, based on methods of coupling, stationary time
as described in [2].

The first model is constructed as follows: Choose card Xt and an in-
dependent position Yt uniformly. Exchange Xt with σt pYtq (the card at Yt
).

Coupling of σt, σ
1
t ” Choose card Xt and independent position Yt uni-

formly. ”Use Xt and Yt to update both σt and σ1t Let Mt “ number of cards
at the same position in σ and σ1

Case 1: Xt in same position, Mt`1 “Mt.
Case 2: Xt in different positions. σ pYtq “ σ1 pYtq. Mt`1 “Mt

Case 3: Xt in different positions. σ pYtq ‰ σ1 pYtq Mt`1 ąMt

Proposition 4.5.1. Let τ˚ be the first time Mt “ n, for any x, y:

Ex,y pτ˚q ă
π2

6
n2, tmix “ O

`

n2
˘

(4.6)

Proof. Let τi “ steps to increase Mt from i´ 1 to i so

τ˚ “ τ1 ` τ2 ` ¨ ¨ ¨ ` τn

As the case analysis discussed above, only when Xt in different positions and
σ pYtq ‰ σ1 pYtq, Mt shall increase. Both probabilities are n´i

n
. So

P pMt`1 ąMt|Mt “ iq “
pn´ iq2

n2
ñ E pτi`1|Mt “ iq “

n2

pn´ iq2

Therefore, for any x, y

Ex,y pτ˚q ď n2
n´1
ÿ

i“0

1

pn´ iq2
ă
π2

6
n2

Another different model is the following:
At time t, choose two cards, labelled Lt and Rt, independently and uni-

formly at random. If Lt and Rt are different, transpose them. Otherwise, do
nothing. The resulting distribution µ satisfies

µpσq “

$

&

%

1{n if σ “ id
2{n2 if σ “ pijq
0 otherwise
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Proposition 4.5.2 ([2] Proposition 8.6). In the random transposition shuf-
fle, let Rt and Lt be the cards chosen by the right and left hands, respectively,
at time t. Assume that when t “ 0, no cards have been marked. At time t,
mark card Rt if both of the following are true:

Rt is unmarked.
´EitherLt is a marked card or Lt “ Rt.
Let τ be the time when every card has been marked. Then τ is a strong

stationary time for this chain.

Remark. One way to generate a uniform random permutation is to build a
stack of cards, one at a time, inserting each card into a uniformly random
position relative to the cards already in the stack. For the stopping time
described above, the marked cards are carrying out such a process.

Lemma 4.5.3. The stopping time τ defined above satisfies

Epτq “ 2nplog n`Op1qq

and
Varpτq “ O

`

n2
˘

Proof. The proof is based on decompose the coupon collector time τ “
řn´1
i“0 τi. Then calculate for each τi.

Lemma 4.5.4 ([2]Corollay 8.10). For the random transposition chain on an
n -card deck.

tmix ď p2` op1qqn log n

Proof. Let τ be the stopping time defined above and let t0 “ Epτq`2
a

Varpτq.
By Chebyshev’s inequality,

P tτ ą t0u ď
1

4

Then the result follows by 1.4.1 and the above lemma.

We present a lower bound as following:

Proposition 4.5.5 ([2] Proposition 8.4). Let 0 ă ε ă 1. For the random
transposition chain on an n´ card deck

tmixpεq ě
n´ 1

2
log

ˆ

1´ ε

6
n

˙
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Proof. Let F pσq denote the number of fixed points of the permutation σ. If
σ is obtained from the identity by applying t random transpositions, then
F pσq is at least as large as the number of cards that were touched by none
of the transpositions - no such card has moved, and some moved cards may
have returned to their original positions.

Our shuffle chain determines transpositions by choosing pairs of cards
independently and uniformly at random. Hence, after t shuffles, the number
of untouched cards has the same distribution as the number R2t of uncollected
coupon types after 2t steps of the coupon collector chain. By 4.1.3

µ :“ E pR2tq “ n

ˆ

1´
1

n

˙2t

and Var pR2tq ď µ. Let A “ tσ : F pσq ě µ{2u. We will compare the proba-
bilities of A under the uniform distribution π and P tp id, ¨q. First

πpAq ď
2

µ

by Markov’s inequality. By Chebyshev’s inequality,

P t
p id , Acq ď P tR2t ď µ{2u ď

µ

pµ{2q2
“

4

µ

Then we have, by definition of total variation distance,

›

›P t
pid, ¨q ´ π

›

›

TV
ě 1´

6

µ

We want to find how small t must be so that 1´ 6{µ ą ε, or equivalently

n

ˆ

1´
1

n

˙2t

“ µ ą
6

1´ ε

The above holds if and only if

log

ˆ

np1´ εq

6

˙

ą 2t log

ˆ

n

n´ 1

˙

(4.7)

Using the inequality logp1`xq ă x, we have log
`

n
n´1

˘

ă 1
n´1

, so the inequality
4.7 holds provided that

log

ˆ

np1´ εq

6

˙

ě
2t

n´ 1

That is, if t ď n´1
2

log
´

np1´εq
6

¯

, then dptq ě 1´ 6{µ ą ε.
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Chapter 5

Dirichlet form, minimax
characterization and
Comparison Techniques

In this chapter, we consider all Markov Chains to be reversible. We develop
methods for getting upper and lower bounds of eigenvalues βi of the transition
kernel by comparison with a second reversible chain on the same state space.:

Let x be a finite set. Let P px, yq be an irreducible Markov kernel on X
with stationary probability πpxq. Recall that P, π is reversible:

πpxqP px, yq “ πpyqP py, xq

By symmetry, P has eigenvalues Let l2pX q have scalar product as we
showed in 1.27

xf, gy “
ÿ

xPX

fpxqgpxqπpxq.

Because of reversibility, the operator f ÞÑ Pf, with Pfpxq “
ř

fpyqP px, yq,
is self-adjoint on l2 with eigenvalues 1 “ β0 ą β1 ě ¨ ¨ ¨ ě β|X |´1 ě ´1. These
eigenvalues can be characterized by the Dirichlet form:

Definition 5.0.1. We define the Dirichlet Form on f by

E pf, fq “ xpI ´ P qf, fy “
1

2

ÿ

x,y

pfpxq ´ fpyqq2πpxqP px, yq

Recall the minimax characterization of the eigenvalues:
For a subspace W of Rn, define

mpW q “ mintxPf, fy{xf, fy : f P W zt0uu
MpW q “ maxtxPf, fy{xf, fy : f P W zt0uu
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The minimax characterization of eigenvalues gives

λi “ max
 

mpW q : dim
`

WK
˘

“ i
(

“ mintMpW q : dimpW q “ i` 1u

Given a subspace W of L2pXq, set

MgpW q “ max tE pf, fq; }f}2 “ 1, f P W u ,

mgpW q “ min tE pf, fq; }f}2 “ 1, f P W u .

