Introduction

Consider a n by n board where the right-down corner is empty. In each step, we swap the single empty piece with its neighbor. The alternating group arises on the 15 puzzle when considering positions in which the empty square returns to its original position.

Group Convolution:A random walk on a finite group G with driving probability measure μ can be interpreted as a Markov chain in which $\mathscr{X}=G$ and $P(x, y)=\mu\left(x^{-1} y\right)$. The distribution after n steps of the random walk started from the identity is given by the group convolution $\mu^{* 1}=\mu$ and $\mu^{* n}=\mu * \mu^{*(n-1)}$, where $\mu * \nu(z)=\sum_{x y=z} \mu(x) \nu(y)$.
To invoke more symmetry, we consider the board sides wrap around and meet each other (a 2 -dimensional torus).
The $n^{2}-1$ puzzle Markov Chain can be identified with random walk on the group $G_{n}=S_{n^{2}-1} \times(\mathbb{Z} / n \mathbb{Z})^{2}$ driven with the measure $\mu=\frac{1}{5}\left(\delta_{\text {id }}+\delta_{R}+\delta_{L}+\delta_{U}+\delta_{D}\right)$,
where $R=\left[\begin{array}{c}(n, n-1, \cdots, 1) \\ (2 n, 2 n-1, \cdots, n+1) \\ \vdots \\ \left(n^{2}-n, n^{2}-n-1, \cdots, n^{2}-2 n+1\right) \\ \left(n^{2}-1, n^{2}-2, \cdots, n^{2}-n+1\right)\end{array}\right] \times(1,0$
$U=\left[\begin{array}{c}\left(1, n+1, \cdots, n^{2}-n+1\right) \\ \left(2, n+2, \cdots, n^{2}-n+2\right) \\ \vdots \\ \left(n-1,2 n-1, \cdots, n^{2}-1\right) \\ \left(n, 2 n, \cdots, n^{2}-n\right)\end{array}\right]$
$\times(0,1)$ and $L=R^{-1}, D=U^{-}$
The total variation dis between two probability measures $\mu \nu$ on s $\|\mu-\nu\|_{\mathrm{TV}}:=\sup _{A \subset \mathcal{X}}|\mu(A)-\nu(A)|=\frac{1}{2} \sum_{x \in \mathscr{X}}|\mu(x)-\nu(x)|$
The d_{2} distance is a scaled version of the ℓ^{2} norm:
$\mu-\nu \|_{d_{2}}^{2}=|\mathscr{X}| \sum_{x \in \mathscr{X}}(\mu(x)-\nu(x))^{2}$
For $0<\epsilon<1$, the $\frac{\epsilon^{\mathscr{X}}}{|\mathscr{X}|-\ell^{\infty}}$ distance between μ and ν is:
$\|\mu-\nu\|_{\epsilon, \infty}=\frac{|\mathscr{X}|}{\epsilon} \sup _{x \in \mathscr{X}}|\mu(x)-\nu(x)|$.
Let U be the $\epsilon_{\text {inform distribution on } G \text {. Given any of these metrics, the mixing }}$ time of the chain is defined by $t_{\text {mix }}=\min \left\{k:\left\|\mu^{* k}-\mathbb{U}\right\|<\frac{1}{e}\right\}$

> Spectrum and Comparison
he Dirichlet form associated to a transition kernel P is a quadratic form

$$
\mathscr{E}(f, f)=\langle(I-P) f, f\rangle=\frac{1}{2} \sum_{x, y}(f(x)-f(y))^{2} \pi(x) P(x, y) .
$$

Here we use comparison of Dirichlet forms to compare the eigenvalues of related Markov chains on the same state space. Given a second Markov chain $\widetilde{P}(x, y)$ with stationary measure c $\tilde{\pi}$, the minimax characterization of eigenvalues leads to the bounds, for $1 \leqslant i \leqslant|X|-1$

$$
\beta_{i} \leqslant 1-\frac{a}{A}\left(1-\tilde{\beta}_{i}\right) \text {, if } \tilde{\mathscr{E}} \leqslant A \mathscr{E}, \tilde{\pi} \geqslant a \pi .
$$

A can be estimated by path method

Main Theorems

Theorem 1.(mixing of a single piece) Let $d_{\mathrm{Br}}(t)$ be the total variation distance to Theorem 1.(mixing of a single piece) Let $d_{\mathrm{Br}}(t)$ be the total variation distance to
uniformity at time $t>0$ of standard Brownian motion started from $(0,0)$ on $(\mathbb{R} / \mathbb{Z})^{2}$ Let $c_{\mathrm{puz}}=\frac{5}{2}(\pi-1)$. As $n \rightarrow \infty$, the total variation distance to uniformity of a single piece in the $n^{2}-1$ puzzle at time $c_{\text {puz }} n^{4} t$ converges to $d_{\text {Br }}(t)$ uniformly for t in compact subsets of $(0, \infty)$. Theorem 2.(Poisson Approximation) Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an arbitrary growth function such that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$. If an $n^{2}-1$ puzzle is sampled after $n^{4} f(n)$ random steps, ther the number of pieces in the puzzle in their original position converges to a Pois (1) distribution. The convergence does not hold if f remains bounded.

