History of Sandpiles

- In a 1987 paper by Bak, Tang and Wiesenfeld.
- A Google Scholar search returns >1800 hits.

Sandpile Dynamics of G = (V, E, S)

- $\sigma(v)$: # of chips distributed on each vertex $v \in V$.
- **Stable** vertex v: $\sigma(v) < \deg(v)$.
- **Toppling**: sending out a chip to each neighboring vertex from one unstable vertex.
- Passed chips to $s \in S$ are removed.
- In each step a grain of sand is dropped on a uniform vertex and all legal topplings occur.

Graph Laplacian Δ

- $\Delta f(v) = \deg(v)f(v) \sum_{(v,w)\in E} f(w).$
- Δ' : a graph Laplacian obtained by omitting the row and column corresponding to the sink.

Sandpile Group of a Graph

- The sandpile group of G = (V, E, S) is isomorphic to $\mathcal{G} = \mathbb{Z}^{V \setminus \{s\}} / \Delta' \mathbb{Z}^{V \setminus \{s\}}.$
- The dual group is isomorphic to $\hat{\mathcal{G}} = (\Delta')^{-1} \mathbb{Z}^{V \setminus \{s\}} / \mathbb{Z}^{V \setminus \{s\}}.$

Functions Harmonic Modulo 1

- ξ is harmonic modulo 1 if $\Delta \xi \equiv 0 \mod 1$.
- $f(\xi) = \sum_{x \in \mathscr{T}} 1 \cos(2\pi\xi_x)$

The Fourier Coefficients

• The eigenvalue of the Markov chain associated to $\xi \in \hat{\mathcal{G}}$ is the **Fourier coefficient** of the measure μ driving the random walk at frequency ξ :

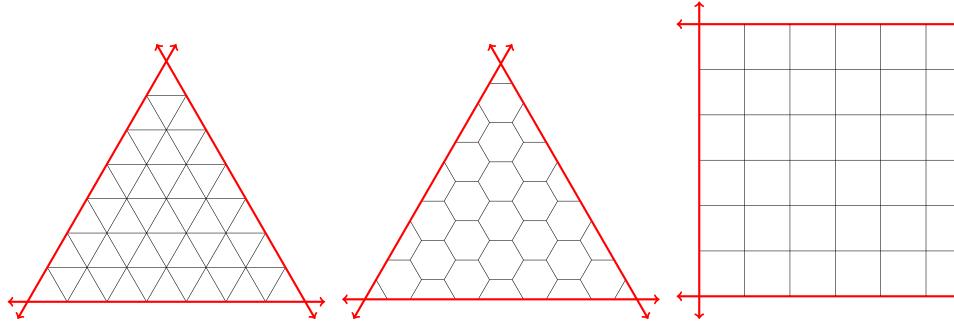
$$\hat{\mu}(\xi) = \frac{1}{|V|} \left(1 + \sum_{v \in V \setminus \{s\}} e(\xi_v) \right).$$