We have

1´ βi “ min tMgpW q; dimW “ i` 1u “ max
 

mgpW q; dimWK
“ i

(

If P̃ px, yq, π̃ is a second reversible Markov chain on X, the minimax char-
acterization yields, for 1 ď i ď |X| ´ 1

βi ď 1´
a

A

´

1´ β̃i

¯

, if Ẽ ď AE , π̃ ě aπ

In the applications, P, π is the chain of interest and P̃ , π̃ is a chain with
known eigenvalues. Both π and π̃ are assumed to be supported onX. For each
pair x ‰ y with P̃ px, yq ą 0, fix a sequence of steps x0 “ x, x1, x2, . . . , xk “ y
with P pxi, xi`1q ą 0. This sequence of steps will be called a path γxy of
length |γxy| “ k. Set E “ tpx, yq;P px, yq ą 0u Ẽ “ tpx, yq; P̃ px, yq ą 0u and

Ẽpeq “
!

px, yq P Ẽ; e P γxy

)

, where e P E. In other words, E is the set of

”edges” for P and Epeq is the set of paths that contain e. For convention, in
this section all graphs are undirected graphs. However, we describe such a
graph as a set of vertices X and a symmetric set of directed edges E Ă XˆX

Theorem 5.0.1. Let P̃ , π̃ and P, π be reversible Markov chains on a finite
set X. The Dirichlet forms Ẽ ď AE

, with

A “ max
pz,wqPE

$

&

%

1

πpzqP pz, wq

ÿ

Ẽpz,wq

|γxy| π̃pxqP̃ px, yq

,

.

-

. (5.1)

Proof. We may assume that none of the paths γxy contains loops. For an
edge e “ pz, wq P E, let fpeq “ fpzq ´ fpwq. Then

Ẽ “
1

2

ÿ

x,yPX

pfpxq ´ fpyqq2π̃pxqP̃ px, yq
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“
1

2

ÿ

x,y

#

ÿ

ePγxy

fpeq

+2

π̃pxqP̃ px, yq

ď
1

2

ÿ

x,yPX

|γxy| π̃pxqP̃ px, yq
ÿ

ePγxy

|fpeq|2

ď
1

2

ÿ

e“pz,wq

|fpeq|2
πpzqP pz, wq

πpzqP pz, wq

ÿ

ePγxy

|γxy| π̃pxqP̃ px, yq

ď AE pf, fq,

where the first inequality is by Cauchy-Schwarz.

In the case that the Markov chains are symmetric random walks on a
group, we have the following simplified estimate as shown in [4]. Let E be a
symmetric set of generators of a finite group G. For y P G, let y “ z1z2 ¨ ¨ ¨ zk
with zi P E. Denote the least such k, |y|. Let Npz, yq denote the number of
times which z appears in the chosen representation of y.

Theorem 5.0.2. Let p̃ and p be symmetric probabilities on a finite group
G. Let E be a symmetric set of generators. Suppose that the support of p
contains E. Then the Dirichlet forms satisfy ( 48)

Ẽ ď AE

with

A “ max
zPE

1

ppzq

ÿ

yPG

|y|Npz, yqp̃pyq (5.2)

Proof. The proof is similar as we did in the previous Theorem.
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Chapter 6

Counting Problem: an
application of mixing time.

In theoretical computer science, there are several counting problems which
are hard to solve in polynomial time. For example, counting the number of
perfect matches in a graph is P-complete, as illustrated in r12s. However,
there is an approximate counting based on random sampling. We can repre-
sent the desired number as a expected value of a random variable. We get
the approximate counting by calculating the expectation with enough many
samples. The complexity of such algorithm, depends on how long we can
generate a random sample, i.e. the mixing time of the Markov chain since
we use Markov Chains Monte Carlo to generate random samples.

Definition 6.0.1. Given an undirected graph G “ pV,Eq, a matching M Ď

E is a set of vertex disjoint edges. A matching is perfect if |M | “ n{2 where
n “ number of vertices (and m “ number of edges).

Let e be an arbitrary edge. Use sampling to determine the fraction of
matchings that do not use e. And we define the indicator random variable
X on matches of G.

If the match contains e, X “ 1. Otherwise X “ 0.
We see that

ErXs “
# matchings without e

# matchings

We have 1{2 ď ErXs ď 1, since for any match containing e we can drop
e to get a new match.

Let X1 “ X G0 “ G, G1 “ Gze, we see also

ErXs “
# matchings in G1

# matchings in G0

.
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Define inductively for X2 on G1, we observe that

m
ź

i“1

ErXis “
1

# matchings in G0

.
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Chapter 7

The 15 puzzle problem

7.1 Description of the problem

A ‘15 puzzle’ consists of a 4 ˆ 4 board with 15 numbered unit tiles and one
empty square. A move in the puzzle consists of sliding a numbered tile into
the empty square. The 15 puzzle gained notoriety in the United States in the
1870’s when an article in the American Journal of Math [9] asked whether
the board with positions 14 and 15 exchanged and an empty tile in the lower
right corner could be shifted into sorted order, again with the empty tile in its
initial position, see Figure 7.1 (it cannot, the group of permutations generated
is A15). In general, an n2 ´ 1 puzzle consists of an n ˆ n board with n2 ´ 1
numbered tiles and one empty square. In the book [3], Diaconis considers the
problem of randomizing an n2´ 1 puzzle given periodic boundary conditions
by, at each step, shifting a uniform random neighbor of the open square into
its place. He conjectures that the total variation mixing time to randomize
the position of a single numbered piece is order n3, and that the mixing time
to stationarity for the whole puzzle is order n3 log n. The main results in [1]
solve Diaconis’ ‘15 puzzle’ problem in corrected form.

Theorem 7.1.1. The n2 ´ 1 puzzle Markov Chain can be identified with
random walk on the group Gn “ Sn2´1 ˆ pZ{nZq2 driven with the measure
µ “ 1

5
pδid ` δR ` δL ` δU ` δDq,

where R “

»

—

—

—

—

—

–

pn, n´ 1, ¨ ¨ ¨ , 1q
p2n, 2n´ 1, ¨ ¨ ¨ , n` 1q

...
pn2 ´ n, n2 ´ n´ 1, ¨ ¨ ¨ , n2 ´ 2n` 1q
pn2 ´ 1, n2 ´ 2, ¨ ¨ ¨ , n2 ´ n` 1q

fi

ffi

ffi

ffi

ffi

ffi

fl

ˆ p1, 0q,
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1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

Figure 7.1: A 15 puzzle. A move in the puzzle slides a numbered tile into
the empty space.

U “

»

—

—

—

—

—

–

p1, n` 1, ¨ ¨ ¨ , n2 ´ n` 1q
p2, n` 2, ¨ ¨ ¨ , n2 ´ n` 2q

...
pn´ 1, 2n´ 1, ¨ ¨ ¨ , n2 ´ 1q

pn, 2n, ¨ ¨ ¨ , n2 ´ nq

fi

ffi

ffi

ffi

ffi

ffi

fl

ˆ p0, 1q and L “ R´1, D “ U´1.

Proof. While moving up, we consider the empty piece is still on the right
down corner by wrapping around the broad into a torus. Thus it’s a product
of n-cycles.

In [1], including the above one, several different random walks are dis-
cussed. Here we introduce the random walk where we only track the location
of the empty square and one piece of labeled square, and we forget the loca-
tions of all other pieces.