Corollary 3. The convergence of the number of fixed points in an $n^{2}-1$ puzzle does not exhibit a cut-off phenomenon in total variation.
Theorem 4. The total variation and $\frac{\epsilon}{|G|}-\ell^{\infty}$ mixing time of an $n^{2}-1$ puzzle is $O\left(n^{4} \log n\right)$ (we give an alternate proof of a theorem of Morris and Raymer)
Theorem 5.(Coupling of several pieces) For each fixed d, as $n \rightarrow \infty$, there is a coupling of the Markov process described by the empty square and any d labeled pieces, such that the expected time for the chain started from a deterministic position to coincide with the chain
started from stationarity is $O\left(n^{4} \log n\right)$.

Heat Kernal and Laplace Transform

The time t heat kernel associated to P is

$$
H_{t}(P):=e^{-t} \sum_{k=0}^{\infty} \frac{t^{k} P^{k}}{k!}=\sum_{\lambda \in \sigma(P)} e^{(\lambda-1) t} v_{\lambda} v_{\lambda}^{t} .
$$

Given a smooth function $\phi \geqslant 0$ of compact support, $\int_{\mathbb{R}^{+}} \phi=1$ on \mathbb{R}^{+}the Laplace transform defined by:

$$
\Phi_{t}(P):=\int_{0}^{\infty} \phi(s) H_{s t}(P) d s=\sum_{\lambda \in \sigma(P)} \hat{\phi}((1-\lambda) t) v_{\lambda} v_{\lambda}^{t}, \text { where } \hat{\phi}(t)=\int_{0}^{\infty} \phi(s) e^{-s t} d s .
$$

Here comparison techniques are applied to Lapalace transfrom of the heat kernal of the transition kernal to get spectral estimates

Green's Function and Return Probability
Harmonic Function: Given a function $f: \mathscr{X} \rightarrow \mathbb{R}$, the action of P on f is defined by $P f(x)=\sum_{y \in \mathscr{C}} P(x, y) f(y)$. The function f is said to be harmonic at x if $P f(x)=f(x)$. $B \subset \mathscr{X}$ and let $h_{B}: B \rightarrow \mathbb{R}$ be a function defined on B. The function

$$
h(x):=\mathbf{E}_{x} h_{B}\left(X_{\tau_{B}}\right)
$$

is the unique extension $h: \mathscr{X} \rightarrow \mathbb{R}$ of h_{B} such that $h(x)=h_{B}(x)$ for all $x \in B$ and h is
harmonic for P at all $x \in \mathscr{X} \backslash B$.
Green's function on \mathbf{Z}^{2} : for $\mathbf{x} \in \mathbb{Z}^{2}$

$$
G_{\mathbb{Z}^{2}}(x)=\frac{1}{4} \sum_{n=0}^{\infty}\left[v^{* n}(x)-v^{* n}(0,0)\right] .
$$

Any harmonic modulo $1 \ell^{p}\left(\mathbb{Z}^{2}\right)$ function is a sum of discrete derivatives of Any harmonic mo
Started at (1,0), the return probability (i.e. return to the origin through $(\pm 1,0)$ or $(0, \pm 1)$) to the origin is given by

$$
p_{(1,0)}=\frac{1}{2}, p_{(0, \pm 1)}=\frac{1}{2}-\frac{1}{\pi}, p_{(-1,0)}=\frac{2}{\pi}-\frac{1}{2} .
$$

Fixed points on Symmetric groups and Poisson
Approximation

The distribution of fixed points of S_{n} is approximately Pois(1)
The number of derangements in S_{n} is $\left[\frac{n}{d}\right]$. So the number of permutations with k fixed points s approximately $\frac{\binom{n}{k}^{(n-k)!}}{e}=\frac{n!}{k!e}$,
Thus the probability of a random permutation having k fixed points is $\frac{1}{k \operatorname{lo}}$, which follows Pois(1).