Sandpile Dynamics on Tiling Graphs

Robert Hough (advisor), Hyojeong Son

Department of Mathematics, Stony Brook University, Stony Brook, NY 11794

Sandpiles with Periodic and Open Boundary



by a probability measure μ on a group has distribution at step n given by μ^{*n} where $\mu^{*1} = \mu$ and $\mu^{*n} = \mu * \mu^{*(n-1)}$. Total Variation Mixing Time : Let a measure μ be driving sandpile dynamics on the group of recurrent sandpile states $\mathcal{G}(G)$ with uniform measure $\mathbb{U}_{\mathcal{G}(G)}$. $t_{\text{mix}} = \min\left\{k : \ \mu^{*k} - \mathbb{U}_{\mathcal{G}(G)}\ _{\text{TV}(\mathcal{G}(G))} < \frac{1}{e}\right\}$. Let $\Delta \xi = \nu$, $\ \xi\ _{\infty} < \frac{1}{2}$. Given a set $S \subset \mathcal{T}$, a lower bound for $f(\xi)$ is obtained as the solution of the optimization programs $Q(S, \nu)$ and $P(S, \nu)$. $Q(S, \nu)$: minimizes $\Sigma_{d(w,S) \leq 1} 1 - c(x_w)$ where $\forall u \in S, (\deg u)x_u - \Sigma_{d(w,u)=1} x_w = \nu_u$ and $-\frac{1}{2} \leq x_w \leq \frac{1}{2}$. $P(S, \nu)$: a relaxed optimization program with	of co-dimension 1 subspaces. $s \in \langle x \rangle: a \text{ set of harmonic modulo 1 functions } f \\ on \not x \text{ which are anti-symmetric in each plane of } S, identified with functions on x \in S_S.s \in \langle x \rangle: a \text{ set of harmonic modulo 1 functions } f \\ on \not x \text{ which are anti-symmetric in each plane of } S, identified with functions on x \in S_S.s \in \langle x \rangle: a \text{ set of harmonic modulo 1 functions } f \\ on \not x \text{ which are anti-symmetric in each plane of } S, identified with functions on x \in S_S.s \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.s \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.s \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.s \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.s \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.s \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.s \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.s \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.s \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.s \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.s \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.r \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.r \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.r \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.r \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.r \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.r \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.r \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.r \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S_S.r \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S.r \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S.r \in \langle x \rangle: [a set of harmonic modulo 1 functions on x \in S.r \in \langle x \rangle: [a set of harmonic modulo 1 functions on f$	Boundary	
Dynamics Group Convolution: A random walk driven by a probability measure μ on a group has distribution at step n given by $\mu^{\circ n}$ where $\mu^{\ast 1} = \mu$ and $\mu^{\circ n} = \mu \cdot \mu^{\ast (n-1)}$. Total Variation Mixing Time: Let a measure μ be driving sample dynamics on the group of recurrent sandpile states $\mathcal{G}(G)$ with uniform measure $U_{\mathcal{G}(G)}$. $t_{mix} = \min \left\{ k : \ \mu^{\ast k} - U_{\mathcal{G}(G)} \ _{\text{TV}(\mathcal{G}(G))} < \frac{1}{e} \right\}$. Given a sequence of graphs G_n the sandpile dynamics is said to satisfy the cut-off phenomenon in total variation if, for each $\epsilon > 0$, $\ \mu^{\ast [(1-\epsilon)t_{mix}]} - U_{\mathcal{G}(G_n)} \ _{\text{TV}(\mathcal{G}(G_n))} \to 0$ as $n \to \infty$. Determination of Spectral Gap and Spectral Factors • Let $\Delta \xi = \nu$, $\ \xi \ _{\infty} \leq \frac{1}{2}$. Given a set $S \in \mathscr{T}$, a lower bound for $f(\xi)$ is obtained as the solution of the optimization programs $Q(S, \nu)$ and $P(S, \nu)$. • $Q(S, \nu)$: minimizes $\Sigma_{d(w,n)=1} x_w = \nu_u$ and $-\frac{1}{2} \leq x_w \leq \frac{1}{2}$. • $P(S, \nu)$: a relaxed optimization program with $\forall u \in S$, $(\deg u)x_u + \Sigma_d(w,u) - 1 x_w \geq \nu_u$. • P and Q are monotone in S , and the value at the union of two sets is additive if the variables are disjoint. • A connected component analysis is performed to identify the extremal ν . • A method is given to obtain the Fourier transform of the Green's function of an arbitrary	Dynamics Group Convolution: A random walk driven by a probability measure μ on a group has distribution at step n given by $\mu^{(n)}$ where $\mu^{(n)} = \mu$ and $\mu^{(n)} = \mu \cdot \mu^{((n-1))}$. Total Variation Mixing Time: Let a measure μ be driving sandpile dynamics on the group of recurrent sandpile states $\mathcal{G}(G)$ with uniform measure $\mathbb{U}_{\mathcal{G}(G)}$. $t_{mix} = \min\left\{k : \mu^{(n)} - \mathbb{U}_{\mathcal{G}(G)} _{\mathrm{TV}(\mathcal{G}(G))} < \frac{1}{e}\right\}$. Given a sequence of graphs G_n the sandpile dynamics is said to satisfy the cut-off phenomenon in total variation if, for each $\epsilon > 0$, $ \mu^{(1+\epsilon)t_{min}] - \mathbb{U}_{\mathcal{G}(G_n)} _{\mathrm{TV}(\mathcal{G}(G_n))} \rightarrow 1$, $\mu^{(1+\epsilon)t_{min}] - \mathbb{U}_{\mathcal{G}(G_n)} _{\mathrm{TV}(\mathcal{G}(G_n))} \rightarrow 1$. $as n \to \infty.Determination of Spectral Gapand Spectral FactorsLet \Delta \xi - \nu, \xi _{\infty} < \frac{1}{2}.Given a set S - \mathscr{I}, a lower bound for f(\xi) isobtained as the solution of the optimizationprograms Q(S,\nu) and P(S,\nu).Q(S,\nu): minimizes \Sigma_{d(w,S) \leq 1} 1 - c(x_w) where\forall u \in S, (\deg u)x_u - \Sigma_{d(w,u)=1} x_w - \nu_u and-\frac{1}{2} < x_w < \frac{1}{2}.P$ and Q are monotone in S , and the value at the union of two sets is additive if the variables are disjoint. A connected component analysis is performed to identify the extremal ν . A method is given to obtain the Fourier transform of the Green's function of an arbitrary		 of co-dimension 1 subspaces. ℋ_S (𝔅): a set of harmonic modulo 1 functions f on 𝔅 which are anti-symmetric in each plane of S, identified with functions on 𝔅/𝔅_S. γ_i (Spectral Parameters): For 0 ≤ i ≤ d, γ_i = inf inf ∑_{ξ ≠ 0 mod 1} x∈𝔅/𝔅_S 1 - cos (2πξ_x). Γ_j (jth Spectral Factor): For dimension
Group Convolution : A random walk driven by a probability measure μ on a group has distribution at step n given by μ^{*n} where $\mu^{*1} - \mu$ and $\mu^{*n} = \mu * \mu^{*(n-1)}$. Total Variation Mixing Time : Let a measure μ be driving sandpile dynamics on the group of recurrent sandpile states $\mathcal{G}(G)$ with uniform measure $\mathbb{U}_{\mathcal{G}(G)}$. $t_{\text{mix}} = \min\left\{k : \ \mu^{*k} - \mathbb{U}_{\mathcal{G}(G)}\ _{\text{TV}(\mathcal{G}(G))} < \frac{1}{e}\right\}$. Given a sequence of graphs G_n the sandpile dynamics is said to satisfy the cut-off phenomenon in total variation if, for each $\epsilon > 0$, $\mu^{*[(1-\epsilon)\ell_{\text{curd}}]} - \mathbb{U}_{\mathcal{G}(G_n)}\ _{\text{TV}(\mathcal{G}(G_n))} \to 1$, $\mu^{*[(1+\epsilon)\ell_{\text{curd}}]} - \mathbb{U}_{\mathcal{G}(G_n)}\ _{\text{TV}(\mathcal{G}(G_n))} \to 0$ as $n \to \infty$. $k = n \to \infty$.	Group Convolution : A random walk driven by a probability measure μ on a group has distribution at step n given by μ^{*n} where $\mu^{*1} - \mu$ and $\mu^{*n} - \mu * \mu^{*(n-1)}$. Total Variation Mixing Time : Let a measure μ be driving sandpile dynamics on the group of recurrent sandpile states $\mathcal{G}(G)$ with uniform measure $\mathbb{U}_{\mathcal{G}(G)}$. $t_{mix} - \min\left\{k : \ \mu^{*k} - \mathbb{U}_{\mathcal{G}(G)}\ _{\mathrm{TV}(\mathcal{G}(G))} < \frac{1}{e}\right\}$. Given a set $S \subset \mathcal{F}$, a lower bound for $f(\xi)$ is obtained as the solution of the optimization programs $Q(S, \nu)$ and $P(S, \nu)$. $Q(S, \nu)$: minimizes $\Sigma_{d(w,S) \leq 1} 1 - c(w)$ where $\forall u \in S$, $(\deg u)x_u - \Sigma_{d(w,u)-1} x_w - \nu_u$ and $-\frac{1}{2} \leq x_w \leq \frac{1}{2}$. $P(S, \nu)$: a relaxed optimization program with $\forall u \in S$, $(\deg u)x_u + \Sigma_{d(w,u)-1} x_w \geq \nu_u$. P and Q are monotone in S , and the value at the union of two sets is additive if the variables are disjoint. • A connected component analysis is performed to identify the extremal ν . • A method is given to obtain the Fourier transform of the Green's function of an arbitrary		
		by a probability measure μ on a group has distribution at step n given by μ^{*n} where $\mu^{*1} = \mu$ and $\mu^{*n} = \mu * \mu^{*(n-1)}$. Total Variation Mixing Time : Let a measure μ be driving sandpile dynamics on the group of recurrent sandpile states $\mathcal{G}(G)$ with uniform measure $\mathbb{U}_{\mathcal{G}(G)}$. $t_{\text{mix}} = \min\left\{k : \ \mu^{*k} - \mathbb{U}_{\mathcal{G}(G)}\ _{\mathrm{TV}(\mathcal{G}(G))} < \frac{1}{e}\right\}$. Given a sequence of graphs G_n the sandpile dynamics is said to satisfy the cut-off phenomenon in total variation if, for each $\epsilon > 0$, $\ \mu^{*[(1-\epsilon)t_{\text{mix}}]} - \mathbb{U}_{\mathcal{G}(G_n)}\ _{\mathrm{TV}(\mathcal{G}(G_n))} \to 1$, $\ \mu^{*[(1+\epsilon)t_{\text{mix}}]} - \mathbb{U}_{\mathcal{G}(G_n)}\ _{\mathrm{TV}(\mathcal{G}(G_n))} \to 0$	 Given a set S ∈ 𝔅, a lower bound for f (ξ) is obtained as the solution of the optimization programs Q (S, ν) and P (S, ν). Q (S, ν): minimizes Σ_{d(w,S)≤1} 1 - c (x_w) where ∀u ∈ S, (deg u)x_u - Σ_{d(w,u)=1} x_w = ν_u and -¹/₂ ≤ x_w ≤ ¹/₂. P (S, ν): a relaxed optimization program with ∀u ∈ S, (deg u)x_u + Σ_{d(w,u)=1} x_w ≥ ν_u. P and Q are monotone in S, and the value at the union of two sets is additive if the variables are disjoint. A connected component analysis is performed to identify the extremal ν. A method is given to obtain the Fourier transform of the Green's function of an arbitrary