7.2 Mixing of a single piece

One of the main theorems proved in r1s is as following:

Theorem 7.2.1 ([1], Theorem 1). Let dBrptq be the total variation distance
to uniformity at time t ą 0 of standard Brownian motion started from p0, 0q
on pR{Zq2. Let cpuz “

5
2
pπ ´ 1q. As n Ñ 8, the total variation distance to

uniformity of a single piece in the n2 ´ 1 puzzle at time cpuzn
4t converges to

dBrptq uniformly for t in compact subsets of p0,8q.

The proof is by tracking one or several marked pieces on the board as they
move. The pieces move at the times of a renewal process when the empty
square moves next to one of them and then the piece is shifted into it. A local
limit theorem is proved which demonstrates the approximate independence
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of the piece’s location and the number of moves of the empty square after
the marked piece has moved approximately n2 times. To prove this, we prove
several estimates of the characteristic functions.

Since the expected time of a renewal is of order n2, this takes time order
n2. The lower order fluctuations from the sum of the renewal process times
are then absorbed as an error term.

We track the location of a single numbered piece P, along with the empty
piece Pe.

Consider stopping times ttiu
8
0 : every time Pe swapping positions with

P alternatively from vertical and horizontal directions. Here t0 is time of
the first vertical swap. Then t1 is time of the first horizontal swap after t0,
and so on.

Let H0 be the number of positions (left is negative, right is positive) that
P moves prior to t1 and V0 the number of positions (up is positive, down is
negative) that P moves prior to t1.

For i ě 1, let Hi be the number of horizontal moves (right is positive and
left is negative) of P in rt2i´1, t2iq and let Vi be the number of vertical moves
(up is positive and down is negative) of P in rt2i, t2i`1q.

Lemma 7.2.2. The collection of random variables tHi, Viu
8

i“1 are i.i.d. sym-
metric, mean 0, and have exponentially decaying tails. They are independent
of H0, V0, and these variables have exponentially decaying tails.

Proof. By symmetry and strong Markov property, each inter-arrival time
ri, si is independent identically distributed. The collection of random vari-
ables
tHi, Viu

8

i“1 are i.i.d. symmetric, mean 0. Also, tHi, Viu
8

i“1 have exponen-
tially decaying tails.

To see this, recall that by 3.0.2, 3.0.3, we have the return probability
px,n Ñ px ą 0 as nÑ 8 for x “ p1, 0q, p´1, 0q, p0,´1q, p0, 1q. Then the H1 is
a sum of geometric random variables with parameter less than 1.

For i ě 1, define ri “ t2i ´ t2i´1, si “ t2i`1 ´ t2i.
The collection tpHi, riq , pVi, siqu

8

i“1 are also i.i.d. and are independent of
tH0, V0, t0, t1u . Set

Set s2
n “ E rH2

1 s , µn “ E rr1s , v
2
n “ Var rr1s.

Let mi be the number of times P moves either left or right between t2i´1

and t2i and ni the number of times P moves either up or down between t2i
and t2i`1. Call a type I return of Pe a sequence of moves in which Pe begins
adjacent to P, ends at the next time Pe swaps position with P from the
same direction (horizontal or vertical), and does not swap positions with Pe
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from the opposite direction in between. Call a type II return a sequence of
moves of Pe in which it begins adjacent to P, ends adjacent to Pe from the
opposite direction, and does not swap position with Pe in between, but will
swap positions with Pe from the opposite direction on the next move. Thus
ri is the sum of the length of mi independent type I returns and one type II
return, and si is the sum of the lengths of ni independent type I returns and
one type II return.

We have

Proposition 7.2.3.

lim
nÑ8

s2
n “ s2, lim

nÑ8

µn
n2
“ µ, with

s2
“

1

2pp0,˘1q

1´ pp1,0q ` pp´1,0q

1` pp1,0q ´ pp´1,0q

, µ “
5

4

ˆ

1

2pp0,˘1q

˙

.

Also, vn “ O pn2 log nq.

Proof. Consider the process in H2
1 . Due to symmetry, without loss of gen-

erality we assume the initial move in H1 is ´1, so that afterwards, Pe is at
position P `p1, 0q. Then it makes k ě 0 right or left returns followed by an
up or down return.

Condition on k and let Zk be the conditional displacement of the moves
following the first one. Thus Z0 “ 0 and, for k ě 1

Zk “

#

1´ Zk´1 prob.
pp1,0q,n

1´2pp0,˘1q,n

´1` Zk´1 prob.
pp´1,0q,nq

1´2pp0,˘1q,n

The recurrent relation is based on conditioning the first move: notice that
initially Pe is on the right of P. If the first move is `1, afterwards Pe is on
the left of P, which is the opposite from initial thus Zt “ 1´Zt´1. While if
the first move is ´1, afterward Pe is on the right of P, thus Zt “ ´1`Zt´1.

Hence

ErZks “
pp1,0q,n ´ pp´1,0q,n

1´ 2pp0,˘1q,n

p1´ ErZk´1sq. (7.1)

Solving the recurrence, it follows that

ErZks “
k
ÿ

i“1

p´1qi´1

ˆ

pp1,0q,n ´ pp´1,0q,n

1´ 2pp0,˘1q,n

˙i

. (7.2)

Similarly,
Z2
k “ p1´ Zk´1q

2
“ 1´ 2Zk´1 ` Z

2
k´1.
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ErZ2
ks “ 1´ Er2Zk´1s ` ErZ2

k´1s (7.3)

from which it follows that

ErZ2
ks “ k ´ 2

k´1
ÿ

j“1

j
ÿ

i“1

p´1qi´1

ˆ

pp1,0q,n ´ pp´1,0q,n

1´ 2pp0,˘1q,n

˙i

(7.4)

“ k ´ 2
k´1
ÿ

i“1

p´1qi´1
pk ´ iq

ˆ

pp1,0q,n ´ pp´1,0q,n

1´ 2pp0,˘1q,n

˙i

.

The second equality is because the sum by columns is equal to the sum by
rows.

Conditioning on the number k of type I returns,

ErH2
1 s “

8
ÿ

k“0

Erp´1` Zkq
2
s2pp0,˘1q,np1´ 2pp0,˘1q,nq

k (7.5)

“

8
ÿ

k“0

2pp0,˘1q,np1´ 2pp0,˘1q,nq
k
´ 2

8
ÿ

k“1

ErZks2pp0,˘1q,np1´ 2pp0,˘1q,nq
k

`

8
ÿ

k“1

ErZ2
ks2pp0,˘1q,np1´ 2pp0,˘1q,nq

k.