Proof of mixing of a single piece

We track the location of a single numbered piece \mathscr{P}, along with the empty piece \mathscr{P}_{e}. Consider stopping times $\left\{t_{i}\right\}_{0}^{\infty}$: every time \mathscr{P}_{e} swapping positions with \mathscr{P} alternaConsider stopping times $\left\{t_{i}\right\}_{0}^{\infty}$: every time \mathscr{P}_{e} swapping positions with \mathscr{P} alten
ively from vertical and horizontal directions. Here t_{0} is the first vertical swap. For $i \geqslant 1$, let H_{i} be the number of horizontal moves of \mathscr{P} in $\left(t_{2 i-1}, t_{2 i}\right)$ and let V_{i} be the number of vertical moves of \mathscr{P} in $\left[t_{2 i}, t_{2 i+1}\right)$. For $\mathrm{i} \geq 1, \mathrm{r}_{i}=t_{2 i}-t_{2 i-1}, \quad s_{i}=$ $2 i+1-t_{2 i}$.
By symmetry and strong Markov property, each inter arrival time is independent dentically distributed. The collection of random variables $\left\{H_{i}, V_{i}\right\}_{i=1}^{\infty}$ are i.i.d. symnetric, mean 0 , and have exponentially decaying tails
Set $s_{n}^{2}=\mathbf{E}\left[H_{1}^{2}\right], \mu_{n}=\mathbf{E}\left[r_{1}\right], v_{n}^{2}=\operatorname{Var}\left[r_{1}\right.$
We have

$$
\begin{gathered}
\lim _{n \rightarrow \infty} s_{n}^{2}=s^{2}, \quad \lim _{n \rightarrow \infty} \frac{\mu_{n}}{n^{2}}=\mu, \text { with } \\
s^{2}=\frac{1}{2 p_{(0, \pm 1)}} \frac{1-p_{(1,0)}+p_{(-1,0)}}{1+p_{(1,0)}-p_{(-1,0)}}, \quad \mu=\frac{5}{4}\left(\frac{1}{2 p_{(0, \pm 1)}}\right)
\end{gathered}
$$

The primary step in establishing the mixing of the piece \mathscr{P} is establishing the asymptotic independence of the coordinates of the sum

$$
S_{N}=\left(\sum_{i=1}^{N} H_{i}, \sum_{i=1}^{N} V_{i}, \sum_{i=1}^{N}\left(r_{i}+s_{i}\right)\right)
$$

which is demonstrated by considering the characteristic function:

$$
\chi\left(\xi_{1}, \xi_{2}\right)=\mathbf{E}\left[e^{2 \pi i \frac{\xi_{n}}{n} H_{1}+2 \pi i \xi_{2} r_{1}}\right], \quad \xi_{1} \in \mathbb{Z} / n \mathbb{Z}, \quad \xi_{2} \in \mathbb{R} / \mathbb{Z} .
$$

Combine above we get a local limit theorem:
et $n \geqslant 2,(\log n)^{19} \leqslant N \leqslant n^{3}\left|t-2 N \mu_{n}\right|<\sqrt{N} v_{n} \log n$ for any $A>0$
$\operatorname{Prob}\left(S_{N}=(i, j, t)\right)=O\left(\frac{\left(\frac{\log n)^{6}}{N^{2} v_{n}} \exp \left(-\frac{\left(t-2 N \mu_{n}\right)^{2}}{4 N v_{n}^{2}}\right)\right)+O_{A}\left(n^{-A}\right) .}{}\right.$

The distribution of the marked piece \mathscr{P} is determined after N steps of the renewal process by the above local limit theorem.
The total variation distance of the single piece process is bounded below in the limit
The Mixing Time Upper Bound
For the symmetric set $S=\left\{R c, L c, U c, D c, c: c=\left(c_{3}\right.\right.$, id $), c_{3}$ a 3 -cycle $\}$ the uniform probability measure μ_{S} has d_{2} mixing time on G_{n} of order $O\left(n^{2} \log n\right)$ The mixing time upper bound of the $n^{2}-1$ puzzle is given by comparison with the random walk driven by μ_{S}.

$$
\left\|e_{\mathrm{id}}^{t} P_{n^{2}-1}^{N}-\mathbb{U}_{G_{n}}\right\|_{d_{2}}^{2}=\sum_{1 \neq \lambda \in \sigma\left(P_{n^{2}-1}\right)} \lambda^{2 N}
$$

The constant A is estimated by path method: each element in S can be obtained as The constant A is estimated by path method: each element in S can be obtained as
word in $O(n)$ letters on generators: notice that $U R D L$ is a 3 -cycle. We conjugate a word in $O(n)$ letters on generators: notice that $U R D L$ is a 3 -cycle. By comparison, the d_{2} mixing time is bounded by a constant times A times the d_{2} nixing time for S.

Reference
${ }^{[1] \text { Yang Chu and Robert Hough. }}$
Solution of the 15 puzzle problen.
Acknowledgement of Financial Support

We would like to thank Stony Brook Summer Math Foundation for financial support.