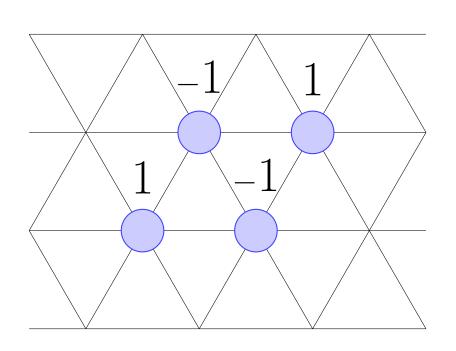
- For planar periodic things satisfying a reflection condition, the asymptotic mixing time is equal for periodic and open boundary conditions.
- For the D4 lattice in dimension 4, there is a choice of boundary with the open boundary mixing controlled by the 3 dimensional boundary.
- With an open boundary condition we prove cut-off in total variation mixing at a time proportional to the spectral factor, which combines a spectral and dimension component.

Spectral Gap and Spectral Factors

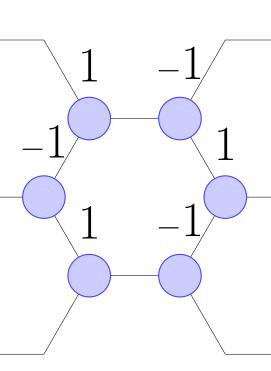
clustering is performed on $\nu = \Delta' \xi$. ing van der Corput's inequality, separated sters make independent contributions to $\hat{\mu}(\xi)$. e proof of cut-off modifies the spectral proof simple random walk on $(\mathbb{Z}/2\mathbb{Z})^N$.

bert Hough and Hyojeong Son. ndpile dynamics on periodic tiling graphs.

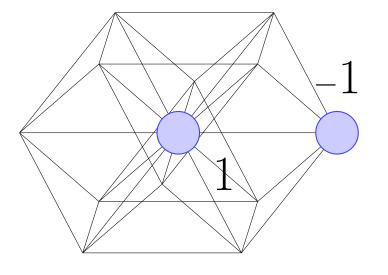
Extremal Configurations



e 2: The extremal configuration for the triangular lattice.



3: The extremal configuration for the honeycomb lattice.



4: The extremal configuration for the face centered cubic

Proof of cut-off

References

Acknowledgement of Financial Support

We would like to thank the Stony Brook Summer Math Foundation and NSF Grants DMS-1712682 and DMS-1802336 for financial support.