We have
8
ÿ

k“0

2pp0,˘1q,np1´ 2pp0,˘1q,nq
k
“ 1 (7.6)

and

8
ÿ

k“1

ErZks2pp0,˘1q,np1´ 2pp0,˘1q,nq
k (7.7)

“ 2pp0,˘1q,n

8
ÿ

k“1

k
ÿ

i“1

p´1qi´1
ppp1,0q,n ´ pp´1,0q,nq

i
p1´ 2pp0,˘1q,nq

k´i

“

8
ÿ

i“1

p´1qi´1
ppp1,0q,n ´ pp´1,0q,nq

i

“
pp1,0q,n ´ pp´1,0q,n

1` pp1,0q,n ´ pp´1,0q,n

.
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Also,

8
ÿ

k“1

ErZ2
ks2pp0,˘1q,np1´ 2pp0,˘1q,nq

k (7.8)

“ 2pp0,˘1q,n

8
ÿ

k“1

kp1´ 2pp0,˘1q,nq
k

´ 4pp0,˘1q

8
ÿ

k“1

`

1´ 2pp0,˘1q,n

˘k
k´1
ÿ

i“1

p´1qi´1
pk ´ iq

ˆ

pp1,0q,n ´ pp´1,0q,n

1´ 2pp0,˘1q,n

˙i

“ 2pp0,˘1q,n

8
ÿ

k“1

kp1´ 2pp0,˘1q,nq
k

´ 4pp0,˘1q

8
ÿ

k“1

k´1
ÿ

i“1

`

1´ 2pp0,˘1q,n

˘k´i
p´1qi´1

pk ´ iq
`

pp1,0q,n ´ pp´1,0q,n

˘i

“ 2pp0,˘1q,n

8
ÿ

k“1

kp1´ 2pp0,˘1q,nq
k

´ 4pp0,˘1q,n

8
ÿ

i“1

p´1qi´1
ppp1,0q,n ´ pp´1,0q,nq

i
8
ÿ

k“1

kp1´ 2pp0,˘1q,nq
k

“
1´ 2pp0,˘1q,n

2pp0,˘1q,n

´ 2
1´ 2pp0,˘1q,n

2pp0,˘1q,n

pp1,0q,n ´ pp´1,0q,n

1` pp1,0q,n ´ pp´1,0q,n

.

Combining the above obtains

ErH2
1 s “

1

2pp0,˘1q,n

1´ pp1,0q,n ` pp´1,0q,n

1` pp1,0q,n ´ pp´1,0q,n

. (7.9)

The number of times that the piece moves between t2i and t2i`1 is 1`mi.
We have, by the law of large numbers,

1

N

N
ÿ

i“1

mi Ñ Erm1s “

8
ÿ

k“0

kp2pp0,˘1q,nqp1´2pp0,˘1q,nq
k
“

1

2pp0,˘1q,n

´1. (7.10)

Also, 1
N

řN
i“1 ri Ñ Err1s. Similarly, the averages converge for ni and si, which

have the same distribution. Since, on average, the piece moves once every
5
4
pn2 ´ 1q steps of the walk, Err1s

1`Erm1s
“ 5

4
pn2 ´ 1q, or

Err1s “
5

4
pn2

´ 1q

ˆ

1

2pp0,˘1q,n

˙

. (7.11)
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The primary step in establishing the mixing of the piece P is establishing
the asymptotic independence of the coordinates of the sum

SN “

˜

N
ÿ

i“1

Hi,
N
ÿ

i“1

Vi,
N
ÿ

i“1

pri ` siq

¸

,

which is demonstrated by considering the characteristic function:

χ pξ1, ξ2q “ E
”

e2πi
ξ1
n
H1`2πiξ2r1

ı

, ξ1 P Z{nZ, ξ2 P R{Z.

Firstly, we develop several methods to get estimates of hitting times of
random walk on pZ{nZq2: Let P be the transition kernel of 1

5
-lazy simple

random walk on pZ{nZq2, and let P 1 be P with row and column corresponding
to p0, 0q deleted. Let

Rpzq “ pI ´ zP 1q´1
“ I ` zP 1 ` pzP 1q2 ` ... (7.12)

be the resolvent. I.e., the coefficients in zn in each entry is the n-th transition
probability.

Lemma 7.2.4. The characteristic function of the hitting time from p1, 0q to
p0, 0q under 1

5
-lazy simple random walk at z “ e2πiξ is

χpzq “
z

5
etp1,0qRpzq

`

ep1,0q ` ep´1,0q ` ep0,1q ` ep0,´1q

˘

. (7.13)

The expected hitting time is

1`
1

5
etp1,0qR

1
p1q

`

ep1,0q ` ep´1,0q ` ep0,1q ` ep0,´1q

˘

(7.14)

which is of order n2.

Proof. pP 1qn enumerates the transition probabilities that result from length n
paths which do not visit p0, 0q. To obtain the characteristic function formula,
condition on the number of steps taken under P 1, and then use that the
probability of transitioning from one of the neighbors of p0, 0q to p0, 0q is 1

5
.

We have χp1q “ 1, since the walk hits p0, 0q in finite time with probability
1.

The formula for the expected hitting time holds since the expectation is
χ1p1q.
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Since P 1 is symmetric, it can be diagonalized using an orthonormal set
of eigenvectors. Let the corresponding eigenvalues be λ1 ě λ2 ě ¨ ¨ ¨ ě λn2´1

with eigenvectors v1, v2, ..., vn2´1. We have v1 is non-negative and 1 ą λ1.
Write

Rpzq “
n2´1
ÿ

i“1

viv
t
i

1´ zλi
. (7.15)

Let ci,x “ xvi, exy.

Lemma 7.2.5. The largest eigenvalue λ1 satisfies 1
n2 logn

! 1 ´ λ1 !
1
n2 .

Also,

5

4
ď

n2´1
ÿ

i“1

c2
i,p1,0q

1´ λi
ă 5 (7.16)

and

n2´1
ÿ

i“1

c2
i,p1,0q

p1´ λiq2
— n2. (7.17)

Furthermore, there is a constant c ą 0 such that

ÿ

i:p1´λiqą
c
n

c2
i,p1,0q

p1´ λiq
"

1

log n
. (7.18)

Proof. Let v1 be in the top eigen-space, 1tv1 “ 1 so that v1 is a proba-
bility vector. Since pP 1qmv1 “ λm1 v1, 1tpP 1qmv1 “ λm1 is the probability of
not reaching p0, 0q in m steps, started from a distribution proportional to
v1. Since the expected hitting time to p0, 0q is Opn2 log nq uniformly in the
starting point, it follows that for some c ą 0, λ1 ď 1´ c

n2 logn
.

The bound λ1 ą 1´ c
n2 will follow after establishing (7.17), since

ř

i c
2
i,p1,0q “

1 by orthogonality. To prove (7.16) note that χp1q “ 1 may be written

1 “
1

5

n2´1
ÿ

i“1

ci,p1,0qpci,p1,0q ` ci,p´1,0q ` ci,p0,1q ` ci,p0,´1qq

1´ λi
. (7.19)

Furthermore, by symmetry,
ř

i

c2i,x
1´λi

is independent of x P tp˘1, 0q, p0,˘1qu,
so that

n2´1
ÿ

i“1

c2
i,p1,0q

1´ λi
ď

n2´1
ÿ

i“1

ci,p1,0qpci,p1,0q ` ci,p´1,0q ` ci,p0,1q ` ci,p0,´1qq

1´ λi
(7.20)

ď 4
n2´1
ÿ

i“1

c2
i,p1,0q

1´ λi
.
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Similarly, the expected hitting time formula may be written

n2´1
ÿ

i“1

ci,p1,0qpci,p1,0q ` ci,p´1,0q ` ci,p0,1q ` ci,p0,´1qqλi
p1´ λiq2

— n2. (7.21)

Those terms with 1
1´λi

bounded contribute Op1q to this sum, so that the
negative terms may be dropped, and hence

n2´1
ÿ

i“1

ci,p1,0qpci,p1,0q ` ci,p´1,0q ` ci,p0,1q ` ci,p0,´1qq

p1´ λiq2
— n2. (7.22)

Again by symmetry, and Cauchy-Schwarz,

n2´1
ÿ

i“1

c2
i,p1,0q

p1´ λiq2
— n2. (7.23)

To prove (7.18), note that if c ą 0 is sufficiently small, since
ř

i c
2
i,p1,0q “ 1,

ÿ

i:p1´λiqą
c
n

c2
i,p1,0q

p1´ λiq2
" n2. (7.24)

The claim now follows from 1
1´λi

! n2 log n.

The following bounds are useful in bounding the characteristic function
of the hitting time.

Lemma 7.2.6. Let ϑ be maximal such that

ÿ

i:p1´λiqąϑ

c2
i,p1,0q

1´ λi
ě

ˆ

1´
1

plog nq3

˙ n2´1
ÿ

i“1

c2
i,p1,0q

1´ λi
. (7.25)

Then for ϑ ă ξ ď 1
2
,

ÿ

i:1´λiăξ

c2
i,p1,0q

ˆ

1

1´ λi
´

1

|1´ λie2πiξ|

˙

"
1

plog nq3
. (7.26)

For 0 ă ξ ď ϑ,

ÿ

i:p1´λiqąϑ

c2
i,p1,0q

ˆ

1

1´ λi
´

1

|1´ λie2πiξ|

˙

" ξ2n4. (7.27)
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Proof. By the previous lemma, ϑ ! 1
n
. We have

1

|1´ λie2πiξ|
ď

1

|p1´ λiq ` iλi sinp2πξq|
“

1

1´ λi

1
ˇ

ˇ

ˇ
1` iλi sinp2πξq

1´λi

ˇ

ˇ

ˇ

. (7.28)

and, thus,

1

1´ λi
´

1

|1´ λie2πiξ|
"

1

1´ λi

¨

˝1´
1

b

1` ξ2

p1´λiq2

˛

‚ (7.29)

"
1

1´ λi
min

ˆ

1,
ξ2

p1´ λiq2

˙

.

We now conclude, when ϑ ă ξ ď 1
2
,

ÿ

i:p1´λiqăξ

c2
i,p1,0q

ˆ

1

1´ λi
´

1

|1´ λie2πiξ|

˙

"
ÿ

i:p1´λiqăξ

c2
i,p1,0q

1´ λi
"

1

plog nq3
.

(7.30)

For 0 ă ξ ď ϑ, note that

ÿ

i:p1´λiqăϑ

c2
i,p1,0q

p1´ λiq3
!

1

p1´ λ1q
2

ÿ

i:p1´λiqăϑ

c2
i,p1,0q

1´ λi
!

n4

log n
(7.31)

while, by Hölder,
n2´1
ÿ

i“1

c2
i,p1,0q

p1´ λiq3
" n4. (7.32)

Hence,

ÿ

i:1´λiąϑ

c2
i,p1,0q

ˆ

1

1´ λi
´

1

|1´ λie2πiξ|

˙

" ξ2
ÿ

i:1´λiąϑ

c2
i,p1,0q

p1´ λiq3
" ξ2n4.

(7.33)

Now we are ready to prove bounds of χpξ1, ξ2q.

Lemma 7.2.7. There is a constant c ą 0 such that, uniformly in n and
uniformly in ξ1 P

`

´n
2
, n

2

‰

, and ξ2 P
`

´1
2
, 1

2

‰

,

|χpξ1, ξ2q| ď 1´ cmax

ˆ

ξ2
1

n2
, ξ2

2

˙

. (7.34)
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Proof. Consider paths of either fixed, bounded length, or fixed displacement
of P but bounded varying length. All of these have positive probability,
which is not dependent on n for all n sufficiently large. The variation in
their phase is of the given magnitude.

We use generating function to get a matrix formula for χpξ1, ξ2q. Recall
that we let P be the transition matrix of 1

5
-lazy simple random walk on

pZ{nZq2, and that P 1 is the minor excluding the row and column of p0, 0q,
Rpzq “ pI´zP 1q´1 Let Mpz1, z2q be the transition matrix on pZ{nZq2ztp0, 0qu
with 1

5
z1z2 in the transition from p1, 0q to p´1, 0q and 1

5
z2
z1

in the transition
from p´1, 0q to p1, 0q, and zeros elsewhere. Let wpz1, z2q be the vector with
entries z1z2

2
at p´1, 0q and z2

2z1
at p1, 0q, with zeros elsewhere, and let v be the

vector with value 1
5

at p0,˘1q and zeros elsewhere.

Lemma 7.2.8. Let ξ1 P Z{nZ, ξ2 P R{Z, and set z1 “ e
2πiξ1
n , z2 “ e2πiξ2.

Then
χpξ1, ξ2q “ wpz1, z2q

t
pI ´Rpz2qMpz1, z2qq

´1Rpz2qv. (7.35)

Proof. The sequence of moves described in phase space by χpξ1, ξ2q are as
follows. An initial move, which involves one move of the empty square and
one update, right or left of P occurs. This is recorded by wpz1, z2q

t in which
if the empty square swaps places from the right, it now has the position to
the left p´1, 0q of P and makes one move, hence contributes z1z2 to the
phase. If instead the empty square swaps places from the left then it now
occupies p1, 0q relative to P and contributes z2

z1
to the phase.

Now there are 0 or more excursions of the empty square followed by a
right or left move of P. A right or left move of P entails moving the empty
square from the position on the right of P to the position on the left, or
vice versa. This is captured by Mpz1, z2q. Finally there is a final excursion,
captured by R, which is finished by moving onto P from above or below,
captured by v.

The previous lemma implies the following bound.

Lemma 7.2.9. Uniformly in n, ξ1 P p´
n
2
, n

2
s and ξ2 P p´

1
2
, 1

2
s,

1´ |χpξ1, ξ2q| " etp1,0qRp1qep1,0q ´
ˇ

ˇetp1,0qRpe
2πiξ2qep1,0q

ˇ

ˇ . (7.36)

Proof. In the term pI ´ Rpz2qMpz1, z2qq
´1 “

ř8

k“0pRpz2qMpz1, z2qq
k, there

is a probability, bounded uniformly away from 0 that the k “ 1 term is
taken, and a probability bounded uniformly from 0 that the return is of
type ep1,0q to ep1,0q. With no cancellation, the sum of path probabilities mak-
ing up the return is et

p1,0qRp1qep1,0q, while with the phase, the sum has size
ˇ

ˇ

ˇ
et
p1,0qRpe

2πiξ2qep1,0q

ˇ

ˇ

ˇ
.
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Lemma 7.2.10. There is a constant c ą 0 such that, for all ξ1 P Z{nZ and
´1

2
ă ξ2 ď

1
2
,

|χpξ1, ξ2q| ď 1´ cmin

ˆ

1

plog nq3
, ξ2

2n
4

˙

. (7.37)

Proof. By the previous lemma,

1´ |χpξ1, ξ2q| "

n2´1
ÿ

i“1

c2
i,p1,0q

1´ λi
´

ˇ

ˇ

ˇ

ˇ

ˇ

n2´1
ÿ

i“1

c2
i,p1,0q

1´ λie2πiξ2

ˇ

ˇ

ˇ

ˇ

ˇ

(7.38)

ě

n2´1
ÿ

i“1

c2
i,p1,0q

ˆ

1

1´ λi
´

1

|1´ λie2πiξ2 |

˙

.

By Lemma 7.2.6, it follows that

1´ |χpξ1, ξ2q| " min

ˆ

1

plog nq3
, ξ2

2n
4

˙

. (7.39)

At small frequencies, the characteristic function may be estimated by
Taylor expansion. Recall ErH2

1 s “ s2
n, Err1s “ µn and Varrr1s “ v2

n.

Lemma 7.2.11. For ξ1 P Z{nZ, |ξ1| ď
n
2

and for complex ξ2, |ξ2| !
1

n2plognq2
,

χpξ1, ξ2q “ exp

ˆ

2πiξ2µn ´
2π2ξ2

1

n2
s2
n ´ 2π2ξ2

2v
2
n

˙

(7.40)

ˆ

ˆ

1`O

ˆ

ξ3
1

n3
` ξ3

2pn
2 log nq3

˙˙

.

Proof. To obtain this estimate, write

χpξ1, ξ2q “ e2πiξ2µnE
”

e2πip
ξ1
n
H1`ξ2pr1´µnqq

ı

. (7.41)

Now Taylor expand e2πix “ 1` 2πix´ 2π2x2 `Opx3q and use the moments

ErH1s “ 0, ErH2
1 s “ sn, Er|H1|

3
s “ Op1q (7.42)

and

Err1 ´ µns “ 0, (7.43)

Erpr1 ´ µnq
2
s “ vn,

ErH1pr1 ´ µnqs “ 0,

Er|r1 ´ µn|
3
s “ Oppn2 log nq3q.
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Combine above we get a local limit theorem:

Theorem 7.2.12 ([1] Theorem 29). Let n ě 2, plog nq19 ď N ď n3, |t´ 2Nµn| ă?
Nvn log n for any A ą 0,

Prob pSN “ pi, j, tqq “ O
´

plognq6

N2vn
exp

´

´
pt´2Nµnq

2

4Nv2n

¯¯

`OA

`

n´A
˘

`
exp

ˆ

´
pt´2Nµnq

2

4Nv2n

˙

?
4πNvn

˜

1
n2

ř

ξPZ{nZq2
}ξ}2!

n?
N

logn

e´2πi ξ¨pi,jq
n exp

´

´
2π2}ξ}22s

2
nN

n2

¯

¸

.

Proof. The characteristic function of SN at frequencies ξ1
n
, ξ2
n
, ξ3 is given by

χpξ1, ξ3q
Nχpξ2, ξ3q

N . Hence, by Fourier inversion,

ProbpSN “ pi, j, tqq (7.44)

“
1

n2

ÿ

ξ“pξ1,ξ2qPpZ{nZq2

ż

ξ3PR{Z
e´2πip

ξ1i`ξ2j
n

`ξ3tqχpξ1, ξ3q
Nχpξ2, ξ3q

Ndξ3.

Using the bound |χpξ1, ξ3q| ď 1´ cmax
´

ξ21
n2 , ξ

2
3

¯

, truncate the torus vari-

ables to }ξ}2 !
n?
N

log n with error, for any A ą 0, OApn
´Aq. Next using

the bound |χpξ1, ξ3q| ď 1 ´ cmin
´

1
plognq3

, ξ2
3n

4
¯

, truncate the ξ3 integral to

|ξ3| !
plognq2

n2
?
N

with the same error. Inserting the Taylor expansion for χpξ1, ξ3q

and χpξ2, ξ3q at low frequencies,

ProbpSN “ pi, j, tqq “
1

n2

ÿ

}ξ}2!
n?
N

logn

e´2πip
ξ1i`ξ2j

n q (7.45)

ˆ

ż

|ξ3|!
plognq2

n2
?
N

e´2πiξ3pt´2Nµnq exp

ˆ

´N

ˆ

2π2pξ2
1 ` ξ

2
2qs

2
n

n2
` 4π2ξ2

3v
2
n

˙˙

ˆ

ˆ

1`O

ˆ

}ξ}32
n3

` |ξ3|
3
pn2 log nq3

˙˙2N

dξ3 `OApn
´A
q.

In the integral over ξ3 substitute ξ13 “ 2πN
1
2vnξ3 to obtain

Prob pSN “ pi, j, tqq “
1

2πN
1
2vnn2

ÿ

}ξ}2!
n?
N

logn

e´2πip
ξ1i`ξ2j

n q (7.46)

ˆ

ż

|ξ13|!
vnplognq2

n2

exp

ˆ

´iξ13pt´ 2Nµnq

N
1
2vn

´ ξ13
2
´N

ˆ

2π2pξ2
1 ` ξ

2
2qs

2
n

n2

˙˙

ˆ

˜

1`O

˜

}ξ}32
n3

` |ξ13|
3

ˆ

n2 log n

vn
?
N

˙3
¸¸2N

dξ13 `OApn
´A
q.
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ξ̃3 “ ξ13 `
ipt´ 2Nµnq

2N
1
2vn

(7.47)

then shifting the ξ̃3 integral to be on the real axis obtains a horizontal integral
bounded by OApn

´Aq together with a shifted integral

Prob pSN “ pi, j, tqq “
exp

´

´
pt´2Nµnq2

4Nv2n

¯

2πN
1
2vnn2

ÿ

}ξ}2!
n?
N

logn

e´2πip
ξ1i`ξ2j

n q (7.48)

ˆ

ż

|ξ̃3|!
vnplognq2

n2

exp

ˆ

´ξ̃2
3 ´N

ˆ

2π2pξ2
1 ` ξ

2
2qs

2
n

n2

˙˙

ˆ

˜

1`O

˜

}ξ}32
n3

`

˜

|ξ̃3|
3
`
|t´ 2Nµn|

3

N
3
2v3
n

¸

ˆ

n2 log n

vn
?
N

˙3
¸¸2N

dξ̃3

`OApn
´A
q.

The main term is obtained by dropping the big O terms and extending the
ξ̃3 integral to R with acceptable error.

To bound the error, note that in the region of integration, using n2 !

vn ! n2 log n,

O

˜

}ξ}32
n3

`

˜

|ξ̃3|
3
`
|t´ 2Nµn|

3

N
3
2v3
n

¸

ˆ

n2 log n

vn
?
N

˙3
¸

“ o

ˆ

1

N

˙

, (7.49)

so that the exponential may be bounded linearly. Bound integration over ξ̃3

by a constant. This obtains an error of

!

exp
´

´
pt´2Nµnq2

4Nv2n

¯

2πN
1
2vnn2

ÿ

}ξ}2!
n?
N

logn

exp

ˆ

´2π2N}ξ}22s
2
n

n2

˙

(7.50)

ˆN

˜

}ξ}32
n3

`

˜

1`
|t´ 2Nµn|

3

N
3
2v3
n

¸

ˆ

n2 log n

vn
?
N

˙3
¸

.

Use vn " n2, and use |t ´ 2Nµn| ! N
1
2vn log n, and approximate the sum

over ξ with an integral over R2 to estimate the error by

!

exp
´

´
pt´2Nµnq2

4Nv2n

¯

N
1
2

2πvn

ż

R2

exp
`

´2π2Ns2
nx

2
˘

ˆ

}x}32 `
plog nq6

N
3
2

˙

dx.

(7.51)

This obtains the claimed error bound.
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Due to symmetry of the walk, the distribution of the marked piece P
is determined after N steps of the renewal process by the above local limit
theorem.

We can now prove Theorem 7.2.1.

Proof of Theorem 7.2.1. Recall that the time t Brownian motion Bptq on
pR{Zq2 has a distribution which is a θ function θtpxq. The convergence in
Theorem 7.2.1 consists of a lower bound and an upper bound approximating
the distance to uniformity of the single piece with

›

›θt ´ UpR{Zq2
›

›

TV
“

1

2

ż

pR{Zq2
|θtpxq ´ 1|dx (7.52)

“

ż

pR{Zq2
1pθtpxq ą 1qpθtpxq ´ 1qdx.

Let ρ : R Ñ r0, 1s be a smooth approximation identity (cut-off function)
which satisfies ρpxq “ 0 if x ď ´1 and ρpxq “ 1 if x ě 1. Let, for ε ą 0,
ρεpxq “ ρ

`

x
ε

˘

and define ψεpx, tq “ ρεpθtpxq ´ 1q. For fixed ε and for t P K
with K Ă R` compact, ψεpx, tq is uniformly C1 since θtpxq is uniformly Cj

for every j. Also,
ˇ

ˇ

ˇ

ˇ

›

›θtpxq ´ UpR{Zq2
›

›

TV
´

ż

pR{Zq2
ψεpx, tqpθtpxq ´ 1qdx

ˇ

ˇ

ˇ

ˇ

ď ε, (7.53)

since |θtpxq ´ 1| ď ε whereever ψεpx, tq and 1pθpx, tq ą 1q differ.
Define cpuz “

2µ
σ2 “

5
2
pπ ´ 1q. Let piT , jT q be the displacement from its

initial position of the piece P after T “ tcpuzn
4tu steps of the Markov chain

P . We show that for each fixed ε ą 0, uniformly for t P K,

lim
nÑ8

EU
pZ{nZq2

„

ψε

ˆˆ

i

n
,
j

n

˙

, t

˙

“

ż

pR{Zq2
ψεpx, tqdx (7.54)

and

lim
nÑ8

EPT

„

ψε

ˆˆ

iT
n
,
jT
n

˙

, t

˙

“

ż

pR{Zq2
ψεpx, tqθt pxq dx, (7.55)

which proves that the total variation distance of the single piece process is
bounded below in the limit by that of Brownian motion. Note that (7.54)
holds since the expectation is a Riemann sum for the integral, so that the
convergence holds by uniform convergence.

The distribution of P is determined after N steps of the renewal pro-
cess in Theorem 7.2.12, so we now remove the stopping time implicit in the
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renewal process and include the moves H0, V0 prior to the renewal process
beginning.

Let, for ε ą 0,

N “

Z

T

2µn
´ n1`ε

^

. (7.56)

Since µn is of order n2 by Lemma 7.2.3, N is of order n2. Let

M “

Z

T ´ SN,3
2µn

´ n
1
2
`2ε

^

. (7.57)

Then outside a set Sbad

piT , jT q “ pH0, V0q ` pSN,1, SN,2q ` pSM,1, SM,2q ` pE1, E2q (7.58)

where E1, E2 are the set of moves of the piece after time t1`SN,3`SM,3. The
condition for membership in Sbad is that either |SN,3 ´ 2Nµn| ě

?
Nvn log n

or |SM,3 ´ 2Mµn| ě
?
Mvn log n. Since ri

vn
and si

vn
have exponentially de-

caying tails, by the variant of Chernoff’s inequality, Lemma 8.0.2, Sbad has
probability, for any A ą 0, OApn

´Aq, so can be ignored.

Outside Sbad, M is of order n1`ε, so that SM,1, SM,2 ! n
1
2
`ε with probabil-

ity 1´OApn
´Aq by Lemma 8.0.2 this time applied toHi and Vi, which have ex-

ponentially decaying tails. Similarly, by excluding Sbad, T´SN,3´SM,3´t1 “

Opn
5
2
`2εq. It then follows by Chernoff’s inequality for the sum of ri and si,

that P moves Opn
1
2
`3εq times in pE1, E2q. Since H0 and V0 are bounded

! log n w.o.p., it follows that piT , jT q “ pSN,1, SN,2q`Opn
1
2
`3εq. Since ψεpx, tq

is uniformly C1, it suffices to prove (7.55) for piT , jT q replaced by pSN,1, SN,2q.
For any fixed i, j, the error term in applying Theorem 7.2.12 to SN

summed in t is Opn´3`εq, and hence may be ignored. Also, the sum over
ξ may be extended to all of Z2 with negligible error. This gives a main term
of

1

n2

ÿ

ξPZ2

e´2πi ξ¨pi,jq
n exp

ˆ

´
2π2}ξ}22s

2
nN

n2

˙

“
1

n2
θ s2nN
n2

ˆ

i

n
,
j

n

˙

. (7.59)

It follows that uniformly in t, as nÑ 8,

EPT

„

ψε

ˆˆ

iT
n
,
jT
n

˙

, t

˙

„
1

n2

ÿ

pi,jqPpZ{nZq2
ψε

ˆ

i

n
,
j

n

˙

θ s2nN
n2

ˆ

i

n
,
j

n

˙

. (7.60)

Since θ s2nN
n2

Ñ θt uniformly as n Ñ 8, the claim now follows by uniform

convergence. This completes the proof of the lower bound.
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To prove the upper bound, note that, conditioned on SN,3, SN,1 and SN,2
are independent of pH0, V0q, pSM,1, SM,2q and pE1, E2q. As in the lower bound,
drop the error terms from the limit in Theorem 7.2.12, since these contribute
measure op1q. Denote by S̃N the main term. Also, we may restrict attention
to S̃N,3 such that |S̃N,3´ 2Nµn| ď Avn for a constant A, since the remaining
part has measure op1q as A Ñ 8. Since convolution with the remaining
distributions can only decrease the total variation distance, as can removing
the conditioning, it suffices to prove that, conditioned on any S̃N,3 which
differs from its mean by a bounded multiple of its variance, the distribution
of pS̃N,1, S̃N,2q has distance from uniform bounded by the total variation
distance of θtpxq to uniform. This in fact follows from the convergence of the
Fourier series in Theorem 7.2.12.

7.3 The upper bound

We show an upper bound of the mixing time of this random walk, by using the
comparison techniques on the walk generated by 3-cycle, which is analysed
in [10].

We firstly introduce the lemma from [10].

Lemma 7.3.1. The spectral gap in the regular representation of Altpnq for
the measure supported uniformly on 3-cycles is 3

n´1
, and the ε

|G|
´ `8 mixing

time is of order n log n.

Proof. See [10], Appendix A.

The proof of the upper bound is motivated by the observation that An is
generated by elementary 3-cycle pi, i`1, i`2q. We can move the empty piece
to a desired position by a path (which is Opnq)on the board, then do a ULDR
and return back to the right-down corner by the same path. This generates
any 3-cycle. and thus gives the constant of the comparison theorem.

Let Gn “ Sn2´1 ˆ pZ{nZq2pn odd q or Gn “ An2´1 ˆ pZ{nZq2 even q be
the n2 ´ 1 group. Consider the symmetric set

S “ tRc, Lc, Uc,Dc, c : c “ pc3, idq , c3 a 3 -cycle u

and let µS be its uniform probability measure.

Lemma 7.3.2. The measure µS has d2 mixing time on Gn of order O pn2 log nq .
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Proof. Since this is a symmetric random walk on a group, by Plancherel,

}µ˚NS ´ UGn}
2
d2
“

ÿ

1‰λPσpPSq

λ2N , (7.61)

where PS is the transition kernel of the random walk.
Let ρ “ ρ1 b ρ2 be an irreducible representation of Gn, so that ρ1 is an

irreducible representation of Sn or An and ρ2 is a character of pZ{nZq2. Thus
dim ρ1 b ρ2 “ dim ρ1. We have

µ̂Spρ1 b ρ2q “ ExPtR,L,U,D,idu rρ1 b ρ2pxqsEc3 3 cycle rρ1pc3qs (7.62)

“
χρ1pcq

dρ1
ExPR,L,U,D,idrρ1 b ρ2pxqs.

where χρ1pcq is the character of ρ1 at a 3-cycle, and dρ1 is the dimension.
When ρ1 b ρ2 is one dimensional, but not trivial, ρ1 is the identity on

3-cycles, so that in this case, |µ̂Spρ1bρ2q| ď 1´ c
n2 . When ρ2 is not the trivial

representation, this follows by bounding the spectrum of simple random walk
on the torus, while when ρ2 is trivial, since ρ1 is not, use that ρ1pidq “ 1
while ρ1pRq “ ´1. Since there are Opn2q one dimensional representations,
this part of the spectrum is mixed in Opn2 log nq steps.

When ρ1 has dimension dρ1 ą 1,
χρ1 pcq

dρ1
is the eigenvalue, with multiplicity

dρ1 of the 3-cycle walk in An2´1 in this representation. There are now n2

representations having the same ρ1 factor corresponding to the choices for ρ2,

each having their spectrum bounded in size by
ˇ

ˇ

ˇ

χρ1 pcq

dρ1

ˇ

ˇ

ˇ
. Since the spectral gap

of the 3-cycle walk is of order 1
n2 , an arbitrary factor of n2 in the multiplicity

can be saved by increasing the constant in the mixing time of order n2 log n
for the 3-cycle walk.

Theorem 7.3.3 ([1], Theorem 4). The mixing time upper bound: The

total variation and
´

ε
|G|
, `8

¯

mixing time of an n2 ´ 1 puzzle is O pn4 log nq.

Proof. By Cauchy-Schwarz, the total variation distance is bounded by half
the d2 distance. Also, since the n2 ´ 1 puzzle is a symmetric random walk
on a group, the ε

|G|
´ `8 mixing time is bounded by a constant times the d2

mixing time. Thus we only estimate the d2 mixing time.
By Plancherel, we have

}etidP
N
n2´1 ´ UGn}

2
d2
“

ÿ

1‰λPσpPn2´1q

λ2N . (7.63)
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Let 1 “ λ0,n2´1 ą λ1,n2´1 ě ¨ ¨ ¨ be the eigenvalues of Pn2´1, and let 1 “
λ0,S ą λ1,S ě ¨ ¨ ¨ be the eigenvalues of the transition kernel associated to the
symmetric generating set µS above.

Note that the commutator URDL is a 3-cycle which leaves the empty
space fixed. Any other 3-cycle may be obtained by finding a word w of
length Opnq which shifts any 3 pieces i, j, k into the positions cycled by
URDL and performing w´1URDLw, which again leaves the empty square
fixed, and cycles i, j, k. It follows that each element of S can be obtained as
a word in Opnq letters on generators, so A in the comparison theorem may
be taken Opn2q. In particular, 1´ λi,n2´1 "

1
n2 p1´ λi,Sq.

As Pn2´1 is 1
5
-lazy, by 1.30 the negative eigenvalues are bounded below

by ´3
5
, and since the purported mixing time Opn4 log nq is large compared

to log |Gn| “ Opn2 log nq, the negative eigenvalues may be ignored when
bounding the d2 mixing time. Thus by comparison, the d2 mixing time is
bounded by a constant times A times the d2 mixing time for S, and hence is
Opn4 log nq, as wanted.
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Chapter 8

Concentration Inequality

The following inequalities are used to prove mixing of a single piece .

Lemma 8.0.1 (Chernoff’s inequality). Let X1, X2, ..., Xn be i.i.d. random
variables satisfying |Xi ´ ErXis| ď 1 for all i. Set X :“ X1 ` ¨ ¨ ¨ `Xn and
let σ :“

a

VarpXq. For any λ ą 0,

Prob pX ´ ErXs ě λσq ď max
´

e´
λ2

4 , e
´λσ
2

¯

. (8.1)

The following variant handles random variables which have exponentially
decaying tails.

Lemma 8.0.2. Let X1, X2, ..., Xn be i.i.d. non-negative random variables of
variance σ2, σ ą 0, satisfying the tail bound, for some c ą 0 and for all
Z ą 0, ProbpX1 ą Zq ! e´cZ. Let X “ X1 `X2 ` ¨ ¨ ¨ `Xn. Then for any

λ ą 1, for c1 “
?
cσ
2

,

Prob
`

|X ´ ErXs| ě λσ
?
n
˘

! e´
λ2

16 ` ne´c1λ
1
2 n

1
4 . (8.2)

Proof. Let Z be a parameter, Z " n
1
4 . Let X 1

i be Xi conditioned on Xi ď Z.
Let µ1 “ ErX 1

is. Let X2
i “ Xi ¨ 1pXi ď Zq ` µ1 ¨ 1pXi ą Zq and X2 “

X2
1 `X

2
2 ` ¨ ¨ ¨ `X

2
n. We have

ErXi ¨ 1pXi ě Zqs “ ´

ż 8

Z

xdProbpXi ě xq (8.3)

“ ZProbpXi ě Zq `

ż 8

Z

ProbpXi ě xqdx

! Ze´cZ `

ż 8

Z

e´cxdx ď

ˆ

Z `
1

c

˙

e´cZ .
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Thus, for some c1 ą 0, ErX2s “ ErXs `Opne´c
1Zq. Also,

VarpXiq “ ErpXi ´ ErXisq
2
s (8.4)

ě ErpXi ´ ErXisq
21pXi ď Zqs

ě ErpXi ´ µ
1
q
21pXi ď Zqs

“ VarpX2
i q.

Since |X2
i | ď Z, for all n sufficiently large, applying Chernoff’s inequality,

Probp|X ´ ErXs| ą λσ
?
nq ď

n
ÿ

i“1

ProbpX2
i ‰ Xiq (8.5)

`Prob

ˆ

|X2
´ ErX2

s| ą
λ

2
σ
?
n

˙

! ne´cZ ` 2 max
´

e´
λ2

16 , e´
λσ
?
n

4Z

¯

.

To optimize the exponents, choose Z2 “
λσ
?
n

4c
to obtain the claim.
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